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Abstract

Aerial imagery analysis is critical for many research
fields. However, obtaining frequent high-quality aerial im-
ages is not always accessible due to its high effort and cost
requirements. One solution is to use the Ground-to-Aerial
(G2A) technique to synthesize aerial images from easily
collectible ground images. However, G2A is rarely stud-
ied, because of its challenges, including but not limited to,
the drastic view changes, occlusion, and range of visibil-
ity. In this paper, we present a novel Geometric Preserving
Ground-to-Aerial (G2A) image synthesis (GPG2A) model
that can generate realistic aerial images from ground im-
ages. GPG2A consists of two stages. The first stage pre-
dicts the Bird’s Eye View (BEV) segmentation (referred to
as the BEV layout map) from the ground image. The sec-
ond stage synthesizes the aerial image from the predicted
BEV layout map and text descriptions of the ground image.
To train our model, we present a new multi-modal cross-
view dataset, namely VIGORv2, built upon VIGOR [64]
with newly collected aerial images, maps, and text descrip-
tions. Our extensive experiments illustrate that GPG2A
synthesizes better geometry-preserved aerial images than
existing models. We also present two applications, data
augmentation for cross-view geo-localization and sketch-
based region search, to further verify the effectiveness of
our GPG2A. The code and dataset are available at ht tps :
//github.com/AhmadArrabi/GPG2A.

1. Introduction

Unlike satellite images, which are low in resolution and
can be obscured by clouds [6, |1, 20], aerial images cap-
ture more detailed views, benefiting various applications,
such as land use classification [4,52], urban planning [45],
transportation [10, 21, 29], socioeconomic studies [5, 32],
and cross-view geo-localization (CVGL) [41,50,59,60,64].
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Figure 1. An example generated aerial image (top right) by our
GPG2A from the input text prompt (top left) and the ground image
(bottom left). The ground truth aerial image is on the bottom right.

However, current aerial images are limited by the high ef-
fort and cost required to capture them, as they are often cap-
tured by Unmanned Aerial Vehicles (UAVs) or drones. For
example, New York State’s government annually captures
aerial images for only one-third of its counties [3]. Se-
curity concerns also restrict drone use at low altitudes in
urban areas, limiting applications and preventing frequent
updates. These accessibility challenges are more common
in developing countries. In contrast, ground images are
far more available and cost-effective, especially in the re-
cent advanced cars and autonomous vehicles. Also, crowd-
sourcing platforms like Mapillary [2] see tons of daily up-
loads of street-view images. Thus, a promising solution for
such challenges is ground-to-aerial (G2A) image synthesis,
which aims to generate more frequent aerial images from
their corresponding ground views.

Despite the potential of G2A image synthesis, to the best
of our knowledge, there has been limited research address-
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ing this task due to its challenges. These challenges include
the drastic viewing angle change, object occlusions, and dif-
ferent ranges of visibility between aerial and ground views.
Some prior works attempted G2A synthesis mainly lever-
aging Generative Adversarial Networks (GANs) [15] but
lacked explicit geometric constraints [31] or depended on
strong priors like segmentation maps of the aerial view [44].

In this work, we propose Geometric Preserving Ground-
to-Aerial (G2A) image synthesis (GPG2A) model which
features a novel two-stage process. The first stage trans-
forms the input ground image into a Bird’s Eye View (BEV)
layout map. The second stage leverages pre-trained dif-
fusion models [27, 57], conditioned on the predicted BEV
layout map from the first stage, to generate photo-realistic
aerial images This innovative two-stage pipeline provides
three advantages: 1) The problem is simplified by intro-
ducing an intermediate BEV layout map stage reducing the
domain gap between aerial and ground views. 2) The BEV
layout map explicitly preserves the geometry, enhancing the
synthesized aerial images by maintaining consistent geom-
etry with ground images and reducing overfitting to low-
level details. 3) By leveraging the pre-trained knowledge
from diffusion foundation models, our GPG2A can synthe-
size highly realistic images.

To further improve the synthesis quality and fuse sur-
rounding information not fully represented in the BEV lay-
out map, such as block types (e.g., commercial or residen-
tial), we obtain ground image descriptions from large lan-
guage models (e.g. Gemini). These descriptions are fed into
ControlNet [57] alongside the BEV layout maps, as shown
in Fig. 1. Our research not only addresses G2A synthe-
sis but also proposes the VIGORvV?2 dataset, which includes
center-aligned aerial-ground image pairs, layout maps, and
text descriptions of ground images to train our GPG2A.

