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Abstract

Molecular dynamics (MD) simulation techniques are widely used for various natural science
applications. Increasingly, machine learning (ML) force field (FF) models begin to replace
ab-initio simulations by predicting forces directly from atomic structures. Despite significant
progress in this area, such techniques are primarily benchmarked by their force/energy
prediction errors, even though the practical use case would be to produce realistic MD
trajectories. We aim to fill this gap by introducing a novel benchmark suite for learned
MD simulation. We curate representative MD systems, including water, organic molecules,
peptide, and materials, and design evaluation metrics corresponding to the scientific objectives
of respective systems. We benchmark a collection of state-of-the-art (SOTA) ML FF models
and illustrate, in particular, how the commonly benchmarked force accuracy is not well
aligned with relevant simulation metrics. We demonstrate when and how selected SOTA
methods fail, along with offering directions for further improvement. Specifically, we identify
stability as a key metric for ML models to improve. Our benchmark suite comes with a
comprehensive open-source codebase for training and simulation with ML FFs to facilitate
future work.

1 Introduction

Molecular Dynamics (MD) simulation is a widely used technique that provides atomistic insights into physical
phenomena in materials and biological systems (Alder & Wainwright, 1959; Rahman, 1964; Schlick, 2010).
MD simulations use force fields (FFs) to characterize the underlying potential energy surface (PES) of the
system and simulate long trajectories based on Newton’s second law (Frenkel & Smit, 2001). The PES itself
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Figure 1: (a) Results on simulating a water system with ML force fields. Models are sorted by force mean
absolute error (MAE) in descending order. High stability and low radial distribution function (RDF) MAE
are better. Performance in force error does not align with simulation-based metrics. (b) Force-only evaluation
may not reveal key factors in simulating MD with a ML force fields. In this toy example, model 2 (green)
has a lower force error but likely leads to unstable simulations due to extreme forces from local pathological
behavior. (c) Illustrations of MD observables.

is challenging to compute and would ideally be done through quantum chemistry which is computationally
expensive. Traditionally, the alternative has been parameterized force fields built from empirically chosen
functional forms (Halgren, 1996). Recently, machine learning (ML) force fields (Unke et al., 2021b) have shown
promise to accelerate MD simulations by orders of magnitude while being quantum chemically accurate. The
learned force field can then simulate MD or perform structural relaxation. However, despite MD simulations
being a primary motivation for ML FFs, the evidence supporting the utility of ML FFs is often based on their
accuracy in reconstituting forces across test cases (Faber et al., 2017) without involving simulations. This
paper highlights the importance of simulation-based evaluation, demonstrating that force accuracy alone
does not suffice for effective simulation (Figure 1 (a)).

In practice, the exact recovery of the trajectories given the initial conditions is not the ultimate goal of
learning MD simulations. Instead, MD simulation quality is better evaluated through macroscopic observables
that characterize system properties (Leach & Leach, 2001; Tuckerman, 2010). These observables are designed
to be predictive of material properties such as diffusivity in electrolyte materials (Webb et al., 2015), or reveal
detailed physical mechanisms, such as the folding kinetics of proteins (Lane et al., 2011; Lindorff-Larsen
et al., 2011). Although these observables are critical products of MD simulations, systematic evaluations
have not been sufficiently studied in the existing literature. In particular, we show that even small errors
in the force field parameters can lead to catastrophic failure in long-time simulation – ML force fields may
exhibit pathological behavior such as extreme force/energy predictions on states not captured by the training
data, causing the simulation to become unstable or explode (toy example illustrated in Figure 1 (b)).

A benchmark for MD simulations requires mindful design over the selection of systems, the simulation
protocol, and the evaluation metrics: (1) A benchmark suite should cover diverse and representative
systems to reflect the various challenges in different MD applications. (2) Simulations are computationally
expensive (see Table 7 in Appendix B). An ideal benchmark must balance the cost of evaluation and the
system’s complexity to obtain meaningful metrics with reasonable time and computation. (3) Selected systems
should be well studied in the simulation domain, and chosen metrics should be based on physical observables
that characterize the system’s important degrees of freedom or geometric features to reflect practical utility.
We carefully curate four representative MD systems and design simulation protocols/metrics considering all
the abovementioned desiderata.

Are current state-of-the-art (SOTA) ML FFs capable of simulating a variety of MD systems? What might
cause a model to fail in simulations? This paper aims to answer these questions with a novel benchmark
study. The contributions of this paper include:

• We introduce a novel benchmark suite for ML MD simulation with simulation protocols and quanti-
tative metrics. We perform extensive experiments to benchmark a collection of SOTA ML models.
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We provide a complete codebase for training and simulating MD with ML FFs to lower the barrier to
entry and facilitate future work.

• We show that many existing models are inadequate when evaluated on simulation-based benchmarks,
even when they show accurate force prediction (as shown in Figure 1).

• By performing and analyzing MD simulations, we summarize common failure modes and discuss the
causes and potential solutions to motivate future research.

2 Preliminaries

Training. An ML FF aims to learn the potential energy surface Ê(x) ∈ R as a function of atomic
coordinates x ∈ RN×3 (N is the number of atoms), by fitting atom-wise forces F̂ (x) and energies from a
training dataset:{xi,Fi, Ei}Ndata

i=1 , where xi ∈ RN×3,F ∈ RN×3, E ∈ R. For evaluation, the test force/energy
prediction accuracy is often used as a proxy to quantify the quality of the learned PES. The force field
learning protocol has been well established (Unke et al., 2021b).

MD simulation. Simulating molecular behaviors requires integrating a Newtonian equation of motion
d2x/dt2 = m−1F (x) with forces obtained by differentiating Ê(x): F (x) = −∂Ê(x)/∂x. To mimic desired
thermodynamic conditions such as constant temperature/pressure, an appropriate thermostat and barostat
are chosen to augment the equation of motion with extended variables. These conditions are system-dependent
and task-dependent. The simulation produces a time series of positions {xt ∈ RN×3}Tt=0 (and velocities),
where t is the temporal order index, and T is the total simulation steps.

Observables. From the time series of positions (and velocities), observables O(xt) can be computed to
characterize the state of the system at different granularities. Under the ergodic hypothesis, the time
averages of the simulation observables converge to distributional averages under the Gibbs measure (Frenkel
& Smit, 2001): ⟨O⟩ = 1

T limT→∞
∑T
t O(xt) =

∫
dx p(x) O(x), where p(x) ∝ exp(− Ê(x)

kBT
) with T as the bath

temperature and kB as the Boltzmann constant. Calculations of such observables require the system to reach
equilibrium. Simulation observables connect simulations to experimental measurements and are predictive of
macroscopic properties of matter. Common observables (illustrated in Figure 1 (c)) include radial distribution
functions (RDFs), virial stress tensor, mean-squared displacement (MSD), dihedral angles, etc. We propose
evaluation metrics based on well-established observables in the respective types of systems (Section 5).

3 Related Work

ML force fields learn the potential energy surface (PES) from the data by applying expressive regressors
such as kernel methods (Chmiela et al., 2017) and neural networks on symmetry-preserving representations
of atomic environments (Behler & Parrinello, 2007; Khorshidi & Peterson, 2016; Smith et al., 2017; Artrith
et al., 2017; Unke & Meuwly, 2018; Zhang et al., 2018b;a; Kovács et al., 2021; Thölke & De Fabritiis, 2021;
Takamoto et al., 2022). Recently, graph neural network architectures (Gilmer et al., 2017; Schütt et al.,
2017; Gasteiger et al., 2020; Liu et al., 2021) have gained popularity as they provide a systematic strategy
for building many-body correlation functions to capture highly complex PES. In particular, equivariant
representations have been shown powerful in representing atomic environments (Satorras et al., 2021; Thomas
et al., 2018; Qiao et al., 2021; Schütt et al., 2021; Batzner et al., 2022; Gasteiger et al., 2021; Liao & Smidt,
2022; Chen & Ong, 2022; Gasteiger et al., 2022), leading to significant improvements in benchmarks such
as MD17 and OC22/20. Some works presented simulation-based results (Unke et al., 2021a; Park et al.,
2021; Batzner et al., 2022; Musaelian et al., 2022) but do not compare different models with simulation-based
metrics.

Existing benchmarks for ML force fields (Ramakrishnan et al., 2014; Chmiela et al., 2017) mostly
focus on force/energy prediction, with small molecules being the most typical systems. The catalyst-focused
OC20 (Chanussot et al., 2021) and OC22 (Tran et al., 2022) benchmarks focus on structural relaxation
with force computations, where force prediction is part of the evaluation metrics. The structural relaxation
processes are around hundreds of steps, and the goal is to predict the final relaxed structure/energy. These
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Figure 2: Visualization of the benchmarked systems. (a) MD17 molecules: Aspirin, Ethanol, Naphthalene,
and Salicylic acid. (b) 64 water molecules. (c) 512 water molecules. (d) Alanine dipeptide. (e) LiPS.

Table 1: Dataset summary. PBC stands for periodic boundary conditions. *Simulation of alanine dipeptide
uses Metadynamics with implicit solvation.

Dataset System Type PBC #Atoms Simulation Length Objectives
MD17 Small molecule ✗ 9-21 300 ps (600k steps) Interatomic distances
Water liquid ✓ 192 500 ps (500k steps) RDF, Diffusivity

Water-large liquid ✓ 1536 150 ps (150k steps) RDF, Diffusivity
Alanine dipeptide Peptide ✗ 22 5 ns (2.5M steps)* Dihedral angle analysis

LiPS solid-state materials ✓ 83 50 ps (200k steps) RDF, Diffusivity

tasks do not characterize system properties under a structural ensemble, which requires simulations that
are millions of steps long. Several recent works (Rosenberger et al., 2021) have also studied the utility of
certain ML FFs in MD simulations. In particular, Stocker et al. 2022 uses GemNet (Gasteiger et al., 2021) to
simulate small molecules in the QM7-x (Hoja et al., 2021) dataset, with a focus on prediction robustness.
Zhai et al. 2022 applies the DeepMD (Zhang et al., 2018a) architecture to simulate water and demonstrates
its shortcoming in generalization across different phases. However, existing works focus on a single system
and model, while evaluation protocols and quantitative metrics for model comparison remain subject to
debate. The experimental results in past research are often presented qualitatively or as figures, which can be
hard to analyze or used as a scalar metric for comparing performance of different models. As previous works
are mostly motivated by specific use cases, they often lack coverage over diverse MD systems and have very
different data generation processes, making it hard to disentangle the impact from the ML model and data.
Since the experiments are designed for a single model, the simulation protocols in previous works are often
too expensive for large-scale evaluation. Systematic benchmarks for simulation-based metrics are lacking in
the existing literature, which obscures the challenges in applying ML FF for MD applications.

