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ABSTRACT

Visible-Infrared person re-identification is a challenging yet important task in the
field of intelligent surveillance. Most existing approaches focus on designing pow-
erful deep networks to learn modality-shared representations, while little attention
has been paid to using pre-training methods, although they can improve the per-
formance of cross-modality tasks stably. This paper proposes a cross-modality
masked pre-training (CMMP) method for visible-infrared person re-identification.
Specifically, we generate color-irrelevant images using random channel exchange-
able augmentation to minimize the difference between modalities at first. In the
pre-training process, the visible together with the generated image, and the in-
frared image are masked by sharing the same random mask. Considering the mis-
alignment of visible and infrared images in the datasets, we then reconstruct the
masked areas only of the visible and the generated images using a lightweight de-
coder, which makes the pre-training process more efficient. Extensive experiments
on two visible-infrared person re-identification datasets verify the effectiveness of
the proposed method. CMMP outperforms the baseline method by +1.87% and
+1.24% mAP on SYSU-MM01 and RegDB, respectively.

1 INTRODUCTION

Person re-identification (ReID), which aims to retrieve a specific person in non-overlapping camera
networks, has received much attention in recent years. Numerous prior studies Wu et al. (2016); Sun
et al. (2018); He et al. (2021); Ma et al. (2023) have dedicated their efforts to the realm of Person
ReID using RGB images, while only a few researchesWang et al. (2019b); Zhang et al. (2019); Li
et al. (2020); Duan et al. (2020) take infrared images into consideration, that is, visible-infrared
Person ReID (VI-ReID).

Most of the VI-ReID approaches primarily concentrate on minimizing the dissimilarities between
modalities during the training phase. Interestingly, there is a limited body of research that specifi-
cally delves into cross-modality pre-training. In contrast to the conventional practice of employing
models pre-trained on ImageNetDeng et al. (2009) directly for downstream tasks in cross-modality
Person ReID, the specialized cross-modality pre-training methods not only address potential issues
arising from modality misalignment between pre-training and training data but also facilitates in-
formation exchange between modalities during the pre-training phase. This dual-pronged approach
serves the purpose of diminishing the discrepancies between modalities, thereby simplifying the
process of cross-modality matching during model fine-tuning. Fig. 1 illustrates this distinction.

In recent times, self-supervised learning techniques have garnered remarkable success within the
realm of computer vision. Among these, methods such as MAEHe et al. (2022) and SimMIMXie
et al. (2022), which rely on the mask reconstruction strategy, have achieved noteworthy milestones
in the domain of self-supervised pre-training. These approaches involve the utilization of asymmet-
ric encoders and decoders, where only the unmasked image portion is passed to the encoders, and
subsequently, the masked section is reconstructed through the decoders. This methodology effec-
tively harnesses the model’s expressive capacity, thereby furnishing an exceptional initialization for
the fine-tuning of downstream tasks.

Building upon the significant achievements in self-supervised learning, we introduce a novel cross-
modality self-supervised pre-training method tailored for the VI-ReID task, namely Cross-Modality
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Figure 1: The difference between general pre-training methods and specially designed cross-
modality pre-training methods in cross-modality person ReID. (a) and (b) are the general pre-
training methods and the cross-modality methods, respectively.

