Under review as a conference paper at ICLR 2026

DOMAIN-AWARE GRADIENT REUSE FOR ANOMALY
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Anomaly detection relies on recognizing patterns that diverge from normal be-
havior, yet practical deployment is hampered by the inherent scarcity and hetero-
geneity of anomalous instances. These challenges prevent the training set from
faithfully characterizing the underlying anomaly distribution, thereby fundamen-
tally constraining the development of effective discriminative models for anomaly
detection. Inspired by the observed consistency of gradient distributions across
related domains during training, Domain-Aware Gradient Reuse (DAGR) is in-
troduced as a transfer-learning framework that leverages this property. DAGR
first learns an adaptive transformation by aligning source and target normal gra-
dients, thereby neutralizing domain-specific effects. The same map then pushes
forward the source anomalous gradients to computing estimated target anomalous
gradients, which are combined with the true target normal gradients to guide the
target-domain detector without labeled anomalies. This paper establishes a rig-
orous convergence proof that reinforces the framework’s theoretical foundation.
Comprehensive experiments on image and audio datasets demonstrate that the
proposed method achieves state-of-the-art performance.

1 INTRODUCTION

Anomaly detection flags observations that deviate from the normal data manifold, underpinning ap-
plications such as automated fraud mitigation, early medical diagnosis, and industrial fault predic-
tion. The surge in data volume and complexity therefore demands models with high representational
capacity and robustness to distribution shifts, rendering deep neural networks the prevailing solution.

Although deep learning has advanced rapidly, anomaly detection is still impeded by two factors.
First, the scarcity of anomalous samples leads to severe class imbalance. Second, the heterogeneity
of anomalies ensures that any finite dataset represents only a small fraction of the anomaly space.
Together, these limitations prevent the training data from accurately representing the underlying
anomaly distribution and, in turn, hinder the convergence of discriminative models.

Prior work in anomaly detection spans supervised and unsupervised paradigms. Supervised meth-
ods address class imbalance and anomaly sparsity/heterogeneity via reweighting, augmentation, or
generative synthesis; however, synthetic anomalies cover limited modes and promote overfitting,
yielding poor open-set generalisation to previously unseen anomaly types. Unsupervised methods
model the normal manifold and detect deviations, yet the absence of anomalous supervision ham-
pers calibration and discriminability—especially for subtle anomalies or under distributional drift.
This scarcity—diversity dilemma motivates exploring transfer learning when the dataset under study
lacks anomaly labels, leveraging related datasets that provide labelled anomalies.

Partial Domain Adaptation (PDA) is a natural option in this setting: it aligns the source—target
distributions of normal features, after which source anomaly labels supervise learning in the shared
representation. From an optimisation perspective, mini-batch updates decompose into normal and
anomalous gradient components. Supervised training on the source induces anomalous-gradient
directions tailored to the source distribution; under domain shift, these directions need not benefit
the target to the same extent. Moreover, in anomaly-detection deployments where the target provides
only normal data (one-class condition), the anomalous component is missing, yielding an incomplete
update signal. This motivates estimating the missing component in the target gradient space via
a learned transport map from the source. Fig.|l| examines feasibility: across epochs, per-sample
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Figure 1: Cross-Domain Gradient Distribution Consistency. Each panel visualises, via t-SNE,
the per-sample gradient vectors obtained at four training epochs (0, 10, 20, 30; left — right). Top

row: source domain (Fan) showing normal (V®™, blue) and anomalous (V& ) gradients.
Bottom row: target domain (Pump) presenting normal gradients (V¥™, ) together with
anomalous gradients estimated by the proposed mapping (V¥ ~ = F(VP®~), ). Across all

epochs, the spatial arrangement of normal and anomalous manifolds in the two domains remains
highly congruent, empirically supporting the assumption P(V®T , V®~) ~ P(V¥+ V¥ ) and
thereby motivating the cross-domain gradient-reuse strategy.

gradients from two proximal domains form normal-anomalous manifolds with highly congruent
(near-isometric) geometry, indicating that such a transport is learnable.

Building on this observation, Domain-Aware Gradient Reuse (DAGR) is introduced. DAGR first
learns an adaptive transport map by aligning source and target normal gradients, thereby attenuating
domain-specific components. The same map is then reused to project source anomalous gradients
into the target space, producing estimated target anomalous gradients. In controlled evaluations
where target anomalies are available for assessment, Fig. [2]shows that the mapped gradients closely
overlap with the empirical target anomalous-gradient distribution across training epochs. By aug-
menting the target updates with this estimated anomalous component, DAGR guides the conver-
gence of the target-domain detector without labelled anomalies.

This work proposes DAGR, a transfer-learning framework that remains effective even when the tar-
get domain contains no anomalous samples. Extensive experiments on image and audio benchmarks
demonstrate state-of-the-art performance, while ablation studies isolate the contribution of each
module. The appendix provides a complete convergence proof under stated assumptions, thereby
giving the method a rigorous theoretical foundation.

2 RELATED WORK

Prior work on anomaly detection is grouped into three strands: augmentation-based supervised
methods, unsupervised one-class modeling, and transfer learning.

2.1 SUPERVISED METHODS
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Figure 2: Epoch-wise estimation of target anomalous gradients via cross-domain mapping.
Each panel shows a t-SNE embedding of anomalous-sample gradient vectors obtained at four train-
ing epochs (0, 10, 20, 30; panels arranged left — right). Green points represent the frue target
anomalous gradients VW™ ; light-pink points depict the source anomalous gradients V&~ ; red
points are their epoch-specific images in the target space, V- = Fey(V®7). At each epoch, the
mapped source-anomaly gradients nearly coincide with the true target-anomaly gradients, indicating
that F (. provides an accurate per-epoch estimate of the target anomalous-gradient distribution.

variance and discrimination (Han et al.L 2023t [/hou et al.L 2022). Together, these strategies increase
sample diversity without modifying ground-truth labels.