4 Datasets

Popular benchmark datasets, such as MD17, focus on the force prediction task for gas-phase small molecules.
However, successes in these tasks are not sufficient evidence for (1) capturing complex interatomic interactions
that are critical for condensed phase systems; and (2) recovery of critical simulation observables that cannot
be directly indicated by force prediction accuracy. This work focuses on atomic-level MD simulations that
manifest complex intermolecular interactions at multiple scales. We choose systems that (1) have been
frequently used in force field development (Henderson, 1974); (2) cover diverse MD applications such as
materials and biology; and (3) can be simulated within reasonable time and compute. The simulation
conditions such as temperature and time step sizes (Tuckerman, 2010) are configured to replicate realistic
settings in MD literature. Beyond force predictions, we conduct simulations and benchmark observables that
reflect the actual simulation quality, along with stability and computational efficiency. The selected systems
are summarized in Table 1.

MD17 (Chmiela et al., 2017) dataset contains AIMD calculations for eight small organic molecules and is
widely used as a force prediction benchmark for ML FFs. We adopt four molecules from MD17 and benchmark
the simulation performance. In addition to force error, we evaluate the stability and the distribution of
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interatomic distances h(r). For each molecule, we randomly sample 9,500 configurations for training and
500 for validation from the MD17 database. We randomly sample 10,000 configurations from the rest of the
data for force error evaluation. We perform five simulations of 300 ps for each model/molecule by initializing
from 5 randomly sampled testing configurations, with a time step of 0.5 fs, at 500 K temperature, under a
Nosé–Hoover thermostat.

Water is arguably the most important molecular fluid in biological and chemical processes. Due to its
complex thermodynamic and phase behavior, it poses great challenges for molecular simulations. In addition
to force error, we evaluate simulation stability and recovery of both equilibrium statistics and dynamical
statistics, namely the element-conditioned RDFs and liquid diffusion coefficient. Our dataset consists of
100,000 structures collected every 10 fs from a 1 ns trajectory sampled at equilibrium and a temperature of
300 K. We benchmarked all models with various training+validation dataset sizes (1k/10k/90k randomly
sampled structures) and used the remaining 10,000 structures for testing. We performed 5 simulations of
500 ps by initializing from 5 randomly sampled testing configurations, with a time step of 1 fs, at 300 K
temperature, under a Nosé–Hoover thermostat. Additionally, we evaluate model generalization to a larger
system of 512 water molecules with 5 simulations of 150 ps.

Alanine dipeptide features multiple metastable states, making it a classic benchmark for the development
of MD sampling methods and force fields (Head-Gordon et al., 1989; Kaminski et al., 2001). Its geometric
flexibility is well represented by the central dihedral (torsional) angles ϕ and ψ. Our reference data are
obtained from simulations with explicit water molecules, with detailed protocols described in Appendix A.
For faster simulation, we learn an implicitly solvated FF following a protocol similar to Chen et al. (2021).
Our task is more challenging in that it aims to learn the implicitly solvated atomistic FF rather than the
implicit solvation correction in Chen et al. (2021). To facilitate accelerated sampling, we apply metadynamics
with ϕ and ψ as the collective variables. We evaluate force prediction, simulation stability, and free energy
surface (FES) reconstruction F (ϕ, ψ). Our dataset consists of 50,000 structures dumped every 2 ps from
a 100 ns trajectory at a temperature of 300 K. We used 38,000 randomly sampled structures for training,
2,000 for validation, and the rest as a test set. We performed 6 simulations of 5 ns by initializing from six
local minima on the FES (Figure 5) with a time step of 2 fs at 300 K, and under a Langevin thermostat to
mimic random noise from solvation effects. More information on our simulation protocols can be found in
Appendix A. All simulations use hydrogen bond length constraints to enable the 2 fs time step.

LiPS is a crystalline superionic lithium conductor relevant to battery development and a representative
system for MD simulation usage in studying kinetic properties in materials. We adopt this dataset from
Batzner et al. 2022, and benchmark all models on their force error, stability, RDF recovery, and Li-ion
diffusivity coefficient. The dataset has 25,000 structures in total, from which we use 19,000 randomly sampled
structures for training, 1,000 structures for validation, and the rest for computing force error. We conduct 5
simulations of 50 ps by initializing from 5 randomly sampled testing configurations, with a time step of 0.25
fs, at 520 K temperature, under a Nosé–Hoover thermostat.

5 Evaluation Metrics

We deisgn benchmark metrics based on physical observables that describe the most fundamental structural
and dynamical properties of a MD system. These observables are relatively easy to understand and compute,
and their accurate recovery is often deemed a prerequisite for computing more sophisticated observables. We
note there are other observables such as thermal conductivity, viscosity, etc. of practical interest. However,
these observables are often used for specific applications and require extra domain knowledge or non-standard
MD set ups to compute. Our benchmark aims to simplify the MD procedure while being comprehensive, and
focus on analyzing the performance of the ML models.

Distribution of interatomic distances is a low-dimensional description of the 3D structure and has been
studied in previous work (Zhang et al., 2018a). For a given configuration x, the distribution of interatomic
distances h(r) is computed with:
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h(r) = 1
N(N − 1)

N∑
i

N∑
j ̸==i

δ(r − ||xi − xj ||) (1)

where r is the distance from a reference particle; N is the total number of particles; i, j indicates the pairs of
atoms that contribute to the distance statistics; δ is the Dirac Delta function to extract value distributions.
To calculate the ensemble average, h(r) is calculated and averaged over frames from equilibrated trajectories.
The MAE is then calculated by integrating r: MAEh(r) =

∫ ∞
r=0 |⟨h(r)⟩ − ⟨ĥ(r)⟩|dr, where ⟨·⟩ is the averaging

operator, ⟨h(r)⟩ is the reference equilibrium h(r), and ⟨ĥ(r)⟩ is the model-predicted equilibrium h(r).

RDF. As one of the most informative simulation observables, the radial distribution function (RDF) describes
the structural/thermodynamic properties of the system and is experimentally measurable (Yarnell et al.,
1973; Filipponi, 1994). It has been widely used in force field development (Henderson, 1974). By definition,
the RDF describes how density varies as a function of distance from a particle. For a given configuration x,
the RDF can be computed with the following formula:

RDF(r) = 1
4πr2

1
Nρ

N∑
i

N∑
j ̸==i

δ(r − ||xi − xj ||) (2)

where r is the distance from a reference particle; N is the total number of particles; i, j indicates the
pairs of atoms that contribute to the distance statistics; ρ is the density of the system; δ is the Dirac
Delta function to extract value distributions. To calculate the ensemble average, RDF(r) is calculated and
averaged over frames from equilibrated trajectories. The final RDF MAE is then calculated by integrating r:
MAERDF =

∫ ∞
r=0 |⟨RDF(r)⟩ − ⟨ ˆRDF(r)⟩|dr, where ⟨·⟩ is the averaging operator, ⟨RDF(r)⟩ is the reference

equilibrium RDF, and ⟨ ˆRDF(r)⟩ is the model-predicted RDF.

Diffusivity coefficient is relevant to many practical applications such as battery design (Xie et al., 2022).
The diffusivity coefficient D quantifies the time-correlation of the translational displacement, and can be
computed from the mean square displacement:

D = lim
t→∞

1
6t

1
N ′

N ′∑
i=1

|xi(t) − xi(0)|2 (3)

where xi(t) is the coordinate of particle i at time t, and N ′ is the number of particles being tracked in the
system. For the water system, we monitor the liquid diffusivity coefficient and track all 64 oxygen atoms. For
the LiPS system, we monitor Li-ion Diffusivity and track all 27 Li-ions. Accurate recovery of D requires
sufficient long trajectories as it converges with long simulation time. In this paper, we only compute diffusivity
for stable trajectories of at least 100 ps for water and 40 ps for LiPS. As we simulate multiple runs for each
model, we average the diffusivity coefficient extracted from each valid trajectory to obtain the final prediction.

Free energy surface. Given the probability distributions over configurations p(x) and a chosen geometric
coordinate ξ transformed from x and the marginalized density p(ξ), the free energy (Tuckerman, 2010)
can be calculated from F (ξ) = −kBT ln p(ξ). In the specific case of alanine dipeptide, there are two
main conformational degrees of freedom: dihedral angle ϕ of C − N − Cα − C and dihedral angle ψ of
N − Cα − C − N. Therefore, the FES w.r.t ϕ and ψ is the most physically informative. We propose our
quantitative metric MAEF (ϕ),F (ψ) based on the absolute error in reconstructing the FES along the ϕ and
ψ coordinates. We integrate the absolute difference between the reference free energy F and the model
predicted F̂ from [−π, π): MAEF (ϕ) =

∫ π
ϕ=−π |F (ϕ) − F̂ (ϕ)|dϕ. Error for F (ψ) is defined similarly.

Quantifying simulation stability. ML FFs can produce unstable dynamics, as the learned force field may
not extrapolate robustly to the undersampled configuration space and predict extreme forces. The trajectory
can enter nonphysical states that would never happen in a realistic simulation (e.g., bond breaking should
never happen for non-reactive dynamics at a low temperature). Predictions can then become increasingly
pathological as the input states are far from being captured in the training data. Such unstable trajectories
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Table 2: Models benchmarked in this work. The translation/rotation symmetries are respected by the feature
representation at every layer. Number of parameters on the MD17 dataset are reported.

Model Symmetry Principle of Geometric Features Energy Conservation #Parameters
DeepPot-SE (Zhang et al., 2018b) E(3)-invariant ✓ 1.04M

SchNet (Schütt et al., 2017) E(3)-invariant ✓ 0.12M
DimeNet (Gasteiger et al., 2020) E(3)-invariant ✓ 2.1M

PaiNN (Schütt et al., 2021) SE(3)-equivariant ✓ 0.59M
SphereNet (Liu et al., 2021) E(3)-invariant ✓ 1.89M
ForceNet (Hu et al., 2021) Translation-invariant ✗ 11.37M

GemNet-T (Gasteiger et al., 2021) E(3)-invariant ✓ 1.89M
GemNet-dT (Gasteiger et al., 2021) SE(3)-equivariant ✗ 2.31M

NequIP (Batzner et al., 2022) E(3)-equivariant ✓ 1.05M

are not meaningful for observable calculations. For a fair comparison of different models, we need to quantify
stability, and compute ensemble statistics only over the stable part of the simulated trajectories.

Although energy drift has been used in previous work in classical MD to monitor stability (Tuckerman et al.,
1992), it is not ideal for our benchmark. As data generation using quantum chemistry is expensive, we
cannot assume access to the ground truth energy function at evaluation time. Monitoring the energy drift
predicted by the ML model is inconsistent across models and unreliable. Since all MD systems studied in this
paper are in equilibrium, we instead keep track of stability by closely monitoring equilibrium statistics. Such
equilibrium statistics have a range of sensible values that a realistic simulation will never go outside the range.
We can characterize the physical range by computing the equilibrium statistics from reference data and assert
a simulation becomes “unstable” when the deviation from equilibrium exceeds the realistic range by too far.

Stability criterion. For systems with periodic boundary conditions, we monitor the RDF and say a
simulation becomes “unstable” at time T when:

∫ ∞

r=0
||⟨RDF(r)⟩ − ⟨ ˆRDFt(r)⟩T+τ

t=T ||dr > ∆ (4)

where ⟨·⟩ is the averaging operator, τ is a short time window, and ∆ is the stability threshold. In this paper
we use τ = 1 ps, ∆ = 3.0 for water, and τ = 1 ps, ∆ = 1.0 for LiPS. For water, we assert unstable if any of
the three element-conditioned RDFs: RDF(O,O), RDF(H,H), RDF(H,O) exceeds the threshold.

