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ABSTRACT

Optimizing the timing and frequency of advertisements (ads) is a central problem
in digital advertising, with significant economic consequences. Existing scheduling
policies rely on simple heuristics, such as uniform spacing and frequency caps, that
overlook long-term user interest. However, it is well-known that users’ long-term
interest and engagement result from the interplay of several psychological effects
(Curmei, Haupt, Recht, and Hadfield-Menell, ACM CRS, 2022).
In this work, we model change in user interest upon showing ads based on three
key psychological principles: mere exposure, hedonic adaptation, and operant
conditioning. The first two effects are modeled using a concave function of user
interest with repeated exposure, while the third effect is modeled using a temporal
decay function, which explains the decline in user interest due to overexposure.
Under our psychological behavior model, we ask the following question: Given a
continuous time interval T , how many ads should be shown, and at what times, to
maximize the user interest towards the ads?
Towards answering this question, we first show that, if the number of displayed ads
is fixed, then the optimal ad-schedule only depends on the operant conditioning
function. Our main result is a quasi-linear time algorithm that outputs a near-
optimal ad-schedule, i.e., the difference in the performance of our schedule and the
optimal schedule is exponentially small. Our algorithm leads to significant insights
about optimal ad placement and shows that simple heuristics such as uniform
spacing are sub-optimal under many natural settings. The optimal number of ads
to display, which also depends on the mere exposure and hedonistic adaptation
functions, can be found through a simple linear search given the above algorithm.
We further support our findings with experimental results, demonstrating that our
strategy outperforms various baselines.

1 INTRODUCTION

Digital advertising forms the backbone of today’s trillion-dollar internet economy, serving as a
primary channel for both acquiring new customers and sustaining engagement with existing ones.
Since user attention is scarce and capturing it carries significant economic value, optimizing the
timing and frequency of ads becomes a critical challenge for advertisers. This issue arises across
many settings, including placing ads in (live) video or audio streams, sending push notifications to
app users, or embedding sponsored content within or across user sessions. In each case, the objective
is to maximize user engagement and recall while mitigating long-term fatigue or satiation.

A long line of empirical work in behavioral psychology has shown that the temporal spacing and
frequency of ads have a significant effect on the memory retention and fatigue of the customer (Singh
et al., 1994; Sahni, 2015; Curmei et al., 2022). For instance, following an initial positive neural
response to repeated stimuli, individuals tend to revert toward a baseline level of interest, causing
the “thrill” of the same message to fade. This initial boost is known as mere exposure, while the
subsequent tapering-off is termed hedonic adaptation in the behavioral psychology literature (Curmei
et al., 2022). Moreover, insufficient spacing between two ads can drain attention and affect memory
retention in the long run (Singh et al., 1994). This effect is referred to as operant conditioning.

Despite the importance of this problem, there has been relatively little work studying the long-term
cognitive and psychological effects of ad impressions (Sahni, 2015; Aravindakshan & Naik, 2015;
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Rafieian, 2023) (see Section 1.1 for more details). Most existing approaches for ad placement rely
on simple heuristics such as uniform spacing, front-loading, or frequency caps (Aravindakshan &
Naik, 2015; Rafieian, 2023; Despotakis et al., 2021), or on short-sighted policies that treat each ad
impression as independent of the others (Theocharous et al., 2015).

Recent empirical studies have tried to move beyond these simple heuristics. For instance, (Freeman
et al., 2022) ran an experiment with 327 participants to test where ads should be placed in order to
reduce negative reactions such as anger, irritation, and perceived intrusiveness. Their main hypothesis
was that "Mid-roll ads will elicit more anger and be seen as more intrusive than preroll ads", and
their experiments confirmed this. They also tested several other hypotheses, all arriving at the same
conclusion that placing ads at the beginning is generally more effective than inserting them in the
middle. Similarly, (Ritter & Cho, 2009) conducted an experiment with 129 participants on audio
podcasts. Their experiments supported the hypothesis that "Advertising at the beginning of podcasts
will generate less intrusiveness, less irritation, more favorable attitudes toward an ad, and less ad
avoidance than advertising in the middle of podcasts". Other studies also suggest similar trends. For
example, (Goldstein et al., 2011) argues that a mix of ad placements, at the beginning, at the end, and
a small number evenly spaced in the middle, can create a more positive overall experience for users.