Limitation. However, anomalous samples in training rarely reflect the true anomaly space. Even
advanced augmentations generate limited variants and cannot bridge the semantic gap between ob-
served and unseen anomalies, making generalisation beyond the augmentation manifold difficult.

2.2  UNSUPERVISED METHODS

Unsupervised anomaly detection learns normality from unlabelled data, using signals ranging from
reconstruction fidelity to predictive objectives, representation discrimination, and density mod-
elling. Reconstruction-based methods—Auto-Encoders, VAEs, GAN restorers, and diffusion de-
coders—identify anomalies by large residuals (Chen et al] POT8} [An & Chol P0T3} [Hussein et al}
[2020} [Wu et al] 2024). Self-supervised tasks such as future prediction, masked-signal recovery,
and transformation discrimination extract intrinsic dynamics without labels (Venkatraman et al}
[20T3} [Xie et al] 2023} [Swarna et al} 2022). Contrastive learning compacts the normal manifold by
attracting genuine instances and repelling perturbed views (Ciang et al} [2022)). Probabilistic den-
sity estimators—normalising flows and energy-based models—Iearn likelihoods so that low-density
samples can be flagged (Garcia Satorras et al} 2021} [Qin et al} 2022). These directions jointly
approximate the normal manifold via reconstruction error, embedding compactness, and likelihood.

Limitation. Because no anomalous instances participate in training, the learned boundary is in-
ferred solely from normal data, often yielding overly broad decision regions and reduced precision
on subtle or high-variance anomalies.

2.3 TRANSFER LEARNING FOR ANOMALY DETECTION

Transfer learning is a viable strategy when the target dataset lacks anomalous samples, because
a source domain enriched with labelled outliers can furnish the discriminative information that
the target model requires. Transfer-based anomaly-detection research can be grouped into three
lines of work. Partial Domain Adaptation (PDA) is the most widely adopted paradigm because
it matches the practical setting where the target domain contains only normal data. PDA stud-
ies align cross-domain normal representations while suppressing source-only anomalies through
class-importance weighting 2018), instance-level selection (Nguyen et al., 2023), or
classifier-consistency (Jeong & Shin), 2020) strategies. Domain Adaptation (DA) assumes identical
label spaces and exploits unlabeled target data to mitigate domain shift, typically using adversarial

feature alignment 2019), (Du et al] [2021), or self-supervised reconstruction con-
straints (Zhou et al., 2024). Domain Generalization (DG) trains without target data and pursues
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domain-invariant features by applying meta-learning (Khoee et al.,|2024)) across multiple source do-
mains, style or feature perturbations (Liu et al.| 2024), or gradient-based regularization (Tang et al.,
2021), thereby improving robustness to unseen environments.

Limitation. Although the alignment of normal representations mitigates interdomain shift, the op-
timisation signals derived from source-domain anomaly supervision remain domain-specific. Gradi-
ent directions that accelerate convergence in the source model do not necessarily align with the target
optimisation landscape. Consequently, the transferred supervision provides limited discriminative
guidance for the target detector and constrains further gains in anomaly-detection performance.

In summary, data augmentation improves class balance but does not address the unknown anomaly
distribution. Unsupervised approaches avoid the need for anomaly labels, yet their precision re-
mains limited because they lack anomalous guidance. Transfer-based methods also exhibit a critical
shortcoming: the update directions induced by source anomalous supervision are optimised for the
source distribution and are not guaranteed to benefit the target.

3 METHODS

This section details the proposed gradient-reuse framework. It first outlines the task setting and the
motivation for exploiting source-domain information under severe anomaly scarcity. The subsequent
subsection, “Cross-Domain Consistent Component Selection (CCCS),” explains how components
that exhibit domain-invariant behavior are identified and preserved. Finally, “Adaptive Domain-
Specific Perturbation Removal (ADPR)” describes how these components are leveraged to learn
cross-domain gradients, enabling the estimation of target anomaly gradient. A rigorous convergence
proof of DAGR is provided in the Appendix, establishing the theoretical soundness of the method.

3.1 MOTIVATION

Let the source domain Dy = {(x$, y§)}*, contain both normal (y = 0) and anomalous (y = 1)
instances, while the target domain D; = {XE };V:fl is assumed to comprise normal data only. A

K -layer deep network is considered, whose layerwise parameters are collected as

for the source and target models, respectively. At each training step we compute stochastic gradients
V@ on the source mini-batch and V¥ on the target mini-batch. Breaking the source gradient into
class-conditioned components gives

where VO and V&~ are from normal and anomalous samples, respectively. Because Dy lacks
anomalies, only

is observable in the target domain, with 3; denoting the current target mini-batch.

Empirical observation. Figure (1| plots the distributions of V®T V&~ VU and VU™ over
training epochs. The divergence D(Ve*, V&~) ~ D(VU, VI~) remains low, where D is
instantiated as the 1-Wasserstein distance. This alignment suggests that both domains share a
domain-invariant gradient component despite being collected in different environments.

Gradient decomposition hypothesis. We therefore posit that every mini-batch gradient can be
decomposed into
Vo = Q+Ve,, VW = Q+W,, )

where ) encodes cross-domain knowledge that is useful for both domains; V&, and VW, capture
domain-specific perturbations.