For flexible molecules, we keep track of stability through the bond lengths and say a simulation becomes
“unstable” at time T when:

max
(i,j)∈B

|(||xi(T ) − xj(T )|| − bi,j)| > ∆ (5)

where B is the set of all bonds, i, j are the two endpoints of the bond, and bi,j is the equilibrium bond length.
For both MD17 molecules and alanine dipeptide, we use ∆ = 0.5 Å.

Our chosen stability thresholds are set to relaxed values to detect catastrophic failure that the model cannot
recover from. We include more details on threshold selection in Appendix B. All metrics related to observable
prediction are computed only over the stable part of the trajectories to decouple accuracy and stability.

6 Experiments

Benchmarked models. In our experiments, we aim to cover diverse models with different design such as
architecture and symmetry principles. We adopt the Open Catalyst Project implementation of SchNet (Schütt
et al., 2017), DimeNet (Gasteiger et al., 2020), ForceNet (Hu et al., 2021), PaiNN (Schütt et al., 2021),
GemNet-T/dT (Gasteiger et al., 2021), and the official implementation of DeepPot-SE (Zhang et al., 2018b),
SphereNet (Liu et al., 2021), and NequIP (Batzner et al., 2022). A summary of all benchmarked models is in
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Table 3: Results on MD17. Darker green color indicates better performance. For all results, force MAE is
reported in the unit of [meV/Å], and stability is reported in the unit of [ps]. The distribution of interatomic
distances h(r) MAE is unitless. FPS stands for frames per second. For all metrics (↓) indicates the lower
the better, and (↑) indicates the higher the better. Standard deviation from 5 simulations is in subscript for
applicable metrics.

Model DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP OPLS
Molecule
Aspirin Force (↓) 21.0 35.6 10.0 9.2 3.4 22.1 3.3 5.1 2.3 -

Stability (↑) 9(15) 26(23) 54(12) 159(121) 141(54) 182(144) 72(50) 192(132) 300(0) -
h(r) (↓) 0.65(0.47) 0.36(0.57) 0.04(0.00) 0.04(0.01) 0.03(0.00) 0.56(0.15) 0.04(0.02) 0.04(0.01) 0.02(0.00) 0.21
FPS (↑) 88.0 108.9 20.6 85.8 17.5 137.3 28.2 56.8 8.4 -

Ethanol Force 8.9 16.8 4.2 5.0 1.7 14.9 2.1 1.7 1.3 -
Stability 300(0) 247(106) 26(10) 86(109) 33(16) 300(0) 169(98) 300(0) 300(0) -
h(r) 0.09(0.00) 0.21(0.11) 0.15(0.03) 0.15(0.08) 0.13(0.03) 0.86(0.05) 0.10(0.02) 0.09(0.00) 0.08(0.00) 0.36
FPS 101.0 112.6 21.4 87.3 30.5 141.1 27.1 54.3 8.9 -

Naphthalene Force 13.4 22.5 5.7 3.8 1.5 9.9 1.5 1.9 1.1 -
Stability 246(109) 18(2) 85(68) 300(0) 6(3) 300(0) 8(2) 25(10) 300(0) -
h(r) 0.11(0.00) 0.09(0.00) 0.10(0.01) 0.13(0.00) 0.14(0.04) 1.02(0.00) 0.13(0.00) 0.12(0.01) 0.12(0.01) 0.30
FPS 109.3 110.9 19.1 92.8 18.3 140.2 27.7 53.5 8.2 -

Salicylic Acid Force 14.9 26.3 9.6 6.5 2.6 12.8 4.0 4.0 1.6 -
Stability 300(0) 300(0) 73(82) 281(37) 36(16) 1(0) 26(24) 94(109) 300(0) -
h(r) 0.03(0.00) 0.03(0.00) 0.06(0.02) 0.03(0.00) 0.06(0.02) 0.35(0.00) 0.08(0.04) 0.07(0.03) 0.03(0.00) 0.25
FPS 94.6 111.7 19.4 90.5 21.4 143.2 28.5 52.4 8.4 -

(a) (b) (c) (d)

Figure 3: Head-to-head comparison of force MAE vs. Stability and h(r) MAE on MD17 molecules. Models
are on the x-axis and are sorted according to force error in descending order. High stability and low h(r)
MAE mean better performance. Error bars indicate 95% confidence intervals.

Table 2. These models have been popular in previous benchmark studies for force/energy prediction. They
use different model architecture (feed-forward neural networks vs. message-passing neural networks), different
representations for atomistic interactions (e.g., use angular/torsional information or not) and respect different
levels of euclidean symmetry. We follow all original hyperparameters introduced in the respective papers and
only make minimal adjustments when the training is unstable. More details on the hyperparameters can be
found in Appendix B.

Key observations. We make two key observations as evidenced in the experimental results:

1. Despite being widely used, force prediction is not sufficient for evaluating ML FFs. It generally does
not align with simulation stability and performance in estimating ensemble properties.

2. While often neglected, stability is a crucial prerequisite for practical usage and a major bottleneck
for ML FFs. Lower force errors do not necessarily give rise to more stable simulations, suggesting
stability is a fundamental consideration for comparison and model design.

We next go through the experimental results of all four datasets in detail to demonstrate the key observations
while making other observations.

MD17. As shown in Table 3, more recent models that lie on the right side of the table generally achieve a
lower force error, but may lack stability. Figure 3 selects and rearranges results from Table 3 to demonstrate
the non-aligned trends of force prediction performance vs. simulation performance, which supports key

8



Published in Transactions on Machine Learning Research (04/2023)

Table 4: Results on Water-10k. RDF MAE is unit-less. Diffusivity is computed by averaging 5 runs from 5
random initial configurations and its MAE is reported in the unit of [10−9 m2/s]. The reference diffusivity
coefficient is 2.3 × 10−9 m2/s.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 5.8 9.5 1.4 5.1 16.1 10.9 0.7 1.3 1.5
Stability (↑) 247(147) 500(0) 211(60) 355(153) 500(0) 9(0) 328(200) 500(0) 500(0)
RDF(O,O) (↓) 0.07(0.01) 0.58(0.02) 0.07(0.02) 0.12(0.03) 0.90(0.05) 0.68(0.06) 0.09(0.03) 0.07(0.03) 0.06(0.02)
RDF(H,H) (↓) 0.06(0.02) 0.26(0.01) 0.05(0.01) 0.07(0.01) 0.40(0.03) 0.47(0.02) 0.06(0.02) 0.05(0.01) 0.05(0.01)
RDF(H,O) (↓) 0.19(0.05) 0.58(0.02) 0.23(0.09) 0.38(0.13) 1.15(0.03) 1.29(0.05) 0.27(0.12) 0.30(0.08) 0.27(0.07)
Diffusivity (↓) 0.04 1.78 0.23 0.87 2.24 - 0.36 0.71 0.18
FPS (↑) 91.0 78.9 17.9 64.2 3.1 67.6 11.3 33.7 3.9

0 10 20 30

Force MAE [meV/Å]

0

100

200

300

400

500

S
ta

b
ili

ty
 [p

s]

0 10 20 30

Force MAE [meV/Å]

0.0

0.2

0.4

0.6

0.8

RD
F (

O
,O

) M
A

E

0 5 10 15

Force MAE [meV/Å]

0.0

0.5

1.0

1.5

2.0

D
iff

us
iv

ity
 M

A
E

 [1
0

9 m
2 /s

]
Model
DeepPot-SE

SchNet
DimeNet

PaiNN
SphereNet

ForceNet
GemNet-T

GemNet-dT
NequIP

Figure 4: Comparison of force MAE vs. stability (Left), force MAE vs. RDF MAE (Middle), and force MAE
vs. Diffusivity MAE (Right) on the water benchmark. Each model is trained with three dataset sizes. The
color of a point indicates the model identity, while the point size indicates the training dataset size (small:
1k, medium: 10k, large: 90k). Metrics infeasible to extract from certain model/dataset size (e.g., Diffusivity
for unstable models) are not included.

observation 1. SphereNet and GemNet-T/dT can attain a very low force error for all four molecules, but
often collapse before the simulation finishes. This observation constitutes key observation 2. We note that
although the stable portion of simulated trajectories produced by SphereNet and GemNet-T/dT can recover
the h(r) relatively accurately, stability will become a bigger issue when the statistics of interest require long
simulations, as demonstrated in other experiments. On the other hand, despite having a relatively high
force error, DeepPot-SE performs very well on simulation-based metrics on all molecules except for Aspirin
(Figure 3). With the highest molecular weight, Aspirin is indeed the hardest task in MD17 in the sense that
all models attain high force prediction errors on it. PaiNN also attains competitive simulation performance,
while its force error is not among the best. As a reference, we also include the h(r) error using a popular
classical force field: the optimized potentials for liquid simulations (OPLS, Jorgensen & Tirado-Rives 2005)
in Table 3. More details on the classical force field results are in Appendix A and Figure 7).

We further observe that good stability alone does not imply accurate recovery of trajectory statistics. Although
ForceNet remains stable for Ethanol and Naphthalene, the extracted h(r) deviates a lot from the reference
(Table 3), indicating that ForceNet does not learn the underlying PES correctly, possibly due to its lack of
energy conservation and rotational equivariance. Overall, NequIP is the best-performing model on MD17. It
achieves the best performance in both force prediction and simulation-based metrics for all molecules while
requiring the highest computational cost. More detailed results on MD17 including a study on stability’s
relation with training epochs and individual h(r) are included in Appendix B.
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Table 5: Results on alanine dipeptide. #Finished is the number of simulations stable for 5 ns. MAE of F (ϕ)
and F (ψ) are reported in the unit of [kJ/mol].

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 272.1 217.0 239.0 266.2 256.3 284.7 233.5 219.7 215.6
#Finished (↑) 0/6 0/6 0/6 0/6 0/6 0/6 6/6 0/6 5/6
Stability (↑) 0(0) 0(0) 0(0) 0(0) 804(786) 0(0) 5000(0) 0(0) 4169(1858)
F (ϕ) (↓) - - - - - - 104(2) - 104(14)
F (ψ) (↓) - - - - - - 110(13) - 113(36)
FPS (↑) 54.3 42.4 12.1 42.2 9.9 99.1 15.0 36.5 8.3

Table 6: Results on LiPS. Li-ion Diffusivity coefficient is computed by averaging 5 runs from 5 random initial
configurations. The reference Li-ion diffusivity coefficient is 1.35 × 10−9 m2/s.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 40.5 28.8 3.2 11.7 8.3 12.8 1.3 1.4 3.7
Stability (↑) 4(3) 50(0) 45(10) 50(0) 50(0) 14(3) 50(0) 50(0) 50(0)
RDF (↓) 0.27(0.15) 0.05(0.01) 0.05(0.01) 0.05(0.00) 0.05(0.01) 0.42(0.04) 0.05(0.00) 0.05(0.00) 0.04(0.01)
Diffusivity (↓) - 0.37 - 0.57 0.67 - 0.38 0.35 0.34
FPS (↑) 66.1 35.2 14.8 75.7 18.1 72.1 16.9 43.5 8.2

Water. Under a condensed phase system, key observation 1 and 2 are still evident according to Table 4:
GemNet-T/dT and DimeNet are the top-3 models in terms of force prediction, but DimeNet lacks stability.
The water diffusivity coefficient requires long (100 ps in our experiments) trajectories to estimate and thus
cannot be extracted for unstable models. DeepPot-SE does not achieve the best force prediction performance
but demonstrates decent stability and highly accurate recovery of simulation statistics. Interestingly, SchNet
and SphereNet have high force errors but are highly stable. However, the properties are not accurately
recovered.