Masked Pre-training (CMMP). CMMP is designed to concurrently learn from both visible and in-
frared images, thereby enhancing feature representation and offering robust support for fine-tuning
in VI-ReID tasks. The CMMP method unfolds in the following manner: First, the visible image un-
dergoes a random channel exchange augmentation, where a random channel is substituted with data
from other channels. This process yields a generated image with a visual appearance closely resem-
bling that of an infrared image. Subsequently, the visible image, the randomly channel-exchanged
generated image, and the infrared image are collectively processed through a shared random mask.
These three images are then subjected to masking and passed through a CNN encoder, allowing
for the joint modeling of characteristics from both visible and infrared images. Given the distinct
characteristics of the VI-ReID datasets, achieving a one-to-one alignment between visible and in-
frared images can be challenging. Therefore, in the decoder section, the reconstruction is limited to
the mask segment of the visible image and the generated image, excluding the infrared image. The
encoder aligns with the training framework utilized for downstream VI-ReID tasks, while the de-
coder is extremely lightweight, housing only a single linear layer. Experimental results underscore
the efficacy of our proposed cross-modality mask pre-training method in the simultaneous learning
of visible and infrared images, thereby yielding robust feature expressions. Upon fine-tuning in
the context of VI-ReID, the model’s performance sees a substantial improvement, surpassing the
benchmarks set by existing state-of-the-art methods.

To summarize, our contributions are summarized as follows:

• We introduce the mask reconstruction paradigm into the field of VI-ReID for the first time,
and achieve significant performance improvements.

• We implement a MAE-like architecture based on convolutional neural networks and verify
its effectiveness.

• We achieve remarkable performance results that surpass existing advanced methods on two
VI-ReID datasets.

2 RELATED WORK

2.1 CROSS-MODALITY PRE-TRAINING

Cross-modality pre-training is a deep learning technique that facilitates the learning of representation
relationships between data originating from various modalities, which can encompass images, text,
audio, and more. It has made great progress in the intersection of language and vision. ViLBERLu
et al. (2019) is a pioneer in this field, which learns the association between vision and language
through joint pre-training. LXMERTTan & Bansal (2019) and UniVLLuo et al. (2020) adopt the

2



Under review as a conference paper at ICLR 2024

transformer architecture and learn cross-modality encoder representations by jointly training image-
text and video-text data.

Similarly, some researchers have applied cross-modality pre-training methods in other fields, such as
audio-text intersection fields. UniSpeechWang et al. (2021) proposes a unified speech representation
learning method, which can be applied to a variety of speech-related tasks, such as speech recogni-
tion, speech synthesis and speech emotion recognition, etc. In the field of intersection of RGB and
depth images, Yan et al.Yan et al. (2022) proposes a multi-modal mask pre-training method M3PT,
which first shares a random mask to mask the panoramic RGB image and sparse depth map, and
then masks the mask area. Sparse depth reconstruction.

2.2 VISIBLE-INFRARED PERSON REID

The visible-infrared person ReID (VI-ReID) problem is first raised by Wu et al.Wu et al. (2017)
in 2017. In addition to proposing a cross-modality person ReID framework, they also provide a
public large-scale VI-ReID dataset, which is known as the widely used SYSU-MM01. After that, a
large amount of research work poured into this field. In 2018, Dai et al.Dai et al. (2018) applies the
idea of generative adversarial networks to VI-ReID, and designs a discriminator based on cutting-
edge generative adversarial training to solve the problem of insufficient discriminative information
to learn discriminative feature representations from different modalities. Hi-CMDChoi et al. (2020)
can automatically extract ID discriminating factors and ID-independent factors from visible and
infrared images, and then use the ID discriminating factors for robust cross-modality matching. Ye
et al.Ye et al. (2021) randomly exchanges color channels to uniformly generate color-independent
images, which can be seamlessly integrated into existing enhancement operations without modifying
the network, thus continuously improving the robustness to color changes.

3 METHOD

In this section, we introduce the Cross-Modality Masked Pretraining (CMMP) framework. CMMP
is a method similar to MAEHe et al. (2022) and SimMIMXie et al. (2022), built upon Convolu-
tional Neural Networks (CNNs). Like these methods, CMMP comprises an encoder responsible for
mapping the observed signal into a latent representation, and a decoder that reconstructs the original
signal using this latent representation. The encoder operates on sections of the observed signal, both
with and without the masked portion, and employs a lightweight decoder to reconstruct the complete
signal using the latent representation and the masked tokens. In contrast to single-modality masked
pre-training, CMMP takes three images as input: the visible image, a generated image resulting from
random channel exchange (following the approach in Ye et al. (2021)), and the infrared image. Due
to the misalignment inherent in the VI-ReID dataset, CMMP focuses its reconstruction efforts solely
on the visible image and the generated images after masking. Fig. 2 provides a detailed illustration
of the CMMP framework for VI-ReID, consisting of four main components:

