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ABSTRACT

Recently, compositional optimization (CO) has gained popularity because of its
applications in distributionally robust optimization (DRO) and many other ma-
chine learning problems. Large-scale and distributed availability of data demands
the development of efficient federated learning (FL) algorithms for solving CO
problems. Developing FL algorithms for CO is particularly challenging because
of the compositional nature of the objective. Moreover, current state-of-the-art
methods to solve such problems rely on large batch gradients (depending on the
solution accuracy) not feasible for most practical settings. To address these chal-
lenges, in this work, we propose efficient FedAvg-type algorithms for solving
non-convex CO in the FL setting. We first establish that vanilla FedAvg is not
suitable to solve distributed CO problems because of the data heterogeneity in the
compositional objective at each client which leads to the amplification of bias in
the local compositional gradient estimates. To this end, we propose a novel FL
framework FedDRO that utilizes the DRO problem structure to design a com-
munication strategy that allows FedAvg to control the bias in the estimation of
the compositional gradient. A key novelty of our work is to develop solution
accuracy-independent algorithms that do not require large batch gradients (and
function evaluations) for solving federated CO problems. We establish O(✏�2)
sample and O(✏�3/2) communication complexity in the FL setting while achiev-
ing linear speedup with the number of clients. We corroborate our theoretical
findings with empirical studies on large-scale DRO problems.

1 INTRODUCTION

Compositional optimization (CO) problems deal with the minimization of the composition of func-
tions. A standard CO problem takes the form

minx2Rd f(g(x)) with g(x) := E⇣⇠Dg [g(x; ⇣)], (1)

where x 2 Rd is the optimization variable, f : Rdg ! R and g : Rd
! Rdg are smooth functions,

and ⇣ ⇠ Dg represents a stochastic sample of g(·) from distribution Dg . CO finds applications in
a broad range of machine learning applications, including but not limited to distributionally robust
optimization (DRO) Qi et al. (2022), meta-learning Finn et al. (2017), phase retrieval Duchi & Ruan
(2019), portfolio optimization Shapiro et al. (2021), and reinforcement learning Wang et al. (2017).

In this work, we focus on a more challenging version of the CO problem (1) that often arises in
the DRO formulation Haddadpour et al. (2022). Specifically, the problems that jointly minimize
the summation of a compositional and a non-compositional objective. DRO has recently garnered
significant attention from the research community because of its capability of handling noisy labels
Chen et al. (2022), training fair machine learning models Qi et al. (2022), imbalanced Qi et al.
(2020a) and adversarial data Chen & Paschalidis (2018). A standard approach to solve DRO is to
utilize primal-dual algorithms Nemirovski et al. (2009) that are inherently slow because of a large
number of stochastic constraints. The CO formulation enables the development of faster (dual-
free) primal-only DRO algorithms Haddadpour et al. (2022). The majority of existing works to
solve CO problems consider a centralized setting wherein all the data samples are available on
a single server. However, modern large-scale machine-learning applications are characterized by
the distributed collection of data by multiple clients Kairouz et al. (2021). This necessitates the
development of distributed algorithms to solve the DRO problem.
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Federated learning (FL) is a distributed learning paradigm that allows clients to solve a joint problem
in collaboration with a server while keeping the data of each client private McMahan et al. (2017).
The clients act as computing units where within each communication round, the clients perform
multiple updates while the server orchestrates the parameter sharing among clients. Numerous FL
algorithms exist in the literature to tackle standard (non-compositional) optimization problems Li
et al. (2019; 2020); Karimireddy et al. (2019); Sharma et al. (2019); Zhang et al. (2021); Khanduri
et al. (2021); Karimireddy et al. (2020). However, there is a lack of efficient distributed implementa-
tions when it comes to CO problems. The major challenges in developing FL algorithms for solving
the CO problem are:
[C1]: The compositional structure of the problem leads to biased stochastic gradient estimates and
this bias is amplified during local updates, which makes the theoretical analysis of the gradient-
based algorithms intractable Chen et al. (2021).
[C2]: Typically, data distribution at each client is different, referred to as data heterogeneity. Hetero-
geneously distributed compositional objective results in client drift during local updates that lead to
divergence of federated CO algorithms. This is in sharp contrast to the standard FedAvg for non-CO
objectives where client drift can be controlled during the local updates Karimireddy et al. (2019).
[C3]: A majority of algorithms for solving CO rely on accuracy-dependent large batch gradients
where the batch size depends on the desired solution accuracy, which is not practical from an imple-
mentation point of view Huang et al. (2021); Haddadpour et al. (2022); Guo et al. (2022).