Figure 4 further compares model performance with different training dataset sizes. Key observations 1
and 2 are clearly shown: Models located on the left of each scatter plot have very low force error but may
have poor stability. Error in simulation statistics demonstrates a positive correlation with force error. We also
observe that more training data can often improve force prediction performance, as well as simulation stability
and accuracy. We observe clear improvements in simulation stability for DeepPot-SE, SchNet, PaiNN, and
GemNet-dT when more training data is used. NequIP is the best-performing model, achieving very low force
error, excellent stability, and accurate recovery of ensemble statistics, even under the lowest data budget of
1,000 training+validation structures. However, when the training dataset is sufficiently large (90k), many
other models have equally good results as NequIP while being more efficient – dataset size also influences
the model of choice for a certain dataset. The detailed results for water-1k/90k and the impact of dataset
size are included in Appendix B. Furthermore, we also conduct ablation studies on model sizes and training
epochs in Appendix B.

Alanine dipeptide poses unique challenges in sampling different metastable states separated by high free
energy barriers and modeling the implicit solvent. Table 5 shows all models have high force errors due to the
random forces introduced by the lack of explicit account of water molecules. Although the force errors are in
the same order of magnitude, all models except GemNet-T and NequIP fail to simulate stably. The FES
reconstruction task requires stable simulation for the entire 5 ns. GemNet-T and NequIP are the only two
models that manage to finish at least one simulation but produce inaccurate statistics. All other models are
not stable enough to produce meaningful results. As the key difference between GemNet-T and GemNet-dT is
energy conservation, this result suggests a strong stabilization effect of enforcing energy conservation through
the prediction of scalar energy. We further analyze the results of this task in Section 7.

LiPS. Compared to flexible molecules and liquid water, this solid material system features slower kinetics.
From Table 6 we observe that most models are capable of finishing 50-ns simulations stably. In this dataset,
the performance on diffusivity estimation and force prediction align well. We observe that both GemNet-T
and GemNet-dT show excellent force prediction, stability, and recovery of observables, while GemNet-dT
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(e)(c) (d)

(b)

(a)

Figure 5: (a, b) For each row, the first three panels show Ramachandran plots of the alanine dipeptide FES
reconstructed from 5-ns reference vs. 5-ns NequIP/GemNet-T simulation, all using MetaDynamics. The last
two panels show F (ϕ) and F (ψ) of alanine dipeptide extracted from reference simulation vs. from NequIP
simulation. The two rows result from different initialization, annotated as a yellow star. (c) (ϕ, ψ) distribution
of the alanine dipeptide training dataset. The six initialization points are marked with stars. NequIP fails to
remain stable when the simulation starts from the point marked with black color. (d) Model-predicted total
energy as a function of simulation time when simulating the LiPS system using the NVE ensemble. (e) On
water-10k, stability does not improve when the time step is reduced for GemNet-T.

is 2.6 times faster. The better efficiency comes from the direct prediction of atomic forces F instead of
taking the derivative F = ∂E/∂x, which also makes GemNet-dT not energy-conserving – a potential issue
we further discuss in Section 7.

Implications on model architecture. More recent models utilizing SE(3)/E(3)-equivariant representations
and operations such as GemNet-dT and NequIP are more expressive and can capture interatomic interactions
more accurately. This is reflected by their very low force error and accurate recovery of ensemble statistics
when not bottlenecked by stability. Moreover, excellent accuracy and stability can be simultaneously achieved.
The stability may come from parity-equivariance and the use of tensor products (Thomas et al., 2018)
in manipulating higher-order geometric features. We believe further investigations into the extrapolation
behavior induced by different equivariant geometric representations and operations (Batatia et al., 2022) is a
fruitful direction in designing more powerful ML FFs.

7 Failure Modes: Causes and Future Directions

A case study on alanine dipeptide simulation. Figure 5 (a) demonstrates how NequIP and GemNet-T
fail to reconstruct the FES: the ML potentials do not manage to sample much of the transition regions and the
configuration space with ϕ ∈ [0, 180◦] when initialized from a configuration with ϕ = −65◦. Figure 5 (b) shows
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t = 3702 fs t = 3704 fs t = 3706 fst = 3622 fs t = 3716 fs

t = 220.1 ps t = 224.2 fs t = 227.2 ps t = 228.0 ps t = 235.0 ps

(a)

(b)

Figure 6: Examples of simulation collapse when applying (a) NequIP to alanine dipeptide and (b) GemNet-T
to water. The y-axis shows the maximum force observed on any atom in the system at a certain time step.
An orange cross indicates visualized time steps. Notable nonphysical regions are circled. The collapse usually
happens within a very short period of time after the initial local errors.

NequIP fails to simulate stably when initialized from the low-density meta-stable state. The reconstructed FES
significantly deviates from the reference in both cases. This failure can be partially explained by Figure 5 (c),
the training data distribution produced by the reference potential. The relatively high-energy (low-density)
regions and transition regions are exactly those that are not sampled enough by the learned force fields. Even
though our MD trajectory is well-equilibrated, the difference in populations of different meta-stable states
creates data imbalance, making it more challenging for the model to learn well for higher-energy configurations
where density is relatively low. The lack of energy labels for force matching in the implicit solvent setting
exacerbated this problem and poses challenges in learning the relative free energy difference between the
meta-stable states. This issue implies that generalization across different regions in the conformational space
is an important challenge for ML FFs. The rest of the FES results are included in Figure 13.

Energy conservation. Models that directly predict forces may not conserve energy. Figure 5 (d) demon-
strates the evolution of model-predicted total energy for selected models on LiPS, in a microcanonical (NVE)
ensemble. The energy of an isolated system in the NVE ensemble is, in principle, conserved. We observe
that GemNet-T conserves energy, whereas GemNet-dT fails to conserve the predicted total energy. The
existence of non-conservative forces breaks the time-reversal symmetry and, therefore, may not be able
to reach equilibrium for observable calculation. Energy conservation as an inductive bias can also affect
simulation stability. For alanine dipeptide, we observe GemNet-T can achieve stable simulations while
GemNet-dT is unstable. On the other hand, GemNet-dT performs well on the LiPS dataset when coupled
with a thermostat. Previous works (Kolluru et al., 2022) also found that energy conservation is not required
for SOTA performance on OC20. The usability of non-conservative FFs in simulations requires further careful
investigations.

Simulation instability is a major bottleneck for highly accurate models to fail on several simulation tasks.
We further experiment with smaller simulation time steps for GemNet-T on water (Figure 5 (e)), but stability
does not necessarily improve. We observed more training data improves model stability – Stocker et al. (2022)
also demonstrates that the stability of GemNet improves with larger training sets on QM7-x, which includes
high-energy off-equilibrium geometries obtained from normal mode sampling. Normal mode sampling was
also used to generate large datasets in earlier ML force fields such as ANI-1 (Smith et al., 2017), and MD
simulation results are demonstrated. These results indicate that dataset’s coverage over the conformational
space has crucial implications on the behavior of the final model, regardless of the underlying neural network
model. We also observe that the simulation can collapse within a short time window after a long period of
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stable simulation, as visualized in Figure 6. In both cases, we observe that the nonphysical configurations first
emerge at local regions, which cascade to the entire system very quickly as extremely large forces are being
predicted and subsequently integrated into the dynamics. At the end of the visualization, the bonds in the
alanine dipeptide system are broken. Therefore, the local-descriptor-based NequIP model predicts very small
forces. For the water system, the particles are packed in a finite periodic box. The nonphysical configurations
exhibit incorrect coordination structures and extremely large forces. To prevent ML FFs from sampling
nonphysical regions, which is a common precursor to failed simulation (Figure 6), one can deliberately
include distorted and off-equilibrium geometries in the training data to improve model robustness(Stocker
et al., 2022). Alternatively, one can resort to active learning (Wang et al., 2020b; Vandermause et al., 2020;
Schwalbe-Koda et al., 2021) to acquire new data points based on model uncertainty. Past works also found
adding noise to data paired with a denoising objective during training helpful in improving out-of-distribution
test performance on OC20 (Godwin et al., 2021), and in stabilizing learned simulations (Sanchez-Gonzalez
et al., 2020). Another relevant line of work in coarse-grained MD simulation has studied regularization with
an empirical “prior energy” (Wang et al., 2019b) and post-prediction refinement (Fu et al., 2022) to battle
simulation instability.

8 Conclusion and Outlook

We have introduced a diverse suite of MD simulation tasks and conducted a thorough comparison of SOTA
ML FFs to reveal novel insights into ML for MD simulation. As shown in our experiments, benchmarking
only force error is not sufficient, and simulation-based metrics should be used to reflect the practical utility
of a model. We demonstrate case studies on the failure of existing training schemes/models to better
understand their limitations. The performance of a model can be highly case-dependent. For more challenging
MD systems, more expressive atomistic representations may be required. For example, recent work has
explored non-local descriptors (Kabylda et al., 2022) aiming at capturing long-range interactions in large
molecules. Strictly local equivariant representations (Musaelian et al., 2022) are studied for large systems
where computational scalability is critical. New datasets (Eastman et al., 2022) and benchmarks have been
playing an important role in inspiring future work. Learning coarse-grained MD (Wang et al., 2019b; Wang
& Gómez-Bombarelli, 2019; Fu et al., 2022) is another avenue to accelerate MD at larger length/time scales.

The possibility of ML in advancing MD simulation is not limited to ML force fields. Enhanced sampling
methods enable fast sampling of rare events and have been augmented with ML techniques (Schneider et al.,
2017; Sultan et al., 2018; Holdijk et al., 2022). Differentiable simulations (Schoenholz & Cubuk, 2020; Wang
et al., 2020a; Doerr et al., 2021; Ingraham et al., 2018; Greener & Jones, 2021) offer a principled way of
learning the force field by directly training the simulation process to reproduce experimental observables
(Wang et al., 2020a; 2022; Thaler & Zavadlav, 2021). We hope our datasets and benchmarks will encourage
future developments in all related aspects to push the frontier in ML for MD simulations.

Author Contributions

X.F. led the project. X.F., Z.W., W.W., and T.X. designed the benchmark and evaluation protocols; Z.W.
performed MD simulations to generate datasets; X.F. implemented the models and performed the experiments;
X.F.,Z.W.,W.W., T.X., and T.J. analyzed the results; X.F., Z.W., W.W., T.X., S.K., R.G.B., and T.J. wrote
the manuscript.