Masking Strategy. Given visible and infrared images of the same person, and an image generated
by random channel exchange of the visible image, this component designs how to select the area to
be masked, and how to implement the masking of the selected area. The transformed image after
masking will be used as input to the encoder.

Encoder Architecture. The encoder is used to extract the latent feature representations of the
masked images, and then these latent feature representations are used as the input of the decoder. In
this method, the encoder is a CNN architecture.

Decoder Architecture. The latent feature representations are input into the decoder to reconstruct
the original signal of the masked region.

Prediction Target. This component defines the form of the raw signal to be predicted. It can be
the original pixel value or the conversion of the original pixel. In this method, the prediction target
is the original pixel value. This component also defines the loss function, which typically includes
cross-entropy and l1, l2 losses, etc.
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Figure 2: Illustration of the cross-modality masked pre-training (CMMP) framework for VI-ReID.

3.1 MASKING STRATEGY

Our masking strategy differs from that of MAEHe et al. (2022) and SimMIMXie et al. (2022), which
focus on masking single-modality visible data. In our proposed CMMP method, we employ shared
random masks to simultaneously mask visible images, generated images resulting from random
channel exchange, and infrared images, thus generating masked image pairs for pre-training. Both
MAE and SimMIM employ the transformer architecture to divide images into equally sized image
blocks and perform masking operations. In their approaches, an image block is either entirely visible
or fully obscured, with the masked part being completely discarded. In contrast, CMMP leverages
the CNN architecture and retains the masked area, aligning with practices adopted by the NLP com-
munity [devlin2018bert, liu2019roberta] and SimMIM. In CMMP, each mask patch is substituted
with a learnable mask token vector, and the entire image, including the mask tokens, is fed into the
encoder. The dimensions of the mask tokens match those of other areas within the image.

For mask region selection, we to randomly sample image patches according to a uniform distribution
without replacement, since uniform distribution prevents potential center bias. We set the mask
block to a square size with an aspect ratio of 1:1 like MAEHe et al. (2022) and SimMIMXie et al.
(2022) .The mask rate is set to 0.8. Random sampling with a high mask rate eliminates redundancy
to a large extent and increases the difficulty of the reconstruction task so that it cannot be easily
accomplished by extrapolation from visible adjacent image patches (such as linear interpolation).

3.2 ENCODER ARCHITECTURE

Different from MAEHe et al. (2022) and SimMIMXie et al. (2022) which use transformer architec-
tures as the encoder, our CMMP is based on CNN architecture. The encoder selected in this section
uses the Channel Augmented Joint Learning (CAJL) methodYe et al. (2021). Its backbone network
is a non-local attention module with ResNet50He et al. (2016), of which the architecture is shown
in Fig. 3.

3.3 DECODER ARCHITECTURE

The main goal of the decoder is to complete the reconstruction of the mask part by predicting the
pixel values of the mask part. In principle, the decoder can be of any shape as long as it can correctly
process the input signal and complete the data reconstruction goal. In this section, unlike MAEHe
et al. (2022), which uses a relatively heavyweight network, such as ViTDosovitskiy et al. (2020), as
the decoder, CMMP decoder consists of only one linear layer to predict the pixel values of the mask
part.
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Figure 3: The encoder architecture of CMMP.