These challenges naturally lead to the following question:

Can we develop FL algorithms that tackle [C1]� [C3] to solve CO in a distributed setting?

In this work, we address the above question and develop a novel FL algorithm to solve typical
versions of the CO problem that arise in DRO (Section 2). The major contributions of our work are:

• We for the first time present a negative result that establishes that the vanilla FedAvg (customized
to CO) is incapable of solving the CO problems as it leads to bias amplification during the local
updates. This shows that additional communication/processing is required by FedAvg to mitigate
the bias in the local gradient estimation.

• We develop FedDRO, a novel FL algorithm for solving problems with both compositional and
non-compositional non-convex objectives at the same time. To the best of our knowledge, such
an algorithm has been absent from the open literature so far. Importantly, FedDRO addresses the
above-mentioned challenges by developing several key innovations in the algorithm design.
– FedDRO addresses [C1] by designing a communication strategy that utilizes the specific

problem structure resulting from the DRO formulation and allows us to control the gradient
bias. Specifically, FedDRO utilizes the fact that the compositional functions g(·) are often
low-dimensional embeddings in the DRO formulation (see Examples in Section 2.1) and can
be shared without incurring significant communication costs.

– To address [C2], we design the local updates at each client so that the client drift is bounded.
Our analysis captures the effect of data heterogeneity on the performance of FedDRO.

– To address [C3], we utilize a hybrid momentum-based estimator to learn the compositional
embedding and combine it with a stochastic gradient (SG) estimator to conduct the local up-
dates. This construction allows us to circumvent the need to compute large accuracy-dependent
batch sizes for computing the gradients and the compositional function evaluations.

• We establish the convergence of FedDRO and show that to achieve an ✏-stationary point, Fed-

DRO requires O(✏�2) samples while achieving linear speed-up with the number of clients, i.e.,
requiring O(K�1

✏
�2) samples per client. Moreover, FedDRO requires sharing of O(✏�3/2)

high-dimensional parameters and O(K�1
✏
�2) low dimensional embeddings per client.

Notations. The expected value of a random variable (r.v) X is denoted by E[X]. Conditioned on
an event F the expectation of a r.v X is denoted by E[X|F ]. We denote by R (resp. Rd) the real
line (resp. the d dimensional Euclidean space). We denote by [K] := {1, . . .K}. The notation k · k

defines a standard `2-norm. For a set B, |B| denotes the cardinality of B. We use ⇠ ⇠ Dh and
⇣ ⇠ Dg to denote the stochastic samples of functions h(·) and g(·) from distributions Dh and Dg ,
respectively. A batch of samples from h(·) (resp. g(·)) is denoted by bh (resp. bg). Moreover, joint
samples of h(·) and g(·) are denoted by ⇠̄ = {bh, bg}. We represent by x̄ the empirical average of a
sequence of vectors {xk}

K
k=1.
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2 PROBLEM

In this work, we focus on a general version of the CO problem defined in (1). We consider the
following problem that often arises in DRO (see Section 2.1) in a distributed setting with K clients

infx2Rd

n
�(x) := h(x) + f(g(x))

o
with h(x) := 1

K

PK
k=1hk(x) & g(x) := 1

K

PK
k=1gk(x), (2)

where each client k 2 [K] has access to the local functions hk : Rd
! R and gk : Rd

! Rdg

while f(·) is same as (1). The local functions hk(·) and gk(·) at each client k 2 [K] are: hk(x) =
E⇠k⇠Dhk

[hk(x; ⇠k)] and gk(x) = E⇣k⇠Dgk
[gk(x; ⇣k)] and where ⇠k ⇠ Dhk (resp. ⇣k ⇠ Dgk )

represents a sample of hk(·) (resp. gk(·)) from distribution Dhk (resp. Dgk ). Moreover, the data at
each client is heterogeneous, i.e., Dhk 6= Dh` and Dgk 6= Dg` for k 6= ` and k, ` 2 [K].

In comparison to the basic CO in (1), (2) is significantly challenging, first, because of the presence of
both compositional and non-compositional objectives and second, because of the distributed nature
of the compositional function g(·).
Remark 2.1 (Comparison to Gao et al. (2022) and Huang et al. (2021)). Note that formulation
(2) is significantly different than the setting considered in Huang et al. (2021); Gao et al. (2022).
Specifically, our formulation considers a practical setting where the compositional functions are
distributed across agents, i.e., the function is g = 1/K

PK
k=1gk(x). In contrast, Huang et al.