Moreover, we illustrate the practical value of GPG2A,
specifically in two downstream applications, 1) data aug-
mentation for CVGL, and 2) sketch-based region search.
We show that synthesized data from our GPG2A can en-
hance the performance of existing CVGL models. Addi-
tionally, we illustrate the potential of synthesized images
in sketch-based image retrieval, providing a more explain-
able and controllable approach. By presenting GPG2A,
VIGORV2, and its applications, we aim to attract more re-
searchers to advance this important and challenging field.

Our contribution can be summarized in three-folds,

* We propose GPG2A, a novel two-stage model that tack-
les the G2A image synthesis task. The first stage explic-
itly preserves the geometric layout by predicting the BEV
maps from ground images. The second stage synthesizes
aerial images by conditioning on the layout maps and text
prompts of the ground images by using a diffusion model.

* We put forward a novel multi-modal cross-view dataset,
namely, VIGORv2. Upon the existing VIGOR [64]

dataset, we collected center-aligned aerial images, BEV
layout maps, and text descriptions of ground images.
VIGORV?2 is the first cross-view dataset with image, text,
and map modalities.

* We evaluate our GPG2A by using SOTA CVGL models
and a customized FID [17] score. Extensive experiments
demonstrate the outstanding performance of the proposed
GPG2A on both same-area and cross-area protocols of
VIGORV2. Moreover, the proposed approach paves the
way for many applications. We demonstrate two down-
stream applications of our GPG2A: 1) Data augmentation
for CVGL and 2) Sketch-based Region Search.

2. Related Work

Cross-View Image Synthesis: Regmi et al. [31] in-
troduced cross-view image synthesis, dividing it into two
sub-tasks: Aerial-to-Ground (A2G) and Ground-to-Aerial
(G2A) synthesis. A2G synthesizes ground images from
aerial images, while G2A tackles the inverse problem.
Regmi et al. [31] tackled these two tasks by conditional
GANSs [15]. Another GAN-based approach in [44] condi-
tions on segmentation maps of the target view, providing
strong geometric prior assumptions.

Recently, the A2G task has been actively studied further
by enhancing GANSs [51], with CVGL [47], and leveraging
geometric priors [25,40]. Some more recent papers [12,39]
tackled satellite image synthesis from maps using diffusion
models. However, G2A remains less explored or often sim-
plified by assuming strong priors as conditional inputs. This
lack of research is attributed to the inherent challenges of
the G2A task, such as occlusions and the limited resolution
of objects in the ground images.

The most relevant research field to this work is Bird’s
Eye View (BEV) prediction which aims to predict overhead
segmentation from ground views. Most BEV studies are
designed for autonomous driving [19,36,37,43,54,62] that
focus on closer objects such as vehicles or pedestrians. In
contrast, we aim to predict the BEV map by focusing on
distant objects like buildings and roads, which are typically
more than 30 meters away. Therefore, due to the longer
distances and the distortion in view transformation, the ex-
isting BEV methods are not preferred for this task.

Inspired by the recent success of diffusion models [27,

, 57] in various tasks [9, 18, 26, 30, 55], we propose
GPG2A which is a novel two-stage model to solve the G2A
image synthesis problem. GPG2A closes the domain gap
between the aerial and ground views by introducing an in-
termediate BEV layout stage. Our comprehensive exper-
iments demonstrate that this innovative approach remark-
ably enhances the quality of the synthesized aerial image.
Cross-View Datasets: Cross-view geo-localization and
cross-view synthesis share many common attributes. There-
fore, these two tasks are usually conducted on the same
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datasets [23, 50, 61, 64]. However, none of these datasets
meet the requirement of our GPG2A, since the absence of
corresponding layout maps and text description of ground
images. Additionally, some datasets are unsuitable for real
scenarios because they lack complex scenes [49]. For ex-
ample, CVUSA [50] collects images from rural areas in the
U.S. CVACT [23] only contains images from one single city
in Australia. The images in University-1652 [61] are exclu-
sively for campus buildings. Fortunately, VIGOR [64] col-
lected aerial and ground images in four major U.S. cities.
However, VIGOR is designed for the many-to-one CVGL
task, resulting in the misalignment of the aerial-ground im-
age pairs. This misalignment reduces the co-visibility be-
tween the ground and aerial views, making it unsuitable for
the G2A task. To this end, we propose VIGORV2 to accom-
modate the needs of G2A synthesis. Our proposed dataset
will be publicly available for further research.

