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ABSTRACT

Anomaly detection relies on recognizing patterns that diverge from normal be-
havior, yet practical deployment is hampered by the inherent scarcity and hetero-
geneity of anomalous instances. These challenges prevent the training set from
faithfully characterizing the underlying anomaly distribution, thereby fundamen-
tally constraining the development of effective discriminative models for anomaly
detection. Inspired by the observed consistency of gradient distributions across
related domains during training, Domain-Aware Gradient Reuse (DAGR) is in-
troduced as a transfer-learning framework that leverages this property. DAGR
first learns an adaptive transformation by aligning source and target normal gra-
dients, thereby neutralizing domain-specific effects. The same map then pushes
forward the source anomalous gradients to computing estimated target anomalous
gradients, which are combined with the true target normal gradients to guide the
target-domain detector without labeled anomalies. This paper establishes a rig-
orous convergence proof that reinforces the framework’s theoretical foundation.
Comprehensive experiments on image and audio datasets demonstrate that the
proposed method achieves state-of-the-art performance.

1 INTRODUCTION

Anomaly detection flags observations that deviate from the normal data manifold, underpinning ap-
plications such as automated fraud mitigation, early medical diagnosis, and industrial fault predic-
tion. The surge in data volume and complexity therefore demands models with high representational
capacity and robustness to distribution shifts, rendering deep neural networks the prevailing solution.

Although deep learning has advanced rapidly, anomaly detection is still impeded by two factors.
First, the scarcity of anomalous samples leads to severe class imbalance. Second, the heterogeneity
of anomalies ensures that any finite dataset represents only a small fraction of the anomaly space.
Together, these limitations prevent the training data from accurately representing the underlying
anomaly distribution and, in turn, hinder the convergence of discriminative models.

Prior work in anomaly detection spans supervised and unsupervised paradigms. Supervised meth-
ods address class imbalance and anomaly sparsity/heterogeneity via reweighting, augmentation, or
generative synthesis; however, synthetic anomalies cover limited modes and promote overfitting,
yielding poor open-set generalisation to previously unseen anomaly types. Unsupervised methods
model the normal manifold and detect deviations, yet the absence of anomalous supervision ham-
pers calibration and discriminability—especially for subtle anomalies or under distributional drift.
This scarcity–diversity dilemma motivates exploring transfer learning when the dataset under study
lacks anomaly labels, leveraging related datasets that provide labelled anomalies.

Partial Domain Adaptation (PDA) is a natural option in this setting: it aligns the source–target
distributions of normal features, after which source anomaly labels supervise learning in the shared
representation. From an optimisation perspective, mini-batch updates decompose into normal and
anomalous gradient components. Supervised training on the source induces anomalous-gradient
directions tailored to the source distribution; under domain shift, these directions need not benefit
the target to the same extent. Moreover, in anomaly-detection deployments where the target provides
only normal data (one-class condition), the anomalous component is missing, yielding an incomplete
update signal. This motivates estimating the missing component in the target gradient space via
a learned transport map from the source. Fig. 1 examines feasibility: across epochs, per-sample
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Figure 1: Cross-Domain Gradient Distribution Consistency. Each panel visualises, via t-SNE,
the per-sample gradient vectors obtained at four training epochs (0, 10, 20, 30; left → right). Top
row: source domain (Fan) showing normal (∇Φ+, blue) and anomalous (∇Φ−, orange) gradients.
Bottom row: target domain (Pump) presenting normal gradients (∇Ψ+, sky-blue) together with
anomalous gradients estimated by the proposed mapping (∇Ψ̂− = F(∇Φ−), yellow). Across all
epochs, the spatial arrangement of normal and anomalous manifolds in the two domains remains
highly congruent, empirically supporting the assumption P(∇Φ+,∇Φ−) ≈ P(∇Ψ+,∇Ψ−) and
thereby motivating the cross-domain gradient-reuse strategy.

gradients from two proximal domains form normal–anomalous manifolds with highly congruent
(near-isometric) geometry, indicating that such a transport is learnable.

Building on this observation, Domain-Aware Gradient Reuse (DAGR) is introduced. DAGR first
learns an adaptive transport map by aligning source and target normal gradients, thereby attenuating
domain-specific components. The same map is then reused to project source anomalous gradients
into the target space, producing estimated target anomalous gradients. In controlled evaluations
where target anomalies are available for assessment, Fig. 2 shows that the mapped gradients closely
overlap with the empirical target anomalous-gradient distribution across training epochs. By aug-
menting the target updates with this estimated anomalous component, DAGR guides the conver-
gence of the target-domain detector without labelled anomalies.

This work proposes DAGR, a transfer-learning framework that remains effective even when the tar-
get domain contains no anomalous samples. Extensive experiments on image and audio benchmarks
demonstrate state-of-the-art performance, while ablation studies isolate the contribution of each
module. The appendix provides a complete convergence proof under stated assumptions, thereby
giving the method a rigorous theoretical foundation.

2 RELATED WORK

Prior work on anomaly detection is grouped into three strands: augmentation-based supervised
methods, unsupervised one-class modeling, and transfer learning.

2.1 SUPERVISED METHODS

Supervised anomaly detection commonly mitigates class imbalance via augmentation. Input-level
transformations—geometric/photometric operations for images, time-warping and jittering for se-
quences, and graph-topology perturbations—expand the training distribution while preserving labels
(Mumuni et al., 2024; Dang et al., 2023; Zhu et al., 2021). Generative augmentation employs GAN-
or diffusion-based models to synthesise harder anomalous instances, enriching the minority class
(Goodfellow et al., 2020; Cao et al., 2024). At the representation level, contrastive augmentation
applies random masking or multi-view transformations with contrastive objectives to improve in-
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Figure 2: Epoch-wise estimation of target anomalous gradients via cross-domain mapping.
Each panel shows a t-SNE embedding of anomalous-sample gradient vectors obtained at four train-
ing epochs (0, 10, 20, 30; panels arranged left→ right). Green points represent the true target
anomalous gradients ∇Ψ−; light-pink points depict the source anomalous gradients ∇Φ−; red
points are their epoch-specific images in the target space, ∇Ψ̂− = F(e)(∇Φ−). At each epoch, the
mapped source-anomaly gradients nearly coincide with the true target-anomaly gradients, indicating
that F(e) provides an accurate per-epoch estimate of the target anomalous-gradient distribution.

variance and discrimination (Han et al., 2023; Zhou et al., 2022). Together, these strategies increase
sample diversity without modifying ground-truth labels.

Limitation. However, anomalous samples in training rarely reflect the true anomaly space. Even
advanced augmentations generate limited variants and cannot bridge the semantic gap between ob-
served and unseen anomalies, making generalisation beyond the augmentation manifold difficult.

2.2 UNSUPERVISED METHODS

Unsupervised anomaly detection learns normality from unlabelled data, using signals ranging from
reconstruction fidelity to predictive objectives, representation discrimination, and density mod-
elling. Reconstruction-based methods—Auto-Encoders, VAEs, GAN restorers, and diffusion de-
coders—identify anomalies by large residuals (Chen et al., 2018; An & Cho, 2015; Hussein et al.,
2020; Wu et al., 2024). Self-supervised tasks such as future prediction, masked-signal recovery,
and transformation discrimination extract intrinsic dynamics without labels (Venkatraman et al.,
2015; Xie et al., 2023; Swarna et al., 2022). Contrastive learning compacts the normal manifold by
attracting genuine instances and repelling perturbed views (Liang et al., 2022). Probabilistic den-
sity estimators—normalising flows and energy-based models—learn likelihoods so that low-density
samples can be flagged (Garcia Satorras et al., 2021; Qin et al., 2022). These directions jointly
approximate the normal manifold via reconstruction error, embedding compactness, and likelihood.

