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Abstract

Humans have been shown to use a “straightened” encoding to represent the natural
visual world as it evolves in time (Hénaff et al. 2019). In the context of discrete
video sequences, “straightened” means that changes between frames follow a more
linear path in representation space at progressively deeper levels of processing.
While deep convolutional networks are often proposed as models of human visual
processing, many do not straighten natural videos. In this paper, we explore the
relationship between robustness, biologically-inspired filtering mechanisms, and
representational straightness in neural networks in response to time-varying input,
and identify curvature as a useful way of evaluating neural network representations.
We find that (1) adversarial training leads to straighter representations in both
CNN and transformer-based architectures and (2) biologically-inspired elements
increase straightness in the early stages of a network, but do not guarantee increased
straightness in downstream layers of CNNs. Our results suggest that constraints
like adversarial robustness bring computer vision models closer to human vision,
but when incorporating biological mechanisms such as V1 filtering, additional
modifications are needed to more fully align human and machine representations.

1 Intro

Visual input from the natural world evolves over time, and we can think of that change over time as a
trajectory in some representation space. This trajectory changes at different levels of processing from
input at the retina to brain regions such as V1, and finally to perception as figure[I]illustrates. We
can ask about the shape of that trajectory and consider that there might be advantages to a straighter,
less curved, trajectory. Hénaff et al. [[18]] observed that trajectories are straighter in human perceptual
space than in pixel space. They suggested that a straighter representation may be useful for visual
tasks that require predicting the future.

Learning a useful visual representation is also a goal in computer vision. Properties like robustness to
transformations and task flexibility that characterize human vision are often desirable in computer
vision representations. Yet, many existing computer vision models still fail to capture aspects of
human vision, despite achieving high accuracy on visual tasks like recognition [[15}[18]. In Hénaff
et al. [18]] it was found that, while biologically-inspired V1-like transformations yield straighter
representations compared to the input domain, popular computer vision models such as ImageNet-
trained AlexNet do not.

In this paper, we explore what makes some learned visual representations straighter than others. We
evaluate how training for adversarial robustness in both CNN and transformer-based architectures
may lead to the straight representations generated by human vision. Because DNNs learn an early
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Figure 1: Illustration of the representation of a discrete video sequence becoming progressively
straighter as information is processed from pixel space through a visual processing pipeline.

representation that differs from what’s known about human vision, we also ask if hard-coding that
early representation might lead to a trained network with more straightening. Overall, we find that
deep learning models are capable of relying on a straightened representation which may be useful for
learning more robust and stable image and video processing systems.

2 Previous Work

Deep Neural Networks (DNNs) have been proposed as models of human visual processing, owing to
their ability to predict neural response patterns [33} 26, 21]]. Comparing human and DNN perception
[2, [15] 28] has shown that adversarial examples are an important area in understanding how humans
and DNNs differ [12] 20, [16| 8]. With adversarial examples, changes that are imperceptible to
humans can cause a network to misclassify an image. Adversarial training [23]] improves the
misclassfication problem and has been suggested to help networks learn visual representations that
are more perceptually aligned with humans. [14,[20]. Given adversarial training schemes are not
biologically plausible however, recent work has identified mechanisms that are better supported by
vision science [[7} [17, I8]].

Adversarially robust models have also been shown to do better at transfer learning than their non-
adversarially robust counterparts [9]], and adversarially robust features can be used directly for tasks
like image generation and in-painting [27]]. The potential for adversarial training to improve learned
representations has led to new adversarial training frameworks that extend to flow-based generative
models [25] and semantic segmentation models [32]. In this paper, we build on work around
adversarial robustness by evaluating if increasing this robustness leads to straightened representations
like those found in human spatiotemporal processing.