3. VIGORYv2 Dataset

“The image shows an urban street intersection with several buildings
on each side. The buildings are mostly commercial and residential
with a few trees and cars along the street. There is a German car
repair shop on the right side of the intersection. The street is paved
land has a bike lane. There are a few people walking on the street.”

Figure 2. Left: Aerial image (left), ground image (middle), BEV
layout map (right), and text description (bottom) from VIGORv2.
Right: The new training (blue lines) and testing (red lines) geo-
graphically split the New York City portion of VIGORv2. The
non-overlapping training and testing sets prevent data leakage.

As mentioned in Sec. 1, we propose VIGORvV2 to ac-
commodate the needs of the G2A image synthesis task. Our
solution involves retaining the ground images from VIGOR
while re-collecting center-aligned aerial images. In addi-
tion to the newly collected aerial images, we enhance the
VIGOR dataset by introducing two new modalities: BEV
layout maps and text descriptions of ground images. These
additional modalities provide rich spatial contextual infor-
mation and descriptive fine-grained details from the text,
resulting in a more robust and comprehensive dataset. Our
BEV layout maps offer much more accuracy and contain
more classes than previous work [31] which uses off-the-
shelf segmentation models [22].

Aerial Imagery: For each ground image, we first extract
its latitude and longitude and then request an aerial image
centered on this location from MapBox [ 1] API with a reso-
lution of 300 300 and a zoom level of 18.5. We empirically
chose this zoom level by visually inspecting that the aerial
image covers most of the visual areas on ground images.

BEV Layout Maps: Accurate BEV Layout Maps are
needed to train our GPG2A. Inspired by recent work [38],
we collect BEV maps through OpenStreetMap [28] API
with the location of the ground image and a zoom level

\ VIGOR [64]  VIGORV2 (ours)
Ground Images 105,214 105,214
Aerial Images 90,618 105,214
Layout Maps N/A 105,214
Geographically Splits X v
Text Description of Ground Image X v
Words per Description N/A 49.82

Table 1. Statistics comparison between the original VIGOR [64]
datasets and our proposed VIGORV2.

similar to 18.5. Specifically, we select 7 most frequent cat-
egories to render with different colors in the BEV layout
map: building, parking, playground, forest, water, path, and
road. The rendered BEV layout map shares the same reso-
lution as the aerial image as of 300 x 300.

Text Descriptions:  Surrounding environment informa-
tion such as the types of blocks and texture of buildings
is valuable in G2A image synthesis. In our GPG2A, the
text description is assigned to convey such information to
the model. To this end, we utilize Google’s Gemini [46] to
generate the text descriptions. Gemini [46] is an easy-to-
access and accurate LLM that can be utilized as an image-
to-text model to describe the ground images. We used the
Google Gemini API', with two inputs: the ground image
and a custom-designed prompt. For more details of the
prompts, please refer to the supplementary material. A
randomly sampled image-text pair is shown in Fig. 2.
Geographical Dataset Splits: One challenge in apply-
ing the original VIGOR on the G2A task is data leakage.
This leakage is caused by the overlap between the train-
ing and testing data, i.e., samples from both sets were cap-
tured nearby, often along shared streets. To tackle this issue,
we adopt a train-test split based on the geographic location
of an image within the city. Specifically, we divide each
city into northern and southern regions. The north, cover-
ing 80% of the city, is designated for training, while the
remaining 20% in the south is allocated for testing. Fig. 2
visualizes the new training and testing splits in New York
City. Moreover, following the original VIGOR dataset, we
also established same-area (training on 4 cities and test-
ing on 4 cities) and cross-area (training on Seattle and
New York, testing on San Francisco and Chicago) proto-
cols for comprehensive evaluation purposes. A compari-
son between the original VIGOR [64] and our VIGORv2
is summarized in Tab. 1. For more details regarding our
VIGORy2, please refer to our supplementary material.

4. Methodology

Considering a center-aligned ground-aerial image pair I,
and I,, GPG2A learns the transformation from the ground
view to the aerial view through generating an aerial image
I, from I, 4. Directly learning this transformation while pre-
serving visual and geometrical information is challenging,

primarily due to the significant change in viewing angle be-

Tht tps://ai.google.dev/tutorials/python_quickstart

5358

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on October 27,2025 at 13:31:24 UTC from |IEEE Xplore. Restrictions apply.