3.4 PREDICTION TARGET

To accomplish the mask reconstruction task, CMMP takes pixel values as its prediction target.
Specifically, after the masked visible image, random channel exchange generated image, and in-
frared image are encoded by the encoder, the decoder maps the features from the encoder back to
the original resolution to predict all pixel values of the image. Finally, the loss is used to guide the
reconstruction of visible images and generated images:

L =
1

Ω(XM )
∥YM −XM∥ (1)

where X,Y ∈ R3HW are the input masked visible image and the random channel exchange gen-
erated images, and the reconstructed visible and generated images; M represents the masked pixel
part; Ω()̇ represents the number of masked pixels.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the effectiveness of CMMP, we carry out experiments on two widely-used VI-ReID
benchmarks: SYSU-MM01Wu et al. (2017) and RegDBNguyen et al. (2017). SYSU-MM01Wu
et al. (2017) collects images from four visible and two infrared cameras in indoor and outdoor
environments. The training set contains 395 different identities, including 22,258 visible and 11,909
infrared images. The test set contains 96 different identities, including 3,803 infrared images as
query images, and 301 visible and 3,010 visible images as gallery for single-shot and multi-shot,
respectively. RegDBNguyen et al. (2017) contains 412 identities and 8,240 images, each identity has
10 different infrared images and 10 different visible images. Among them, 206 identities are used for
training and 206 identities are used for testing. This dataset also provides different dataset partitions
for 10 experiments, allowing the model to be evaluated for 10 experiments to obtain statistically
stable results.

4.2 IMPLEMENTATION DETAILS

During the pre-training process, we first convert the image to 288 × 144 size, and then use random
cropping and random horizontal flipping for image augmentation. We use the Stochastic Gradient
Descent (SGD) optimizer for optimization and train for 400 epochs using a distributed training
method on a workstation of 4 Nvidia Titan Xp GPUs with 12 GB VRAM. The initial learning rate
is set to 0.1 and decays by 0.1 and 0.01 at 20 and 50 epochs respectively. The training batch size
is set to 128, evenly distributed across 4 GPUs. During fine-tuning, the optimizer selection and
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learning rate settings are consistent with the pre-training stage, but only train for 100 epochs on a
single Nvidia Titan Xp GPU. The training batch size is set to 8, which includes 4 visible images and
4 infrared images.

4.3 ABLATION STUDY

In this section, we conduct ablation study on masking strategy, prediction target and pre-training
epochs. All experiments are carried out on SYSU-MM01Wu et al. (2017).

4.3.1 MASKING STRATEGY

Masking Size. We employ square-shaped masks with consistent width and height to mask images.
We conduct experiments using multiple sets of masks of different sizes with mask rates set at 0.75
and 0.8, respectively. Table 1 illustrates the impact of different mask sizes on the final results, where
the values for mask size represent the number of pixels occupied by the side length of the mask
block.

Mask Ratio 0.75 0.8
Mask Size mAP R1 R5 mAP R1 R5

8 12.89 10.54 34.21 15.48 15.09 39.89
12 26.23 27.66 55.54 12.21 11.10 31.61
16 67.31 70.42 89.88 67.49 71.97 90.88
18 65.07 68.60 90.22 65.46 69.92 90.17
24 66.61 71.18 90.72 26.21 24.66 55.40
36 29.70 29.92 60.56 22.00 20.62 49.70

Table 1: The impact of different mask sizes on the final results at mask ratios of 0.75 and 0.8. Best
results are markes in bold.

From Table 1, it can be observed that regardless of whether the mask rate is 0.75 or 0.8, the mAP is
highest when the mask size is 16× 16. Furthermore, when evaluating R1 and R5, the 16× 16 mask
block still performs the best at a mask rate of 0.8. However, at the mask rate of 0.75, the 24 × 24
mask block surpasses the 16× 16 block in both R1 and R5, reaching the highest values but exhibits
a sharp decline at a mask rate of 0.8.