3 Methods

Representational straightness can be evaluated as a reduction in curvature. For a temporal sequence,
such as a video, curvature is defined as the angle between the vectors representing the difference
between consecutive frames. Let x refer to a representation of a video of length 7', with z; being a
representation of one frame of a video at time step ¢. The representation may be at any stage of the
processing pipeline, from a vector of raw input pixels from the video frame, to the activations of a
network’s hidden layer. Then v, represents the difference between successive frames:

Vg = Ty — Tt—1 (D
I ®)
[loel

We can find the curvature at time ¢ by finding the angle between successive ¥, which we call c;:

¢ = arccos (0 - Dy41) 3)



The global curvature of a video sequence is then simply the mean angle over all time steps:

T-1
Global curvature := Z
t=0

Ct
T-1

“

This is the formulation proposed by Hénaff et al. [18]. One can compute this global curvature for any
representation of a video sequence over time, either on the vector of pixels (likely not very straight),
or one can apply it to a representation of that video, e.g. at any layer of a neural network model.

4 Effect of Architecture and Training Scheme on Straightness

We tested a variety of models for output curvature, to investigate the relationship between model type
and curvature of the output layer. As shown in Fig[2] we found non-adversarially trained image models
to have the highest output curvature. All adversarially trained models have lower curvature than their
non-adversarially trained counterparts, as well as overall. We also tested a family of non-parametric
biological network models: PeriphNet [4], based on summary statistics of a steerable pyramid, and
Henaffbio [18], a two-stage model based on center-surround filters followed by oriented Gabor filters.
These biological models showed the lowest output curvatures. Self-supervised DINO [S]] models have
similar output curvature values to their supervised counterparts — despite DINO models having been
shown to have more semantically meaningful feature correspondences. In addition, we investigated a
next-frame prediction model, PredNet [22]]. As PredNet is a predictive coding model for frames in
pixel space, it produces output predictions with similar curvature to its video input.
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Figure 2: Final output layer curvature for a variety of network architecture and training
schemes. Non-adversarially trained image models increase curvature. Most adversarially trained
image models reduce curvature, resulting in a more straightened output. Non-parametric biological
models, without learned filters, produce highly straightened output representations. Video models
trained on next-frame prediction show output curvatures very similar to that of input pixels.

S Adversarial Attacks in Image Models

Given the increased straightness seen in adversarially robust models, we investigated the relationship
between the type and strength of adversarial attack and the resulting curvature of the model’s output.
To evaluate the effect of these attacks on curvature, we compared a set of ResNet50 networks, trained
on CIFAR-10, ImageNet [10], and Restricted ImageNet (a subset of ImageNet [14, 20]), trained
both without adversarial attacks, as well as trained on both /5 and [, norms at a range of attack
strengths 23] [13]], and measured the output curvature of each resulting model (Figure [3). We find that



output curvature is unsurprisingly highest for non-adversarially trained networks. [, attacks decrease
output curvature, with larger values of € leading to decreased curvature. [5 attacked networks have
the straightest output curvatures, however strength of attack does not affect the output curvature.

Differences between the [ and [, norm may be the
reason that we found /5 norm training to lead to more
straight representations. The [, norm takes the maxi-
mum entry of a vector whereas the /5 norm is the square
root of the sum of squares and is informed by the all
components of a vector. Thus, the /5 norm may allow
updates in training to affect more weights and change the
over the whole representation space to produce a more
straight and stable representation over time.

6 Curvature Across Model Layers

We next investigated the evolution of layer curvature of
various deep network models over major model blocks
from input to output (Figure ). As in Figure[2] we again
see that non-adversarially trained models increase cur-
vature in the representation, while adversarially robust
models show a straightened output. For most models,
this trend is consistent throughout all layers of the net-
work. For ResNet50 however, the adversarially trained
model begins by curving the output in earlier layers,

ResNet Attack vs. Curvature
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Figure 3: White-box adversarial attacks
reduce curvature in the output layer of
ResNet. Increased attack strength (e) de-
creases curvature, with [ attacks most re-
ducing curvature. Data on symlog x-scale

then reducing curvature strongly. Conversely, in the non- to show € = 0: data to left of line on linear
adversarially trained CrossVIT network, the curvature is  scale, and right of line on log scale.
reduced in middle layers, then highly curved in later layers.