. . i sum ( . N
Stage I: BEV Layout Estimation ( BEV Projection o ®) Multi-Scale Layout Prediction
:’ : fBEv
I A i: = g —-
g fg i ] ‘
y W, §
5 ct:;lv : :/I Cartesian
Z -> ' Pprojection
[ S i
11 4
T  SE—
= ]
wal) ‘
4
\_ fpotar )
Upsample —_—
i Conv & Upsample —>
L Concatenation —>
. g Residual block —)
£ foomo—cooo—oooo = S\
e | “Realistic {CITY} aerial : . E
N :satellite top view image 1| 2 2 | | Gemini
Vwith high-quality &8 a
1details, buildings, and : =
:raads in {CITY} that Prompt -~
[~ | 1 probably has the : Constraints:
: Jollowing objects and 1| ° focus on giving a general
i ch S v 1 description of the area
characteristics: .
Zy 1 . covered
1{KEY_WORDS} !
x (N—1) ControlNet L Dynamic Text Prompt )

Figure 3. The main architecture of our GPG2A. The first stage is composed of BEV projection and multi-scale layout prediction. Each
column in fg is projected into a polar ray in fgrv. The multi-scale network generates the BEV layout map. Then, the second stage
synthesizes the aerial image using both I, and the dynamic text prompt. All blocks with a lock symbol indicate a frozen model

tween ground and aerial perspectives. To address this chal-
lenge, we hypothesize that conditioning geometric priors as
an intermediate step improves the synthesis process. Thus,
we propose a two-stage model that synthesizes I, by ex-
plicitly learning the geometry of I, from estimating a BEV
layout map Iy, from I g- Solely depending on the spatial
geometric cues from I1, would miss textural details. To ad-
dress this, we incorporate text descriptions of the ground
image to complement I1. These text descriptions are rich
in conditioning information that adds realism and fidelity to
the generated aerial image.
Our GPG2A model can be formalized as follows,

fa = [ (he(Iy), T(1y)) (1)

In Eq. (1), the first stage (BEV Layout Estimation) h is pa-
rameterized by ¢, in which a BEV layout map is estimated
from the given ground image I,;. This layout is expected to
share the geometry of I,. 7 is a text extraction module that
generates the text description of I,. The second stage (Dif-
fusion Aerial Synthesis), f, is a pre-trained ControlNet [57]
model where we condition the estimated BEV layout in ad-
dition to the extracted text description from 1.

4.1. Stage I: BEV Layout Estimation

The first stage of GPG2A estimates the BEV layout
map I;, from the input ground image I,. Initially, the
ground image undergoes processing through a backbone
network, which extracts a latent representation denoted as
fq € ReX"*w \where c, h, and w are the channel, height,
and width dimensions, respectively. For this work, we adopt
ConvNeXt-B [24] as our backbone network. Subsequently,

we derive a BEV feature map by projecting f, into the po-
lar space. This BEV feature gets decoded to produce the
segmentation layout map Ir.

Polar transformations have recently found success in
both geo-localization [41] and BEV estimation [ 13,37, 38].
Therefore, we aim to transform f; into the polar feature
representation fpoiar € Rexdxw where d is the introduced
depth dimension. f,o1q» maps each column in f, into a po-
lar ray of d cells. Each cell is a result of a dynamic weighted
average of its corresponding column in f,;. These dynamic
weights are introduced by expanding f, along the depth
dimension using 1x1 convolutions, followed by softmax
normalization. Thus, as each column in f, is dynamically
weighted d times to produce d cells in the polar ray, we es-
tablish a dynamic learnable depth-aware representation of
fg» denoted as fpoqr, as visualized in Stage Iin Fig. 3.

To formalize the dynamic polar projection, we define the
dynamic weights as Wyepin, = go(I,) € R XW where
g represents the 1x 1 convolution network parameterized by
6, which expands f, along the new depth dimension. To
compute the weighted average for all columns in f,, we
compute the element-wise multiplication of f; and Wepen
for each d in the depth dimension, by splitting Wgepen into
d matrices of shape [c X h X w|. Subsequently, we sum over
the h dimension and concatenate all d multiplication results
to obtain f,oq- With shape [¢ X d x w]. The extraction of
fpolar can be formulated as follows,

2

fpolar = Z(fg : U(Wdepth)) de € da

h
where o is softmax normalization along the h dimension,
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and the operation is done for all elements d; in the d di-
mension. f,o1qr is then transformed into fppy € RE¥FXF
where k € Z* by,

/ -1/Y
TBEV = xiolar +y§olar ’ HBEV = tan 1(5)7 (3)

where  (Zpolar, Ypolar) 1S any point in  fpoer and
(reev,0BEy) is its corresponding polar coordinates in
fBev. Finally, we obtain the tensor of fpgy by resam-
pling it into Cartesian coordinates.

