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Abstract

In the last couple years, there has been a flood001
of interest in studying the extent to which lan-002
guage models (LMs) have a theory of mind003
(ToM) – the ability to ascribe mental states to004
themselves and others. The results provide an005
unclear picture of the current state of the art,006
with some finding near-human performance007
and others near-zero. To make sense of this008
landscape, we perform a survey of 15 recent009
studies aimed at measuring ToM in LMs and010
find that, while almost all perform checks for011
human identifiable issues, less than half do012
so for patterns only a machine might exploit.013
Among those which do perform such valida-014
tion, none identify LMs to exceed human per-015
formance. We conclude that these datasets are016
easier than their peers, likely due to the pres-017
ence of spurious patterns in the data, and we018
caution against building ToM benchmarks rely-019
ing solely on human validation of the data.020

1 Introduction021

In cognitive science, theory of mind (ToM) refers022

broadly to the capacity to reason about the mental023

states of others (e.g., beliefs, intentions, emotions)024

– especially when they may differ from one’s025

own (Premack and Woodruff, 1978). In recent026

years there has been an explosion of interest in027

understanding and quantifying the extent to which028

language models (LMs) demonstrate this ability.029

Numerous benchmark datasets have been designed030

to measure this using narratives (Nematzadeh et al.,031

2018; Le et al., 2019; Gu et al., 2024), human032

conversation (Bara et al., 2021; Soubki et al., 2024),033

and adversarial data generation (Sclar et al., 2024).034

Despite, or perhaps due to, the growth of ToM035

evaluation tools in both diversity and number, the036

extent to which one can say that LMs display ToM037

remains unclear. Some evaluation metrics find that038

ToM is almost non-existent in modern models (Kim039

et al., 2023), others determine that there is evidence040

but they lack some sort of robustness (Shapira et al., 041

2024; Jones et al., 2024), while still others find that 042

they already meet or exceed human performance in 043

some respects (Gu et al., 2024; Street et al., 2024). 044

This contradictory set of results leaves the working 045

scientist wondering – do LMs have ToM? 046

In this position paper we argue that the variety of 047

results seen across these evaluations is, at least in 048

part, due to a lack of what we refer to as “machine 049

validation”, an analysis aimed at identifying pat- 050

terns in data that neural models (but not humans) 051

might exploit. We begin with a brief history of 052

approaches to measuring ToM prior to 2020, and a 053

discussion of how the data may mislead LM-based 054

studies (§2). We then perform a meta-analysis of 055

15 recent papers introducing ToM datasets (§3) and 056

find that those which report strong zero-shot LM 057

performance, tend to lack machine validation. We 058

present fine-tuning baselines for a sample of four 059

datasets from our meta-analysis (§4); we find that 060

simple models achieve perfect or near-perfect per- 061

formance on the datasets that omitted machine val- 062

idationand conclude with some final recommenda- 063

tions for the study of LM ToM going forward (§5). 064

2 Theory of Mind in Language Models 065

The term theory of mind was first introduced by psy- 066

chologists (Premack and Woodruff, 1978) studying 067

the behavior of chimpanzees. They posit that an 068

agent has a ToM “if [they] impute mental states 069

to [them]self and others”. The study of ToM was 070

later extended to examine the behavior of children 071

including the, now famous, Sally-Anne test (Wim- 072

mer and Perner, 1983; Baron-Cohen et al., 1985) 073

which presents subjects with a narrated or acted 074

scene about two or more agents, and a question to 075

see if the subjects understand the story agents’ cog- 076

nitive state. This style of observer-based probing is 077

especially amenable to the study of ToM in LMs, 078

where question answering is already a well stud- 079
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ied capability (Al-Mamari et al., 2024; Yang et al.,080