These studies motivate us to ask whether there is an underlying psychological reward model that can
provide an explanation for these empirical findings:
Question 1.1. Can we design a theoretical reward model for ad scheduling that captures the users’
psychological behavior?

Ideally, the optimal policy under this reward model should be consistent with the empirical obser-
vations cited above. Moreover, this model should have tunable parameters so that it can adapt to
different real-world settings. This further motivates an algorithmic question about computing the
optimal ad schedule under various parameter settings:
Question 1.2. Under such a reward model, can the optimal ad schedule be computed efficiently?

To answer Question 1.1, we study a dynamic model of user interest under repeated ad exposures.
Let n + 1 ads be shown at time t̄ = (t0, t1, . . . , tn), where each ti ∈ [0, T ] and ti ≤ ti+1 for all
i ∈ {0, 1, . . . , n}. Here, ti represents the time at which the ith ad is shown, and without loss of
generality, we set t0 = 0 and tn = T . We refer to t̄ interchangeably as a strategy or a schedule. Given
a time horizon T and a strategy t̄, the reward obtained from showing the ith ad at time ti is denoted
by R(t̄, i). 1 The total reward associated with strategy t̄ is then defined as R(t̄) =

∑n
i=0 R(t̄, i).

To capture user psychology in our model, we study R(t̄, i) as a combination of two functions. The
first function captures the (positive) mere exposure and the hedonic adaptation effects and depends
only on the number of ads shown previously. We denote this function by B : Z≥0 → R+, a concave
function with respect to the number of ads shown till now, and represents the reward when the ith ad
is shown. The concavity of the function B is justified by the ‘diminishing returns’ property implied
by mere exposure and hedonic adaptation, and is common in recent literature that considers the
dynamic effect of actions (Patil et al., 2023; Blum & Ravichandran, 2025). The second function
is a temporal exponential decay function with parameter δ ∈ [0, 1] which captures the (negative)
operant conditioning effect so that reward at time t decreases by δt−t′ for any ad shown previously at
time t′. This temporal decay function is motivated by the classical theory of (Ebbinghaus, 1913) on
forgetting curves, which hypothesizes the exponential decline of memory retention over time. This
model is similar to the influential goodwill stock model of (Nerlove & Arrow, 1962), and exponential
discounting models used in control theory (Leqi et al., 2021).

The parameter δ plays a key role in capturing different types of user psychological behavior, such as
anger, irritation, intrusiveness, or interest. A low value of δ indicates that past ad impressions have
little effect on the user and therefore additional ads do not strongly reduce engagement. In contrast,
a high value of δ implies that ads have more long-term effects on the user (Curmei et al., 2022).
This makes a user highly sensitive when an ad is shown, which can quickly lead to irritation, loss of
interest, or a perception of intrusiveness. Thus, the parameter δ provides a compact way to encode
the psychological effects observed in experimental studies such as (Freeman et al., 2022; Ritter &
Cho, 2009; Goldstein et al., 2011).

1Throughout, we use the term "reward" to describe the advertiser’s optimization objective. Depending on the
context, this could represent probability of purchase, user satisfaction with product, or engagement with ads.
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Given these functions, the goal is to find the number of ads n+ 1 and the strategy t̄ = (t0, . . . , tn) ∈
[0, T ], such that the total reward R(t̄) is maximized. Given this model of user reward, we first show
that the problem has a special structure: if the number of ads n+ 1 is fixed, then the optimal display
timing only depends on the function capturing operant conditioning.

To answer Question 1.2, our main algorithmic result is a quasi-linear time algorithm that, given a
fixed number of ads n+ 1, outputs a near-optimal ad-schedule. Let t∗i denote the optimal time to
place the i-th ad. We show that each t∗i can be approximated by ti (produced by our algorithm)
with exponentially small error, namely, t∗i − 1

2n ≤ ti ≤ t∗i +
1
2n . Our result is based on several key

insights: (1) the operant conditioning function is strictly convex, leading to a single global optima, (2)
the global optima has a special structure such that each ti can be recursively found using t1, . . . , ti−1,
(3) t1 can be found using binary search with bounded error and, (4) error propagation in the recursive
computation can be controlled. Next, to determine the optimal number of ads to display, which
depends on the mere exposure and hedonic adaptation functions, we perform a simple linear search,
using the result discussed above.