To decode fppy into a segmentation map Ir, we pro-
pose the multi-scale layout prediction module (MSLP), as
illustrated in Fig. 3. The decoding network is composed
of a residual block [16] followed by a multi-scale feature
concatenation structure. The residual block is composed
of two convolution layers and a skip-connection to process
and filter fp gy before upsampling it into the pixel space. In
MSLP, fggy is upsampled by concatenating signals from
two network branches. Both branches are bilinear upsam-
plers but one is with additional convolution layers. This
design simultaneously refines and upsamples the processed
BEV feature map by learning both low- and high-level se-
mantic information. To train stage I, we adopt the Dice loss

2 ‘fLﬂILl
defined as, Lpjc. = 1 — S-—LL,
[ ] Dice [z l+IIz]

4.2. Stage II: Diffusion Aerial Synthesis
4.2.1 ControlNet

ControlNet [57] adds spatial conditioning to pre-trained
text-to-image diffusion models [34] by utilizing zero-
convolution layers. Its promising results show that it can
generate realistic images in multiple domains [14]. In stage
II, we condition on both the predicted layout map I}, and
text prompts from our text extraction module 7. The first
carries the spatial and geometric priors, while the latter in-
troduces textural consistency with the aerial image [,,.

4.2.2 Dynamic Text Prompts

We leverage the versatility of the diffusion model by incor-
porating an additional modality, specifically text conditions.
These encapsulate the environmental and scenic context of
the captured area, improving the synthesized aerial images
with elements beyond geometry. However, the raw Gemini
descriptions contain minor errors and hallucinations which
eventually degrade the quality of the generated aerial im-
ages (see Sec. 5.4).

We employ a text extraction post-processing that filters
the text and extracts keywords of interest. The extracted
keywords, as well as the prior knowledge, e.g., city name,
are combined in a template (see Fig. 3 “Dynamic Text
Prompt” panel for details). We focus only on important
details in the raw description by constraining it in the tem-
plate, naming this process, the ”dynamic” text prompt. To

perform keyword extraction, we adopt a BERT-based off-
the-shelf model®> which utilizes BERT embedding and co-
sine similarity to identify m N-gram phrases that closely
resemble the raw text. The key phrases are ranked by the
Maximal Marginal Relevance (MMR) technique [7] based
on their relevance to the text. Refer to our supplementary
material for more information about MMR.

4.2.3 Model Training

In GPG2A’s second stage, the following simplified objec-
tive from [27] is used to train the diffusion model.

Loy =Bz en0,1).t|ll€ — €o(t, 2, 7(1y), fL)||§]7 4)

where Z is the latent representation of the images gener-
ated from the pre-trained Variational Autoencoder (VAE)
from [34]. €y is parameterized by € and defined as the time-
conditioned U-net [35] with our additions, i.e., text extrac-
tion module 7 and the BEV layout map I,. tis the time step
value in the diffusion process.

5. Experiments

5.1. Evaluation metrics

Reference Image

Sample 1
i C B

%

Sample 3

~_ Sample 2
B |

Figure 4. One reference image and three samples for evaluation
metrics comparisons.

Metrics | Sample 1 Sample 2 Sample 3
PSNR 1 8.587 8.302 8.554
SSIM | 0.062 0.052 0.060
LPIPS | 0.753 0.722 0.784
Sims | 0.510 0.362 0.409
Sime | 0.467 0.370 0.416

Table 2. Evaluation metrics comparison between the sample im-
ages and the reference in Fig. 4. Existing methods (PSNR, SSIM,
LPIPS) can hardly capture the similarity in aerial images. 1 means
higher better. | means lower better.

In the G2A task, popular image quality evaluation met-
rics such as PSNR, SSIM [48], and LPIPS [58] are insuffi-
cient to evaluate the similarity in aerial images. For illustra-
tion, we select one reference image and three test images as
shown in Fig. 4. Sample 1 shares a different layout (hori-
zontal street) than samples 2 and 3 (vertical street). We mea-
sure the similarity between each sample and the reference
image using the aforementioned metrics in Tab. 2. PSNR,
SSIM, and LPIPS do not reflect the similarities as all three

Zht tps://maartengr.github.io/KeyBERT/
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metrics show minor differences. This is because these met-
rics either only estimate pixel-level similarity (PSNR and
SSIM) or lack knowledge of aerial image data (LPIPS).