Limitation. Because no anomalous instances participate in training, the learned boundary is in-
ferred solely from normal data, often yielding overly broad decision regions and reduced precision
on subtle or high-variance anomalies.

2.3 TRANSFER LEARNING FOR ANOMALY DETECTION

Transfer learning is a viable strategy when the target dataset lacks anomalous samples, because
a source domain enriched with labelled outliers can furnish the discriminative information that
the target model requires. Transfer-based anomaly-detection research can be grouped into three
lines of work. Partial Domain Adaptation (PDA) is the most widely adopted paradigm because
it matches the practical setting where the target domain contains only normal data. PDA stud-
ies align cross-domain normal representations while suppressing source-only anomalies through
class-importance weighting (Zhang et al., 2018), instance-level selection (Nguyen et al., 2023), or
classifier-consistency (Jeong & Shin, 2020) strategies. Domain Adaptation (DA) assumes identical
label spaces and exploits unlabeled target data to mitigate domain shift, typically using adversarial
feature alignment (Chen et al., 2019), (Du et al., 2021), or self-supervised reconstruction con-
straints (Zhou et al., 2024). Domain Generalization (DG) trains without target data and pursues

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

domain-invariant features by applying meta-learning (Khoee et al., 2024) across multiple source do-
mains, style or feature perturbations (Liu et al., 2024), or gradient-based regularization (Tang et al.,
2021), thereby improving robustness to unseen environments.

Limitation. Although the alignment of normal representations mitigates interdomain shift, the op-
timisation signals derived from source-domain anomaly supervision remain domain-specific. Gradi-
ent directions that accelerate convergence in the source model do not necessarily align with the target
optimisation landscape. Consequently, the transferred supervision provides limited discriminative
guidance for the target detector and constrains further gains in anomaly-detection performance.

In summary, data augmentation improves class balance but does not address the unknown anomaly
distribution. Unsupervised approaches avoid the need for anomaly labels, yet their precision re-
mains limited because they lack anomalous guidance. Transfer-based methods also exhibit a critical
shortcoming: the update directions induced by source anomalous supervision are optimised for the
source distribution and are not guaranteed to benefit the target.

3 METHODS

This section details the proposed gradient-reuse framework. It first outlines the task setting and the
motivation for exploiting source-domain information under severe anomaly scarcity. The subsequent
subsection, “Cross-Domain Consistent Component Selection (CCCS),” explains how components
that exhibit domain-invariant behavior are identified and preserved. Finally, “Adaptive Domain-
Specific Perturbation Removal (ADPR)” describes how these components are leveraged to learn
cross-domain gradients, enabling the estimation of target anomaly gradient. A rigorous convergence
proof of DAGR is provided in the Appendix, establishing the theoretical soundness of the method.

3.1 MOTIVATION

Let the source domain Ds = {(xsi , ysi )}
Ns
i=1 contain both normal (y = 0) and anomalous (y = 1)

instances, while the target domain Dt = {xtj}
Nt
j=1 is assumed to comprise normal data only. A

K-layer deep network is considered, whose layerwise parameters are collected as

Φ = {ϕ1, ϕ2, . . . , ϕK} and Ψ = {ψ1, ψ2, . . . , ψK} (1)

for the source and target models, respectively. At each training step we compute stochastic gradients
∇Φ on the source mini-batch and ∇Ψ on the target mini-batch. Breaking the source gradient into
class-conditioned components gives

∇Φ = ∇Φ+ + ∇Φ−, (2)

where ∇Φ+ and ∇Φ− are from normal and anomalous samples, respectively. Because Dt lacks
anomalies, only

∇Ψ+ =
1

|Bt|
∑

xt
j∈Bt

∇ΨL
(
fΨ(x

t
j), 0

)
(3)

is observable in the target domain, with Bt denoting the current target mini-batch.

Empirical observation. Figure 1 plots the distributions of ∇Φ+,∇Φ−,∇Ψ+ and ∇Ψ− over
training epochs. The divergence D

(
∇Φ+, ∇Φ−) ≈ D(∇Ψ+, ∇Ψ−) remains low, where D is

instantiated as the 1-Wasserstein distance. This alignment suggests that both domains share a
domain-invariant gradient component despite being collected in different environments.

Gradient decomposition hypothesis. We therefore posit that every mini-batch gradient can be
decomposed into

∇Φ = Ω+∇Φa, ∇Ψ = Ω+∇Ψa, (4)
where Ω encodes cross-domain knowledge that is useful for both domains; ∇Φa and ∇Ψa capture
domain-specific perturbations.

Because both domains provide abundant normal data, we learn a mapping

F : ∇Φ+ 7−→ Ω+ (5)
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Figure 3: Overall workflow of the proposed cross-domain gradient reuse framework. The
pipeline is executed on a source network (Φ1:K , top) and an architecturally identical target network
(Ψ1:K , bottom). Step 1: Consistent Channel Selection. For every layer k, the cosine similarity
between the normal-sample gradients ∇Φ+

k,p and ∇Ψ+
k,p of each channel ck,p is evaluated; chan-

nels whose similarity falls below the threshold γ are masked (grey), leaving only domain-invariant
components (solid colour). Step 2: Adaptive Domain-Specific Perturbation Removal. Given the
masked source normal gradient ∇̃Φ+

m at outer stage m, an inner optimisation loop (blue trajectory)
adapts it to the target loss, yielding the de-domainised estimate Ω+

m =Fm(∇̃Φ+
m). The same map

Fm(·) is then reused to transform the masked anomalous gradient, producing Ω−
m. Both compo-

nents are aggregated as Ωm = Ω+
m+Ω−

m and injected into the target network update (yellow dashed
arrows), enabling anomaly knowledge transfer without exposing target data to anomalies.

that removes domain-specific noise from normal gradients. Under the label-independent shift as-
sumption, Ben-David et al. (Ben-David et al., 2010) bound the target risk by the source risk plus
the distribution divergence between domains. Coupled with the Gradient Distribution Alignment
principle, this implies that the same F generalises to anomalous gradients:

F
(
∇Φ−) ≈ Ω−. (6)

Aggregating Ω = Ω+∪Ω− yields a low-variance estimate of the domain-invariant descent direction.

Transferring anomalous knowledge. Finally, the target model is updated by

ψk ← ψk − η · Ωk, k = 1, . . . ,K, (7)

where η is the learning rate. Equation equation 7 enables implicit reuse of anomalous gradients
without exposing the target model to any anomalous data. We prove in Appendix that, under mild
smoothness conditions (Gao et al., 2021a), the update rule in equation 7 reduces the target risk upper
bound monotonically, thereby accelerating convergence.

The key insight is that gradients—rather than features or logits—exhibit strong cross-domain reg-
ularities. By denoising source gradients (equation 5), estimating the shared component Ω (equa-
tion 4), and injecting it into target updates (equation 7), our method transfers anomalous knowledge
to a domain where no anomalies are observable. Formal justification is provided in Appendix A.1.