2018; Joshi et al., 2017). As a result, a number081

of datasets inspired by psychological experiments082

have been adapted for LMs over the years. Ne-083

matzadeh et al. (2018) produce a template-based084

question answering corpus (ToM-bAbi) generated085

from stories inspired by the Sally-Anne test. Le086

et al. (2019) note that such formulaic data results087

in a flawed evaluation, especially when using su-088

pervised methods, and produce their own templatic089

corpus (ToMi) which introduces more noise such090

as distractor sentences and reorderings. Despite091

these improvements, Sclar et al. (2023) find ToMi092

to be vulnerable to similar issues.093

While recent approaches (see §3) differ greatly094

from their predecessors, concerns regarding mod-095

els exploiting spurious correlations (Gordon and096

Van Durme, 2013; Aru et al., 2023) to display so-097

called illusory ToM have remained. Early work098

on neural ToM did not necessarily focus on zero-099

shot performance (Nematzadeh et al., 2018; Chan-100

drasekaran et al., 2017; Grant et al., 2017) or even101

the inclusion of language as input (Rabinowitz102

et al., 2018). As zero-shot performance has gained103

priority, fewer studies seem to provide fine-tuned104

baselines for comparison.105

We argue that one manner of checking for the106

presence of surface cues is to provide these simple,107

fine-tuned baselines. As humans are not thought108

to be exploiting such patterns for ToM, very strong109

performance of simple models (often prone to rely-110

ing on these patterns) can be an indicator of undesir-111

able correlations in data or a task that is somehow112

easier than prior work. We keep these observations113

in mind in our meta-analysis.114

3 Meta-Analysis115

To obtain the 15 papers selected for analysis we116

searched the ACL Anthology for papers since 2020117

matching the keyword “theory of mind” and manu-118

ally inspecting their content. We discarded papers119

which primarily contributed methods for improving120

models of ToM, rather than evaluation resources.121

While a number of datasets in related topics may be122

relevant (e.g., emotion recognition), we restrict our123

analysis to those specifically designed for ToM. A124

similar process was repeated by searching Google125

Scholar using the term “language model theory of126

mind”. We then read the identified papers, pay-127

ing special attention to the manner in which their128

data was created, validated, and used in evaluation.129

We also reviewed several papers in this citation 130

network which did not meet our recency threshold. 131

The final collection is a diverse sample. It 132

includes a number of datasets compiled to test 133

higher order ToM (Wu et al., 2023; Street et al., 134

2024; Soubki et al., 2024), incorporate more 135

tasks (Chen et al., 2024; Jones et al., 2024; Xu 136

et al., 2024; Strachan et al., 2024), involve social 137

reasoning (Sap et al., 2022; Shapira et al., 2023), 138

and expand on belief-oriented approaches (Street 139

et al., 2024; Shapira et al., 2024; Gandhi et al., 140

2024; Kim et al., 2023). Gu et al. (2024) make a 141

distinction between explicit ToM (i.e., inferring 142

mental states) and explicit ToM (i.e., making 143

judgments based on these states). In (Bara et al., 144

2021), agents are evaluated in their ability to 145

cooperate with humans to complete objectives in 146

MineCraft. Sclar et al. (2024) generate questions 147

adversarially, making the evaluation adaptive. 148

3.1 Data 149

We compile summary statistics for the 15 studies 150

reviewed. This includes the performance (where 151

available) of humans and their best models in 152

zero-shot, few-shot, and fine-tuning experiments. 153

Eight of the datasets involve composite scores 154

(i.e., the benchmark evaluated more than one 155

aspect of ToM). In this case we compute the mean 156

of reported performance across these categories. 157

We also identify the type of ToM (Kalbe et al., 158

2010) the studies focus on, classifying the types as 159

cognitive (e.g. beliefs, thoughts) and/or affective 160

(e.g. emotions, desires), as well as if non-text 161

modalities are available in the corpus. 162

Other analyses of ToM benchmarks have called 163

for evaluations which situate models as interactants 164

rather then just passive observers (Shapira et al., 165

2024; Ma et al., 2023). We make note of this 166

feature. We also record the datasets’ answer format 167

(multiple choice or free response), source (e.g., 168

manually created by experts, LM generated), and 169

size. The last thing we collect is whether the 170

evaluation finds models to exceed human perfor- 171

mance by at least one of their reported metrics 172

(i.e., “superhuman performance”). For datasets 173

which do not provide a human baseline we make 174

an educated guess based on human performance 175

for similar tasks. For additional details regarding 176

the methods of our survey, see Appendix A. 177

3.2 Findings 178

The results from our survey are shown in Table 1. 179
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LM Evals Data Evals Superhuman Metadata

Study Zero-Shot Few-Shot Fine-Tuning Human In 1+ Expt. Perspective Format Source Size

Common-ToM (Soubki et al., 2024) 60.6 - 64 80 No Observer MC (2) Natural 7,374
FANToM (Kim et al., 2023) 26.6 - 53.7 87.5 No Observer FR, MC (2) LM 10,317
OpenToM (Xu et al., 2024) 52.8 - 72.7 92.2 No Observer MC (2/3) LM 13,708
ToMBench (Chen et al., 2024) 74.7 - - 86.1 No Observer MC (4) Manual 2,470
Social IQa (Sap et al., 2022) 42 73 83* 87 No Observer MC (3) MTurk 1,954
MindCraft (Bara et al., 2021) - - 41.7 56.7 No Interactant MC (3, 21) Natural 1,200
FauxPas-EAI (Shapira et al., 2023) 40 - - 82 No Observer MC (2) Manual 40