(2021); Gao et al. (2022) consider a setting with objective 1
k

PK
k=1 fk(gk(·)), note here that the

compositional function is local to each agent. This implies that algorithms developed in Huang et al.
(2021); Gao et al. (2022) cannot solve problem (2). Importantly, problem (2) models realistic FL
training settings while being more challenging compared to Huang et al. (2021); Gao et al. (2022)
since in (2) the data heterogeneity of the inner problem also plays a role in the convergence of the
FL algorithm. Please see the discussion in Appendix A.1 for more details.

2.1 EXAMPLES: CO REFORMULATION OF DRO PROBLEMS

In this section, we discuss different DRO formulations that can be efficiently solved using CO Had-
dadpour et al. (2022). DRO problem with a set of m training samples denoted as {⇣i}mi=1 is

minx2Rd maxp2Pm

Pm
i=1 pi`(x; ⇣i)� �D⇤(p,1/m) (3)

where x 2 Rd is the model parameter, Pm := {p 2 Rm :
Pm

i=1 pi = 1, pi � 0} is m-dimensional
simplex, D⇤(p,1/m) is a divergence metric that measures distance between p and uniform proba-
bility 1/m 2 Rm, and `(x, ⇣i) denotes the loss on sample ⇣i, ⇢ is a constraint parameter, and � is a
hyperparameter. Next, we discuss two popular reformulations of (3) in the form of CO problems.
DRO with KL-Divergence. Problem (3) is referred to as a KL-regularized DRO when the dis-
tance metric D⇤(p,1/m) is the KL-Divergence, i.e., we have D⇤(p,1/m) = DKL(p,1/m) with
DKL(p,1/m) :=

Pm
i=1 pi log(pim). For this case, an equivalent reformulation of (3) is

minx2Rd log
⇣

1
m

Pm
i=1 exp

⇣
`(x;⇣i)

�

⌘⌘
, (4)

which is a CO with g(x) = 1/m
Pm

i=1 exp(`(x; ⇣i)/�), f(g(x)) = log(g(x)) and h(x) = 0.
DRO with �

2- Divergence. Similar to KL-regularized DRO, (3) is referred to as a �
2-regularized

DRO when D⇤(p,1/m) is the �
2-Divergence, i.e., we have D⇤(p,1/m) = D�2(p,1/m) with

D�2(p,1/m) := m/2
Pm

i=1(pi � 1/m)2. For this case, an equivalent reformulation of (3) is

minx2Rd �
1

2�m

Pm
i=1

�
`(x; ⇣i)

�2
+ 1

2�

⇣
1
m

Pm
i=1 `(x; ⇣i)

⌘2
(5)

which is again a CO with g(x) = 1/m
Pm

i=1 `(x; ⇣i), f(g(x)) = g(x)2/2� and h(x) =

�
1

2�m

Pm
i=1

�
`(x; ⇣i)

�2.

Note that both (4) and (5) can be equivalently restated in the practical FL setting of (2) if the overall
samples are shared across multiple clients with each client having access to a subset of samples.

Related work. Please see Table 1 for a comparison of current approaches to solve CO problems in
distributed settings. For a detailed review of centralized and distributed non-convex CO and DRO
problems, please see Appendix A. Here, we point out some drawbacks of the current approaches to
solving federated CO problems:
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Table 1: Comparison with the existing works. Here, CO-ND refers to CO with a non-distributed compositional
part (see Remark 2.1). CO + Non-CO refers to problems with both CO and Non-CO objectives. VR refers to
variance reduction. (I) and (O) refers to the inner and outer loop, respectively.
⇤ Theoretical guarantees for GCIVR exist only for the finite sample setting with m total network-wide samples.

ALGORITHM SETTING UPDATE BATCH-SIZES CONVERGENCE
ComFedL Huang et al. (2021) CO-ND SGD O(✏�2) O(✏�4)

Local-SCGDM Gao et al. (2022) CO-ND Momentum SGD O(1) O(✏�2)
FedNest Tarzanagh et al. (2022) Bilevel VR O(1) O(✏�2)

GCIVR⇤ Haddadpour et al. (2022) CO + Non-CO VR
p
m (I),m (O) O(min{

p
m✏�1, ✏�1.5

})
FedDRO (Ours) CO + Non-CO SGD O(1) O(K�1✏�2)

– None of the current works guarantee linear speedup with the number of clients Huang et al. (2021);
Haddadpour et al. (2022); Tarzanagh et al. (2022); Gao et al. (2022).