3.2 CROSS–DOMAIN CONSISTENT COMPONENT SELECTION

Although the source and target networks share an identical architecture, individual sub-modules
(e.g., convolutional channels or Transformer heads) may specialise in domain-specific patterns. If
such components participate in learning the de-domainisation map F , the resulting estimate of the
shared descent direction Ω would be biased. Hence, before training F , we automatically identify
and retain only those components whose behaviour is consistent across domains.
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Channel-wise gradient similarity. Consider a K-layer CNN. Let k ∈ {1, . . . ,K} index the lay-
ers and Ck = {c1k, . . . , c

Pk

k } denote the Pk output channels of layer k. For each channel cpk ∈ Ck we
measure the normal-sample gradients in the source and target domains:

∇Φ+
k,p =

1

|B+s |
∑

xs
i∈B+

s

∇ϕk,p
L
(
fΦ(x

s
i ), 0

)
, (8)

∇Ψ+
k,p =

1

|Bt|
∑

xt
j∈Bt

∇ψk,p
L
(
fΨ(x

t
j), 0

)
, (9)

where ϕk,p (resp. ψk,p) collects the weights associated with channel cpk in the source (resp. target)
model. Their cosine similarity

ρk,p =
⟨∇Φ+

k,p, ∇Ψ
+
k,p⟩∥∥∇Φ+

k,p

∥∥
2

∥∥∇Ψ+
k,p

∥∥
2

∈ [−1, 1] (10)

reflects the extent to which channel cpk reacts similarly to normal data from both domains.

Domain-invariant channel mask. Given a global channel–masking ratio α ∈ (0, 1), the
layer-wise threshold γk is chosen as the α-percentile of the cosine similarities {ρk,p}Ck

p=1 in layer k:

γk = Percentileα
(
{ρk,p}Ck

p=1

)
. (11)

Binary mask. Using the data-driven threshold equation 11, a binary mask is defined as

mk,p = I
[
ρk,p ≥ γk

]
, cpk ∈ Ck, (12)

where I[·] is the indicator function. Channels with ρk,p < γk are treated as domain-specific and de-
activated by nullifying their gradients: ∇̃Φ+

k,p = mk,p∇Φ+
k,p, ∇̃Ψ+

k,p = mk,p∇Ψ+
k,p, ∇̃Φ−

k,p =

mk,p∇Φ−
k,p. Aggregating over all layers yields the final masked gradients ∇̃Φ± and ∇̃Ψ+.

The filtered gradients are fed into Eq. equation 5:

Ω+ = F
(
∇̃Φ+

)
, Ω− ≈ F

(
∇̃Φ−). (13)

By explicitly excising domain-specific channels, the variance of the shared estimate Ω is further
reduced, which empirically accelerates convergence and stabilises the target update rule equation 7.

3.3 ADAPTIVE DOMAIN-SPECIFIC PERTURBATION REMOVAL

The masked normal gradients ∇̃Φ+ ∈ RD and ∇̃Ψ+ ∈ RD are extremely high-dimensional (D ≈
106–9) and exhibit complex, non-linear cross-domain discrepancies. Simple statistics (e.g., means
or linear projections) are therefore insufficient for extracting the shared component Ω+. We instead
implement the adaptive cross-Domain gradient distiller F(·) of Eq. equation 5 as a gradient-based,
end-to-end adaptive procedure that removes domain-specific perturbations from source gradients by
directly minimising the target loss.

Outer–inner optimisation view. At global training step m∈N let Φm and Ψm denote the current
source and target network parameters, and define the (normal-sample) source gradient g(0)m =

∇̃Φ+
m. We treat g(0)m as the optimisable variable and run an inner loop of N steps to obtain its

domain-invariant component g(N)
m .

Target-aligned inner loop. Starting from the fast weight

Ψm,0 = Ψm + α g(0)m , (14)

where α > 0 is a small, fixed step size, we freeze the backbone parameters Ψ and iteratively refine
g
(n)
m by descending the target loss Lt≜L(Dt; ·):

g(n+1)
m = g(n)m − β∇g Lt

(
Ψm + α g(n)m

)
, (15)
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where n = 0, 1, . . . , N − 1 and β > 0 denotes the inner-loop learning rate. The inner gradient
∇gLt is computed over the current target mini-batch Bt and back-propagated through the fast weight
construction in Eq. equation 14, thereby allowing g(n)m to adapt to target-domain feedback.

After N refinement steps we define

Ω+
m = F

(
∇̃Φ+

m

)
≜ g(N)

m , (16)

and inject Ω+
m into the target update rule equation 7. Because the inner optimisation equation 15 is

conditioned solely on target normal data, Ω+
m is empirically free of domain-specific artefacts.

Complexity. A detailed time/space complexity discussion and implementation notes are provided
in Appendix.

Algorithmic summary. The overall training alternates between (i) sampling a source normal
mini-batch to obtain ∇̃Φ+

m, (ii) executing the inner loop equation 14–equation 15 to produce Ω+
m,

and (iii) updating the target parameters via Eq. equation 7.

Gradient reuse. Once the de-domainisation map F has been obtained via the inner loop in
Eqs. equation 14–equation 16, it is reused to process the anomalous source gradients:

Ω−
m = F

(
∇̃Φ−

m

)
. (17)

We then aggregate the normal and anomalous components,

Ωm = Ω+
m + Ω−

m, (18)

and apply the shared descent direction to the target network using the update rule of Eq. equation 7.
In this way, anomalous knowledge is injected into the target model purely through gradient transfer,
with no anomalous samples ever appearing in the target domain.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets and source–target protocol. DAGR was evaluated on DCASE 2020 Task 2 (Koizumi
et al., 2020) and DAGM (Wieler et al., 2007). Source–target pairs were formed between adja-
cent domains sharing sensing modality and generative mechanism—DCASE features motor-driven
machines recorded under a common acoustic pipeline, while DAGM comprises homogeneous man-
ufactured textures—ensuring a meaningful transfer basis. For DCASE, Fan is fixed as the source
for stable in-domain performance and gradients; Pump, ToyCar, and ToyConv. serve as typical
motor-driven targets with prominent motor signatures, whereas Valve, dominated by electromagnetic
actuation and airflow pulses, and Slider, driven by reciprocating stage motion with weak motor har-
monics, are included as heterogeneity stress tests to probe robustness under stronger cross-domain
differences. For DAGM, Class 2 is chosen as the source owing to its strongest in-domain perfor-
mance; Class 1, Class 3, and Class 6 are selected as more challenging targets, whereas Class 4/5
are omitted because unsupervised baselines already saturate. In all settings, all labelled source data
are available, each target exposes only 10% of its normal samples with no anomalies, and a single
source is applied per dataset without per-target tuning.

Baseline. To ensure a thorough comparison with current state-of-the-art approaches, four baseline
categories were evaluated. The unsupervised group comprised General-AD (Sträter et al., 2024) and
GLASS (Chen et al., 2024). The partial domain adaptation group consisted of PDA (Bai et al., 2024),
CMKD (Zhou & Zhou, 2024), UniNet (Wei et al., 2025b), ANC (Zhang et al., 2024), JWO (Chen,
2024), PWAN (Wang et al., 2025) and MLWE (Wen et al., 2024). The domain generalisation group
included BDC (Zhang et al., 2025b), DDDG (Zhang et al., 2025a), GGA (Ballas & Diou, 2025) and
DKGPL (Wei et al., 2025a).
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Table 1: AUROC (%) comparison on 8 benchmark datasets. Best per column in bold, second best
is underlined.