Hi-ToM (Wu et al., 2023) 58.9 - - - No (?) Observer MC (15) Template 600
Adv-CSFB (Shapira et al., 2024) 70 - - - No (?) Observer MC (3) Manual 183
ExploreToM (Sclar et al., 2024) 74 - - - No (?) Observer FR, MC (2) LM 1,000*

EPITOME (Jones et al., 2024) 58.9 - - 70.6 Yes Observer FR, MC (2) Manual 446
BigToM (Gandhi et al., 2024) 84.5 89.7 - 86 Yes Observer MC (2) LM 5,000
Strachan et al. (2024) 88.2 - - 89.2 Yes Observer MC (2) Manual 105
MoToMQA (Street et al., 2024) � 88.6 - - 90.4 Yes Observer MC (2) Manual 70

SimpleToM (Gu et al., 2024) 89.5 97.1* - - Yes (?) Observer MC (2) LM 3,441

Table 1: An overview of the ToM datasets surveyed (� indicates not publicly available). The format of the evaluation
is noted as multiple choice (MC) with the number of choices appearing in parenthesis, or free response (FR). Size is
based on the number of questions and shading indicates performance relative to human baselines (if available). We
make note of if their results find models to exceed human performance by at least one reported metric. For datasets
that do not provide a human baseline we guess (?) based on similar tasks. Additional details (∗) are in Appendix A.

The Good The use of LMs to generate ToM data180

has raised some concern due to the possibility of181

low lexical diversity and other output patterns (Xu182

et al., 2024; Soubki et al., 2024). However, in our183

analysis we do not see any indication that model184

performance is strongly correlated with whether the185

source was human or synthetic. Prior reviews have186

also called for ToM benchmarks to broaden their187

scope (Ma et al., 2023). We find several recent188

benchmarks answer this call by incorporating a189

variety of skills beyond false beliefs (Chen et al.,190

2024; Jones et al., 2024; Gu et al., 2024).191

The Bad Only a single benchmark places models192

in the role of an active participant – perhaps one193

of the most common scenarios for humans. The194

remaining all evaluate models’ abilities to make195

ToM inferences as a passive observer. Additionally,196

only two of the benchmarks include input data in a197

form other than text and only four include affective198

aspects of ToM in their evaluation.199

The Ugly Many papers discuss the dangers of200

models exploiting surface-level patterns and spu-201

rious correlations to motivate their data creation202

methodology. Despite this awareness, only one203

paper (Xu et al., 2024) performs a validation step204

aimed at identifying and correcting this. A surpris-205

ing number of papers provide no human baseline to206

compare against, making it difficult to situate the207

source of their dataset’s difficulty.208

Every benchmark which identifies models with209

superhuman ToM omits machine validation (e.g.,210

Task Subset Accuracy

FANToM g

Kim et al. (2023)
Y/N 66.4
MC 49.5

Common-ToM à

Soubki et al. (2024) All 67.5

SimpleToM g

Gu et al. (2024)

State 100
Judgment 100
Behavior 97.1

BigToM g

Gandhi et al. (2024)
Without Belief 97.5
With Belief 97.9

Table 2: Accuracy of Flan-T5-base (~248M params)
when fine-tuned on various ToM benchmarks. Results
are averaged over five folds (g) or three seeds (à).

computing lexical overlaps, providing fine-tuned 211

model baselines) of their dataset. 212

4 Case Study 213

We hypothesize that datasets which report super- 214

human performance will likely see strong perfor- 215

mance in fine-tuning experiments (i.e., fail machine 216

validation). To investigate this we compare the fine- 217

tuning performance of Flan-T5-base (Chung et al., 218

2022), a relatively small model by modern stan- 219

dards at ~248M params, across two datasets which 220

did not find superhuman performance (FANToM 221

and Common-ToM) and two datasets which did 222

(SimpleToM, BigToM). These datasets were se- 223

lected somewhat arbitrarily from our set of 15 stud- 224

ies to include datasets which we perceived to report 225

poor, moderate, and strong performance, respec- 226
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tively. For FANToM we discard the free response227