To address the above-mentioned issue, we propose a new
approach to evaluate our proposed methods by using one
of the state-of-the-art cross-view geo-localization (CVGL)
model [41] to estimate the similarity between real and syn-
thesized aerial images. The goal of CVGL is to minimize
the distance between matched aerial-ground pairs and max-
imize the distance between the unmatched ones. Formally,
denote f*, f9, and f @ as the Lo normalized features for real
aerial images, corresponding ground images, and synthe-
sized aerial images, respectively from a well-trained CVGL
model (i.e. SAFA [41]). If the synthesized aerial image is
realistic and geometrically preserved, the distance between
f*and f @ should be small and we name it same-view simi-
larity metric (Sim ) which are formally defined as follows,

4

where N is the number of samples. Correspondingly, we
also evaluate the similarity between f9 and f % and we name
it cross-view similarity metric (Sim.) which can be easily
obtained by replacing f* into f9 in Eq. (5). To extract the
features, we train the SAFA [41] on the training set of VIG-
ORV2. In Tab. 2, Sim, and Sim,. shows that sample 2 and
sample 3 are closer to the reference image than sample 1.
This indicates its efficacy in evaluating the synthesized im-
ages in this task. Besides Simg and Sim,, we also adopt
a customized FID [17] score, namely FIDgapa that lever-
ages the features (f® and f 4) to evaluate the divergence be-
tween real images and synthesized images. For more de-
tails, please refer to the supplementary material.

. 1 on2-2x (f*- /)
Slms:N;—7 @)

5.2. Quantitative Results

‘ Same-area Cross-area

|Sims | Sime | FIDsapa | Sims | Sime | FIDsaps |

Method

X-seq 0.392  0.438 0.411 0392  0.454 0.570
X-fork 0.341 0423 0.151 0372 0.445 0.357
ControlNet™ | 0435 0415 0.154 0.446  0.405 0.386
ControlNet? | 0.369  0.412 0.110 0.409 0.420 0.220
GPG2A (ours)| 0.295 0.402 0.079 0.333 0.392 0.197

Table 3. Same-area and cross-area benchmark results between our
proposed GPG2A with baseline methods on our VIGORv2. The
best results are highlighted in a gray background. t indicates that
a fixed text prompt is used for training the ControlNet. I indicates
training the ControlNet with the dynamic text prompts proposed
in this paper. | indicates that the lower value is better.

To evaluate our GPG2A, we benchmark it on the pro-
posed VIGORV2 dataset in both same-area and cross-area
protocols. As discussed in Sec. 5.1, we rely on the Sim,.,
Simg, and F'ID score for comparison. We choose Con-
trolNet [57], X-fork, and X-seq [31] as the baseline meth-

ods. For a fair comparison, two versions of ControlNet
were evaluated, one with a constant prompt condition and
another with our proposed dynamic prompt. To our best
knowledge, X-fork and X-seq are the only models to tackle
the G2A task. The experimental results are presented
in Tab. 3 in which the left panel shows the same-area re-
sults and the right panel shows the cross-area results. Our
proposed GPG2A achieves the best results among all the
baseline methods in both same-area and cross-area exper-
iments. Notably, the Sim, and FIDgapa of our GPG2A
are substantially better than other baseline methods. On the
other hand, ControlNet [57] does not outperform the GAN-
based X-fork [31] in Sim, and Sim.. This illustrates that
without the input of the geometric prior, i.e., BEV layout
maps, ControlNet can hardly infer the ground to aerial view
changes. This observation supports our two-stage pipeline
which divides the BEV estimation and aerial synthesis. A
clear improvement in ControlNet can be noticed when us-
ing the dynamic text prompt, which validates the use of
our text extraction module. In the cross-area experiment,
we notice that X-seq has a larger Sim,. and FIDgapa score.
This might be attributed to the overfitting issue in this GAN-
based method that cannot generalize to unseen data. How-
ever, our proposed GPG2A can still maintain an outstand-
ing performance in the cross-area experiments. For con-
ventional PSNR, SSIM, and LPIPS scores, please refer to
our supplementary materials.

5.3. Qualitative Results
GPG2A (ours)
Ground Image  Target Aerial BEV Layout
wl

Figure 5. Same-area qualitative comparison. From left to right are
ground images, target aerial images, ours synthesized BEV layouts
and aerial images, ControlNet [57], X-seq [31], and X-fork [31].

Same-Area Experiment: Some randomly selected sam-
ples are visualized in Fig. 5. For our GPG2A, we present
both generated aerial images and predicted BEV layout
maps. Notably, the synthesized aerial images and BEV lay-
out maps share geometric structures, providing empirical
support to our hypothesis that the BEV map prior would
lead to better synthesis. Compared to other baselines, espe-
cially in the first and the fourth example in Fig. 5, GPG2A
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preserves geometry and generates high-quality aerial im-
ages with details. However, ControlNet has some details,
e.g., roads and trees, but lacks geometric correspondence.
X-fork and X-seq generate blurry images without details.