Because both domains provide abundant normal data, we learn a mapping
F: Vet — Qf ()
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Figure 3: Overall workflow of the proposed cross-domain gradient reuse framework. The
pipeline is executed on a source network (1., top) and an architecturally identical target network
(U1.x, bottom). Step 1: Consistent Channel Selection. For every layer k, the cosine similarity
between the normal-sample gradients V&, yp and V\I/+ 1p Of each channel ¢y, is evaluated; chan-
nels whose similarity falls below the threshold ~y are masked (grey), leaving only domain-invariant
components (solid colour). Step 2: Adaptive Domain-Specific Perturbation Removal. Given the
masked source normal gradient V®;! at outer stage m, an inner optimisation loop (blue trajectory)
adapts it to the target loss, yielding the de-domainised estimate 2;}, = F,,, (V@;;) The same map
Fm(+) is then reused to transform the masked anomalous gradient, producing §2... Both compo-
nents are aggregated as 2, = Q,F + . and injected into the target network update (yellow dashed
arrows), enabling anomaly knowledge transfer without exposing target data to anomalies.

that removes domain-specific noise from normal gradients. Under the label-independent shift as-
sumption, Ben-David et al. (Ben-David et al.| [2010) bound the target risk by the source risk plus
the distribution divergence between domains. Coupled with the Gradient Distribution Alignment
principle, this implies that the same F generalises to anomalous gradients:

FVe~) ~ Q. (6)

Aggregating 2 = QT UQ™ yields a low-variance estimate of the domain-invariant descent direction.

Transferring anomalous knowledge. Finally, the target model is updated by
1/Jk<—1/1k—77-9k, k‘:l,...,K, (7)

where 7 is the learning rate. Equation equation [/| enables implicit reuse of anomalous gradients
without exposing the target model to any anomalous data. We prove in Appendix that, under mild
smoothness conditions (Gao et al.,[2021al), the update rule in equation reduces the target risk upper
bound monotonically, thereby accelerating convergence.

B
& Ul

3.2 CROSS—-DOMAIN CONSISTENT COMPONENT SELECTION

Although the source and target networks share an identical architecture, individual sub-modules
(e.g., convolutional channels or Transformer heads) may specialise in domain-specific patterns. If
such components participate in learning the de-domainisation map JF, the resulting estimate of the
shared descent direction {2 would be biased. Hence, before training F, we automatically identify
and retain only those components whose behaviour is consistent across domains.
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Channel-wise gradient similarity. Consider a K-layer CNN. Let k € {1,..., K} index the lay-

ers and C, = {c}c, - ,c,I:’””} denote the P, output channels of layer k. For each channel c,’; € Cp we
measure the normal-sample gradients in the source and target domains:
1
VO, = mmr 2o Ve, Lfe(xD), 0), ©)
| 8 ‘ x;fEB:r
1
+
Wi = 1B > Vi, Lfu(xh), 0), )
x§ eB;

where ¢y, ,, (resp. 1y ) collects the weights associated with channel ¢} in the source (resp. target)

model. Their cosine similarity
+ ot
<V(I>k7p’ k,p>

cl-1,1 10
ey, v, T, <Y (10

P = [
P12

reflects the extent to which channel ¢}, reacts similarly to normal data from both domains.

Domain-invariant channel mask. Given a global channel-masking ratio o« € (0,1), the
layer-wise threshold 7y is chosen as the c-percentile of the cosine similarities {py, , }gil in layer k:

Ve = Percentilea({php}gil). 11

Binary mask. Using the data-driven threshold equation|l1} a binary mask is defined as
mep = Uprp = W], ¢ €Ck, (12)

where I[] is the indicator function. Channels with py, , < 7, are treated as domain-specific and de-
activated by nullifying their gradients: V& = my. , V& . VU = Mk p W-J:va Vo, =
my,p V@, . Aggregating over all layers yields the final masked gradients Vo+ and VU,

The filtered gradients are fed into Eq. equation [5}

By explicitly excising domain-specific channels, the variance of the shared estimate €2 is further
reduced, which empirically accelerates convergence and stabilises the target update rule equation[7]

3.3 ADAPTIVE DOMAIN-SPECIFIC PERTURBATION REMOVAL

The masked normal gradients V®&+ € R and VIt € R are extremely high-dimensional (D ~
10%) and exhibit complex, non-linear cross-domain discrepancies. Simple statistics (e.g., means
or linear projections) are therefore insufficient for extracting the shared component 2. We instead
implement the adaptive cross-Domain gradient distiller F(-) of Eq. equation as a gradient-based,
end-to-end adaptive procedure that removes domain-specific perturbations from source gradients by
directly minimising the farget loss.

Outer—inner optimisation view. At global training step m €N let ®,,, and ¥,,, denote the current
source and target network parameters, and define the (normal-sample) source gradient gfﬁ’ =
Vol . We treat gg) as the optimisable variable and run an inner loop of IV steps to obtain its

.. . (N)
domain-invariant component g, .

Target-aligned inner loop. Starting from the fast weight
Vo = U +agly, (14)

where oo > 0 is a small, fixed step size, we freeze the backbone parameters ¥ and iteratively refine
gﬁ,? ) by descending the target loss £; = L(Dy; -):

97(1111+1) = gr(,?) - ng ﬁt(\Ijm + agr(r?))’ ()
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where n = 0,1,..., N — 1 and S > 0 denotes the inner-loop learning rate. The inner gradient
V4L: is computed over the current target mini-batch B; and back-propagated through the fast weight

construction in Eq. equation |14} thereby allowing gy(,?) to adapt to target-domain feedback.

After N refinement steps we define

Qf = F(ve,

m m

) 2 ¢V, (16)

and inject €2 into the target update rule equation Because the inner optimisation equationis
conditioned solely on target normal data, (0,}, is empirically free of domain-specific artefacts.

Algorithmic summary. The overall training alternates between (i) samplina source normal

mini-batch to obtain @CD;Q, (ii) executing the inner loop equation equation 15| to produce QF,
and (7ii) updating the target parameters via Eq. equation

Gradient reuse. Once the de-domainisation map F has been obtained via the inner loop in
Eqs. equation [[4}-equation [I6] it is reused to process the anomalous source gradients:

We then aggregate the normal and anomalous components,
Qm = Qf + Q. (18)

and apply the shared descent direction to the target network using the update rule of Eq. equation|[7]
In this way, anomalous knowledge is injected into the target model purely through gradient transfer,
with no anomalous samples ever appearing in the target domain.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets and source-target protocol. DAGR was evaluated on DCASE 2020 Task 2 (Koizumi
et al., |2020) and DAGM (Wieler et al., |2007). Source—target pairs were formed between adja-
cent domains sharing sensing modality and generative mechanism—DCASE features motor-driven
machines recorded under a common acoustic pipeline, while DAGM comprises homogeneous man-
ufactured textures—ensuring a meaningful transfer basis. For DCASE, Fan is fixed as the source
for stable in-domain performance and gradients; Pump, ToyCar, and ToyConv. serve as typical
motor-driven targets with prominent motor signatures,

For DAGM, Class 2 is chosen as the source owing to its strongest in-domain perfor-
mance; Class 1, Class 3, and Class 6 are selected as more challenging targets, whereas Class 4/5
are omitted because unsupervised baselines already saturate. In all settings, all labelled source data
are available, each target exposes only 10% of its normal samples with no anomalies, and a single
source is applied per dataset without per-target tuning.