We also tested the layer-evolution of curvature for PredNet (Fig[4), a network inspired by predictive
coding trained to predict the next frame in a video sequence. Since PredNet’s trained to predict a
future video frame, it’s input and output domains are both in pixel space, so it is unsurprising that
the output layer maintains a very similar curvature value to that of its input frame. Interestingly
however, the model’s curvature strongly increases in the representation of the first model block, then
re-straightens the representation throughout the rest of the network before returning to its starting
curvature.

7 Biologically Inspired Models

We investigated straightness for a variety of both parametric and non-parametric biologically-inspired
models. Given straightness is thought to increase over progressively deeper layers of visual processing,
we aligned these networks along the visual processing areas they are most closely matched to (Figure

DeepNet Models Layer-Wise Curvature
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Figure 4: Deep network models vary in curvature for each layer over model depth. Curvature is
shown for a variety of model types. Filled circles indicate non-adversarially trained models, and open
circles indicate adversarially-trained robust models.



E]). For the non-parametric Henaffbio [[19] and PeriphNet [4] models, as well as VOneNetCornets
[7] these are implicit in the design of the network. For the adversarially trained Visual Transformer
network CrossVITRotAdv [3]], these layers are those best matched by BrainScore for V4 and IT
layers [28]]. For all biologically-inspired models except for VOneNetCornets, curvature progressively
decreases through deeper network layers. For VOneNetCornets, curvature decreases up until the V1
layer in which a noise term is added; curvature then strongly increases, far above the pixel-curvature
baseline. To determine if this increase in curvature was due to the added noise, we tested the same
model with the noise term set to zero. While this reduced the downstream curvature after the V1
layer, this change did not eliminate the curvature increase present in the V1 layer.

Biological Models Layer-Wise Curvature

% & -4- VOneNet_CorNets_IN

SNl SE S s - .
S 25 NN ~* -~ VOneNet_CorNets_NoiseOff_IN
S / a0 M— m—-—--- - PeriphNet_150_BIO
[} o_*_ H -4~ PeriphNet_PSPyr_BIO
5 R S S
3 "=EE=_ ———————————— _;|,_ ______ | -¢- Henaff _BIO
E—ZS TNse TTs=s + -~ CrossViT_ARobust_Rotation_IN
&

Pixel Retina/LGN V1 V2 V4 IT
Model Stage

Figure 5: Biologically-inspired network models result in straightened representations compared
to input pixels. Non-parametric multi-stage filter models PeriphNet and Henaffbio progressively
straighten. The VOneNetCornets model straightens the representation in its V1-block up until its
noise layer, where curvature increases dramatically and does not recover in downstream convolutional
blocks. Adversarially-trained CrossVIT model shows progressive straightening.

The increase in curvature for VOneNet at later layers suggest that making the front-end of deep
network more like biologically-inspired models is not enough to get a straightened representation
downstream in a deep network. This is interesting because VOneNet is is reported to be more
adversarially robust to white-box attacks than a standard trained ResNet. It suggests that adversarial
training, not the property of adversarial robustness itself, leads to straightened representations in
deep neural networks. Our finding supports Dapello et al. [8] who found that the neural population
geometry of adversarial trained models was noticeable differences from VOneNet and other models
trained with neural stochasticity mechanisms. However, it is puzzling that adversarial training, which
is biologically implausible, would lead to more straight representations than biologically inspired
mechanisms. More constraints or modifications may be need to get straight representations with
biologically plausible methods.

8 Discussion

In conclusion, we show change in model representational curvature to be a simple and computationally
cheap metric for evaluating both image and video models across a variety of tasks. We show that for
a variety of image classification models, output curvature is reduced when models are trained with
strong white-box adversarial attacks. This property of straightness over time may lead to more stable
predictions over both input space and for temporal sequences. Although Hénaff et al. [18] found that
ImageNet-trained DNNs did not yield perceptually straight representations when tested on videos,
we find that this is not a limitation of the model but rather of the training procedure. Moreover, we
find evidence to suggest that a model’s ability to straighten input stimuli may be a useful and easily
computed measure of its ability to produce similar visual representations to humans. In evaluating
curvature over layers in biologically inspired models, we show that biologically inspired mechanisms
work to reduce curvature in a model’s representation, even more so than adversarial training. However,
the simple addition of non-parametric biologically inspired filtering mechanisms at the input of a
model are insufficient to maintain output curvature. These results identify representational curvature
as a common thread between biologically inspired and adversarially robust models, and highlight the
benefits and limitations of these techniques in creating temporally-stable representations.
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A Appendix