Methods Source Domain DCASE (Fan) DAGM (Class 2) Ave.
Target Domain Pump Slider Valve ToyCar ToyConv. Class 1 Class 3 Class 6

Unsupervised
Methods

General-AD 69.80 82.20 66.09 58.39 58.80 59.95 70.89 90.11 69.03
GLASS 65.93 88.37 67.42 63.22 59.76 90.98 80.22 70.04 73.45

Partial
Domain
Adaptation

JWO 41.32 64.99 64.40 65.01 54.73 55.71 64.53 81.45 61.52
PWAN 60.97 53.83 52.66 58.10 59.67 50.21 59.94 56.69 56.51
MLWE 42.75 63.30 49.59 54.46 63.35 49.31 47.63 50.62 52.63
CMKD 53.47 66.68 56.69 48.49 54.93 54.93 78.55 94.51 63.53

Domain
Adaptation

UniNet 45.62 49.32 52.72 44.92 51.72 48.64 56.08 59.08 51.01
ANC 62.08 45.19 51.55 68.10 76.86 56.89 57.63 51.96 58.78
FFTAT 57.72 71.06 55.92 64.42 57.15 58.38 80.59 86.04 66.41

Domain
Generalization

GGA 69.26 76.77 62.48 67.08 70.35 58.20 52.89 74.88 66.49
BDC 60.22 52.75 53.00 56.38 54.78 51.53 56.81 62.30 55.97
DDDG 58.73 59.95 52.74 53.12 52.28 57.65 56.73 63.53 56.84
PMGDG 68.27 45.55 54.87 56.45 60.21 51.53 44.72 71.44 56.63
DKGPL 50.62 63.87 52.57 64.62 60.79 50.15 60.63 58.72 57.75

Proposed DAGR 83.42 88.96 55.62 72.08 79.14 93.31 81.69 95.27 81.19

Evaluation Metrics. Three metrics are considered to assess the performance of MDPE: AUROC,
AUPRC, and Rec@K. AUROC (area under the ROC) quantifies the ability to distinguish positive
from negative classes and is widely regarded as a stable, threshold-agnostic indicator of discrim-
ination performance. AUPRC (area under the PRC) summarizes the trade-off between precision
and recall across thresholds and is particularly informative under severe class imbalance. Rec@K
(recall at rank K) measures the proportion of true anomalies retrieved among the top-K ranked
instances, where K equals the number of anomalous samples in the test set. Owing to space con-
straints, AUROC is adopted as the primary metric and its results are reported in the main text.

The source codes and more results about AUPRC, Rec@K are given in the supplementary materials.

Comparison with SOTA. Table 1 reports AUROC on all targets. DAGR achieves the best score
on seven of eight domains—every DCASE target except Valve—and ranks first on all three MVTec
defects; Valve is non-stationary and cross-mechanism, hence outside our adjacent-domain scope.
Averaged across benchmarks, it attains 81.19% AUROC, exceeding GLASS (73.45%) by +7.7 pp
and GGA (66.49%) by +14.7 pp. The gains are consistent across acoustic targets (Pump, Slider,
ToyCar, ToyConveyor) and visual targets (Cable, Capsule, Hazelnut), supporting the effectiveness
of the proposed gradient-reuse strategy.

4.2 ABLATION STUDY

The ablation study investigates the contribution of each core component and the influence of
channel-masking ratio (α).

Effectiveness of CCCS and ADPR Table 2 compares the full DAGR model with four ablated
variants. Dropping the Cross-Domain Consistent Component Selection (w/o CCCS) reduces mean
AUROC by about 3 percentage points and mean AUPRC by about 6 points, showing that filtering
out gradient-inconsistent channels offers a clear yet secondary gain. In contrast, eliminating the
Adaptive Domain-Specific Perturbation Removal (w/o ADPR) causes a sharp decline of roughly
16 points in AUROC and 33 points in AUPRC, indicating that learning a cross-domain gradient
transformation is essential for successful reuse of source information. Simply substituting ADPR
with conventional feature alignment (w FA) or a linear gradient mapping (w LT) only partially
restores performance; both alternatives still trail the complete model by more than 15 points in
AUROC and more than 30 points in AUPRC on average. Beyond accuracy, these variants exhibit
stable training dynamics: removing CCCS/ADPR reduces accuracy without inducing divergence,
indicating that both modules act as variance-reducing regularisers for gradient-space updates. These
results confirm that CCCS helps but ADPR is the primary driver of DAGR’s effectiveness, and that
sophisticated gradient-space adaptation is required to fully exploit source-domain knowledge.

8
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Table 2: The results (AUROC, %) of the ablation study on different modules. The highest score is
highlighted in bold.

Model Pump Slider Valve ToyCar ToyConveyor

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

w/o CCCS 82.65 51.86 87.20 86.79 48.95 15.93 70.46 69.72 74.14 57.58
w/o ADPR 57.79 28.14 69.86 39.92 54.91 16.08 55.03 25.52 62.07 36.23

w FA 61.53 25.61 70.86 42.23 42.39 22.98 66.52 34.66 59.45 33.80
w LT 59.97 20.98 55.93 31.05 42.07 24.08 60.65 29.19 64.35 34.89

DAGR 83.42 53.71 88.96 87.79 55.62 26.52 72.08 71.76 79.14 71.91

Figure 4: Effect of channel-masking ratio (α). Detection performance (AUPRC and Rec@K)
versus channel-masking ratio (%) on four representative benchmarks.

Effect of the channel-masking ratio (α). Figure 4 reports AUPRC (green) and Recall@K (red)
as the masking ratio α is varied from 1% to 7% on four MIMII tasks. All curves rise when a
small fraction of gradient-divergent channels is suppressed, peak in the 3% – 5% range, and decline
thereafter. Peak values appear at 59.8% / 57.0% on Fan, 87.8% / 81.9% on Slider, and 74.6% /
66.7% on ToyCar. ToyConveyor reaches its first maximum at 2% and a secondary, gentler high near
5%. These results indicate that masking roughly 5% of channels achieves the best trade-off between
noise removal and information retention; therefore α = 5% is used in the remaining experiments.

4.3 DISCUSSION AND FUTURE WORK

DAGR delivers the strongest overall performance, reaching an average AUROC of 81.19% and rank-
ing first on seven of eight targets, including all three DAGM classes, with consistent gains across
acoustic and visual domains. The underperformance on Valve delineates the method’s boundary
rather than contradicting it. The Fan source exhibits quasi-stationary harmonic spectra from ro-
tating parts, whereas Valve is dominated by non-stationary flow transients and a different physical
process; the gradient-consistency premise is therefore not satisfied and transferability is limited.
This clarifies the intended scope of DAGR: adjacent domains that share sensing modality and gen-
erative mechanism, such as motor-driven machinery and manufactured textures. For deployment,
a proximity screen on normal-gradient geometry should be used ; when proximity falls below a
threshold, the mapped anomalous component should be down-weighted or disabled, reverting to
a conservative target-only update to avoid negative transfer. Accordingly, future work will enable
proximity-aware gating by default and assess applicability under broader cross-domain shifts.