Baseline. To ensure a thorough comparison with current state-of-the-art approaches, four baseline
categories were evaluated. The unsupervised group comprised General-AD (Striter et al.|[2024) and
GLASS (Chen et al.,|2024). The partial domain adaptation group consisted of PDA (Bai et al.,|2024)),
CMKD (Zhou & Zhou, [2024), UniNet (Wei et al., 2025b)), ANC (Zhang et al.} 2024), JWO (Chen)
2024), PWAN (Wang et al.,2025) and MLWE (Wen et al.| 2024)). The domain generalisation group
included BDC (Zhang et al.,|2025b)), DDDG (Zhang et al.| [2025a)), GGA (Ballas & Diou, 2025 and
DKGPL (Wei et al., [2025al).



Under review as a conference paper at ICLR 2026

Table 1: AUROC (%) comparison on § benchmark datasets. Best per column in bold, second best
is underlined.

Source Domain DCASE (Fan) DAGM (Class 2)
Target Domain ~ Pump  Slider Valve ToyCar ToyConv. Class1 Class3 Class 6
Unsupervised ~ General-AD 69.80 8220 66.09 58.39 58.80 59.95 70.89 90.11  69.03

Methods

Methods GLASS 6593 8837 6742 6322 5976  90.98 8022  70.04 73.45
Partial JTWO 4132 6499 6440 65.01 54.73 5571 6453 8145 61.52
D 1al PWAN 60.97 53.83 5266 5810  59.67 5021 59.94 5669  56.51
Ag;“gt‘ion MLWE 4275 6330 4959 54.46 63.35 4931 4763 5062 52.63
P CMKD 5347 66.68 56.69 48.49 54.93 5493 78.55 9451  63.53
Domain UniNet 45.62 4932 5272 44.92 5172 4864 5608  59.08 51.01
Adantation ANC 62.08 45.19 5155 68.10 7686 5689  57.63  51.96 58.78
P FFTAT 5772 7106 5592 6442  57.15 5838  80.59  86.04 66.41
GGA 69.26 76.77 6248  67.08 70.35 5820 52.80  74.88  66.49

Domain BDC 60.22 5275 53.00 56.38 54.78 5153 56.81 6230  55.97
oo DDDG 5873 5995 5274 5312 5228 57.65 5673 6353 56.84
128100 p\IGDG 68.27 4555 54.87  56.45 60.21 5153 4472 7144 56.63
DKGPL 50.62 63.87 5257 64.62 60.79 5015  60.63 58.72 5775

Proposed DAGR 8342 8896 5562 7208  79.14 9331 81.69 9527 8119

Evaluation Metrics. Three metrics are considered to assess the performance of MDPE: AUROC,
AUPRC, and Rec@ K. AUROC (area under the ROC) quantifies the ability to distinguish positive
from negative classes and is widely regarded as a stable, threshold-agnostic indicator of discrim-
ination performance. AUPRC (area under the PRC) summarizes the trade-off between precision
and recall across thresholds and is particularly informative under severe class imbalance. Rec@ K
(recall at rank K') measures the proportion of true anomalies retrieved among the top-K ranked
instances, where K equals the number of anomalous samples in the test set. Owing to space con-
straints, AUROC is adopted as the primary metric and its results are reported in the main text.

The source codes and more results about AUPRC, Rec@K are given in the supplementary materials.

Comparison with SOTA. Table|I|reports AUROC on all targets. DAGR achieves the best score
on seven of eight domains—every DCASE target except Valve—and ranks first on all three MVTec
defects; Valve is non-stationary and cross-mechanism, hence outside our adjacent-domain scope.
Averaged across benchmarks, it attains 81.19% AUROC, exceeding GLASS (73.45%) by +7.7 pp
and GGA (66.49%) by +14.7 pp. The gains are consistent across acoustic targets (Pump, Slider,
ToyCar, ToyConveyor) and visual targets (Cable, Capsule, Hazelnut), supporting the effectiveness
of the proposed gradient-reuse strategy.

4.2 ABLATION STUDY

The ablation study investigates the contribution of each core component and the influence of
channel-masking ratio («).

Effectiveness of CCCS and ADPR Table 2| compares the full DAGR model with four ablated
variants. Dropping the Cross-Domain Consistent Component Selection (w/o CCCS) reduces mean
AUROC by about 3 percentage points and mean AUPRC by about 6 points, showing that filtering
out gradient-inconsistent channels offers a clear yet secondary gain. In contrast, eliminating the
Adaptive Domain-Specific Perturbation Removal (w/o ADPR) causes a sharp decline of roughly
16 points in AUROC and 33 points in AUPRC, indicating that learning a cross-domain gradient
transformation is essential for successful reuse of source information. Simply substituting ADPR
with conventional feature alignment (w FA) or a linear gradient mapping (w LT) only partially
restores performance; both alternatives still trail the complete model by more than 15 points in
AUROC and more than 30 points in AUPRC on average.

These
results confirm that CCCS helps but ADPR is the primary driver of DAGR’s effectiveness, and that
sophisticated gradient-space adaptation is required to fully exploit source-domain knowledge.
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Table 2: The results (AUROC, %) of the ablation study on different modules. The highest score is
highlighted in bold.