GPG2A (ours)
rial BEV Layout  Aeri

=
E
E |
m
=1

Figure 6. Cross-area qualitative comparison. From left to right are
ground images, target aerial images, ours synthesized BEV layouts
and aerial images, ControlNet [57], X-seq [31], and X-fork [31].

Cross-Area Experiment: To further validate the general-
ization of GPG2A on unseen data, we devise a cross-area
experiment as visualized in Fig. 6. It is clear to see that the
accurate estimation of the BEV layout maps preserves geo-
metric consistency even in unseen scenarios. To be noticed,
some disparities appear in environmental details, such as the
appearance of buildings (the fifth example in Fig. 6). On
the other hand, all other baseline methods generated sam-
ples lacking both geometry and details compared with our
GPG2A. For more visualizations with different conditions
and failure cases, please refer to supplementary materials.

5.4. Ablation Studies

Same-area Cross-area

Prompt ‘
| Sims | Sime | FIDgapa | Sims | Sime | FIDgapa |

Raw 0.383  0.425 0.123 0.384  0.412 0.227
Constant | 0.323  0.418 0.131 0.362  0.407 0.259
City-only| 0.316  0.419 0.087 0356 0.424 0.208
Dynamic| 0.295 0.402 0.079 0.333  0.392 0.197

Table 4. Ablation study of the text prompt in the proposed
GPG2A. ‘Constant’ indicates fixing the text prompt. ‘Raw’ stands
for using raw text descriptions from Gemini without keyword se-
lection. ‘City-only’ means varying the city name in the prompt.
‘Dynamic’ stands for the proposed dynamic text prompt.

Text prompt: Text prompts provide important contextual
details for GPG2A, as mentioned in Sec. 4.2. In this ex-
periment, we ablate different types of prompts in training to
demonstrate the effectiveness of our dynamic prompt. We
study three additional prompts: the constant prompt, a fixed
generic text prompt; the raw prompt, which directly applies
the Gemini output; and the city-only prompt, which only

Method |  Sims | Sime | FIDsARa 4
w/o MSLP 0.465 0.478 0.426
w/o Stage I 0.435 0.415 0.154

GPG2A (ours) 0.295 0.402 0.079

Table 5. Ablation study on the effectiveness of our GPG2A stage
I. ‘MSLP’ stands for the multi-scale layout prediction module. To
remove MSLP, we input fi,., to stage II. To remove stage I, we
input the ground image directly to stage II.

varies the city name. The experiment results are presented
in Tab. 4. First, the “Raw” prompt has the worst results due
to the lengthy text from Gemini (potentially with hallucina-
tion), resulting in a noisy signal to the model. It is noted that
the “constant” prompt (similar to an empty prompt because
both embedding values never change during training) is bet-
ter than the “Raw” prompt in Sim, and Sitm, but worse
in FIDgapa. This degradation might be attributed to the
absence of ground surrounding information. This also re-
veals the importance of our dynamic prompt which boosts
the model in both same-area and cross-area settings.
Effectiveness of Stage I: To verify our two-stage design
in GPG2A, we conduct two ablation studies, 1) removing
the multi-scale layout prediction module in stage I by us-
ing fye, in stage II directly, and 2) removing the stage I
completely by conditioning directly on ground images. As
indicated in Tab. 5, our proposed GPG2A is constantly bet-
ter than these two variants which is a firm support to our
assumption that the intermediate BEV layout alleviates the
challenge in G2A transformation. We also notice that con-
ditioning ground image directly is better than using fpe,. As
frew only contains latent polar features which can hardly be
utilized in stage II synthesis. For more ablation studies,
please refer to the supplementary material.

6. Applications

To further evaluate our GPG2A model and validate
G2A image synthesis across domains, we apply it to two
real-world applications: 1) Data augmentation for geo-
localization and 2) Sketch-based region search.