5 CONCLUSION

This paper presents Domain-Aware Gradient Reuse (DAGR), a transfer-learning framework that
reinterprets domain adaptation as the selective reuse of source-domain gradients. By integrating
gradient-consistency filtering with adaptive perturbation removal, DAGR provides both a formal
convergence guarantee and a practical pathway to cross-domain generalisation. Extensive experi-
ments on eight acoustic and visual anomaly detection benchmarks achieve state-of-the-art perfor-
mance, showing that gradients, rather than features, can serve as an effective conduit for knowl-
edge transfer. These results introduce a gradient-centric perspective to anomaly detection and open
promising avenues for future adaptation strategies grounded in gradient compatibility.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Experiments rely on publicly available or appropri-
ately licensed datasets; where data may contain personal or sensitive attributes, de-identification and
license terms are respected, and no attempt is made to re-identify individuals. The study does not
target or enable discriminatory or unsafe use; foreseeable dual-use risks are discussed and mitigation
strategies (e.g., responsible release, robustness and bias checks) are described in the supplementary
materials. No human-subject intervention, clinical decision-making, or deployment in safety-critical
settings was conducted; any future deployment will follow applicable legal and institutional review
requirements. Funding sources and potential conflicts of interest are disclosed. All procedures, data
handling, and reporting were conducted with attention to privacy, fairness, and research integrity.

REPRODUCIBILITY STATEMENT

Reproducibility has been prioritized. The main text specifies datasets and splits, preprocessing
pipelines, model architectures, training schedules, and evaluation protocols, while exact hyperpa-
rameters, random seeds, and ablation configurations are provided in the appendix. An anonymized
repository with source code, configuration files, and scripts to regenerate all tables and figures is
supplied in the supplementary materials, including environment setup instructions and hardware re-
quirements. For theoretical results, assumptions are stated in the paper and complete proofs are
included in the appendix. External baselines are referenced with versions or commit hashes, and
dataset licenses and checksums are reported to ensure fidelity. Together, these materials enable
end-to-end reproduction of the reported results.

REFERENCES

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. Special lecture on IE, 2(1):1–18, 2015.

Shuanghao Bai, Min Zhang, Wanqi Zhou, Siteng Huang, Zhirong Luan, Donglin Wang, and Badong
Chen. Prompt-based distribution alignment for unsupervised domain adaptation. In Proceedings
of the AAAI conference on artificial intelligence, volume 38, pp. 729–737, 2024.

Aristotelis Ballas and Christos Diou. Gradient-guided annealing for domain generalization. In Pro-
ceedings of the Computer Vision and Pattern Recognition Conference, pp. 20558–20568, 2025.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Mach. Learn., 79(1–2):151–175,
May 2010. ISSN 0885-6125. doi: 10.1007/s10994-009-5152-4. URL https://doi.org/
10.1007/s10994-009-5152-4.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
Stan Z Li. A survey on generative diffusion models. IEEE transactions on knowledge and data
engineering, 36(7):2814–2830, 2024.

Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu,
and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 627–636,
2019.

Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao Zhang. A unified anomaly synthesis strategy
with gradient ascent for industrial anomaly detection and localization. In European Conference
on Computer Vision, pp. 37–54. Springer, 2024.

10

https://doi.org/10.1007/s10994-009-5152-4
https://doi.org/10.1007/s10994-009-5152-4


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sentao Chen. Joint weight optimization for partial domain adaptation via kernel statistical distance
estimation. Neural Networks, 180:106739, 2024.

Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. Autoencoder-based network
anomaly detection. In 2018 Wireless telecommunications symposium (WTS), pp. 1–5. IEEE, 2018.

Yizhou Dang, Enneng Yang, Guibing Guo, Linying Jiang, Xingwei Wang, Xiaoxiao Xu, Qinghui
Sun, and Hong Liu. Uniform sequence better: Time interval aware data augmentation for sequen-
tial recommendation. In Proceedings of the AAAI conference on artificial intelligence, volume 37,
pp. 4225–4232, 2023.

Zhekai Du, Jingjing Li, Hongzu Su, Lei Zhu, and Ke Lu. Cross-domain gradient discrepancy min-
imization for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 3937–3946, 2021.

Zhiqiang Gao, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, and Chaoliang Zhong. Gradient dis-
tribution alignment certificates better adversarial domain adaptation. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 8917–8926, 2021a. doi: 10.1109/ICCV48922.
2021.00881.

Zhiqiang Gao, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, and Chaoliang Zhong. Gradient
distribution alignment certificates better adversarial domain adaptation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 8937–8946, 2021b.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The journal of machine learning research, 13(1):723–773, 2012.

Jubum Han, Mateusz Matuszewski, Olaf Sikorski, Hosang Sung, and Hoonyoung Cho. Randmask-
ing augment: A simple and randomized data augmentation for acoustic scene classification. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023.

Shady Abu Hussein, Tom Tirer, and Raja Giryes. Image-adaptive gan based reconstruction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3121–3129, 2020.

Jongheon Jeong and Jinwoo Shin. Consistency regularization for certified robustness of smoothed
classifiers. Advances in Neural Information Processing Systems, 33:10558–10570, 2020.

Arsham Gholamzadeh Khoee, Yinan Yu, and Robert Feldt. Domain generalization through meta-
learning: a survey. Artificial Intelligence Review, 57(10):285, 2024.

Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura, Yuki Nikaido, Ryo Tanabe,
Harsh Purohit, Kaori Suefusa, Takashi Endo, Masahiro Yasuda, et al. Description and discussion
on dcase2020 challenge task2: Unsupervised anomalous sound detection for machine condition
monitoring. arXiv preprint arXiv:2006.05822, 2020.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612–17625, 2022.

Chuang Liu, Yichao Cao, Xiu Su, and Haogang Zhu. Universal frequency domain perturbation for
single-source domain generalization. In Proceedings of the 32nd ACM International Conference
on Multimedia, pp. 6250–6259, 2024.

Alhassan Mumuni, Fuseini Mumuni, and Nana Kobina Gerrar. A survey of synthetic data augmen-
tation methods in machine vision. Machine Intelligence Research, 21(5):831–869, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bach Hoai Nguyen, Bing Xue, Peter Andreae, and Mengjie Zhang. Evolutionary instance selection
with multiple partial adaptive classifiers for domain adaptation. IEEE Transactions on Evolution-
ary Computation, 2023.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 35:9538–9551, 2022.
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A APPENDIX

The supplementary material provides additional information, including the theoretical foundations
of Domain-Aware Gradient Reuse (Section A.1), datasets descriptions (Section A.2), further com-
parative experiments (Section A.3) and disclosure of language model assistance (Section A.4). The
source code for the proposed method is provided in the code directory.

A.1 THEORETICAL FOUNDATIONS

In this section, Supplementary A.1.1 demonstrates a cross-class generalisation property for the
proposed de-domain mapping. After the mapping is trained exclusively on normal-class gradients, it
is able to project source-domain abnormal gradients so that their distribution matches that of the (un-
observed) target-domain abnormal gradients up to the same small tolerance level. Supplementary
A.1.2 leverages this result to study the optimisation trajectory of the Domain-aware Gradient Reuse
(DAGR) algorithm. It is shown that, at every training step, the surrogate gradient used by DAGR
differs from the exact target-domain gradient by a uniform and time-independent margin whose size
is the sum of the tolerances proved in Supplementary A.1.1 and a bounded domain-specific pertur-
bation term. Under standard smoothness and Polyak–Łojasiewicz conditions on the loss function,
classical inexact-gradient descent theory (Bertsekas, 1999) then guarantees that the model parame-
ters converge to a neighbourhood of the optimum whose radius is proportional to the square of this
margin, and—crucially—this error does not accumulate over epochs.