Acknowledgments

We thank Adrian Roitberg and the Roitberg Research Group for their valuable suggestions on rectifying
our alanine dipeptide evaluation protocol. We thank Adeesh Kolluru, Simon Batzner, and Alby Musaelian
for helping with reproducing previous results. X.F. is supported by the MIT-GIST collaboration. W.W. is
supported by Toyota Research Institute. Z.W. is supported by the Center for Hierarchical Materials Design
at Northwestern University and Army Research Office. The authors also acknowledge the MIT SuperCloud
and the Lincoln Laboratory Supercomputing Center for providing HPC resources. We also acknowledge
PyTorch and PyTorch Geometric.

13



Published in Transactions on Machine Learning Research (04/2023)

References
Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and Erik

Lindahl. GROMACS: High performance molecular simulations through multi-level parallelism from laptops
to supercomputers. SoftwareX, 1-2:19–25, September 2015. ISSN 23527110. doi: 10.1016/j.softx.2015.06.001.
URL https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059.

Berni J Alder and Thomas Everett Wainwright. Studies in molecular dynamics. i. general method. The
Journal of Chemical Physics, 31(2):459–466, 1959.

Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. Efficient and accurate machine-learning in-
terpolation of atomic energies in compositions with many species. Physical Review B, 96(1):014112,
2017.

Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor NC Simm, Ralf Drautz,
Christoph Ortner, Boris Kozinsky, and Gábor Csányi. The design space of e (3)-equivariant atom-centered
interatomic potentials. arXiv preprint arXiv:2205.06643, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth, Nicola
Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature communications, 13(1):1–11, 2022.

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-
energy surfaces. Physical review letters, 98(14):146401, 2007.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane Riviere,
Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020 (oc20) dataset and
community challenges. ACS Catalysis, 11(10):6059–6072, 2021.

Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the periodic table.
Nature Computational Science, 2(11):718–728, 2022.

Yaoyi Chen, Andreas Krämer, Nicholas E Charron, Brooke E Husic, Cecilia Clementi, and Frank Noé.
Machine learning implicit solvation for molecular dynamics. The Journal of Chemical Physics, 155(8):
084101, 2021.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt, and Klaus-Robert
Müller. Machine learning of accurate energy-conserving molecular force fields. Science advances, 3(5):
e1603015, 2017.

Daniel A. Colón-Ramos, Patrick La Riviere, Hari Shroff, and Rudolf Oldenbourg. Transforming the
development and dissemination of cutting-edge microscopy and computation. Nat Methods, 16(8):
667–669, August 2019. ISSN 1548-7091, 1548-7105. doi: 10.1038/s41592-019-0475-y. URL http:
//www.nature.com/articles/s41592-019-0475-y.

Wendy D Cornell, Piotr Cieplak, Christopher I Bayly, Ian R Gould, Kenneth M Merz, David M Ferguson,
David C Spellmeyer, Thomas Fox, James W Caldwell, and Peter A Kollman. A second generation force
field for the simulation of proteins, nucleic acids, and organic molecules j. am. chem. soc. 1995, 117, 5179-
5197. Journal of the American Chemical Society, 118(9):2309–2309, 1996.

Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Kramer, Cecilia Clementi, Frank Noe, Toni Giorgino,
and Gianni De Fabritiis. Torchmd: A deep learning framework for molecular simulations. Journal of
chemical theory and computation, 17(4):2355–2363, 2021.

Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A Beauchamp,
Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al. Openmm 7: Rapid
development of high performance algorithms for molecular dynamics. PLoS computational biology, 13(7):
e1005659, 2017.

14

https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059
http://www.nature.com/articles/s41592-019-0475-y
http://www.nature.com/articles/s41592-019-0475-y


Published in Transactions on Machine Learning Research (04/2023)

Peter Eastman, Pavan Kumar Behara, David L. Dotson, Raimondas Galvelis, John E. Herr, Josh T. Horton,
Yuezhi Mao, John D. Chodera, Benjamin P. Pritchard, Yuanqing Wang, Gianni De Fabritiis, and Thomas E.
Markland. Spice, a dataset of drug-like molecules and peptides for training machine learning potentials,
2022.

Felix A Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S Schoenholz, George E Dahl, Oriol
Vinyals, Steven Kearnes, Patrick F Riley, and O Anatole Von Lilienfeld. Prediction errors of molecular
machine learning models lower than hybrid dft error. Journal of chemical theory and computation, 13(11):
5255–5264, 2017.

Michael Feig. Kinetics from implicit solvent simulations of biomolecules as a function of viscosity. Journal of
chemical theory and computation, 3(5):1734–1748, 2007.

Adriano Filipponi. The radial distribution function probed by x-ray absorption spectroscopy. Journal of
Physics: Condensed Matter, 6(41):8415, 1994.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications,
volume 1. Elsevier, 2001.

Xiang Fu, Tian Xie, Nathan J Rebello, Bradley D Olsen, and Tommi Jaakkola. Simulate time-integrated
coarse-grained molecular dynamics with geometric machine learning. arXiv preprint arXiv:2204.10348,
2022.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs.
In International Conference on Learning Representations, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural
networks for molecules. Advances in Neural Information Processing Systems, 34:6790–6802, 2021.

Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ward Ulissi,
C. Lawrence Zitnick, and Abhishek Das. Gemnet-OC: Developing graph neural networks for large
and diverse molecular simulation datasets. Transactions on Machine Learning Research, 2022. URL
https://openreview.net/forum?id=u8tvSxm4Bs.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017.

Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova,
Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for 3d molecular
property prediction and beyond. In International conference on learning representations, 2021.

Joe G Greener and David T Jones. Differentiable molecular simulation can learn all the parameters in a
coarse-grained force field for proteins. PloS one, 16(9):e0256990, 2021.

Thomas A Halgren. Merck molecular force field. i. basis, form, scope, parameterization, and performance of
mmff94. Journal of computational chemistry, 17(5-6):490–519, 1996.

Teresa Head-Gordon, Martin Head-Gordon, Michael J Frisch, Charles Brooks III, and John Pople. A
theoretical study of alanine dipeptide and analogs. International Journal of Quantum Chemistry, 36(S16):
311–322, 1989.

RL Henderson. A uniqueness theorem for fluid pair correlation functions. Physics Letters A, 49(3):197–198,
1974.

Johannes Hoja, Leonardo Medrano Sandonas, Brian G Ernst, Alvaro Vazquez-Mayagoitia, Robert A DiSta-
sio Jr, and Alexandre Tkatchenko. Qm7-x, a comprehensive dataset of quantum-mechanical properties
spanning the chemical space of small organic molecules. Scientific data, 8(1):1–11, 2021.

15

https://openreview.net/forum?id=u8tvSxm4Bs


Published in Transactions on Machine Learning Research (04/2023)

Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing, and Max Welling. Path integral stochastic
optimal control for sampling transition paths. arXiv preprint arXiv:2207.02149, 2022.

Weihua Hu, Muhammed Shuaibi, Abhishek Das, Siddharth Goyal, Anuroop Sriram, Jure Leskovec, Devi
Parikh, and C Lawrence Zitnick. Forcenet: A graph neural network for large-scale quantum calculations.
arXiv preprint arXiv:2103.01436, 2021.

John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure with a
differentiable simulator. In International Conference on Learning Representations, 2018.

William L Jorgensen and Julian Tirado-Rives. Potential energy functions for atomic-level simulations of
water and organic and biomolecular systems. Proceedings of the National Academy of Sciences, 102(19):
6665–6670, 2005.

Adil Kabylda, Valentin Vassilev-Galindo, Stefan Chmiela, Igor Poltavsky, and Alexandre Tkatchenko. Towards
linearly scaling and chemically accurate global machine learning force fields for large molecules. arXiv
preprint arXiv:2209.03985, 2022.

George A Kaminski, Richard A Friesner, Julian Tirado-Rives, and William L Jorgensen. Evaluation and
reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical
calculations on peptides. The Journal of Physical Chemistry B, 105(28):6474–6487, 2001.

Alireza Khorshidi and Andrew A Peterson. Amp: A modular approach to machine learning in atomistic
simulations. Computer Physics Communications, 207:310–324, 2016.

Adeesh Kolluru, Muhammed Shuaibi, Aini Palizhati, Nima Shoghi, Abhishek Das, Brandon Wood, C Lawrence
Zitnick, John R Kitchin, and Zachary W Ulissi. Open challenges in developing generalizable large scale
machine learning models for catalyst discovery. arXiv preprint arXiv:2206.02005, 2022.

Dávid Péter Kovács, Cas van der Oord, Jiri Kucera, Alice EA Allen, Daniel J Cole, Christoph Ortner, and
Gábor Csányi. Linear atomic cluster expansion force fields for organic molecules: beyond rmse. Journal of
chemical theory and computation, 17(12):7696–7711, 2021.

Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the National Academy
of Sciences, 99(20):12562–12566, 2002.

Thomas J Lane, Gregory R Bowman, Kyle Beauchamp, Vincent A Voelz, and Vijay S Pande. Markov state
model reveals folding and functional dynamics in ultra-long md trajectories. Journal of the American
Chemical Society, 133(45):18413–18419, 2011.

Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen, Marcin
Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, Eric D Hermes, Paul C Jennings,
Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen
Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen, Lars Pastewka,
Andrew Peterson, Carsten Rostgaard, Jakob Schiøtz, Ole Schütt, Mikkel Strange, Kristian S Thygesen,
Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng, and Karsten W Jacobsen. The atomic
simulation environment—a python library for working with atoms. Journal of Physics: Condensed Matter,
29(27):273002, 2017. URL http://stacks.iop.org/0953-8984/29/i=27/a=273002.

Andrew R Leach and Andrew R Leach. Molecular modelling: principles and applications. Pearson education,
2001.

Jonas Lederer, Michael Gastegger, Kristof T Schütt, Michael Kampffmeyer, Klaus-Robert Müller, and
Oliver T Unke. Automatic identification of chemical moieties. arXiv preprint arXiv:2203.16205, 2022.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic graphs.
arXiv preprint arXiv:2206.11990, 2022.

Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins fold.
Science, 334(6055):517–520, 2011.

16

http://stacks.iop.org/0953-8984/29/i=27/a=273002


Published in Transactions on Machine Learning Research (04/2023)

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d molecular graphs. In International Conference on Learning Representations, 2021.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai Kornbluth,
and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic dynamics. arXiv
preprint arXiv:2204.05249, 2022.

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, and
Jonathan P Mailoa. Accurate and scalable graph neural network force field and molecular dynamics with
direct force architecture. npj Computational Materials, 7(1):1–9, 2021.

Jay W Ponder and David A Case. Force fields for protein simulations. Advances in protein chemistry, 66:
27–85, 2003a.

Jay W. Ponder and David A. Case. Force Fields for Protein Simulations. In Advances in Protein Chemistry,
volume 66, pp. 27–85. Elsevier, 2003b. ISBN 978-0-12-034266-2. doi: 10.1016/S0065-3233(03)66002-X.
URL https://linkinghub.elsevier.com/retrieve/pii/S006532330366002X.