6.1. Data Augmentation for Geo-localization

po | R@1% R@51 R@10t  R@1%?
3 0 83.58%  9372%  96.08% 99.27%
T 04 | 8633%  94T6%  9627% 99.38%
g 06 | 8684%  9498%  96.30% 99.34%
g 08 85.77%  9471%  96.44% 99.30%
g 0 50.03%  70.17%  77.70% 94.03%
F 04 | 5155%  7196%  78.18% 94.10%
2 06 | 5284%  T232%  78.45% 94.19%
S 08 | 50.11%  7098%  77.60% 93.99%

Table 6. Results of our data augmentation on SAFA. p, = 0 indi-
cates no augmentation is applied. It is noticeable that our augmen-
tation can improve in both same-area and cross-area performance.
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Many augmentation techniques have been proposed [8,
33,49,59] to train robust CVGL models. In this application,
we propose to apply aerial images generated by GPG2A in
the Mixup augmentation method [56] to train robust CVGL
models. The mixup augmentation can be defined as follows,

i‘:{/\xfake+(1>\) ZTreal P < Po 6)
Treal P > Po,

where £, Tfqke,and x,.q are the augmented, generated
(GPG2A output), and real images, respectively. A is the
mixup strength. p, is the probability of applying the aug-
mentation. We apply this augmentation to the well-known
SAFA [41] model which was trained in New York and Seat-
tle, and evaluated in both same-area and cross-area settings.

Tab. 6 shows the performance of our data augmentation
in the same-area and cross-area settings. We evaluate the
performance using recall accuracy at top K (R@K) [41],
which measures the likelihood that the ground truth aerial
image ranks within the top K predictions. Overall, the pro-
posed augmentation improved performance across all met-
rics. Specifically, it brings 3.26% and 2.81% improve-
ments to same-area and cross-area tests respectively while
po = 0.6 on R@1. We also notice that the performance
decreases while p = 0.8. This might indicate the lack of
convergence of the model because of the stronger augmen-
tation. Please refer to our supplementary material for ex-
periments on more recent CYGL models.

6.2. Sketch-based Region Search

Aerial Sketch

Prompt

ed Aerial
bk

A residential area with |fi
lots of houses and a big
parking spot to park my
cars somewhere close to
my home

A busy city with big =
roads and  shopping
places and big malls

A wide highway with
rural scenes like a forest
filled with green trees on
its sides

Figure 7. Synthesis and retrieval results of the sketch-based region
search application. Each color in the layout sketch represents a
class as follows: orange, black, grey, blue, and green reflect build-
ings, streets, sidewalks, parking lots, and trees, respectively.

Aerial image search is one of the most challenging
tasks in remote sensing [63], particularly when a query im-
age is represented by mental maps, such as hand-drawing
sketches [53] without low-level details. In this task, we as-
sume that a hand-drawn sketch and a text description of the

surrounding environment are given. The goal is to find sim-
ilar aerial images from an imagery database. In this way,
the user can find points of interest by using only sketches
and descriptions. We use the second stage of GPG2A to
synthesize a fake aerial image from the sketch and the text
description. Then, we retrieve the most similar aerial image
from the reference database by calculating the closest latent
features in Euclidean distance. To achieve this, a pre-trained
SAFA model is adopted to extract latent features.

Fig. 7 illustrates 3 retrieval results with different scenery
and objects. For example, a parking lot was in the first sam-
ple, while a highway was included in the third sample. Both
synthesized and retrieved images showed strong correspon-
dence with the given sketches and descriptions. To further
evaluate this pipeline, we conducted a survey that asked 61
volunteers to identify similarities between 5 groups of the
input (aerial sketch and text prompt) with three different
aerial images (corresponding top-1 retrieved aerial image,
the Sth retrieved aerial image, and a random aerial image).
The results show that 66% of the volunteers believe the top-
1 retrieved images correspond to the input aerial sketch and
text prompt. This number drops to 60% in the 5th retrieved
aerial image. While only 24% of the people think ran-
dom aerial images are similar to the input. It is noteworthy
that visualization of generated aerial images from sketches
boosts search explainability. Most previous works [53, 63]
aim to find a common latent space between sketches and
aerial images, which lacks interpretability. For more de-
tails, please refer to supplementary material.

7. Conclusion and Future Works

In this paper, we propose GPG2A which is a two-
stage model that generates geometry-preserved aerial im-
ages from ground images by conditioning on predicted BEV
layouts and text descriptions. To alleviate the problem of
lacking datasets for benchmarking, we propose VIGORv2,
which is built upon the VIGOR [64] dataset with newly col-
lected aerial images, BEV layout maps, and text descrip-
tions. Our GPG2A outperforms existing baselines on the
VIGORV2 dataset. Additionally, we apply our GPG2A on
two downstream tasks to show its potential application.

As a novel research field, there are many opportunities
to advance this research such as feature fusion from ground
videos and fine-grained conditioning techniques to generate
more realistic and diverse aerial images.
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