Overall, the optimal mask size for fine-tuning pre-trained models on downstream tasks has been
determined to be the 16×16 mask block. Consequently, this mask scale is selected for all subsequent
experiments. Notably, when the mask size deviates either towards being too large or too small, it
leads to a significant degradation in the final results. When the mask size is too small, individual
mask regions become excessively petite, rendering it easier for the model to recover information
from the surrounding areas. This, however, hinders the model from acquiring discriminative feature
representations, and the inflow of cross-modality information from different axes further diminishes
performance during fine-tuning. Conversely, when the mask size is too large, each mask region
lacks a substantial amount of information, making it challenging to establish dependencies between
visible and infrared images. This also has an adverse impact on the model’s overall performance
capabilities.

Masking Ratio. Building upon the experiments conducted to select the mask size, this section fo-
cuses on mask ratio selection, with the use of 16× 16 mask blocks as the baseline. Table 2 provides
a clear overview of the results obtained for different mask ratios. It is evident that a mask ratio of
0.8 yields the best fine-tuning results for the model, surpassing the performance of other mask ratios
in terms of both mAP and R1 accuracy. Furthermore, as the mask ratio gradually increases from 0.5
to 0.8, the fine-tuning results of the model exhibit improvement. This trend suggests that a relatively
high mask ratio serves to obscure more image regions, rendering it challenging for the model to
simply infer the reconstruction task from adjacent unmasked image portions. Consequently, this in-
creased difficulty in the reconstruction task enables the model to learn more discriminative features.
However, it’s important to note that when the mask ratio reaches 0.85, the model’s mAP during fine-
tuning experiences a 2.44% decline compared to the optimal result obtained at a mask ratio of 0.8.
This observation underscores that an excessively high mask ratio obscures too many image regions,
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leading to substantial information loss that hampers the successful completion of the reconstruction
task, ultimately diminishing the model’s performance. In conclusion, the selection of an appropriate
mask ratio during mask reconstruction is crucial, as both excessively high and excessively low mask
ratios can adversely impact the model’s performance. Therefore, the choice of mask ratio should be
tailored to the specific task at hand to effectively improve model performance.

Mask Ratio mAP R1 R5
0.5 30.33 32.60 62.14

0.55 36.75 40.26 71.13
0.6 64.74 69.66 90.17

0.65 65.68 70.52 90.59
0.7 67.35 71.05 90.80

0.75 67.31 70.42 89.88
0.8 67.49 71.97 90.88

0.85 65.05 68.95 90.01

Table 2: The impact of different mask ratios on the final results at mask size of 16× 16. Best results
are marked in bold.

4.3.2 PREDICTION TARGET

Prediction Target mAP R1 R5
Visible image 66.12 65.52 89.72

Generated image 66.29 69.92 91.72
Infrared image 63.80 65.97 89.11

Visible + Generated images 67.49 71.97 90.88
Visible + Generated + Infrared images 26.68 25.95 56.03

Table 3: The impact of different prediction targets on the final results. Best results are marked in
bold.

Table 3 presents the impact of different prediction targets on the final results when using a mask size
of 16 × 16 and a mask ratio of 0.8. In addition to separately predicting three types of images, we
also considered simultaneously predicting visible and random channel exchange generated images,
as well as predicting all three cross-modality images simultaneously.

We observed that simultaneously predicting both visible and generated images leads to the best
fine-tuning results for the model. Specifically, it outperforms the second-best approach (predict-
ing generated images alone) by a margin of 1.20% in terms of mAP. This indicates that the use of
random channel exchange generated images, which closely resemble infrared images while retain-
ing the original texture structure of visible images, helps reduce the disparities between modalities.
This reduction in differences allows the model to better grasp cross-modality fusion information,
ultimately enhancing performance during fine-tuning. However, when attempting to predict all
three cross-modality images simultaneously, the model’s performance is notably worse, consider-
ably lower than when predicting other targets. This suggests that the misalignment between infrared
images and visible/generated images has an adverse impact on prediction results, leading to a signif-
icant decrease in model performance during fine-tuning. Furthermore, among the results obtained
when separately predicting the three types of images, the model performs best when predicting gen-
erated images alone. This underscores the valuable role played by random channel exchange gen-
erated images in reducing modality differences, facilitating feature learning, and supporting model
transferability. As a result, in subsequent experiments, we opt to predict both visible and generated
images.