– Utilize complicated multi-loop algorithms with momentum or VR-based updates Tarzanagh et al.
(2022) that sometime require computation of large batch size gradients Haddadpour et al. (2022)
to guarantee convergence. Such algorithms are not preferred in practical implementations.

– Consider a restricted setting where the compositional objective is not distributed among nodes
Huang et al. (2021); Gao et al. (2022). Importantly, the algorithms developed therein cannot solve
the problem considered in our work (see Appendix A.1).

Our work addresses all these issues and develops, FedDRO, the first simple SGD-based FL algo-
rithm to tackle CO problems with the distributed compositional objective. Please see Table 1 for a
comparison of the above works.

3 PRELIMINARIES

In this section, we introduce the assumptions, definitions, and preliminary lemmas.
Definition 3.1 (Lipschitzness). For all x1, x2 2 Rd, a differentiable function � : Rd

! R
is: Lipschitz smooth if kr�(x1) � r�(x2)k  L�kx1 � x2k for some L� > 0; Lipschitz
if k�(x1) � �(x2)k  B�kx1 � x2k for some B� > 0 and; Mean-Squared Lipschitz if
E⇠k�(x1; ⇠)� �(x2; ⇠)k2  B

2
�kx1 � x2k

2 for some B� > 0.

We make the following assumptions on the local and global functions in problem (2).
Assumption 3.2 (Lipschitzness). The following holds
1. The functions f(·), hk(·), gk(·) for all k 2 [K] are differentiable and Lipschitz-smooth with
constants Lf , Lh, Lg > 0, respectively.
2. The function f(·) is Lipschitz with constant Bf > 0 and gk(·) is mean-squared Lipschitz for all
k 2 [K] with constant Bg > 0.

Next, we introduce the variance and heterogeneity assumptions.
Assumption 3.3 (Unbiased Gradient and Bounded Variance). The stochastic gradients and function
evaluations of the local functions at each client are unbiased and have bounded variance, i.e.,

E⇠k [rhk(x; ⇠k)] = rhk(x), E⇣k [rgk(x; ⇣k)] = rgk(x), E⇣k [gk(x; ⇣k)] = gk(x),

E⇣k [rgk(x; ⇣k)rf(y)] = rgk(x)rf(y)

and E⇠kkrhk(x; ⇠k)�rhk(x)k
2
 �

2
h,

E⇣kkrgk(x; ⇣k)�rgk(x)k2  �
2
g , E⇣kkgk(x; ⇣k)� gk(x)k2  �

2
g ,

for some �h,�g > 0 and for all x 2 Rd and k 2 [K].
Assumption 3.4 (Bounded Heterogeneity). The heterogeneity hk(·) and gk(·) is characterized as

supx2Rd krhk(x)�rh(x)k2  �2
h and supx2Rd krgk(x)�rg(x)k2  �2

g,

for some �h,�g > 0 for all k 2 [K].
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A few comments regarding the assumptions are in order. We note that the above assumptions are
commonplace in the context of non-convex CO problems. Specifically, Assumption 3.2 is required
to establish Lipschitz smoothness of the �(·) (see Lemma 3.5) and is standard in the analyses of CO
problems Wang et al. (2017); Chen et al. (2021). Assumption 3.3 captures the effect of stochasticity
in the gradient and function evaluations of the CO problem while Assumption 3.4 characterizes
the data heterogeneity among clients. We note that these assumptions are standard and have been
utilized in the past to establish the convergence of many FL non-CO algorithms Yu et al. (2019a);
Karimireddy et al. (2019); Khanduri et al. (2021); Zhang et al. (2021); Woodworth et al. (2020).
Lemma 3.5 (Lipschitzness of �). Under Assumption 3.2 the compositional function, �(·), defined
in (2) is Lipschitz smooth with constant: L� := Lh +BfLg +B

2
gLf > 0.