We further support our theoretical findings using simulations where we compare the performance
of different strategies under our reward model. We demonstrate that our ad placement strategy
outperforms other baselines for various values of δ ∈ [0, 1].

Key insights from our model and relation to previous empirical findings. Recall that experi-
mental studies (Freeman et al., 2022; Ritter & Cho, 2009; Goldstein et al., 2011) suggest that placing
ads at the beginning and end is generally more effective than placing them in the middle. While
these findings provide useful evidence regarding effective ad placement, they are limited in scope and
cannot establish that such a strategy is universally optimal across all scenarios. This motivates the
need for a theoretical framework that can explain and generalize these observations. In particular, our
model offers deeper insights into ad placement strategies by explicitly accounting for all values of
δ ∈ [0, 1]. To systematically understand how δ influences the optimal policy and how ad placement
strategies may vary across different values of δ, we analyze the optimal ad policy in our model for all
values of δ ∈ [0, 1]. Our analysis demonstrates that the structure of the optimal schedule changes as
δ changes. Building on this, our near-optimal ad scheduling algorithm provides not only practical
scheduling strategies but also valuable theoretical insights into how ad placement should adapt across
the full spectrum of δ. To be precise, we observe that for small δ, the ads in the optimal strategy t̄
are placed almost evenly in [T ]. As δ increases, more and more ads start to concentrate at 0 and T
such that the first ti > 0 moves towards 0, and the last tj < T moves towards T . The remaining ads
are evenly spaced between ti and tj . All these insights show that the optimality of heuristics such
as uniform spacing or placing more ads at the beginning, depend on the value of δ, highlighting the
need to adapt schedules based on user behavior (i.e., δ).

1.1 RELATED WORK

Behavioral psychology. While the work on behavioral psychology is vast, in our work we follow
(Curmei et al., 2022) and focus on three well-studied phenomena from psychology: mere exposure,
operant conditioning, and hedonic adaptation. Several works in behavioral psychology has empirically
shown the effect of mere exposure and hedonic adaptation under various settings (Cox & Cox, 2002;
Fang et al., 2007; Chugani et al., 2015; Yang & Galak, 2015). The most relevant to our work is
the study of (Hekkert et al., 2013) who found that attractiveness of a product increased with the
number of times it was shown to a user. Moreover, in a similar context (Nelson & Meyvis, 2008) also
found evidence of hedonic adaptation as a function of the number of exposures. Similarly, operant
conditioning has also been well-studied (See (Cooper et al., 2007) and references therein). While
operant conditioning might have additional connotations in the psychology literature, we mainly use
it to model the ‘annoyance’ or ‘satiation’ effect of repeated exposures (Sahni, 2015). There has been
some effort on psychology-aware recommendation systems (Curmei et al., 2022; Jesse & Jannach,
2021), however, incorporating psychological effects in advertising has received less attention.

Value of δ in real world. There exists some work related to determining the exact curve to analyze
user retention of content. In the work of (Curmei et al., 2022), the authors note that in real-world
scenarios, the value of δ is 0.98. Several other works (Murre & Dros, 2015; Goldstein et al., 2011)
provide motivation for setting δ between 0.7 and 0.99. This is also the regime where uniform spacing
is a bad strategy as compared to the optimal ad schedule (see Section 6).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Ad scheduling. The problem of optimizing ad schedules has been studied across various communities
such as marketing, operations research, and machine learning. One of the earliest work is due to
(Nerlove & Arrow, 1962), who proposed the goodwill-stock model that treats advertising as an
investment that builds a “stock” of consumer goodwill (or awareness) which then depreciates over
time. Specifically, they considered a dynamical model of change in consumer goodwill given an
ad impression, and cast the problem of optimizing the ad schedule as an optimal control problem.
However, they do not consider memory/satiation effects, and the optimal policy under their model is to
show most of the ads at the start of the time-horizon. (Naik et al., 1998) extended this work to consider
memory effects, however, the optimal policy under their dynamical system is not interpretable. (Sahni,
2015) conducted field experiments to demonstrate that temporal spacing of ads has a large effect
on the memory retention and satiation of the users. More recently, the problem of optimizing ad
schedules has been casted as a reinforcement learning problem (Rafieian, 2023; Theocharous et al.,
2015). While these algorithms tend to be general-purpose, their solutions are hard to interpret and
can be difficult to execute in practice, given the complexity of ad exchanges (Despotakis et al., 2021).