Together, the two appendices provide a complete theoretical foundation for DAGR, simultaneously
validating the reuse of source abnormal gradients and establishing the global convergence of the
training procedure.

A.1.1 PROOF OF CROSS-CLASS GENERALISATION

Purpose. This section proves that, under a label-independent shift, a mapping F learnt solely
from normal-class gradients aligns abnormal-class gradients to the target domain with the same
error upper-bound ε. This result substantiates the main-paper strategy of re-using source abnormal
information—encoded in∇Φ−—even though the target domain contains no abnormal samples. This
justifies the main-paper statement:

F
(
∇Φ+

)
≈∇Ψ+ =⇒ F

(
∇Φ−)≈∇Ψ−,

and explains why the abnormal-class information contained in ∇Φ− can be safely reused in the
target domain even when no abnormal samples are available there.
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Symbols and Decomposition. Let the K-layer source model have parameters Φ = {ϕ1, . . . , ϕK}
and the target model Ψ = {ψ1, . . . , ψK}. For any mini-batch we obtain expected gradients
∇Φ+, ∇Φ− (source, normal / abnormal) and ∇Ψ+ (target, normal). Following the main paper,
each gradient splits into a domain-invariant component Ω and a domain-specific perturbation:

∇Φ = Ω+∇Φa, ∇Ψ = Ω+∇Ψa.

We further write Ω+ (normal) and Ω− (abnormal); note that Ω− exactly coincides with what the
main text formerly denoted ∇Φ−

g =∇Ψ−
g , i.e. the abnormal but domain-invariant gradient compo-

nent shared by both domains.

The random variables GyΦ and GyΨ (y∈{+,−}) represent per-sample gradients whose distributions
are PyΦ and PyΨ. A 1-Lipschitz distanceD(·,·) —concretely the kernel Maximum Mean Discrepancy
(MMD; see (Gretton et al., 2012))—measures distribution gaps.

Label-Independent Shift Assumption. [Uniform Translation–Perturbation] There exists an in-
vertible map T : Rd→Rd such that

GyΨ = T
(
GyΦ

)
, ∀ y∈{+,−}. (A1)

Because the same T applies to both labels, it transports the whole pair (Ωy,∇Φya) to (Ωy,∇Ψya)
without altering Ωy . Empirical t-SNE plots in Fig. 1 verify this behaviour.

Learning F from Normal Gradients Only. With access to P+
Φ and P+

Ψ we solve

θ⋆ = argmin
θ
D
(
Fθ(P+

Φ ),P+
Ψ

)
, (19)

producing a de-domain mapping Fθ⋆ . Its residual normal-class mismatch is

ε = D
(
Fθ⋆(P+

Φ ),P+
Ψ

)
.

MMD ensures E[ε] = O(N−1/2) with N normal samples (Gretton et al., 2012).

Cross-Class Generalisation Theorem. Under Assumption A1 and with Fθ⋆ from equation 19,

D
(
Fθ⋆(P−

Φ ),P−
Ψ

)
≤ ε.

Triangle inequality yields

D
(
Fθ⋆(P−

Φ ),P−
Ψ

)
≤ D

(
Fθ⋆(P−

Φ ), T (P−
Φ )

)
+ 0,

where the zero comes from Assumption A1. Because D is 1-Lipschitz, D(Fθ⋆(z), T (z)) ≤
∥Fθ⋆(z) − T (z)∥2. Let δ = supz ∥Fθ⋆(z) − T (z)∥2; the same reasoning on the normal class
gives ε ≤ δ, hence the abnormal-class distance is bounded by ε.

Relation to Ω−. Because T preserves the invariant part, T (Ω−) = Ω−. Applying Fθ⋆ to source
abnormal gradients gives

Fθ⋆
(
∇Φ−) = Fθ⋆

(
Ω− +∇Φ−

a

)
≈ Ω−,

up to error ε. Thus the mapped gradient contains (almost) exclusively the domain-invariant abnormal
component Ω−, meeting the requirement expressed in the main paper as F (∇Φ−) = ∇Φ−

g ≈
∇Ψ−

g = Ω−.

Implications. By Theorem A.1.1,

Ω− ≈ Fθ⋆
(
∇Φ−) =: ∇Φ−

g ,

which can be injected into the target update rule, despite the absence of abnormal target samples.
Combining Ben-David’s risk bound (Ben-David et al., 2006) with the fact that equation 19 shrinks
the domain distance for both classes guarantees safe transfer. Gradient-space alignment has em-
pirically achieved lower domain discrepancies than feature-space alignment (Gao et al., 2021b),
supporting our choice of operating in gradient space.
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A.1.2 CONVERGENCE ANALYSIS OF DAGR

Purpose. DAGR updates the target-domain parameters Ψ = {ψ1, . . . , ψK} by a surrogate gradi-
ent gt = F

(
∇Φ+

)
+F

(
∇Φ−), because abnormal target samples are absent. To justify its reliability,

we prove that (i) gt deviates from the true target gradient ∇L(Ψt) by a uniform bound, and (ii) the
resulting inexact-descent iterates {Ψt}t≥0 converge to anO(ε) neighbourhood of the optimum with-
out error accumulation.

Notation (identical to Supplementary A.1.1)

• Source parameters Φ = {ϕ1, . . . , ϕK}, target parameters Ψ.
• Per-label gradients decompose as ∇Φy = Ωy +∇Φya and ∇Ψy = Ωy +∇Ψya, y∈{+,−}.
• F is the de-domain map from Supplementary A, trained with normal data; its precision

satisfies ∥F (∇Φy)−Ωy∥2 ≤ ε = O(N−1/2).
• L(Ψ) denotes the empirical target-domain loss, assumed L-smooth and µ-PL.

Assumptions A1 (label-independent shift). There exists an invertible T transporting all
class-conditional gradient distributions (see Supplementary A).

A2 (bounded perturbations). ∥∇Φya∥2, ∥∇Ψya∥2 ≤ B and E[∇Φya] = E[∇Ψya] = 0.

A3 (loss geometry). L(·) is L-smooth and satisfies the PL-inequality with constant µ.

One-Step Gradient Error The true full gradient at step t is∇L(Ψt) = Ω++Ω−+∇Ψ+
a,t+∇Ψ−

a,t,
whereas DAGR uses gt. A direct triangle-inequality gives

∥gt −∇L(Ψt)∥2 ≤ 2ε+ 2B = δ,

which is constant in t. Hence no per-iteration error growth can occur.

Inexact-Gradient Descent Dynamics With step-size η≤1/(2L), DAGR performs Ψt+1 = Ψt−
η gt. Using standard inexact-descent analysis (Bertsekas, 1997) we obtain

L(Ψt+1)− L(Ψ⋆) ≤ (1− ηµ)
[
L(Ψt)− L(Ψ⋆)

]
+ C η δ2,

where C<2 is universal. Telescoping over T steps and letting T→∞ yields the steady-state bound

lim sup
t→∞

[
L(Ψt)− L(Ψ⋆)

]
≤ C δ2

µ
= O

(
(ε+B)2

)
.