Lemma 3.5 establishes Lipschitz smoothness (Definition 3.1) of the compositional function �(·). In
general, �(·) is a non-convex function, and therefore, we cannot expect to globally solve (2). We
instead rely on finding approximate stationary points of �(·) defined next.
Definition 3.6 (✏-stationary point). A point x generated by a stochastic algorithm is an ✏-stationary
point of a differentiable function �(·) if Ekr�(x)k2  ✏, where the expectation is taken with
respect to the stochasticity of the algorithm.
Definition 3.7 (Sample and Communication Complexity). The sample complexity is defined as the
total number of (stochastic) gradient and function evaluations required to achieve an ✏-stationary so-
lution. Similarly, communication complexity is defined as the total communication rounds between
the clients and the server required to achieve an ✏-stationary solution.

4 FEDERATED NON-CONVEX CO ALGORITHMS

In this section, we first establish the incapability of vanilla FedAvg to solve CO problems in general.
Then, we design a communication-efficient FL algorithm to solve the non-convex CO problem.

4.1 CANDIDATE FEDAVG ALGORITHMS

Algorithm 1 Vanilla FedAvg for non-convex CO

1: Input: Parameters: {⌘t}T�1
t=0 , I

2: Initialize: x0
k = x̄0, y0

k = ȳ0

3: for t = 0 to T � 1 do
4: for k = 1 to K do

5: Update:

8
><

>:

Compute r�k(x
t
k) using (6)

xt+1
k = xt

k � ⌘tr�k(x
t
k)

yt+1
k = gk(x

t+1
k )

6: if t+ 1 mod I = 0 then

7:

[Case I] Share:
n
xt+1
k = x̄t+1

[Case II] Share :

8
><

>:

xt+1
k = x̄t+1

yt+1
k =gk(x̄

t+1)

yt+1
k = ȳt+1

8: end if
9: end for

10: end for

In this section, we show that vanilla
FedAvg is not suitable for solving
federated CO problems of form (2).
To establish this, we consider a sim-
ple deterministic setting with h(x) =
0. For this setting, the local gradients
of �(·) are estimated as
r�k(x) = rgk(xk)rf(yk), (6)

where the sequence yk represents the
local estimate of the inner function
g(x). To solve the above problem in a
federated setup, we consider two can-
didate versions of FedAvg described
in Case I and II of Algorithm 1. Simi-
lar to vanilla FedAvg, each agent per-
forms multiple local updates within
each communication round (see Step
5 of Algorithm 1). Moreover, since

g(x) := 1/k
Pk

k=1 gk(x) with each agent k 2 [K] having access to only the local copy gk(·), esti-
mating g(·) locally within each communication round is not feasible. Therefore, each agent utilizes
yk = gk(x) as the local estimate of the inner function g(·). For communication, we consider two
protocols. In the first setting, after I local updates, in each communication round the agents share
the locally updated parameters with the server and receive the aggregated parameter from the server
(see Case I in Step 7). In the second setting, in addition to the locally updated parameters the agents
also share their local function evaluations ytk = gk(xt

k) with the server and receive the aggregated
embedding ȳ

t from the server. This step is utilized to improve the local estimates of g(·) (see Case
II in Step 7). The algorithm executes for a total of bT/Ic communication rounds.

In the following, we show that Algorithm 1 is not a good choice to solve the federated CO problem
presented in (2) even in the simple deterministic setting with h(x) = 0.
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Algorithm 2 Federated non-convex CO algorithm: FedDRO

1: Input: Parameters: {�t}T�1
t=0 , {⌘t}T�1

t=0 , I
2: Initialize: x�1

k = x0
k = x̄0, y0

k = ȳ0

3: for t = 0 to T � 1 do
4: for k = 1 to K do
5: Sample ⇠̄tk = {btgk , b

t
hk

} uniformly randomly from Dgk and Dhk respectively

6: Local Update and Sharing:

8
>>><

>>>:

Compute yt
k using (8) and share with the server

Receive ȳt from the server and update yk
t = ȳt

Compute r�k(x
t
k; ⇠̄

t
k) using (7)

xt+1
k = xt

k � ⌘tr�k(x
t
k; ⇠̄

t
k)

7: if t+ 1 mod I = 0 then
8: Model Sharing :

n
xt+1
k = x̄t+1

9: end if
10: end for
11: end for
12: Return: x̄a(T ) where a(T ) ⇠ U{1, ..., T}.

Theorem 4.1 (Vanilla FedAvg: Non-Convergence for CO). There exist functions f(·) and gk(·) for
k 2 [K] satisfying Assumptions 3.2, 3.3, and 3.4, and an initialization strategy such that for a fixed
number of local updates I > 1, and for any 0 < ⌘

t
< C⌘ for t 2 {0, 1, . . . , T � 1} where C⌘ > 0

is a constant, the iterates generated by Algorithm 1 under both Cases I and II do not converge to the
stationary point of �(·), where �(·) is defined in (2) with h(x) = 0.