questions to maintain comparability. We average228

over three seeds for Common-ToM using the au-229

thor’s splits and, for all other datasets, over five230

folds using cross-validation. Further details, includ-231

ing hyperparameters, can be found in Appendix B.232

4.1 Results233

The results of our fine-tuning experiments, aver-234

aged over all runs, can be seen in Table 2. For Fan-235

tom and Common-ToM, accuracies roughly repli-236

cate those reported by the original authors which237

also fall broadly in line with fine-tuning perfor-238

mance for the other datasets surveyed. On Simple-239

ToM, our model achieves near perfect performance240

across both their implicit and applied ToM ques-241

tions. Similarly high performance is observed on242

BigToM, even in the more difficult case where ini-243

tial beliefs are not provided. These results are very244

unusual and, we argue, likely indicate that either245

(1) the benchmarks are markedly easier than oth-246

ers or (2) zero-shot models are exploiting spurious247

correlations in these datasets.248

5 Where do we go From Here?249

We have found that less than half of the 15 LM250

ToM studies we examined evaluate their dataset251

for patterns only a machine might exploit (i.e., ma-252

chine validation). Among those which do perform253

such validation, none identify LMs to exceed hu-254

man performance on any aspect of their benchmark,255

while all studies that find superhuman performance256

omit such checks. We then performed machine257

validation by providing a fine-tuning baseline. We258

found that a small, fine-tuned system could achieve259

near perfect accuracy on the datasets which did not260

perform machine validation. This indicates these261

datasets are, in some sense, easier than their peers,262

likely due to the presence of spurious patterns in263

the data. In the following paragraphs we offer some264

closing thoughts and suggestions.265

How do you interpret LM performance on tests266

designed for humans? It is notable that ToM267

was first studied in animals, and the manner of test-268

ing underwent significant changes when attention269

was turned towards humans. It is entirely possible,270

as others have also noted (Ullman, 2023; Shapira271

et al., 2024; Markowska et al., 2023), that our meth-272

ods will need to change further to study this phe-273

nomena in LMs. In the case of animals to humans,274

experimenters had to mind the change in capabili-275

ties between these two subjects. When observing 276

the performance of LMs on tests originally used 277

for humans, we can’t necessarily take away the 278

same conclusions – the capabilities of the subject 279

have changed again. Models may exploit patterns 280

present in our evaluations, otherwise undetectable 281

by humans, that do not broadly generalize to what 282

we wish to measure. 283

Other evaluation options Changing our eval- 284

uation approach might avoid this situation alto- 285

gether. Moving away from observer-based ToM 286

evaluations towards ones where the agent is situ- 287

ated (Bara et al., 2021), adaptive evaluations (Sclar 288

et al., 2024; Sap et al., 2022), and simulated envi- 289

ronments (Jin et al., 2024) all reduce the chances 290

of measuring primary spurious patterns. In other 291

words, we should couple evaluations more closely 292

to the conditions in which ToM is actually used. 293

Fine-tuning small models is necessary but not 294

sufficient Fine-tuning small models situates the 295

difficulty of a dataset. Unexpectedly strong perfor- 296

mance is likely an indicator of undesirable patterns 297

or relative ease. While this may not directly say 298

what in the data models are exploiting, it will indi- 299

cate that there is probably an issue. The growing 300

number of interpretability techniques (Zhu et al., 301

2024) and even more classical approaches like mea- 302

suring lexical overlap (Xu et al., 2024) can help to 303

track down the culprit. We can borrow from the 304

extensive work on more general QA datasets which 305

has run into similar issues, like shortcutting (Sen 306

and Saffari, 2020; Jiang and Bansal, 2019). This is 307

a sufficient, not a necessary condition. It doesn’t 308

mean the dataset is free of spurious patterns but if 309

it fails, then it likely means trouble. 310

But do LMs have ToM? This is a tricky question. 311

If the question is simply “Can they infer mental 312

states?”, as described in (Premack and Woodruff, 313

1978), the answer is plainly, yes. However, this 314

has never been the problem. The trouble has al- 315

ways been making sense of the inconsistencies in 316

their performance across seemingly similar con- 317

texts. Evaluation tools should not be aimed at mea- 318

suring the presence of ToM but the robustness of 319

ToM (Shapira et al., 2024; Chen et al., 2024). With 320

few common goalposts to situate the difficulty of 321

so many ToM datasets, it’s hard to say if models 322

are improving, but it seems clear that performance 323

is not yet robust. 324
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Limitations325

We acknowledge that the study of ToM in LMs is326

progressing rapidly and, while we did our best to327

include as much work as possible, that our survey328

may not be comprehensive. We understand that329

our case study presented in Section 4 could be im-330

proved by including additional baselines for more331

datasets and that this lends some uncertainty to our332

conclusions.333
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A Survey Details592