Pump Slider Valve ToyCar ToyConveyor
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

w/o CCCS 82.65 51.86 87.20 86.79 48.95 15.93 70.46 69.72 74.14 57.58
w/o ADPR  57.79 28.14 69.86 39.92 54.91 16.08 55.03 25.52 62.07 36.23
w FA 61.53 25.61 70.86 42.23 42.39 22.98 66.52 34.66 59.45 33.80
wLT 59.97 20.98 55.93 31.05 42.07 24.08 60.65 29.19 64.35 34.89

DAGR 83.42 53.71 88.96 87.79 55.62 26.52 72.08 71.76 79.14 71.91

Model

Pump Slider ToyCar ToyConveyor
54.1 88.8 75.2 72.7
'\ —— AUPRC
52.2 86.7 724 69.2 Rec@K
50.3 / 84.7 AUPRC 69.5 AUPRC 65.7
48.4 82.6 Rec@K 66.6 Rec@K 622
46.5] — AUPRC 80.6 63.8 58.6
Rec@K

44, . . .

5 1 2 3 4 5 6 7 785 1 2 3 4 5 6 17 609 1 2 3 4 5 6 7 351 1 2 3 4 5 6 7

Figure 4: Effect of channel-masking ratio («). Detection performance (AUPRC and Rec@K)
versus channel-masking ratio (%) on four representative benchmarks.

Effect of the channel-masking ratio (o). Figure 4| reports AUPRC (green) and Recall@K (red)
as the masking ratio « is varied from 1% to 7% on four MIMII tasks. All curves rise when a
small fraction of gradient-divergent channels is suppressed, peak in the 3% — 5% range, and decline
thereafter. Peak values appear at 59.8% / 57.0% on Fan, 87.8% / 81.9% on Slider, and 74.6% /
66.7% on ToyCar. ToyConveyor reaches its first maximum at 2% and a secondary, gentler high near
5%. These results indicate that masking roughly 5% of channels achieves the best trade-off between
noise removal and information retention; therefore o = 5% is used in the remaining experiments.

4.3 DISCUSSION AND FUTURE WORK

DAGR delivers the strongest overall performance, reaching an average AUROC of 81.19% and rank-
ing first on seven of eight targets, including all three DAGM classes, with consistent gains across
acoustic and visual domains. The underperformance on Valve delineates the method’s boundary
rather than contradicting it. The Fan source exhibits quasi-stationary harmonic spectra from ro-
tating parts, whereas Valve is dominated by non-stationary flow transients and a different physical
process; the gradient-consistency premise is therefore not satisfied and transferability is limited.
This clarifies the intended scope of DAGR: adjacent domains that share sensing modality and gen-
erative mechanism, such as motor-driven machinery and manufactured textures. For deployment,
a proximity screen on normal-gradient geometry should be used ; when proximity falls below a
threshold, the mapped anomalous component should be down-weighted or disabled, reverting to
a conservative target-only update to avoid negative transfer. Accordingly, future work will enable
proximity-aware gating by default and assess applicability under broader cross-domain shifts.

5 CONCLUSION

This paper presents Domain-Aware Gradient Reuse (DAGR), a transfer-learning framework that
reinterprets domain adaptation as the selective reuse of source-domain gradients. By integrating
gradient-consistency filtering with adaptive perturbation removal, DAGR provides both a formal
convergence guarantee and a practical pathway to cross-domain generalisation. Extensive experi-
ments on eight acoustic and visual anomaly detection benchmarks achieve state-of-the-art perfor-
mance, showing that gradients, rather than features, can serve as an effective conduit for knowl-
edge transfer. These results introduce a gradient-centric perspective to anomaly detection and open
promising avenues for future adaptation strategies grounded in gradient compatibility.
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A APPENDIX

The supplementary material provides additional information, including the theoretical foundations
of Domain-Aware Gradient Reuse (Section A.1), datasets descriptions (Section A.2), further com-
parative experiments (Section A.3) and disclosure of language model assistance (Section A.4). The
source code for the proposed method is provided in the code directory.

A.1 THEORETICAL FOUNDATIONS

In this section, Supplementary A.1.1 demonstrates a cross-class generalisation property for the
proposed de-domain mapping. After the mapping is trained exclusively on normal-class gradients, it
is able to project source-domain abnormal gradients so that their distribution matches that of the (un-
observed) target-domain abnormal gradients up to the same small tolerance level. Supplementary
A.1.2 leverages this result to study the optimisation trajectory of the Domain-aware Gradient Reuse
(DAGR) algorithm. It is shown that, at every training step, the surrogate gradient used by DAGR
differs from the exact target-domain gradient by a uniform and time-independent margin whose size
is the sum of the tolerances proved in Supplementary A.1.1 and a bounded domain-specific pertur-
bation term. Under standard smoothness and Polyak—t.ojasiewicz conditions on the loss function,
classical inexact-gradient descent theory (Bertsekas, 1999) then guarantees that the model parame-
ters converge to a neighbourhood of the optimum whose radius is proportional to the square of this
margin, and—crucially—this error does not accumulate over epochs.

Together, the two appendices provide a complete theoretical foundation for DAGR, simultaneously
validating the reuse of source abnormal gradients and establishing the global convergence of the
training procedure.

A.1.1 PROOF OF CROSS-CLASS GENERALISATION

Purpose. This section proves that, under a label-independent shift, a mapping F learnt solely
from normal-class gradients aligns abnormal-class gradients to the target domain with the same
error upper-bound . This result substantiates the main-paper strategy of re-using source abnormal
information—encoded in V® ~—even though the target domain contains no abnormal samples. This
justifies the main-paper statement:

F(VoH) =vit —  F(Ve )~V

and explains why the abnormal-class information contained in V&~ can be safely reused in the
target domain even when no abnormal samples are available there.
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Symbols and Decomposition. Let the K-layer source model have parameters & = {¢1,...,dx }
and the target model ¥ = {¢1,...,¢x}. For any mini-batch we obtain expected gradients
V@t Vo~ (source, normal / abnormal) and V¥ (target, normal). Following the main paper,
each gradient splits into a domain-invariant component €2 and a domain-specific perturbation:

VO = Q4+ VD, VU = Q-+ VT,

We further write 2 (normal) and £~ (abnormal); note that £~ exactly coincides with what the
main text formerly denoted V@ = = VW ', i.e. the abnormal but domain-invariant gradient compo-

nent shared by both domains. !