Zhuoran Qiao, Anders S Christensen, Matthew Welborn, Frederick R Manby, Anima Anandkumar, and
Thomas F Miller III. Unite: Unitary n-body tensor equivariant network with applications to quantum
chemistry. arXiv preprint arXiv:2105.14655, 2021.

Aneesur Rahman. Correlations in the motion of atoms in liquid argon. Physical review, 136(2A):A405, 1964.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

David Rosenberger, Justin S Smith, and Angel E Garcia. Modeling of peptides with classical and novel
machine learning force fields: A comparison. The Journal of Physical Chemistry B, 125(14):3598–3612,
2021.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International Conference on Machine
Learning, pp. 8459–8468. PMLR, 2020.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Tamar Schlick. Molecular modeling and simulation: an interdisciplinary guide, volume 2. Springer, 2010.

Elia Schneider, Luke Dai, Robert Q Topper, Christof Drechsel-Grau, and Mark E Tuckerman. Stochastic
neural network approach for learning high-dimensional free energy surfaces. Physical review letters, 119
(15):150601, 2017.

Samuel Schoenholz and Ekin Dogus Cubuk. Jax md: a framework for differentiable physics. Advances in
Neural Information Processing Systems, 33:11428–11441, 2020.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. Advances in neural information processing systems, 30, 2017.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of
tensorial properties and molecular spectra. In International Conference on Machine Learning, pp. 9377–9388.
PMLR, 2021.

Daniel Schwalbe-Koda, Aik Rui Tan, and Rafael Gómez-Bombarelli. Differentiable sampling of molecular
geometries with uncertainty-based adversarial attacks. Nature communications, 12(1):1–12, 2021.

Hythem Sidky, Wei Chen, and Andrew L Ferguson. Machine learning for collective variable discovery and
enhanced sampling in biomolecular simulation. Molecular Physics, 118(5):e1737742, 2020.

17

https://linkinghub.elsevier.com/retrieve/pii/S006532330366002X


Published in Transactions on Machine Learning Research (04/2023)

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network potential with
dft accuracy at force field computational cost. Chemical science, 8(4):3192–3203, 2017.

Sina Stocker, Johannes Gasteiger, Florian Becker, Stephan Günnemann, and Johannes T Margraf. How
robust are modern graph neural network potentials in long and hot molecular dynamics simulations?
Machine Learning: Science and Technology, 3(4):045010, 2022.

Mohammad M Sultan, Hannah K Wayment-Steele, and Vijay S Pande. Transferable neural networks for
enhanced sampling of protein dynamics. Journal of chemical theory and computation, 14(4):1887–1894,
2018.

So Takamoto, Chikashi Shinagawa, Daisuke Motoki, Kosuke Nakago, Wenwen Li, Iori Kurata, Taku Watanabe,
Yoshihiro Yayama, Hiroki Iriguchi, Yusuke Asano, et al. Towards universal neural network potential for
material discovery applicable to arbitrary combination of 45 elements. Nature Communications, 13(1):
1–11, 2022.

Stephan Thaler and Julija Zavadlav. Learning neural network potentials from experimental data via
differentiable trajectory reweighting. Nature Communications, 12(1):1–10, 2021.

Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular
potentials. In International Conference on Learning Representations, 2021.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

Richard Tran, Janice Lan, Muhammed Shuaibi, Siddharth Goyal, Brandon M Wood, Abhishek Das, Javier
Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, et al. The open catalyst 2022 (oc22) dataset
and challenges for oxide electrocatalysis. arXiv preprint arXiv:2206.08917, 2022.

Gareth A. Tribello, Massimiliano Bonomi, Davide Branduardi, Carlo Camilloni, and Giovanni Bussi. PLUMED
2: New feathers for an old bird. Computer Physics Communications, 185(2):604–613, February 2014.
ISSN 00104655. doi: 10.1016/j.cpc.2013.09.018. URL https://linkinghub.elsevier.com/retrieve/
pii/S0010465513003196.

Mark Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford university press, 2010.

MBBJM Tuckerman, Bruce J Berne, and Glenn J Martyna. Reversible multiple time scale molecular dynamics.
The Journal of chemical physics, 97(3):1990–2001, 1992.

Oliver T Unke and Markus Meuwly. A reactive, scalable, and transferable model for molecular energies from
a neural network approach based on local information. The Journal of chemical physics, 148(24):241708,
2018.

Oliver T Unke, Stefan Chmiela, Michael Gastegger, Kristof T Schütt, Huziel E Sauceda, and Klaus-Robert
Müller. Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nature
communications, 12(1):1–14, 2021a.

Oliver T Unke, Stefan Chmiela, Huziel E Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T Sch utt,
Alexandre Tkatchenko, and Klaus-Robert Müller. Machine learning force fields. Chemical Reviews, 121
(16):10142–10186, 2021b.

Jonathan Vandermause, Steven B Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M Kolpak, and Boris
Kozinsky. On-the-fly active learning of interpretable bayesian force fields for atomistic rare events. npj
Computational Materials, 6(1):1–11, 2020.

Ercheng Wang, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z. H. Zhang, and Tingjun Hou.
End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications
in Drug Design. Chem. Rev., 119(16):9478–9508, August 2019a. ISSN 0009-2665, 1520-6890. doi:
10.1021/acs.chemrev.9b00055. URL https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00055.

18

https://linkinghub.elsevier.com/retrieve/pii/S0010465513003196
https://linkinghub.elsevier.com/retrieve/pii/S0010465513003196
https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00055


Published in Transactions on Machine Learning Research (04/2023)

Jiang Wang, Simon Olsson, Christoph Wehmeyer, Adrià Pérez, Nicholas E Charron, Gianni De Fabritiis,
Frank Noé, and Cecilia Clementi. Machine learning of coarse-grained molecular dynamics force fields. ACS
central science, 5(5):755–767, 2019b.

Wujie Wang and Rafael Gómez-Bombarelli. Coarse-graining auto-encoders for molecular dynamics. npj
Computational Materials, 5(1):1–9, 2019.

Wujie Wang, Simon Axelrod, and Rafael Gómez-Bombarelli. Differentiable molecular simulations for control
and learning. arXiv preprint arXiv:2003.00868, 2020a.

Wujie Wang, Tzuhsiung Yang, William H Harris, and Rafael Gómez-Bombarelli. Active learning and
neural network potentials accelerate molecular screening of ether-based solvate ionic liquids. Chemical
Communications, 56(63):8920–8923, 2020b.

Wujie Wang, Zhenghao Wu, and Rafael Gómez-Bombarelli. Learning pair potentials using differentiable
simulations. arXiv preprint arXiv:2209.07679, 2022.

Michael A Webb, Yukyung Jung, Danielle M Pesko, Brett M Savoie, Umi Yamamoto, Geoffrey W Coates,
Nitash P Balsara, Zhen-Gang Wang, and Thomas F Miller III. Systematic computational and experimental
investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS central
science, 1(4):198–205, 2015.

Yujie Wu, Harald L. Tepper, and Gregory A. Voth. Flexible simple point-charge water model with improved
liquid-state properties. The Journal of Chemical Physics, 124(2):024503, January 2006. ISSN 0021-9606,
1089-7690. doi: 10.1063/1.2136877. URL http://aip.scitation.org/doi/10.1063/1.2136877.

Tian Xie, Arthur France-Lanord, Yanming Wang, Jeffrey Lopez, Michael A Stolberg, Megan Hill, Gra-
ham Michael Leverick, Rafael Gomez-Bombarelli, Jeremiah A Johnson, Yang Shao-Horn, et al. Accelerating
amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated
properties. Nature communications, 13(1):1–10, 2022.

J Li Yarnell, MJ Katz, Ro Go Wenzel, and SH Koenig. Structure factor and radial distribution function for
liquid argon at 85 k. Physical Review A, 7(6):2130, 1973.

Shuwen Yue, Maria Carolina Muniz, Marcos F. Calegari Andrade, Linfeng Zhang, Roberto Car, and
Athanassios Z. Panagiotopoulos. When do short-range atomistic machine-learning models fall short? J.
Chem. Phys., 154(3):034111, January 2021. ISSN 0021-9606, 1089-7690. doi: 10.1063/5.0031215. URL
http://aip.scitation.org/doi/10.1063/5.0031215.

Yaoguang Zhai, Alessandro Caruso, Sigbjörn L Bore, and Francesco Paesani. A “short blanket” dilemma for
a state-of-the-art neural network potential for water: Reproducing properties or learning the underlying
physics? 2022.

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and EJPRL Weinan. Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics. Physical review letters, 120(14):
143001, 2018a.

Linfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, et al. End-to-end symmetry preserving
inter-atomic potential energy model for finite and extended systems. Advances in Neural Information
Processing Systems, 31, 2018b.

19

http://aip.scitation.org/doi/10.1063/1.2136877
http://aip.scitation.org/doi/10.1063/5.0031215


Published in Transactions on Machine Learning Research (04/2023)

Figure 7: Comparison between a classical force field and the reference simulation on the h(r) of MD17
molecules.

A Dataset details

The MD17 dataset1 (Chmiela et al., 2017) and the LiPS dataset2 (Batzner et al., 2022) are adapted from
previous works and are publicly available. The MD17 dataset is generated from path-integral molecular
dynamics simulations that incorporate quantum mechanics into the classic molecular dynamics simulations
using Feynman path integrals. The LiPS datasets are generated by ab-initio molecular dynamics simulations
with a generalized gradient PBE functional and projector augmented wave pseudopotentials. We refer
interested readers to the respective papers for more details on the data generation process. The water dataset
and alanine dipeptide dataset are generated by ourselves, and the generation process is explained in the next
paragraphs.

To demonstrate how ML force fields can improve simulation accuracy over classical force fields, we also
simulated the four MD17 molecules with a popular classical force field: the optimized potentials for liquid
simulations (OPLS, Jorgensen & Tirado-Rives 2005) with OpenMM (Eastman et al., 2017). In OPLS,
interatomic interactions are described by a combination of simple functional forms, such as harmonic and
Lennard-Jones potentials, for bond stretch, bond angle, torsional angle, and pair-wise non-bonded interactions.
We sample the molecule conformations in vacuum under an NVT ensemble with a timestep of 1 femtosecond
and temperature of 500 K, controlled with a Langevin thermostat. The resulting h(r) from the classical force
field is compared to the reference in Figure 7. The errors it attains are reported in Table 3, which are much
higher than most ML force fields, whose h(r) curves are shown in Figure 14.

Water. Our water dataset is generated from molecular dynamics simulations of a simple classical water
model, namely, the flexible version of the Extended Simple Point Charge water model (SPC/E-fw) (Wu et al.,
2006) at temperature T = 300 K and pressure P = 1 atm. For this model, the interaction parameters (e.g.,
O-H bond stretch and H-O-H bond angles), are parameterized to match extensive experimental properties
such as the self-diffusion and dielectric constants at bulk phase. This classical model has been well-studied
in previous work (Wu et al., 2006; Yue et al., 2021) and has shown reasonable predictions of the physical
properties of liquid water. It provides a computationally inexpensive way to generate a large amount of
training data. The experience and knowledge gained from the benchmark based on the simple model can be
readily extended to systems with higher accuracy, such as the ab-initio models.