Predicting Masks vs. Predicting the Whole Image. We also compare the difference between
separately reconstructing invisible regions (predicting masks) and simultaneously reconstructing
both invisible and visible regions (predicting the whole image). Both of these prediction methods
involve learning from the restoration of the original signal image, but they vary in terms of their
reconstruction targets. Table 4 presents the comparative results of these two prediction methods,
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both using a mask size of 16 × 16 and a mask rate of 0.8, with the prediction targets being visible
and random channel exchange generated images.

Prediction Area mAP R1 R5
Mask 67.49 71.97 90.88

Whole image 32.10 33.58 64.79

Table 4: The impact of different prediction areas on the final results. Best results are marked in bold.

The table clearly demonstrates that the strategy of predicting mask regions yields notably superior
results compared to predicting all image pixels. Surprisingly, predicting all image pixels actually
hampers the overall pre-training objective, leading to a decline in the model’s performance during
fine-tuning. This suggests that predicting mask regions is a more effective approach for representa-
tion learning.

4.3.3 PRE-TRAINING EPOCHS

Pre-training Epochs mAP R1 R5
100 67.36 72.07 91.27
200 66.69 69.31 90.59
300 67.45 71.68 91.27
400 67.49 71.97 90.88

Table 5: The impact of different pre-training epochs on the final results. Best results are marked in
bold.

Table 5 provides an overview of how different pre-training epochs impact the model’s performance
during fine-tuning. In general, there isn’t a substantial difference in accuracy when varying the num-
ber of pre-training epochs. However, as the number of pre-training epochs increases, the model’s
performance during fine-tuning shows improvement, with the highest mAP achieved at 400 epochs.
This aligns with the conventional wisdom that more training epochs allow the model to acquire
better feature representations, consequently enhancing its performance during fine-tuning. This im-
provement is further evidenced by the reduction in model loss as the number of epochs increases.

5 COMPARISON WITH SOTA METHODS

Settings All Srearch Indoor Search
Method R1 R10 R20 mAP R1 R10 R20 mAP

Zero-PadWu et al. (2017) 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92
HCMLYe et al. (2018) 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08
eBDTRYe et al. (2019) 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46
HSMEHao et al. (2019) 20.68 32.74 77.95 23.12 - - - -

D2RLWang et al. (2019b) 28.9 70.6 82.4 29.2 - - - -
AlignGANWang et al. (2019a) 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3

X-ModalLi et al. (2020) 49.9 89.8 96.0 50.7 - - - -
Hi-CMDChoi et al. (2020) 34.9 77.6 - 35.9 - - - -
cm-SSFTLu et al. (2020) 47.7 - - 54.1 - - - -
DDAGYe et al. (2020a) 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
HATYe et al. (2020b) 55.29 92.14 97.36 53.89 62.10 95.75 99.20 69.37

MCLNetHao et al. (2021) 65.40 93.33 97.14 61.98 72.56 96.98 99.20 76.58
CAJLYe et al. (2021) 69.00 94.85 98.16 65.62 71.15 97.15 99.32 75.99

CMMP 71.97 95.53 98.66 67.49 75.23 96.51 99.18 78.28

Table 6: Comparison with SOTA methods on SYSU-MM01Wu et al. (2017). Best results are marked
in bold.
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Settings Visible to Infrared Infrared to Visible
Method R1 R10 R20 mAP R1 R10 R20 mAP

Zero-PadWu et al. (2017) 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82
HCMLYe et al. (2018) 24.44 47.53 56.78 20.08 21.70 45.02 55.58 22.24
eBDTRYe et al. (2019) 34.62 58.96 68.72 33.46 34.21 58.74 68.64 32.49
HSMEHao et al. (2019) 50.85 73.36 84.66 47.00 50.15 72.40 81.07 46.16