Dynamic rewards and restless bandits. (Leqi et al., 2021) introduced a bandit framework that
models user satiation using linear dynamical systems and showed that the greedy strategy is optimal
when all arms have the same base reward and decay profile. More broadly, several works have
explored reward structures where the current payoff depends on historical actions and decays over
time (Heidari et al., 2016; Levine et al., 2017; Seznec et al., 2019). In contrast, (Kleinberg &
Immorlica, 2018) studies a setting where rewards increase with time since the last pull. Related ideas
appear in models where rewards evolve based on the number of pulls or the time elapsed since the last
interaction (Cella & Cesa-Bianchi, 2020; Basu et al., 2019; Warlop et al., 2018; Mintz et al., 2020).

Digital advertising. In (Schwartz et al., 2017), the authors investigated customer acquisition through
advertisements on online platforms using multi-armed bandits, and designed a policy that achieves
an 8% improvement in acquisition rate. (Adany et al., 2013) addressed the problem of allocating
personalized ads to users, considering each user’s profile and estimated viewing capacity. (Seshadri
et al., 2015) explored advertisement scheduling to meet advertisers’ campaign goals while maximizing
ad-sales revenue. (Dobrit,a et al., 2025) proposed a framework that leverages k-nearest neighbors to
predict ad positions, enhancing ad scheduling optimization. Aiming to maximize viewership under
budget constraints, (Czerniachowska, 2019) presented a scheduling solution aligned with advertisers’
budgets. (Sumita et al., 2017) developed a (1− ϵ)-competitive algorithm for envy-free allocation of
video ads where ϵ > 0 is a constant. We also note that digital advertising is a vast field with many
practical considerations – here we summarize work that is closely related to our theoretical modeling.

1.2 ORGANIZATION

In Section 2, we formalize the problem, and in Section 3, we present a near-optimal algorithm for
scheduling ads. Next, in Section 4, we analyze this algorithm, followed by a discussion of the
broader implications of our work in Section 5. We support our theoretical findings with experiments
in Section 6, and conclude by outlining the key takeaways, limitations, and possible extensions in
Section 7. All remaining details and proofs are provided in the Appendix.

2 PROBLEM DESCRIPTION

Let T denote the total time horizon, which is known to us in advance. We consider the setting where
we have to display n+1 homogeneous ads in the continuous time interval [0, T ]. We assume for now
that displaying these ads is instantaneous, though in Appendix E, we will show how to extend this to
the case when each ad needs the same amount of time. As discussed before, the function R(t̄, i) is
composed of two parts. The first part B(i) is the reward when the ith ad is shown (note that i could
also be 0 and corresponds to the ad shown at t0), and is simply a function of the number of times we
have shown the ad previously, and not of the times at which we show ads. In this work, we consider
B(i) to be a concave function, for example, the sigmoid function B(i) = 1

1+e−ci , but in general, any
function would work. The second function depends on both the number of times we show ads and
the times ti at which ads were shown. Let t̄ = (t0, t1, . . . , tn−1, tn) denote the time and order in
which ads were displayed. The second function is γ.

∑l−1
i=0 δ

tl−ti , where δ ∈ [0, 1] and γ ∈ R+ is a
constant that parameterizes the strength of this effect. The term

∑l−1
i=0 δ

tl−ti , δ ∈ [0, 1] captures the
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temporal decay in the loss when the lth ad is shown. Hence, the reward for the ith ad under strategy t̄

is given by R(t̄, i) = B(i)− γ
∑i−1

j=0 δ
ti−tj .

Let ñ ∈ N be an upper bound on the number of ads that can be shown in [0, T ]. Our objective is to
find the number of ads n+ 1 ≤ ñ, and the strategy t̄ = (t0, . . . , tn) according to which ads should
be shown so that the reward R(t̄) is maximized.

The reward R(t̄) can be written as:

R(t̄) =

n∑
i=0

R(t̄, i) =

n∑
i=0

B(i)− γ

i−1∑
j=0

δti−tj

 =

(
n∑

i=0

B(i)

)
−

γ
∑
j<i

(δti−tj )

 .