Theorem 4.1 establishes that vanilla FedAvg is not suitable for solving federated CO problems.
This naturally leads to the question of how can we modify FedAvg such that it can efficiently solve
CO problems of the form (2)? Clearly, Theorem 4.1 suggests that sharing yk’s in each iteration is
required to ensure convergence of FedAvg since sharing the iterates yk’s only intermittently leads to
non-convergence of FedAvg. To this end, we propose to modify the FedAvg algorithm as presented
in Algorithm 1 by sharing yk in each iteration t 2 {0, 1, . . . , T � 1}. The next result shows that the
modified FedAvg resolves the non-convergence issue of FedAvg for solving CO problems.
Theorem 4.2 (Modified FedAvg: Convergence for CO). Suppose we modify Algorithm 1 such that
y
t
k = ȳ

t is updated at each iteration t 2 {0, 1, . . . , T � 1} instead of [t+ 1 mod I] iterations as in
current version of Algorithm 1. Then if functions f(·) and gk(x) for k 2 [K] satisfy Assumptions
3.2, 3.3, and 3.4 such that for a fixed number of local updates 1  I  O(T 1/4), there exists a
choice of ⌘t > 0 for t 2 {0, 1, . . . , T � 1} such that the iterates generated by (modified) Algorithm
1 converge to the stationary point of �(·), where �(·) is defined in (2) with h(x) = 0.

Motivated by Theorem 4.2, we next develop a federated algorithm, FedDRO, to solve the problem
(2) in a general stochastic setting with h(x) 6= 0.

4.2 FEDERATED NON-CONVEX CO ALGORITHM: FEDDRO

In this section, we propose a novel distributed non-convex CO algorithm, FedDRO, for solving
(2). Note that as demonstrated in Section 4.1 this problem is particularly challenging because of the
compositional structure of the problem combined with the fact that the data is heterogeneous for each
client. Motivated by Theorem 4.2 above, in this work we develop a novel approach where we utilize
the structure of the CO problem to develop efficient FL algorithms for solving (2). Specifically, as
also demonstrated in Section 2.1 we utilize the fact that the embedding g(·) is a low-dimensional
(e.g., dg = 1) mapping, especially for the DRO problems. This implies that sharing of g(·) will be
relatively cheap in contrast to the high-dimensional model parameters of size d which can be very
large and take values in millions or even in billions for modern overparameterized neural networks
Vaswani et al. (2017). Therefore, like FedAvg, we share the model parameters intermittently after
multiple local updates while sharing the low-dimensional embedding of g(·) frequently to handle the
compositional objective. Moreover, to solve the CO problems for DRO the developed algorithms
generally utilize batch sizes (for gradient/function evaluation) that are dependent on the solution
accuracy Huang et al. (2021); Haddadpour et al. (2022). However, this is not feasible in most
practical settings. In addition, to control the bias and to circumvent the need to compute large batch
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gradients, we utilize a momentum-based estimator to learn the compositional function (see (8)) Chen
et al. (2021). This construction allows us to develop FedAvg-type algorithms for solving non-convex
CO problems wherein the local updates resemble the standard SGD updates.

The detailed steps of FedDRO are listed in Algorithm 2. During the local updates each client k 2

[K] updates its local model xt
k for all t 2 [T ] using the local estimate of the stochastic gradients in

Step 6. The local stochastic gradient estimates for each client k 2 [K] are denoted by r�k(xt
k; ⇠̄k)

and are evaluated using the chain rule of differentiation as

r�k(xt
k; ⇠̄

t
k) =

1
|bthk

|

P
i2bthk

rhk(xt
k; ⇠

t
k,i) +

1
|btgk

|

P
j2btgk

rgk(xt
k; ⇣

t
k,j)rf(ȳt) (7)

where ⇠̄
t
k = {b

t
hk
, b

t
gk} represents the stochasticity of the gradient estimate and b

t
hk

= {⇠
t
k,i}

|bthk
|

i=1

(resp. b
t
gk = {⇣

t
k,i}

|btgk
|

i=1 ) denotes the batch of stochastic samples of hk(·) (resp. gk(·)) utilized to
compute the stochastic gradient for each k 2 [K] and t 2 {0, 1, . . . , T � 1}. The variable ȳ