Alanine dipeptide. Our dataset is generated from the MD simulation of an alanine dipeptide molecule
solvated in explicit water (1164 water molecules) performed in GROMACS (Abraham et al., 2015) using
the AMBER-03 (Ponder & Case, 2003b) force-field. In the AMBER-03 force field, the potential energy
parameters such as van der Waals and electrostatics are mostly derived from quantum mechanical methods
with minor optimization on the bonded parameters to reproduce the experimental vibrational frequencies
and structures (Cornell et al., 1996; Ponder & Case, 2003a). The NPT ensemble is applied in simulations,
with hydrogen bond length constraints using LINear Constraint Solver (LINCS) and a time step of 2 fs.
The temperature and pressure of the system are controlled at T = 300 K and P = 1 bar using a stochastic
velocity rescaling thermostat with damping frequency tv = 0.1 ps and Parrinello-Rahman barostat with
coupling frequency tp = 2.0 ps, respectively. The Particle Mesh Ewald approach is used to compute long-range

1http://www.sgdml.org/
2https://archive.materialscloud.org/record/2022.45
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(a) (b)

Figure 8: F (ϕ) and F (ψ) have converged for the reference force field (a) and NequIP (b) at time 5 ns under
Metadynamics.

electrostatics with periodic boundary conditions applied to the x, y, and z directions. The conformational
modes can be characterized by six free energy local minima, which have been used in previous work (Lederer
et al., 2022). We initialize six simulations for each model from each of the six free energy local minima.

Implicit solvation. The explicit solvent of 1164 water molecules is not the subject of study but adds a
significant computational burden. In this task, we attempt to learn an implicit solvent model (ISM) of the
alanine dipeptide, in which the explicit solvent environment is incorporated in the learned FF. The ISM is
commonly used in drug design (Wang et al., 2019a) because it can speed up the computation by dramatically
decreasing the number of particles required for simulation. In general, the mean-field estimation in ISM
ignores the effect of solvent, thermal fluctuations, and solvent friction (Feig, 2007). Thus, molecular kinetics
is not directly comparable to the explicit solvation simulation. However, the equilibrium configurations can
be explicitly compared, as conducted in Chen et al. (2021).

Metadynamics simulation. Simulating energy barrier jump usually requires a long sampling of the
trajectory in MD simulations. The conformational change of alanine dipeptide in water involves such a
process, making it difficult to extract the complete free energy surface, i.e., the Ramachandran plot, in
normal MD. In order to examine the learned ML FFs within a reasonable time limit, metadynamics (Laio &
Parrinello, 2002) is employed to explore the learned FES of the solvated alanine dipeptide. Metadynamics is
a widely used technique in atomistic simulations to accelerate the sampling of rare events and estimate the
FES of a certain set of degrees of freedom. It is based on iteratively “filling” the potential energy using a sum
of Gaussians deposited on a set of suitable collective variables (CVs) along the trajectory. At evaluation time,
we perform metadynamics with dihedral angles ϕ and ψ as CVs3, starting from the configurations located at
one of the six energy minimums in the free energy surface indicated in Figure 5 (c). The Gaussians with
height h = 1.2 and sigma σ = 0.35 are deposited every 1 ps centered on ψ and ϕ. As shown in Figure 8, the
estimated FES of both ϕ and ψ do not significantly change after 5 ns. In addition, the height of the bias
gaussian potential smoothly converges to ∼ 0 in the time limit of 5 ns. Therefore, a simulation time of 5 ns is
sufficient for the convergence of the metadynamics. This metadynamics simulation of alanine dipeptide with
AMBER force fields is carried out using GROMACS (Abraham et al., 2015) integrated with the PLUMED
library (Tribello et al., 2014; Colón-Ramos et al., 2019) of version 2.8.

B Experimental details

Selection of stability threshold. Our stability thresholds are chosen to be relaxed, so a simulation is
only flagged as “unstable” when the system has already went into highly non-realistic configurations. In
Figure 9 (a) and (c), we show the natural fluctuation existing in the reference data of RDF for water and
bond lengths for Aspirin, demonstrating that realistic simulations would never exceed the stability thresholds.
In our experiments, unstable simulations cannot recover from catastrophic failure to become stable again.
Example trajectories using SchNet on Aspirin and GemNet-T on water are shown in Figure 9 (b) and (d).

3In practice, the selection of suitable collective variables can be a case-by-case challenge (Sidky et al., 2020).
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(a) (b) (c) (d)

Figure 9: (a) The distribution of bond length deviation for the Aspirin reference dataset. Black dashed
line is our chosen stability threshold. (b) An example simulated trajectory of Aspirin using SchNet that
becomes unstable. Y-axis is log-scaled. (c) The distribution of RDF deviation for the water reference dataset.
Black dashed line is our chosen stability threshold. (d) An example simulated trajectory of Water-1k using
GemNet-T that becomes unstable.

Translation Rotation Reflection

Figure 10: 3D symmetries that ML force fields should respect include translations, rotations, and reflections.

Symmetry principles. the learned force fields should respect the symmetry principles: energy is permu-
tational invariant and E(3)-invariant, and forces are permutational invariant and E(3)-equivariant. E(3)
comprises translations, rotations, and reflections in 3D (Figure 10). A function f is G-equivariant if f◦T = L◦f
for some operator L, where T is an operator for transformation in G. f is invariant if f ◦T = f . For example,
the energy prediction of a E(3)-invariant model will be invariant with represet to 3D rotation, translation, and
reflection of the input structure. Our benchmark includes various models with different levels of symmetry
principles (Table 2) and thus have different expressive power.

Experimental procedures. Baseline models are trained on the datasets described in Section 4 according
to the experimental settings described in Appendix B. At evaluation time, we simulate MD trajectories
using the learned models, with thermostats and simulation length described in Section 4. The simulated
trajectories are recorded as time series of atom positions, along with other information including atom types,
temperature, total energy, potential energy, and kinetic energy. All observables described in this section can
be computed from recorded trajectories. We use the stability criterion described above to find the time step
when the systems become “unstable”, and only use the trajectory before that time step for the computation
of observables. Among the observables, the distribution of interatomic distances and RDF are computed for
each frame and averaged over the entire trajectory. Diffusivity coefficients are computed by averaging over the
diffusivity coefficient computed from all applicable time windows where the time window length is predefined
to be long enough. For example, for a trajectory of T steps and a time window of K steps, we average over
the diffusivity computed from the time windows: [1,K], [2,K + 1], . . . , [T −K + 1, T ]. We use 100 ps as the
time window size for water and 35 ps as the time window size for LiPS. We also remove the first 5 ps of
the simulated trajectories of LiPS for equilibrium. As we do multiple simulations per model and dataset,
we compute the metrics for each trajectory and report the mean and standard deviation. When reporting
the efficiency of different models, all frames per second (FPS) metrics are measured with an NVIDIA Tesla
V100-PCIe GPU. We present FPS as a reference for models’ computational efficiency but also note that code
speed can be affected by many factors and likely has room for improvement. Further details on observable
computation can be found in our code submission: observable.ipynb. The Open Catalyst Project4 codebase

4https://github.com/Open-Catalyst-Project/ocp

22

https://github.com/Open-Catalyst-Project/ocp


Published in Transactions on Machine Learning Research (04/2023)

Table 7: Default training-related hyperparameters for each dataset. *We adopt the original batch size from
respective papers when available for MD17. DeepPot-SE: 4; SchNet: 100; DimeNet: 32; GemNet-T/dT: 1;
NequIP: 5. We use a batch size of 8 for ForceNet.

Dataset Training dataset size Batch size Max epoch LR patience Longest simulation time

MD17 9,500 1-100* 2,000 5 epochs 20 hours
Water-1k 950 1 10,000 50 epochs 28 hours
Water-10k 9,500 1 2,000 5 epochs 28 hours
Water-90k 85,500 1 400 3 epochs 28 hours

Alanine dipeptide 38,000 5 2,000 5 epochs 75 hours
LiPS 19,000 1 2,000 5 epochs 7 hours

Table 8: Results on Water-1k. Force MAE is reported in the unit of [meV/Å]; Stability is reported in the
unit of [ps]; Diffusivity MAE is reported in the unit of [10−9 m2/s]; RDF MAE and FPS are unitless.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 6.7 13.1 3.5 5.2 27.5 13.6 5.0 29.2 1.4
Stability (↑) 108(117) 358(121) 21(18) 111(63) 500(0) 111(194) 391(132) 388(174) 500(0)
RDF(O,O) (↓) 0.17(0.10) 0.52(0.03) 0.18(0.07) 0.08(0.02) 0.67(0.05) 0.95(0.42) 0.25(0.22) 0.50(0.12) 0.07(0.02)
RDF(H,H) (↓) 0.13(0.09) 0.23(0.01) 0.14(0.06) 0.07(0.02) 0.29(0.03) 0.60(0.26) 0.19(0.18) 0.36(0.02) 0.07(0.02)
RDF(H,O) (↓) 0.28(0.15) 0.57(0.01) 0.24(0.11) 0.19(0.06) 0.87(0.04) 1.53(0.31) 0.42(0.20) 1.01(0.13) 0.26(0.07)
Diffusivity (↓) 0.24 1.70 - 0.50 2.09 2.29 0.06 1.11 0.37
FPS (↑) 61.8 99.2 16.4 54.5 3.0 68.1 15.4 34.5 3.9

and the official codebases of DeepPot-SE5, SphereNet6, and NequIP7 are all publicly available. We build our
MD simulation framework based on the Atomic Simulation Environment (ASE) library8 (Larsen et al., 2017).

Hyperparameters. We adopt the original model hyperparameters in the respective papers and find they
can produce good force prediction results that match the trend and numbers for MD17 reported in previous
work. As we introduce new datasets, we set training hyperparameters such as the batch size and summarize
them in Table 7. For water and LiPS, we use a batch size of 1 like in previous work (Batzner et al., 2022) as
each structure already contains a reasonable number of atoms and interactions. Following previous work, we
use an initial learning rate of 0.001 for all experiments except for NequIP, which uses 0.005 as the initial
learning rate in the original paper. For models that minimize a mixture of force loss and energy loss, we
set the force loss coefficient λF to be 1000 and the energy loss coefficient λE to be 1, if not specified in the
original paper. A higher force loss coefficient is common in previous work (Zhang et al., 2018a; Batzner et al.,
2022) as simulations do not directly rely on the energy.

Notably, NequIP proposed several sets of hyperparameters for different datasets, including MD17, a water+ice
dataset from Zhang et al. 2018a, LiPS, etc. We follow the MD17 hyperparameters of NequIP for our MD17
and alanine dipeptide datasets; the water+ice hyperparameters of NequIP for our water dataset; and the
LiPS hyperparameters of NequIP for the same LiPS dataset. For DeepPot-SE, we adopted hyperparameters
introduced in Zhang et al. 2018a. The only architectural adjustment we made is because we observed training
instability for ForceNet on water using the original hyperparameters. We resolve this issue by reducing the
network width from 512 to 128 for ForceNet in our water experiments.