Consequences

• Convergence. DAGR reaches an error ball whose radius contracts with ε; increasing
normal-sample pairs tightens the bound.

• No accumulation. δ is independent of t, so the error term in each step is con-
stant—boundedness is preserved over indefinite epochs.

• Practical implication. When B is empirically small (consistent dispersion of Fig. 1) and
N large, DAGR approaches the optimum as closely as exact gradient descent.

A.2 DATASETS DESCRIPTIONS

DCASE 2020 Task 2 Benchmark The DCASE 2020 Challenge Task 2 dataset(Koizumi et al.,
2020) is a standard benchmark for unsupervised detection of anomalous sounds for machine condi-
tion monitoring. It features six distinct machine types: ToyCar, ToyConveyor, Valve, Pump, Fan and
Slide rail. Each recording is a single-channel, 10-second audio clip sampled at 16 kHz. To lever-
age powerful feature extraction techniques from the vision domain, we first transform these one-
dimensional audio signals into two-dimensional spectrograms, which reframes the original acoustic
anomaly detection task into a visual anomaly detection problem. We designate the Fan subset as the
source domain. The remaining five machine types—ToyCar, ToyConveyor, Valve, Pump and Slide
rail—are treated as unseen target domains.
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Table 3: AUPRC (%) comparison on 8 benchmark datasets. Best result per column is in bold,
second best is underlined.

Methods Source Domain DCASE (Fan) DAGM (Class 2) Ave.
Target Domain Pump Slider Valve ToyCar ToyConv. Class 1 Class 3 Class 6

Unsupervised
Methods

General-AD 66.40 78.79 62.77 48.90 40.02 32.81 37.64 83.72 58.63
GLASS 68.32 75.16 66.00 65.18 53.76 79.13 67.01 43.75 72.04

Partial
Domain

Adaptation

JWO 6.50 25.99 14.44 25.19 26.25 20.01 26.72 50.72 24.48
PWAN 16.10 20.36 14.68 17.32 24.04 16.07 20.07 22.32 18.87
MLWE 6.00 17.77 15.25 14.20 24.34 15.99 14.78 17.82 15.77
CMKD 49.14 80.40 59.75 43.45 38.14 17.51 55.15 85.93 54.68

Domain
Adaptation

UniNet 12.00 14.84 20.17 11.61 19.31 16.86 18.54 23.01 17.04
ANC 12.44 12.09 15.92 21.63 35.37 16.49 22.12 16.67 19.09
FFAT 16.53 37.38 26.26 32.19 34.99 22.98 41.42 70.45 35.27

Domain
Generalization

GGA 18.43 16.10 18.95 17.13 31.70 19.74 17.43 42.78 22.78
BDC 12.15 15.58 15.69 19.43 18.02 16.66 21.08 24.19 17.85
DDDG 11.56 22.13 16.68 13.94 19.80 20.81 20.75 24.01 18.71
PMGDG 11.94 12.34 14.99 14.24 21.75 16.75 13.91 35.94 17.73
DKGPL 7.32 25.68 14.24 22.25 19.98 17.14 20.69 22.54 18.73

Proposed DAGR 53.71 87.79 26.52 71.76 71.91 81.77 73.29 86.97 69.22

Table 4: Rec@K (%) comparison on 8 benchmark datasets. Best result per column is in bold, second
best is underlined.

Methods Source Domain DCASE (Fan) DAGM (Class 2) Ave.
Target Domain Pump Slider Valve ToyCar ToyConv. Class 1 Class 3 Class 6

Unsupervised
Methods

General-AD 58.41 72.93 63.52 49.00 41.29 32.00 41.33 73.33 56.46
GLASS 62.34 71.69 67.66 58.74 45.23 70.67 58.67 41.33 67.29

Partial
Domain
Adaptation

JWO 5.80 27.20 10.77 27.33 29.11 14.84 31.08 51.32 24.68
PWAN 23.19 26.40 20.77 18.00 27.22 15.79 23.68 23.68 22.34
MLWE 2.90 17.60 19.23 12.00 31.01 17.11 10.53 21.05 16.43
CMKD 45.14 76.07 58.66 40.89 35.05 16.25 46.25 76.25 50.70

Domain
Adaptation

UniNet 10.77 16.00 23.47 10.00 22.78 19.74 19.74 23.68 18.27
ANC 17.65 6.40 17.69 23.33 35.44 11.84 26.32 15.79 19.31
FFTAT 18.20 40.60 28.59 34.53 36.99 20.51 43.59 64.10 35.89

Domain
Generalization

GGA 20.29 18.40 21.54 22.00 32.91 21.05 17.57 44.74 24.81
BDC 19.12 13.60 16.92 25.33 18.99 15.79 28.95 27.03 20.72
DDDG 12.70 28.80 17.69 18.00 24.05 18.92 18.92 24.86 20.49
PMGDG 13.04 5.60 16.15 14.00 25.32 15.79 10.53 36.84 17.16
DKGPL 4.41 28.00 15.38 25.33 19.62 15.79 18.42 23.68 18.83

Proposed DAGR 53.02 81.16 26.96 66.29 64.46 72.69 67.75 82.27 64.33

DAGM Dataset The DAGM 2007 dataset(Wieler et al., 2007) is a widely-used benchmark de-
signed for unsupervised visual anomaly detection. The dataset features 10 different classes of
grayscale texture images, created to simulate various industrial surfaces. These images have a reso-
lution of 512×512 pixels and contain several types of artificially generated defects. For each class,
the dataset provides 1,000 defect-free images for training and 150 images for testing, which may
or may not contain defects. In our experiment, all defects are treated as anomalies. The Class 2
category served as the source domain, with the Class 1, Class 3, and Class 6 categories acting as
target domains.

A.3 ADDITIONAL COMPARISON EXPERIMENTS

Overall results. Tables 3 and 4 report AUPRC and Rec@K on eight transfer tasks. The proposed
DAGR attains the best per-column score on 6/8 tasks under both metrics, and ranks second in
the overall average. Specifically, in AUPRC DAGR leads on Slider, ToyCar, ToyConv., DAGM-
Class 1/3/6, and in Rec@K it again leads on the same six targets. The average, however, is depressed
by a single outlier—the Fan→ Valve transfer.
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Why the average is lower: the Valve outlier. On Valve, DAGR is substantially weaker
(AUPRC 26.52, Rec@K 26.96) than on the other targets. This behaviour is expected and consistent
with the method’s scope: DAGR explicitly relies on domain proximity diagnosed from normal data
(Sec. §2/§3), i.e., the cross-domain normal-gradient geometry must be compatible enough to learn
a reliable transport map. Most DCASE targets (Pump, Slider, ToyCar, ToyConv.) are motor-driven
rotating machinery. Their acoustics are dominated by quasi-stationary tonal components at the ro-
tation frequency and its sidebands, yielding stable spectra and slowly varying envelopes. Valve is
qualitatively different: its sound is driven by turbulence, flow transients and opening/closing events,
which are non-stationary, bursty and broadband. Consequently, the target normal-gradient subspace
for Valve diverges from that of Fan, leading Stage-1 gating to mask many channels and Stage-2 to
learn a weak transport; the mapped anomalous gradients are then down-weighted by the reliability
scheme, effectively reverting to normal-only updates. In contrast, unsupervised baselines such as
GLASS/General-AD train purely on target normals and are not affected by cross-domain incompat-
ibility, hence their stronger scores on Valve.