Observe that the first term
∑

i B(i) is independent of the times at which we show the ads, and only
depends on the number of ads themselves. The coefficient of the second term, i.e., γ, only plays the
role of a scaling factor. Hence, maximizing R(t̄) for a given value of n is equivalent to minimizing
the loss L(t̄), where L(t̄) is defined as L(t̄) =

∑
j<i(δ

ti−tj ).

Once we can find the optimal value of R(t̄) for strategies that involve showing n + 1 ads, we can
iterate over ñ possible values to find the optimal number of ads to be shown. Next, we provide an
overview of the algorithm to find the optimal number of ads to be shown to maximize the reward, and
the optimal strategy t̄ to show these ads.

3 NEAR-OPTIMAL ALGORITHM FOR AD SCHEDULING

In this section, we provide an overview of our near-optimal algorithm for ad scheduling. We first
consider the case when we know n+ 1, the number of ads to show. Given the time horizon T and δ,
we want to compute the schedule t̄ = (t0, t1, . . . , tn), such that for all 0 ≤ i ≤ n− 1, ti ≤ ti+1.

The first step in our algorithm is to compute the number of ads to show at time 0 and T . Note that
multiple ads can be shown at the same time, given the instantaneous nature of the ads (we relax
this assumption in Appendix E). Let ta > 0 be the first non-zero time at which an ad is shown, i.e.,
a − 1 ads are shown at time 0. We will define the quantity Ti as Ti := δti , and throughout the
paper we derive our results in terms of Ti for i ∈ {0, . . . , n}. Given the parameters n, T , δ, our first
algorithm (Algorithm 1) outputs the value of a and Ta = δta . Later in our analysis, we show that all
the subsequent ad timings can be found once we know a and Ta. We now describe the algorithm to
find a and Ta.

Algorithm 1 Algorithm to obtain a and Ta

1: Input: n, δ, T .
2: Find the smallest value of a ∈ [n/2] s.t. an−2a

(a+1)n−2a > δT and 1
a2 · (aδT )n+2−2a

(aδT+1)n−2a < δT holds.

3: For the above value of a, define the function h(Ta) =
1
a2 · (aTa)

n−2a+2

(1+aTa)n−2a

4: Compute the solution for the equation h(Ta) = δT via binary search. For binary search, initialize
the search space to be [δT , 1]. (see Appendix C for more details)

5: return (a, Ta)

As Algorithm 1 returns a, we now know the first non-zero time to show an ad. This means that we
show a− 1 ads each at t0 = 0 and at time tn = T . Note that for the corner case when the value of a
does not exist, and for a detailed algorithm, refer to Appendix D. Once a and Ta is known, Algorithm
2 shows how to find the near-optimal schedule.

Algorithm 2 Algorithm to obtain near-optimal schedule

1: Input: n, δ, T, a, Ta

2: Set ti = 0, ∀i ∈ {0, . . . , a− 1} and tj = T , ∀j ∈ {n− 2a+ 1, . . . , n}
3: Set ta = ln(Ta)/ ln(δ) and tn−a = T − ta
4: Distribute the remaining ti+a,∀i ∈ {0, . . . , n−2a} such that ti+a = ta+i·(tn−a−ta)/(n−2a)

5
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Algorithm 2 provides a near-optimal ad schedule when the number of ads n is known in advance.
If n is unknown, we use Algorithm 3 to determine it. Below, we show how to compute the optimal
number of ads n, given an upper bound ñ on the total ads that can be shown within the time horizon
T .

Algorithm 3 Optimal number of ads

1: Input: δ, T, ñ
2: For each n ∈ [ñ], compute the near-optimal strategy t̃n using Algorithm 2
3: For each near-optimal strategy, compute R(t̃n)
4: return the value of n that maximizes R(t̃n)

Algorithm 3 returns the optimal number of ads to show and the near-optimal strategy to display them.
For clarity, we focus our analysis on the case a = 1, i.e., the case where only one ad is shown at time
0 and time T , respectively. The general case a ̸= 1 is discussed in Appendix D and follows a similar
approach. When a = 1, our goal is to show that approximating T1 helps us approximate t1, . . . , tn,
resulting in a nearly optimal schedule. In the next section, we outline our approach for the a = 1
case, with full proofs provided in Section 4.