We provide more information on the source of the593

performance scores for each dataset, as summa-594

rized in Table 1. Table 3 is an extended version of595

Table 1 with additional columns.596

• Common-ToM - See Table 3 in Soubki et al.597

(2024) which reports Mistal-7B-Instruct zero-598

shot results and Mistral-7B fine-tuning results.599

• FANToM - See Table 9 from Kim et al. (2023).600

We take the best results from the “All Question601

Types” column which includes GPT-4-0613 602

(June) with CoT for zero-shot performance 603

and Flan-T5-XL for fine-tuning performance. 604

• OpenToM - See Table 2 from Xu et al. (2024) 605

which reports macro-averaged F1 scores. We 606

average over all rows for GPT-4-turbo for 607

zero-shot and Llama2-13B for fine-tuning. 608

• ToMBench - See Table 2 from Chen et al. 609

(2024). We use GPT-4-1106 zero-shot results 610

averaged over English and Chinese perfor- 611

mance. 612

• Social IQa - For zero-shot, few-shot, and hu- 613

man performance see Figure 7 from Sap et al. 614

(2022). We use their results for PALM-535B. 615

For fine-tuning performance see Table 8 from 616

Lourie et al. (2021). As the result comes 617

from another paper we note this with an aster- 618

isk. The dataset is originally from Sap et al. 619

(2019). 620

• MindCraft - See Figure 5 from Bara et al. 621

(2021) which reports F1. We average V. Tran. 622

performance over all three prediction tasks for 623

fine-tuning performance. 624

• FauxPas-EAI - See Table 1 from Shapira et al. 625

(2023). We take the final accuracy (requiring 626

correct answers on all four questions) of Flan- 627

T5-xxl for zero-shot performance. Human 628

performance cites a study of children aged 629

9-11 (Baron-Cohen et al., 1999). 630

• Hi-ToM - See Table 5 from Wu et al. (2023). 631

We use the overall performance of GPT-4-32k 632

for the zero-shot results. 633

• Adv-CSFB - See Table 2 from Shapira et al. 634

(2024). We average the zero-shot accuracy of 635

text-davinci-003 over the question and story 636

levels. 637

• ExploreToM - See Table 2 from Sclar et al. 638

(2024). For zero-shot performance we use 639

the accuracy report for GPT-4o when Mixtral 640

7x8B Inst. was used for question generation. 641

This was computed over a sample of 1000 642

question pairs and this is what we report in 643

the size column, however note that the “size” 644

of this dataset is ambiguous since the tool can 645

be used for generation. The authors release a 646

set of 13,300 questions to demonstrate this. 647

• EPITOME - See Table 1 from Jones et al. 648

(2024). We use the average zero-shot perfor- 649

mance of text-davinci-002 over all tasks. 650

• BigToM - See Table 2 from Gandhi et al. 651

(2024) for model results. We use GPT-4 accu- 652

racy without initial beliefs and average over 653
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all conditions. We take their 0-shot-CoT re-654

sults for zero-shot performance and 1-shot-655

CoT for few-shot. Human performance is656

taken from Figure 3 and averaged over the657

same conditions.658

• MoToMQA - See Table 7 from Street et al.659

(2024). We average over task types and use660

results reported with GPT-4 for zero-shot per-661

formance.662

• SimpleToM - See Table 5 from Gu et al.663

(2024). For zero-shot performance, we use664

accuracy averaged over belief, behavior and665

judgment prediction tasks reported for Claude-666

Sonnet-3.5 with their CoT* prompt. For few-667

shot performance we take the same informa-668

tion from their MS-remind prompt-chaining669

experiments. We denote this value with an670

asterisk to acknowledge that few-shot ap-671

proaches and prompt-chaining are similar but672

not equivalent.673

B Experimental Details674

All experiments were performed on675

Tesla V100-SXM2 GPUs. We fine-tune676

google/flan-t5-base for classification for a677

fixed 10 epochs and record the accuracy at the last678

epoch. All experiments use cross-entropy loss, the679

AdamW optimizer with a learning rate of 2e-5680

and linear schedule, and a batch size of 1. We pad681

input text to the maximum sequence length of 512682

and manually inspect training loss curves to ensure683

that models were converging.684

We report average accuracy over three seeds (42,685

0, 1) for Common-ToM using the authors splits.686

For corpora without established splits (FANToM,687

SimpleToM, and BigToM), we perform five-fold688

cross-validation and report the average over all five689

folds. Training times typically ranged from 4 to 6690

hours for all runs on a given dataset.691

SimpleToM asks multiple questions regarding692

specific scenarios. When splitting we ensure that693

no scenario appears in both the train and test data.694

For FANToM we use only the “multiple-choice”695

and “binary” answer types, as the free response696

questions are not amenable to classification models.697

When generating input sequences for BigToM, we698

shuffle the order of answer choices. We plan to699

make the code used in these experiments available700

for the purposes of replication and auditing.701
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