The random variables GY% and G, (y € {+, —}) represent per-sample gradients whose distributions
are P and P§,. A 1-Lipschitz distance D(-,-) —concretely the kernel Maximum Mean Discrepancy
(MMD; see (Gretton et al.l 2012)))—measures distribution gaps.

Label-Independent Shift Assumption. [Uniform Translation—Perturbation] There exists an in-
vertible map T : R? —R< such that

Gy = T(GY), Vye{+, -} (A1)

Because the same 7T applies to both labels, it transports the whole pair (¥, V®Y) to (Q¥, VIY)
without altering £2Y. Empirical ¢-SNE plots in Fig. 1 verify this behaviour.

Learning F' from Normal Gradients Only. With access to P and P we solve
0* = argm@in D(FQ(P;’:),P\;;), (19)

producing a de-domain mapping Fy-. Its residual normal-class mismatch is
e =D(Fp-(PF),PY).
MMD ensures E[¢] = O(N ~'/2) with N normal samples (Gretton et al., 2012).

Cross-Class Generalisation Theorem. Under Assumption[AT|and with Fy« from equation|19]
D(Fy-(Pg ), Py) < e

Triangle inequality yields
D(Fp-(Py ), Py) < D(Fp-(Py ), T(Py)) + 0,
where the zero comes from Assumption Because D is l-Lipschitz, D(Fy«(2),T(z)) <

[Fp«(2) — T'(2)||2- Let & = sup, ||Fyp=(z) — T(2)||2; the same reasoning on the normal class
gives € < J, hence the abnormal-class distance is bounded by ¢.

Relation to Q~. Because T preserves the invariant part, T'(Q27) = €2~. Applying Fy« to source
abnormal gradients gives
Fg* (V(I)_) = F@*(Q_ + v@g) ~ Q_,

up to error €. Thus the mapped gradient contains (almost) exclusively the domain-invariant abnormal
component £2~, meeting the requirement expressed in the main paper as F(V®~) = Vo ~
VW, =Q.

Implications. By Theorem[A.T.T]
Q ~ Fp (V) = Vo,

which can be injected into the target update rule, despite the absence of abnormal target samples.
Combining Ben-David’s risk bound (Ben-David et al., [2006) with the fact that equation [19| shrinks
the domain distance for both classes guarantees safe transfer. Gradient-space alignment has em-
pirically achieved lower domain discrepancies than feature-space alignment (Gao et al.l 2021b),
supporting our choice of operating in gradient space.
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A.1.2 CONVERGENCE ANALYSIS OF DAGR

Purpose. DAGR updates the target-domain parameters ¥ = {11, ..., ¥k } by a surrogate gradi-
ent g = ]-'(V<I>+) + F (V<I>_), because abnormal target samples are absent. To justify its reliability,
we prove that (i) g; deviates from the true target gradient VL(VU,) by a uniform bound, and (ii) the
resulting inexact-descent iterates { ¥; } ;> converge to an O(e) neighbourhood of the optimum with-
out error accumulation.

Notation (identical to Supplementary A.1.1)

* Source parameters ® = {¢1,..., ¢}, target parameters V.
* Per-label gradients decompose as VOY = QY + VOY and VIV = QY + VWY, ye{+, —}.

e F'is the de-domain map from Supplementary A, trained with normal data; its precision

satisfies || F/(V®Y) — QY| < e = O(N~1/?).

» L(¥) denotes the empirical target-domain loss, assumed L-smooth and u-PL.
Assumptions Al (label-independent shift). There exists an invertible 7' transporting all
class-conditional gradient distributions (see Supplementary A).

A2 (bounded perturbations). | V®Y ||z, [[VPY||; < B and E[V®Y] = E[VTY] = 0.
A3 (loss geometry). L(-) is L-smooth and satisfies the PL-inequality with constant (.

One-Step Gradient Error  The true full gradient at step ¢ is VL(¥;) = QT +Q~+VU/ +VU,
whereas DAGR uses g;. A direct triangle-inequality gives

lge — VL(¥,)||s < 2 + 2B = 6,

which is constant in t. Hence no per-iteration error growth can occur.

Inexact-Gradient Descent Dynamics With step-size n<1/(2L), DAGR performs ¥, = ¥, —
1 g¢. Using standard inexact-descent analysis (Bertsekas| [1997) we obtain

L(Wepr) — L(T*) < (1 - ) [LOV,) — LW + Cyd?,
where C' < 2 is universal. Telescoping over T steps and letting 7"— oo yields the steady-state bound

limsup [L(¥;) — L(¥*)] < co O((e + B)?).

t—o0 1%

Consequences

* Convergence. DAGR reaches an error ball whose radius contracts with ¢; increasing
normal-sample pairs tightens the bound.

* No accumulation. ¢ is independent of ¢, so the error term in each step is con-
stant—boundedness is preserved over indefinite epochs.

* Practical implication. When B is empirically small (consistent dispersion of Fig. 1) and
N large, DAGR approaches the optimum as closely as exact gradient descent.