4 ANALYSIS OF OUR ALGORITHM FOR a = 1

In this section, we present our analysis of the near-optimal strategy for the case a = 1. The analysis is
divided into three parts: Section 4.1 proves that L has a unique minimum. Section 4.2 derives closed-
form expressions showing that each Ti can be written in terms of T1. Section 4.3 first approximates
T1 and then t1 to an additive error of 1/2n. Once T1 and t1 are approximated, the remaining Ti and
ti values can be computed easily. We now start our analysis by showing that L has a unique minima.

4.1 L HAS A UNIQUE MINIMA

In this section, we want to argue about the number of minima for the loss function L. Specifically,
we want to show that L is a strictly convex function, and hence, it has at most one minima. This
would imply that local minima is also the global minimum (Boyd & Vandenberghe, 2004). This
characterization helps us to find the minima for L.

For a strategy t̄, to form a feasible solution, it must satisfy ti ≤ ti+1 and 0 ≤ ti ≤ T . Then, the set of
feasible solutions, which we denote by D, is defined as follows: ti ∈ R, 0 ≤ ti ≤ T, ti ≤ ti+1, t0 =
0, tn = T . We first show why t0 = 0 and tn = T are required to minimize L.
Lemma 4.1. In any optimal solution t̄ that minimizes the loss function L, we have t0 = 0 and
tn = T .

For L =
∑

i>j δ
ti−tj , let aij = ti − tj , where i > j and denote L′ =

∑
i>j δ

aij . The feasible
solution D′ for L′ is given by: aij ∈ R ∀i > j, aij ≥ 0, an0 = T, aij + ajk = aik.

Using Lemma 4.1, we only consider those t̄ where t0 = 0 and tn = T . Since t0 and tn are fixed, all
references to∇L hereafter are with respect to t1, t2, . . . , tn−1. To show that L has a unique global
minima, we divide our analysis into four parts: (1) We establish that there exists exactly one global
minima in D′ for the function L′, by showing that L′ is strictly convex and the space D′ is compact.
(2) We show a bijection between D and D′. (3) We show that, according to the previous bijection, L′

indeed models L. (4) We finally show that the minima of L′ corresponds exactly to the minima of L,
and vice versa. Note that the missing proof of Lemma 4.1, the technical details to prove that L has a
unique minimum, and the proof of the following theorem, can be found in Appendix A.
Theorem 4.2. The function L admits a unique minima in D.

As we have shown that L has a unique minima. To find the minima, we first argue that all Ti’s can be
expressed in terms of T1.

4.2 DEPENDENCY OF Ti’S ON T1

Let Ti = δti for i ∈ {0, 1, . . . , n}. In this section, we show that T2, T3 . . . , Tn can be expressed in
terms of T1. As shown in Section 4.1, we know that L =

∑
j>i δ

tj−ti has a unique minima and
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therefore our eventual goal is to find this minima. Let H0 =
(

1
δt0

)
, H1 =

(
1

δt0 + 1
δt1

)
, similarly

Hi =
(

1
δt0 + 1

δt1 + · · ·+ 1
δti

)
=
∑i

j=0
1
δtj

. In the following lemma, we show how Ti can be
expressed in terms of Ti−1, Hi−1, Hi−2, which will later help us to express Ti in terms of T1.
Lemma 4.3. For 1 ≤ i ≤ n− 1, for any strategy t̄ = (0, t1, · · · , tn−1, T ) corresponding to which
∇L = 0, the following relations hold:

Ti =
−1 +

√
1 + 4Hi−2Hi−1(T 2

i−1)

2Hi−1
(1)

We now use Lemma 4.3 to show that every Ti can be expressed in terms of T1, which is the main
theorem of this section.
Theorem 4.4. For any strategy t̄ = (0, t1, · · · , tn−1, T ) corresponding to which∇L = 0, for all i
in {1, · · · , n− 1}, Ti can be written in terms of T1 as follows:

Ti =
T i
1

(1 + T1)i−1
(2)

Note that in Theorem 4.4, we have shown that T2, . . . , Tn−1 can be expressed in terms of T1. We
now show how to express Tn in terms of T1.
Lemma 4.5. For 1 ≤ i ≤ n, for any strategy t̄ = (0, t1, . . . , tn−1, T ) corresponding to which
∇L = 0, the following relation holds:

Tn
1

(1 + T1)n−2
= Tn (3)

To conclude, we derived many interesting relations between T1, T2, . . . , Tn in this section. The
missing details and proofs can be found in Appendix B. In the following section, we use the theorem
and lemmas of this section to find an approximate value of Ti and ti for all i ∈ {1, . . . , n− 1}.