To facilitate benchmarking with a reasonable computational budget, we stop the training of a model if either
of the following conditions is met: (1) a maximum training time of 7 days is reached on an NVIDIA Tesla
V100-PCIe GPU; (2) a maximum number of epochs specified in Table 7 is reached; (3) The learning rate
drops below 10−6 with a ReduceLROnPlateau scheduler with factor 0.8 and learning rate (LR) patience
specified in Table 7. We also report the longest time for an ML model to finish our benchmark simulation in
Table 7. All numbers are results of NequIP. The high computational cost for evaluating MD simulations has

5https://github.com/deepmodeling/deepmd-kit
6https://github.com/divelab/DIG
7https://github.com/mir-group/nequip
8https://gitlab.com/ase/ase
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Table 9: Results on Water-90k. Force MAE is reported in the unit of [meV/Å]; Stability is reported in the
unit of [ps]; Diffusivity MAE is reported in the unit of [10−9 m2/s]; RDF MAE and FPS are unitless.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 5.9 8.4 1.7 5.1 14.8 8.6 0.7 1.1 1.4
Stability (↑) 500(0) 500(0) 182(137) 500(0) 500(0) 20(2) 500(0) 500(0) 500(0)
RDF(O,O) (↓) 0.07(0.02) 0.64(0.02) 0.08(0.02) 0.15(0.01) 0.91(0.05) 0.77(0.04) 0.04(0.00) 0.04(0.01) 0.06(0.01)
RDF(H,H) (↓) 0.05(0.01) 0.28(0.01) 0.06(0.01) 0.08(0.00) 0.41(0.04) 0.51(0.03) 0.03(0.00) 0.04(0.00) 0.04(0.01)
RDF(H,O) (↓) 0.29(0.08) 0.66(0.02) 0.27(0.08) 0.55(0.03) 1.26(0.09) 1.53(0.05) 0.19(0.02) 0.19(0.04) 0.25(0.06)
Diffusivity (↓) 0.35 1.89 1.06 2.19 2.24 - 0.39 0.94 0.18
FPS (↑) 62.1 103.0 16.3 71.9 3.1 43.8 15.3 32.7 3.0

Table 10: Water-1k results on NequIP with various model sizes and radius cutoffs.
Force Stability RDF(O,O) RDF(H,H) RDF(H,O) Diffusivity FPS

Width=64, r=4 3.5 500(0) 0.07(0.02) 0.05(0.01) 0.27(0.06) 0.38 8.2
Width=32, r=6 1.5 500(0) 0.06(0.01) 0.05(0.01) 0.26(0.06) 0.25 5.2
Width=64, r=5 1.6 500(0) 0.07(0.02) 0.05(0.01) 0.27(0.06) 0.31 4.9
Width=64, r=6 1.4 500(0) 0.07(0.02) 0.07(0.02) 0.26(0.07) 0.37 3.9
Width=128, r=6 1.5 500(0) 0.07(0.02) 0.05(0.01) 0.29(0.07) 0.37 2.5

been a major consideration in designing our benchmark datasets and metrics. Training of DeepPot-SE is
efficient and we follow the training setup specified in Zhang et al. 2018a.
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Figure 11: The force error and stability of SchNet
for simulating Salicylic acid, as training progress.

Complete water results. We present results on water-
1k in Table 8 and results on water-90k in Table 9. Results
on water-10k is presented in Table 4 in the main text.
All models generally achieve lower force error, higher
stability, and higher simulation accuracy when trained
with more data. In particular, DeepPot-SE shows clear
improvement with more training data and becomes as
good as NequIP on water-90k while being highly efficient.
SchNet demonstrates strong stability, but the estimation
of ensemble statistics does not improve with more data.
This may be due to the limited accuracy of SchNet coming
from the limited expressiveness of the invariant atomic
representation.

Large water system of 512 molecules. To study
model performance in generalizing to a larger system
and model scalability, we evaluate models trained on the
water-10k dataset on a dataset with 512 water molecules
simulated for 1 ns, using the same reference force field. Given the high cost of simulating a large system,
we simulate 5 trajectories of 150 ps long for each model. The results are shown in Table 11. We observe
that all models suffer slightly higher force errors compared to the evaluation of the 64-molecule water system.
In terms of stability, NequIP, SchNet, and SphereNet always remain stable for the entire 150 ps. However,
SchNet and SphereNet do not produce correct ensemble properties. GemNet-T and GemNet-dT are not
stable throughout the entire simulation but can produce decent ensemble properties. Noticeably, the stability
of DeepPot-SE drops significantly. We hypothesize that the lack of message passing limits its capability to
capture long-range interactions and thus limits the performance in a larger system.

Influence of model size. Table 10 shows an ablation study over the model size and radius cutoff of
NequIP over water-1k. We observe that all models are highly stable and attain equally good performance in
simulation-based metrics. Although a small radius cutoff of 4 leads to worse performance in force prediction,
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Table 11: Results on the large water system with 512 molecules, with models trained on the water-10k dataset
(64-molecule water system). *SphereNet on Water-large requires more memory than Tesla V100 supports.
We run its simulations on faster NVIDIA A100 cards so the FPS is not entirely comparable to other models.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 10.6 12.1 5.1 9.7 18.4 13.2 5.6 4.2 7.7
Stability (↑) 19(22) 150(0) 19(24) 24(19) 150(0) 8(0) 84(48) 124(52) 150(0)
RDF(O,O) (↓) 0.23(0.06) 0.62(0.01) 0.21(0.06) 0.14(0.02) 0.92(0.02) 0.69(0.02) 0.12(0.05) 0.10(0.03) 0.10(0.01)
RDF(H,H) (↓) 0.24(0.06) 0.28(0.00) 0.15(0.05) 0.10(0.02) 0.41(0.01) 0.48(0.01) 0.08(0.03) 0.07(0.02) 0.07(0.00)
RDF(H,O) (↓) 0.67(0.27) 0.55(0.02) 0.22(0.06) 0.23(0.07) 0.96(0.01) 1.32(0.02) 0.14(0.03) 0.13(0.01) 0.12(0.02)
Diffusivity (↓) - 2.63 - - 2.99 - 0.81 0.60 0.89
FPS (↑) 80.7 23.1 3.5 17.4 0.8 11.9 2.2 5.3 0.7

Table 12: Results on Water-10k-time-split. Force MAE is reported in the unit of [meV/Å]; Stability is
reported in the unit of [ps]; Diffusivity MAE is reported in the unit of [10−9 m2/s]; RDF MAE and FPS are
unitless.

DeepPot-SE SchNet DimeNet PaiNN SphereNet ForceNet GemNet-T GemNet-dT NequIP
Force (↓) 5.8 10.1 1.2 6.6 18.4 12.3 0.7 1.3 1.7
Stability (↑) 171(152) 414(121) 117(106) 154(52) 500(0) 2(0) 500(0) 500(0) 500(0)
RDF(O,O) (↓) 0.08(0.03) 0.73(0.06) 0.14(0.07) 0.07(0.01) 0.94(0.03) 0.75(0.02) 0.06(0.01) 0.13(0.08) 0.05(0.01)
RDF(H,H) (↓) 0.06(0.02) 0.33(0.03) 0.10(0.06) 0.05(0.01) 0.41(0.01) 0.55(0.01) 0.04(0.00) 0.18(0.17) 0.04(0.00)
RDF(H,O) (↓) 0.18(0.07) 0.76(0.02) 0.31(0.06) 0.24(0.05) 1.22(0.03) 1.28(0.04) 0.24(0.03) 0.62(0.61) 0.21(0.04)
Diffusivity (↓) 0.15 1.97 0.60 0.57 2.25 - 0.34 0.77 0.25
FPS (↑) 62.0 100.5 17.1 57.3 2.9 62.2 15.1 32.5 3.5

it is more computationally efficient and preserves the trajectory statistics. These results show that there
exists a trade-off between accuracy and efficiency when choosing the hyperparameters of an ML force field,
and force error may not be the preferred criterion for model selection.

Stability’s relation with dataset size. We extract the force and stability results for each model from
Figure 4 to make Figure 12 to better illustrate the relation between stability and dataset size for each model.
We observe that more data almost always reduce force error and improves stability. In particular, NequIP is
highly stable across all dataset sizes. DeepPot-SE, SchNet, DimeNet, PaiNN, GemNet, and GemNet-T have
significant improvements in stability with more data. Section 7 contains more detailed discussions on the
causes of instability and potential solutions to improve stability.

Stability’s relation with training epochs. We study the evolution of simulation stability in the training
process of an ML force field. We take the SchNet model on the MD17 molecule salicylic acid and save the
checkpoint at 100, 200, 300, 400, and 500 epochs. We conduct 5 simulations of 300 ps using each checkpoint.
Figure 11 shows the force error and stability of the model at different stages of training. We observe that
the force error decreases as training progresses, and the stability improves to be stable across the entire 300
ps simulation and training epoch 300. This result reveals that thorough training is important to both the
accuracy and stability of ML force fields.

Water-10k with a time split. We investigate a time split of the water dataset by using the first 10,000
structures for training and the last 10,000 structures for testing. The results are reported in Table 12. We
find most models perform slightly worse compared to the random split results in Table 4, while the trend of
performance ranking stays the same.

Distribution of interatomic distances for MD17. Figure 14 shows the h(r) curves for all models and
molecules benchmarked. We randomly selected one simulation out of the five simulations we conducted for
each model and molecule. We observe that due to lack of stability, DeepPot-SE produces noisy h(r) on
Aspirin. ForceNet does not manage to learn the correct interatomic interactions and produces incorrect h(r)
curves. Most models are able to produce h(r) that match well with the reference, with SchNet being less
accurate on Aspirin and Ethanol.
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Figure 12: The force error and stability of all models on the water dataset, with varying training dataset size:
1k, 10k, and 90k.

Figure 13: Alanine dipeptide FES results from different initialization.

RDFs for water. Selected RDF curves for water-1k/10k/90k are in Figure 15, Figure 16, and Figure 17.
Most noisy curves are due to insufficient sampling time, which results in a small number of frames to be
averaged in obtaining the RDF curves. We observe that SchNet, SphereNet, and ForceNet produce inaccurate
curves that are not very noisy, showing that their failure is not entirely due to a lack of stability but because
of inaccurate modeling of interactions caused by limited expressiveness and lower sample efficiency. Further,
we note that the reference curves have zero values below a certain threshold, as any pair of atoms cannot get
too close to each other. However, GemNet-T on water-10k exhibits abnormally high values for very small
distances, indicating the simulations have gone into nonphysical configurations and collapsed.

RDFs for LiPS. As shown in Figure 18, DeepPot-SE does not manage to stay stable on LiPS. ForceNet
learns inaccurate interactions and produces inaccurate RDFs. All other models can produce highly accurate
RDF and can reproduce Li-ion diffusivity relatively accurately, as demonstrated in Table 6.
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Figure 14: h(r) of md17.
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Figure 15: RDFs of Water-1k. GemNet-dT does not remain stable for more than 1 ps and is therefore not
feasible for RDF computation.
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Figure 16: RDFs of Water-10k.
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Figure 17: RDFs of Water-90k.
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Figure 18: RDFs of LiPS.
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