A.2 DATASETS DESCRIPTIONS

DCASE 2020 Task 2 Benchmark The DCASE 2020 Challenge Task 2 dataset(Koizumi et al.,
2020) is a standard benchmark for unsupervised detection of anomalous sounds for machine condi-
tion monitoring. It features six distinct machine types: ToyCar, ToyConveyor, Valve, Pump, Fan and
Slide rail. Each recording is a single-channel, 10-second audio clip sampled at 16 kHz. To lever-
age powerful feature extraction techniques from the vision domain, we first transform these one-
dimensional audio signals into two-dimensional spectrograms, which reframes the original acoustic
anomaly detection task into a visual anomaly detection problem. We designate the Fan subset as the
source domain. The remaining five machine types—7ToyCar, ToyConveyor, Valve, Pump and Slide
rail—are treated as unseen target domains.
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Table 3: AUPRC (%) comparison on 8 benchmark datasets. Best result per column is in bold,
second best is underlined.

Source Domain DCASE (Fan) DAGM (Class 2)
Target Domain  Pump Slider Valve ToyCar ToyConv. Class1 Class3 Class 6
Unsupervised  General-AD 66.40 7879 62.77 48.90 40.02 32.81 37.64 83.72  58.63

Methods

Methods GLASS 68.32 75.16 66.00 65.18 53.76 79.13 67.01 4375  72.04
Partial JWO 6.50 2599 1444 25.19 26.25 20.01 26.72 50.72  24.48
Domain PWAN 16.10 2036 14.68 17.32 24.04 16.07 20.07 2232 18.87
Adaptation MLWE 6.00 17.77 1525 1420 24.34 15.99 14.78 17.82  15.77
CMKD 49.14 8040 59.75 43.45 38.14 17.51 55.15 8593  54.68

Domain UniNet 12.00 14.84 20.17 11.61 19.31 16.86 18.54 23.01 17.04
Adaptation ANC 1244 12.09 1592 21.63 35.37 16.49 22.12 16.67  19.09
FFAT 16.53 3738 2626  32.19 34.99 22.98 41.42 7045 35.27

GGA 1843 16.10 1895 17.13 31.70 19.74 17.43 4278 2278

Domain BDC 12.15 1558 1569 1943 18.02 16.66 21.08 24.19 17.85
Generalization DDDG 11.56 2213 16.68 13.94 19.80 20.81 20.75 2401 18.71
PMGDG 11.94 1234 1499 1424 21.75 16.75 1391 3594  17.73

DKGPL 732  25.68 1424 2225 19.98 17.14 20.69 22.54  18.73

Proposed DAGR 5371 87.79 2652 7176 71.91 81.77 73.29 86.97 69.22

Table 4: Rec@K (%) comparison on 8 benchmark datasets. Best result per column is in bold, second
best is underlined.

Source Domain DCASE (Fan) DAGM (Class 2)
Target Domain ~ Pump Slider Valve ToyCar ToyConv. Class1 Class3 Class6
Unsupervised ~ General-AD 5841 7293 63.52 49.00 41.29 32.00 41.33 73.33  56.46

Methods

Methods GLASS 62.34 71.69 67.66 58.74 45.23 70.67 58.67 4133  67.29
Partial JwWO 5.80 2720 10.77 2733 29.11 14.84 31.08 51.32  24.68
Domain PWAN 23.19 2640 20.77 18.00 27.22 15.79 23.68 23.68  22.34
Adaptation MLWE 290 17.60 1923  12.00 31.01 17.11 10.53 21.05  16.43
CMKD 45.14 76.07 58.66  40.89 35.05 16.25 46.25 76.25 50.70
Domain UniNet 10.77 16.00 23.47  10.00 22.78 19.74 19.74 23.68 18.27
Adaptation ANC 17.65 640 17.69  23.33 35.44 11.84 26.32 1579 1931
FFTAT 1820 40.60 28.59  34.53 36.99 20.51 43.59 64.10  35.89
GGA 2029 1840 21.54  22.00 32.91 21.05 17.57 4474 2481
Domain BDC 19.12  13.60 1692 2533 18.99 15.79 28.95 27.03  20.72
Generalization DDDG 12,70  28.80 17.69  18.00 24.05 18.92 18.92 2486  20.49
PMGDG 13.04 5.60 16.15 14.00 25.32 15.79 10.53 36.84 17.16
DKGPL 441 28.00 1538 2533 19.62 15.79 18.42 23.68 18.83
Proposed DAGR 53.02 81.16 2696 66.29 64.46 72.69 67.75 82.27 6433

DAGM Dataset The DAGM 2007 dataset(Wieler et al.l 2007) is a widely-used benchmark de-
signed for unsupervised visual anomaly detection. The dataset features 10 different classes of
grayscale texture images, created to simulate various industrial surfaces. These images have a reso-
lution of 512x512 pixels and contain several types of artificially generated defects. For each class,
the dataset provides 1,000 defect-free images for training and 150 images for testing, which may
or may not contain defects. In our experiment, all defects are treated as anomalies. The Class 2
category served as the source domain, with the Class I, Class 3, and Class 6 categories acting as
target domains.

A.3 ADDITIONAL COMPARISON EXPERIMENTS

Overall results. Tables [3]and d] report AUPRC and Rec@K on eight transfer tasks. The proposed
DAGR attains the best per-column score on 6/8 tasks under both metrics, and ranks second in
the overall average. Specifically, in AUPRC DAGR leads on Slider, ToyCar, ToyConv., DAGM-
Class 1/3/6, and in Rec @K it again leads on the same six targets. The average, however, is depressed
by a single outlier—the Fan — Valve transfer.
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Why the average is lower: the Valve outlier. On Valve, DAGR is substantially weaker
(AUPRC 26.52, Rec@K 26.96) than on the other targets. This behaviour is expected and consistent
with the method’s scope: DAGR explicitly relies on domain proximity diagnosed from normal data
(Sec. §2/§3), i.e., the cross-domain normal-gradient geometry must be compatible enough to learn
a reliable transport map. Most DCASE targets (Pump, Slider, ToyCar, ToyConv.) are motor-driven
rotating machinery. Their acoustics are dominated by quasi-stationary tonal components at the ro-
tation frequency and its sidebands, yielding stable spectra and slowly varying envelopes. Valve is
qualitatively different: its sound is driven by turbulence, flow transients and opening/closing events,
which are non-stationary, bursty and broadband. Consequently, the target normal-gradient subspace
for Valve diverges from that of Fan, leading Stage-1 gating to mask many channels and Stage-2 to
learn a weak transport; the mapped anomalous gradients are then down-weighted by the reliability
scheme, effectively reverting to normal-only updates. In contrast, unsupervised baselines such as
GLASS/General-AD train purely on target normals and are not affected by cross-domain incompat-
ibility, hence their stronger scores on Valve.