t is
designed to estimate the inner function 1/K

PK
k=1 gk(x) in (2). A standard approach to estimate

gk(x) locally for each k 2 [K] is to utilize a large batch such that the gradient bias from the inner
function estimate can be controlled Guo et al. (2022); Huang et al. (2021); Haddadpour et al. (2022).
In contrast, we adopt a momentum-based estimate of gk(·) at each client k 2 [K] that leads to a
small bias asymptotically Chen et al. (2021). We note that the estimator utilizes a hybrid estimator
that combines a SARAH Nguyen et al. (2017) and SGD Ghadimi & Lan (2013) estimate for the
function values rather than the gradients Cutkosky & Orabona (2019). Specifically, individual ytk’s
are estimated in Step 6 as

y
t
k = (1� �

t)
⇣
y
t�1
k �

1
|btgk

|

P
i2b

gk
t

gk(x
t�1
k ; ⇣tk,i)

⌘
+ 1

|btgk
|

P
i2btgk

gk(xt
k; ⇣

t
k,i). (8)

for all k 2 [K] and where �
t
2 (0, 1) is the momentum parameter. Motivated by the discussion

in Section 4.1, the parameters y
t
k 2 Rdg are shared with the server after the y

t
k update, however,

this sharing will not incur a significant communication cost since y
t
k’s are usually low dimensional

embeddings (often a scalar with dg = 1) as illustrated in Section 2.1 for DRO problems. The model
parameters are then updated using the SG evaluated using (7). Finally, after I local updates the
model potentially high-dimensional model parameters are aggregated at the server and broadcasted
back to the clients after aggregation in Step 8. Next, we state the convergence guarantees.

5 MAIN RESULT: CONVERGENCE OF FEDDRO

In the next theorem, we first state the main result of the paper detailing the convergence of FedDRO.
Theorem 5.1 (Convergence of FedDRO). For Algorithm 2, choosing the step-size ⌘

t = ⌘ =p
|b|K/T and the momentum parameter �t = 4B4

gL
2
f · ⌘

t for all t 2 {0, 1, . . . , T � 1}. Moreover,
with the selection of batch sizes |bthk

| = |b
t
gk | = |b| for all t 2 {0, 1, . . . , T � 1} and k 2 [K], and

for T � Tth where Tth is defined in Appendix F, then under Assumptions 3.2, 3.3 and 3.4 for x̄a(T )

chosen According to Algorithm 2, we have

E
��r�(x̄a(T ))

��2 
2
⇥
�(x̄0)� �(x⇤) +

��ȳ0 � g(x̄0)
��2⇤

p
|b|KT

| {z }
Initialization

+ C(|b|,K, T, I)
h
C�h�

2
h + C�g�

2
g

i

| {z }
Variance

+ C(|b|,K, T, I)
h
C�h�

2
h + C�g�

2
g

i

| {z }
Heterogeneity

,

where C(|b|,K, T, I) := max

⇢
|b|K(I�1)2

T ,
1p

|b|KT

�
and constants C�h , C�g , C�h , and C�g are

defined in Appendix F

We note that the condition on T � Tth is required for theoretical purposes. Specifically, it ensures
that the step-size ⌘ =

p
|b|K/T is upper-bounded. A similar requirement has also been posed in Yu

et al. (2019a;b); Khanduri et al. (2021) in the past. Theorem 5.1 captures the effect of heterogeneity,
stochastic variance, and the initialization on the performance of FedDRO. As can be seen from the

7
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expression in Theorem 5.1 the heterogeneity degrades the performance when the local updates, I ,
increase beyond a threshold, i.e., when the term |b|K(I � 1)2/T dominates 1/

p
|b|KT . The next

result characterizes the possible choices of I that ensure the efficient convergence of FedDRO.
Corollary 5.2 (Local Updates). Under the setting of Theorem 5.1 and choosing the number of
local updates, I , such that we have I  O(T 1/4

/(|b|K)3/4), the iterate x̄
a(T ) chosen according to

Algorithm 2 satisfies

E
��r�(x̄a(T ))

��2
2
⇥
�(x̄0)� �(x⇤) +

��ȳ0 � g(x̄0)
��2⇤

p
|b|KT

| {z }
Initialization

+
C�h�

2
h + C�g�

2
gp

|b|KT
| {z }

Variance

+
C�h�

2
h + C�g�

2
gp

|b|KT
| {z }

Heterogeneity

.