D2RLWang et al. (2019b) 43.4 66.1 76.3 44.1 - - - -
AlignGANWang et al. (2019a) 57.9 - - 53.6 56.3 - - 53.4

X-ModalLi et al. (2020) 62.21 83.13 91.72 60.18 - - - -
Hi-CMDChoi et al. (2020) 70.93 86.39 - 66.04 - - - -
cm-SSFTLu et al. (2020) 72.3 - - 72.9 71.0 - - 71.7
DDAGYe et al. (2020a) 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
HATYe et al. (2020b) 71.83 87.16 92.16 67.56 70.02 86.45 91.61 66.30

MCLNetHao et al. (2021) 80.31 92.70 96.03 73.07 75.93 90.93 94.59 69.49
CAJLYe et al. (2021) 82.84 93.59 96.38 74.23 80.43 92.69 95.66 72.14

CMMP 83.37 93.87 96.31 75.47 80.64 92.56 95.72 72.68

Table 7: Comparison with SOTA methods on RegDBNguyen et al. (2017). Best results are marked
in bold.

Table 6 and Table 7 show the results of different evaluation modes on SYSU-MM01Wu et al. (2017)
and RegDBNguyen et al. (2017). The results demonstrate that our proposed CMMP outperforms
most existing state-of-the-art methods. On SYSU-MM01Wu et al. (2017), CMMP outperforms
the best-performing method, MCLNetHao et al. (2021) (except the baseline method CAJLYe et al.
(2021)), by 5.51% and 1.70% in mAP for all and indoor searches, respectively, and also outperforms
MCLNet by 6.57% and 2.67% in Rank-1 accuracy. Compared to the baseline method CAJL[194],
CMMP significantly improves performance. In all and indoor search modes, CMMP achieves a
1.87% and 2.29% increase in mAP, and a 2.97% and 4.08% increase in Rank-1 accuracy, respec-
tively. These results emphasize the effectiveness of CMMP.

On RegDBNguyen et al. (2017), CMMP also achieves the best performance. It outperforms other
existing SOTA methods in both visible to infrared and infrared to visible searching settings. In
terms of mAP, CMMP improves performance by 2.40% and 3.19% compared to the best-performing
method MCLNetHao et al. (2021) (except the baseline method CAJLYe et al. (2021)), and it also
improves Rank-1 accuracy by 3.06% and 4.71% in the two searching modes, respectively. Compared
to the baseline method CAJLYe et al. (2021), CMMP performs well in both evaluation modes on the
RegDB dataset, with an increase of 1.24%/0.54% in mAP and 0.53%/0.21% in Rank-1 accuracy.
These improvements are slightly smaller than those achieved on the SYSU-MM01 dataset. This
difference can be attributed to the larger scale and relatively higher image quality of the SYSU-
MM01 dataset, as large-scale, high-quality data can promote model performance.

6 CONCLUSION

In the context of VI-ReID, we introduce a novel approach called Cross-Modality Masked Pretraining
(CMMP). This method begins by generating images through random channel exchange, creating
images that resemble infrared images visually while preserving the texture details of visible images.
This step aims to bridge the modality gap between the two types of images. Subsequently, CMMP
employs a mask reconstruction paradigm to jointly model visible and infrared information, further
enhancing the fusion of these modalities to improve model performance and fine-tuning capabilities.

Through a series of ablation experiments, we identify the optimal mask strategy and prediction
targets while determining the best number of pre-training iterations. CMMP not only surpasses the
baseline network CAJL Ye et al. (2021) but also outperforms other state-of-the-art methods on two
VI-ReID datasets. This showcases CMMP’s effectiveness in reducing modality discrepancies and
facilitating the fusion of cross-modality information.
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