Quantifying the outlier effect. The overall average in Tables [3]and []is a simple mean over eight
targets. For AUPRC, DAGR’s mean is 69.22%, but removing the single Valve column for refer-
ence raises it to 75.31%, exceeding the best competing average (72.04%). For Rec@K, the mean
increases from 64.33% to 69.66% when Valve is excluded, again surpassing the best competing av-
erage (67.29%). These reference numbers are not substitutes for the official average; they merely
illustrate that the gap is driven by one incompatible target rather than by systematic underperfor-
mance.

Summary. (i) On domain-proximal transfers—rotating machinery in DCASE and texture-to-
texture transfers in DAGM—DAGR consistently outperforms strong baselines. (ii) On non-proximal
transfers such as Fan— Valve, the cross-domain normal-gradient geometry is not compatible; DAGR
therefore (by design) attenuates the mapped anomalous component and does not confer an advan-
tage over target-only unsupervised methods. (iii) This behaviour delineates the intended operating
regime of DAGR and aligns with the diagnostics introduced in the main paper. We include Valve as
a negative-control case to make the boundary explicit rather than to optimise it away.

A.4 DISCLOSURE OF LANGUAGE MODEL ASSISTANCE

Large language models were used only for editorial polishing (grammar, style, and minor rephras-
ing). They were not used for research design, methods, analysis, coding, figures/tables, or refer-
ences. All scientific content was authored and verified by the authors, and all edits were manually
reviewed. This use does not meet contributorship thresholds and does not affect reproducibility.
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Figure 5: Effect of channel-masking ratio o on DAGM transfers. Detection performance
(AUPRC and Rec@K) as « varies from 1% to 7% on Class 1, Class 3, and Class 6.

ADPR inner loop. At outer step m, set fast weights ¥,,, o = ¥, + « gﬁg) (Eq. (9)). Each inner

update gt — W 3 VgL (‘I’m +agh

pass through the farget network with fast weights. Forming fast weights is an O(D) axpy. With N
inner steps, the inner-loop cost is

Taprr = N (Ctwa + Cowa) + O(D).

) (Eq. (10)) requires one forward and one backward

Outer update. A standard target update costs (Crywa + Chwa). Aggregating Q,, (Eq. (12)) and
updating ¥ (Eq. (3)) adds only O(D) work. Thus the per-outer-step time is

Toacrk = (14 N) (Ciwa + Cowa) + O(D),
i.e., DAGR incurs a constant-factor overhead over standard training.

Memory complexity. Let M, be the peak activation/optimizer memory of the base detector.
DAGR adds: (i) channel-mask buffers {my, ,} (Boolean; ), P} entries), (ii) the current gradient

variable gﬁf} ) € RP and its masked initialization, and (iii) ephemeral activations for the /N inner
steps (not accumulated across steps). No per-sample gradients nor second-order tensors are stored.
Peak memory therefore satisfies

Mpacr ~ Myse + O(D) + O(Zk Pk>,

and standard techniques (gradient checkpointing, mixed precision) remain fully applicable.

Recommended settings (used in the main experiments). The channel-masking percentile « is
swept from 1% to 7% with peaks typically in 3-5%; o = 5% is adopted thereafter (Sec. 4.2, Fig. 4).
The inner-loop length NV is kept small (a constant); the inner learning rate 8 and fast-weight step «
follow standard grids. These choices keep Tpagr @ modest constant multiple of the baseline cost, as
observed empirically.

Stability and theory link. Appendix A.1.2 proves that DAGR’s surrogate gradient deviates from
the exact target gradient by a time-independent bound, leading to inexact-descent convergence to an
O((e + B)?) neighbourhood without error accumulation; this matches the smooth training curves
observed across tasks.

Practical deployment note (non-parametric). When transfers involve potentially non-adjacent
domains, practitioners may screen the proximity of normal gradient distributions (e.g., via W or
MMD) before enabling gradient reuse. If the divergence is large, a conservative fallback is to disable
reuse and proceed with target-only updates. This screening is advisory and does not alter the reported
experiments; devising automated reliability weighting is left for future work.

B EFFECT OF CHANNEL-MASKING RATIO ON DAGM BENCHMARKS

To examine whether the channel-masking ratio « identified on the DCASE benchmarks is also rea-
sonable for visual-texture domains, we conduct an additional ablation study on the DAGM transfers
(Class 2 — Class 1/3/6, as shown in Figure. For each target class, « is swept from 1% to 7%, and
we report AUPRC and Rec@K averaged over three runs.
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Results. The three DAGM targets exhibit heterogeneous behaviours. One class shows a mostly
decreasing trend as o grows, whereas the other two classes first benefit from masking a small fraction
of channels and then degrade when too many channels are removed. Across all cases, however, the
a € [3%, 5%)] range consistently yields competitive performance: the scores at « = 5% are either
close to the per-class maximum (within a small margin) or lie on a relatively flat part of the curve
without sharp deterioration. This indicates that the method is not overly sensitive to the exact choice
of « in this moderate region, even though the precise optimum is slightly domain dependent.

Conclusion. Taken together with the DCASE study in the main paper, these experiments suggest
that « = 5% is a robust default that performs reasonably well across both acoustic (DCASE) and
visual-texture (DAGM) benchmarks, rather than a strictly optimal setting for every single transfer.
In practice, mild per-domain tuning around this range could further improve performance if desired,
but all reported results use the same fixed value o« = 5% for simplicity and fairness.
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