4.3 APPROXIMATING ti’S

In Section 4.1, we showed that a unique minima exists for L, and in Section 4.2, we showed that
(T2, . . . , Tn) can be expressed in terms of T1. In this section, we show how to find an approximate
solution for (T2, . . . , Tn) by finding an approximate solution for T1. Note that as T1 = δt1 , once
we obtain an approximate solution for T1, we also get a solution for t1. To this end, we describe
the outline of this section before proving every detail in Appendix C. We first show that T1 has a
unique solution and then demonstrate how to approximate T1 using binary search. Once we obtain
an approximation for T1, we use it to approximate Ti, i ∈ {2, · · · , n} using Theorem 4.4. Next, we
approximate t1 using T1, which further helps in approximating t2, . . . , tn.

For an optimal t∗1, let T ∗
1 = δt

∗
1 be the optimal value of Ti that satisfies ∇L = 0. Similarly, define

T ∗
2 , . . . , T

∗
n . First, we show the following result for Ti.

Lemma 4.6. Assuming T ∗
1 (1− ϵ) ≤ T1 ≤ T ∗

1 (1 + ϵ), then Ti can be bounded by T ∗
i · (1− 4nϵ) ≤

Ti ≤ T ∗
i · (1 + 4nϵ).

We now use the above lemma to approximate ti, which is our main result.

Lemma 4.7. For ϵ < 1
2 , ti = logδ Ti is bounded by t∗i −

2 ln(2)ϵ
log(1/δ) ≤ ti ≤ t∗i +

2 ln(2)ϵ
log(1/δ) .

Corollary 4.8. Setting ϵ = 1
2n ·

log(1/δ)
2 ln(2) we have, t∗i − 1

2n ≤ ti ≤ t∗i +
1
2n .

We have thus shown that each ti can be approximated within an exponentially small error of the
optimal t∗i , completing the analysis of our near-optimal strategy for a = 1. We next discuss several
important implications and behaviors of the solution.

5 IMPLICATIONS

Having already established the optimality for the objective function L, we now proceed to analyze
its structural properties. These properties reveal how the placement of advertisements varies with δ,
offering deeper insights into the behavior of our strategy under different values of δ. We summarize
here the behavior of our near-optimal solution, which is mathematically proved in Appendix E.
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Observation 5.1. The near-optimal ad schedule exhibits the following patterns as δ varies: (a) As
δ → 0, ads are placed at evenly spaced intervals, (b) as δ increases, more ads concentrate at times 0
and T , (c) as δ increases, the first ti > 0 moves towards 0, and the last tj < T moves towards T .
The remaining ads are evenly spaced between ti and tj .

The above properties indicate a form of clustering behavior in our near-optimal solution. When
δ → 0, it is optimal to display the advertisements at uniformly spaced intervals. As δ increases, a
greater number of advertisements are placed at the endpoints, 0 and T , while the remaining ones are
evenly distributed in the interior of the interval. In the limit as δ → 1, the majority of the ads are
concentrated at 0 and T , with only a few ads placed uniformly in between.

6 EXPERIMENTS

In this section, we evaluate the performance of our near-optimal strategy through four distinct
experiments: (1) how does the near-optimal strategy vary as the value of δ changes? (2) comparison
between our strategy and other baseline strategies? (3) how does the loss function change with a
change in the number of ads? (4) how to find the optimal number of ads? We provide a brief overview
of each experiment below. For detailed setup and additional results, please refer to Appendix F.

6.1 VARIATION IN NEAR OPTIMAL STRATEGY WITH CHANGE IN δ

In this experiment, we illustrate how our strategy evolves as the parameter δ increases from 0 to 1.
Figure 1a depicts the outcome when the number of ads n+ 1 is odd. Please refer to the Appendix F
for the odd case. Initially, for δ ≤ 0.4, the ads are placed nearly equidistantly. As δ increases beyond
0.4, the ads gradually bifurcate—half of them shift towards t = 0, and the other half move towards
t = 20. This experiment aligns precisely with the behavior we obtained in Observation 5.1.