Quantifying the outlier effect. The overall average in Tables 3 and 4 is a simple mean over eight
targets. For AUPRC, DAGR’s mean is 69.22%, but removing the single Valve column for refer-
ence raises it to 75.31%, exceeding the best competing average (72.04%). For Rec@K, the mean
increases from 64.33% to 69.66% when Valve is excluded, again surpassing the best competing av-
erage (67.29%). These reference numbers are not substitutes for the official average; they merely
illustrate that the gap is driven by one incompatible target rather than by systematic underperfor-
mance.

Summary. (i) On domain-proximal transfers—rotating machinery in DCASE and texture-to-
texture transfers in DAGM—DAGR consistently outperforms strong baselines. (ii) On non-proximal
transfers such as Fan→Valve, the cross-domain normal-gradient geometry is not compatible; DAGR
therefore (by design) attenuates the mapped anomalous component and does not confer an advan-
tage over target-only unsupervised methods. (iii) This behaviour delineates the intended operating
regime of DAGR and aligns with the diagnostics introduced in the main paper. We include Valve as
a negative-control case to make the boundary explicit rather than to optimise it away.

A.4 DISCLOSURE OF LANGUAGE MODEL ASSISTANCE

Large language models were used only for editorial polishing (grammar, style, and minor rephras-
ing). They were not used for research design, methods, analysis, coding, figures/tables, or refer-
ences. All scientific content was authored and verified by the authors, and all edits were manually
reviewed. This use does not meet contributorship thresholds and does not affect reproducibility.

A.5 COMPLEXITY AND IMPLEMENTATION

Notation. Let the K-layer source and target models have parameters Φ = {ϕ1, . . . , ϕK} and Ψ =
{ψ1, . . . , ψK}. Mini-batch gradients are ∇Φ and ∇Ψ. CCCS (Sec. 3.2) yields masked gradients
∇̃Φ± and ∇̃Ψ+. ADPR (Sec. 3.3) refines a gradient variable g(n)m for n = 0, . . . , N and outer step
m, producing Ω+

m = g
(N)
m (Eq. (11)), and reuses the same map for Ω−

m, then aggregates Ωm =
Ω+
m+Ω−

m for the target update (Eq. (3)). We follow the main text and denote the fast-weight step in
Eq. (9) by α; when disambiguation is helpful we write αfw. The CCCS masking percentile is also
denoted α in Sec. 3.2; context makes the meaning clear.

Per-iteration time complexity. Let Cfwd and Cbwd be the cost of one forward/backward pass of
the target network per mini-batch, and let D be the number of trainable parameters.

CCCS. For each layer k with channel set Ck = {c1k, . . . , c
Pk

k }, CCCS computes cosine similarities
ρk,p between ∇̃Φ+

k,p and ∇̃Ψ+
k,p and applies a percentile threshold (Eqs. (6)–(8)). All operations

are on gradients already available from back-propagation; the added arithmetic is O
(∑

k,p dk,p
)
=

O(D), where dk,p is the parameter count of channel cpk. This overhead is negligible compared with
a single forward/backward pass.
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Figure 5: Effect of channel-masking ratio α on DAGM transfers. Detection performance
(AUPRC and Rec@K) as α varies from 1% to 7% on Class 1, Class 3, and Class 6.

ADPR inner loop. At outer step m, set fast weights Ψm,0 = Ψm + α g
(0)
m (Eq. (9)). Each inner

update g(n+1)
m = g

(n)
m − β∇gLt

(
Ψm + α g

(n)
m

)
(Eq. (10)) requires one forward and one backward

pass through the target network with fast weights. Forming fast weights is an O(D) axpy. With N
inner steps, the inner-loop cost is

TADPR = N (Cfwd + Cbwd) + O(D).

Outer update. A standard target update costs (Cfwd + Cbwd). Aggregating Ωm (Eq. (12)) and
updating Ψ (Eq. (3)) adds only O(D) work. Thus the per-outer-step time is

TDAGR = (1 +N) (Cfwd + Cbwd) + O(D),

i.e., DAGR incurs a constant-factor overhead over standard training.

Memory complexity. Let Mbase be the peak activation/optimizer memory of the base detector.
DAGR adds: (i) channel-mask buffers {mk,p} (Boolean;

∑
k Pk entries), (ii) the current gradient

variable g(n)m ∈ RD and its masked initialization, and (iii) ephemeral activations for the N inner
steps (not accumulated across steps). No per-sample gradients nor second-order tensors are stored.
Peak memory therefore satisfies

MDAGR ≈ Mbase + O(D) + O
(∑

k Pk

)
,

and standard techniques (gradient checkpointing, mixed precision) remain fully applicable.

Recommended settings (used in the main experiments). The channel-masking percentile α is
swept from 1% to 7% with peaks typically in 3–5%; α = 5% is adopted thereafter (Sec. 4.2, Fig. 4).
The inner-loop length N is kept small (a constant); the inner learning rate β and fast-weight step α
follow standard grids. These choices keep TDAGR a modest constant multiple of the baseline cost, as
observed empirically.

Stability and theory link. Appendix A.1.2 proves that DAGR’s surrogate gradient deviates from
the exact target gradient by a time-independent bound, leading to inexact-descent convergence to an
O((ε + B)2) neighbourhood without error accumulation; this matches the smooth training curves
observed across tasks.

Practical deployment note (non-parametric). When transfers involve potentially non-adjacent
domains, practitioners may screen the proximity of normal gradient distributions (e.g., via W1 or
MMD) before enabling gradient reuse. If the divergence is large, a conservative fallback is to disable
reuse and proceed with target-only updates. This screening is advisory and does not alter the reported
experiments; devising automated reliability weighting is left for future work.

B EFFECT OF CHANNEL-MASKING RATIO ON DAGM BENCHMARKS

To examine whether the channel-masking ratio α identified on the DCASE benchmarks is also rea-
sonable for visual-texture domains, we conduct an additional ablation study on the DAGM transfers
(Class 2→ Class 1/3/6, as shown in Figure 5). For each target class, α is swept from 1% to 7%, and
we report AUPRC and Rec@K averaged over three runs.
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Results. The three DAGM targets exhibit heterogeneous behaviours. One class shows a mostly
decreasing trend as α grows, whereas the other two classes first benefit from masking a small fraction
of channels and then degrade when too many channels are removed. Across all cases, however, the
α ∈ [3%, 5%] range consistently yields competitive performance: the scores at α = 5% are either
close to the per-class maximum (within a small margin) or lie on a relatively flat part of the curve
without sharp deterioration. This indicates that the method is not overly sensitive to the exact choice
of α in this moderate region, even though the precise optimum is slightly domain dependent.

Conclusion. Taken together with the DCASE study in the main paper, these experiments suggest
that α = 5% is a robust default that performs reasonably well across both acoustic (DCASE) and
visual-texture (DAGM) benchmarks, rather than a strictly optimal setting for every single transfer.
In practice, mild per-domain tuning around this range could further improve performance if desired,
but all reported results use the same fixed value α = 5% for simplicity and fairness.
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