B Curvature Definition

Note that curvature is distinct from simple cosine similarity in that curvature is calculated on frame
differences (v;), whereas cosine similarity depends on the angle between the frame vectors themselves
(z¢). Curvature can be thought of as a first order variant cosine similarity.

Uy
0 Xt U1
X1+l
a

Figure 6: Illustration of how the curvature measure is distinct from cosine similarity. (Left) Three
points are sampled along a trajectory in time (x;—1, ¢, £¢++1). The angle 6 between neighboring x
samples is their cosine similarity. (Right) Curvature c; is the angle between v; and v;41. vy is the
difference between z; and x;_1
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C Models

C.1 Model Sources

All Deep neural networks we analyzed were pretrained. The standard-trained ImageNet model
was downloaded from PyTorch’s model zoo [24]]. Adversarially robust ResNet models were all
downloaded from [[13]. The adversarially robust ResNets were trained using projected gradient
descent. All ViT [11]] and standard trained CrossViT daggar [6] models were downloaded from
the timm library [31]]. All CrossViT daggar adversarially robust and rotationally invariant models
were downloaded from the repository of Berrios and Deza [3l]. The adversarially robust CrossViTs
were trained with fast gradient sign method as stated in Berrios and Deza [3]. DINO models were
downloaded from the DINO repository [5], while PredNet models were downloaded from Lotter et al.
[22].

C.2 Model Analysis Procedure

We showed each model the same 12 natural videos that were used in the psychophysics experiments
of [[18]]. The videos were taken from the Chicago Motion Database [1]], the film ‘Dogville’, Lions
Gate Entertainment (2003), and LIVE Video Quality Database [29, 30]]. The videos were grayscale,
consisting of 11 frames each of 512 x 512 pixels, capturing natural motion such as rippling ocean
water or a person walking through a crowded street. We resized the video frames to be 224 x 224 for
all deep networks and 256 x 256 for bio-models that use steerable pyramids. One limitation of this
work is that we did not evaluate models on larger video datasets, but we wanted to use psychophysical
validated stimuli for our analyses. For each model, we recorded its activations at intermediate and



final layers for each video. We then found the global curvature for each stage of the model using
equation 4 where we used the flattened model activations as the input z; to the curvature procedure.

We compared the global curvature at each layer of the model to the curvature of the video in pixel
space. Models that straighten are defined as models that have a lower global curvature at deeper layers.
When comparing the curvature of different model layers, we chose not to reduce the dimensionality
of each layer activation to be the same across stages. Although principle components analysis (PCA)
was sometimes used in Hénaff et al. [[18] when expressing curvature, they did not use it in their
analysis of deep networks. Furthermore, while an architecture’s inherent dimensionality is likely
relevant to a representation’s curvature, we preferred not to introduce any additional transformations
that would influence the measured curvature.

C.3 Compute
Our methods do not require large compute. All individual model analyses can be run on CPU. We

used a single GPU to speed up getting the features activations at each layer to the order of minutes
per model.

C.4 Adversarial Accuracy and Curvature
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Figure 7: (Left): While adversarial attacks with greater strength impart many desirable robustness
properties on a network, adversarial training does not improve test accuracy, often decreasing test
accuracy on the within-domain test set for a given model. Data plotted on symlog scale. (Right):
While stronger adversarial attacks decrease curvature, improved test accuracy for a model is not
predictive of output curvature reduction. Rather, within a given model training/test set, increased test
accuracy predicts a smaller curvature reduction in the output layer.

C.5 Negative Societal Impacts
We believe there are few negative societal impacts of this paper. Our work was exploratory and

did not introduce any new models. The only negative impacts may be the general loss of jobs and
industries that may result from artificial intelligence replacing human workers
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