6.2 OUR STRATEGY VS BASELINE STRATEGIES

We compare our near-optimal strategy against three baselines - Uniform, Corner, and Random, which
are explained in Appendix F. Our experiment models a video streaming setting, where users engage
for 1.5–2 hours and are shown approximately 15 ads. Therefore, we have n+ 1 = 15 and T = 100.
For this experiment, we focus on a high value of δ (greater than 0.9) as suggested in (Curmei et al.,
2022). As observed in our experiment ( Figure 1b) and in Observation E.13, when δ is small, the
Uniform strategy performs well. Conversely, when δ approaches 1, the Corner strategy becomes more
effective. Our results show that the near-optimal strategy adapts to δ and consistently outperforms
all baseline strategies. Specifically, at δ around 0.98, our strategy outperforms all other baseline
strategies at least by 10%.

6.3 CHANGE IN LOSS WITH NUMBER OF ADS

We now conduct another experiment to quantify the loss incurred by our near-optimal strategy due
to the effect of operant conditioning, as the number of ads increases. Let L#(n + 1) denote the
loss associated with showing n ads under our strategy. A natural intuition is that if showing n ads
results in a loss of L#(n+ 1), then doubling the number of ads would roughly double the loss, i.e.,
L#(2(n+ 1)) ≈ 2 · L#(n+ 1). Our experiments actually support this intuition (see Figure 1c).

Interestingly, for smaller values of δ (around 0.7), the loss remains relatively stable even as the
number of ads increases. However, we observe a sharp rise in loss as δ increases from 0.9 to 0.99,
indicating increased sensitivity to operant conditioning in this regime (see Figure 1c).

6.4 OPTIMUM NUMBER OF ADS

In our final experiment, we demonstrate that for a given user (fixed δ), the optimal number of ads n+1
changes under different mere exposure and hedonic adaptation functions. We use a sigmoid reward
function B(i) = k · 1

1+e−ci , where k captures the overall strength of these effects and c controls
sensitivity to the number of ads. For k, c > 0, the function is concave and increasing. As shown in
Figure 1d, the reward initially rises with more ads due to the dominance of mere exposure. Beyond
a point, the negative impact of hedonic adaptation and operant conditioning becomes significant,
causing the reward to decline. The peak of this curve corresponds to the optimal number of ads. For
other related experiments, refer to Appendix F.
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Figure 1: (a) Change in near-optimal strategy with δ for 7 ads and T = 20. (b) Loss between
near-optimal and baseline strategies for n+ 1 = 15, T = 100. (c) Loss increases as the number of
ads increases. (d) Gain function used to find the optimal number of ads for a user with δ = 0.9.

7 CONCLUSION

In this paper, we consider a model that incorporates dynamic psychological effects – mere exposure,
hedonic adaptation, and operant conditioning – into the problem of ad scheduling. We present a near-
optimal strategy to schedule ads based on our behavioral model. Our strategy leads to several insights
into the problem of ad scheduling, for example, equal spacing of ads might not be optimal under
many settings, and it might be better to show more ads in the beginning and at the end as compared
to the middle of the time-horizon. We also support these theoretical results using simulations.

7.1 LIMITATIONS/EXTENSIONS

Seasonality and non-stationary rewards. While our model can work well for real-world settings
where the rewards are approximately stationary, such as inserting ads into a (live) video stream, our
model does not handle scenarios where the rewards are affected by seasonality or time-of-day effect.
For example, it is unlikely that sending a push notification at night will result in user attention. It will
be interesting to extend our model to account for non-stationary rewards.

Competition between ads. In our work, we consider the optimization of the ad schedule from the
point of view of a single advertiser or an ad agency running multiple homogeneous ads. In the future
it will be interesting to account for externalities in the form of competing ads across various channels.

Incorporating context or side-information. Our model does not incorporate the context or side-
information of the user or the ad into the optimization problem. This is motivated by the fact that
under many scenarios, advertisers do not have access to user information, such as advertising on
streaming platforms. Another future direction is to incorporate additional context of the user and ad.

Learning the reward function. Our current setup assumes knowledge of the reward function
(including the parameter δ). While our methodology is flexible enough to allow various types of
reward functions, it will be interesting to study our problem as a joint learning and optimization
problem in a multi-armed bandits setting.
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