Corollary 5.2 states that there exists a choice of the number of local updates that guarantee that
FedDRO achieves the same convergence performance as a standard FedAvg Karimireddy et al.
(2019); Woodworth et al. (2020); Yu et al. (2019a); Khanduri et al. (2021) for solving the non-CO
problems. Next, we characterize the sample and communication complexities of FedDRO.
Corollary 5.3 (Sample and Communication Complexities). Under the setting of Theorem 5.1 and
choosing the number of local updates as I = O(T 1/4

/(|b|K)3/4) the following holds
(i) The sample complexity of FedDRO is O(✏�2). This implies that each client requires

O(K�1
✏
�2) samples to reach an ✏-stationary point achieving linear speed-up.

(ii) The communication complexity of FedDRO is O(✏�3/2).
The sample and communication complexities guaranteed by Corollary 5 match that of the standard
FedAvg Yu et al. (2019b) for solving stochastic non-convex non-CO problems. We note that in addi-
tion to the O(✏�3/2) communication complexity that measures the sharing of high-dimensional pa-
rameters, FedDRO also shares O(K�1

✏
�2) low-dimensional embeddings (usually scalar values as

illustrated in Section 2.1). Therefore, the total real values shared by each client during the execution
of FedDRO is O(✏�3/2

d+K
�1

✏
�2). Notice that for high-dimensional models like training (large)

neural networks, we will usually have dK � O(✏�0.5) meaning the total communication will be
O(✏�3/2

d) which is better than any Federated CO algorithm proposed in the literature Huang et al.
(2021); Gao et al. (2022); Guo et al. (2022). Importantly, to our knowledge this is the first work that
ensures linear speed up in a federated CO setting, moreover, FedDRO achieves this performance
without relying on the computation of large batch sizes.

6 EXPERIMENTS

In this section, we evaluate the performance of FedDRO with both centralized and distributed base-
lines. We, a) establish the superior performance of FedDRO in terms of training/testing accuracy,
and b) evaluate the performance of FedDRO with different numbers of local updates to capture the
effect of data heterogeneity. To evaluate the performance of FedDRO, we focus on two tasks: clas-
sification with an imbalanced dataset and learning with fairness constraints. For the first task, we
use CIFAR10-ST and CIFAIR-100-ST datasets Qi et al. (2020b) (unbalanced versions of CIFAR10
and CIFAR100 Krizhevsky et al. (2009)) for image classification, and the performance is measured
by training and testing accuracy achieved by different algorithms. For the second task, we use the
Adult dataset Dua & Graff (2017) for enforcing equality of opportunity (on protected classes) on
tabular data classification Hardt et al. (2016). For this setting, the performance is evaluated by
training/testing accuracy, and the constraint violations, which are measured by the gap between the
true positive rate of the overall data and the protected groups Haddadpour et al. (2022). Please see
Appendix B for a detailed discussion of the classification problem, dataset description, experiment
settings, and additional experimental evaluation.

Baseline methods. For the CIFAR10-ST and CIFAR100-ST datasets we compare FedDRO with
popular centralized baselines for classification with imbalanced data. The baselines adopted for
comparison are a popular DRO method, FastDRO Levy et al. (2020), a primal-dual SGD approach
to solve constrained problems with many constraints, PDSGD Xu (2020), and a popular baseline
minibatch SGD, MBSGD, customized for CO Ghadimi & Lan (2013). For the adult dataset, we
use GCIVR Haddadpour et al. (2022) as the baseline distributed model to compare with FedDRO,
since like FedDRO it is the only algorithm that can deal with compositional and non-compositional
objectives at the same time. We also implement a simple parallel SGD as a baseline that ignores the
fairness constraints, referred to as unconstrained in the experiments.

8



Under review as a conference paper at ICLR 2024

Figure 1: Train and test accuracy vs communication rounds for CIFAR10-ST and CIFAR100-ST.

Figure 2: Train and test accuracy of FedDRO on
the CIFAR10-ST and CIFAR100-ST for different I .

Implementation details. We use 8 clients to
model the distributed setting and split the (unbal-
anced) dataset equally for each client. We use
ResNet20 for classification tasks on CIFAR10-ST
and CIFAR100-ST datasets. For a fair comparison
with centralized baselines, we choose I = 1 for
FedDRO and implement a parallel version of the
centralized algorithms where the overall gradient
computation is K times larger for each algorithm.
This is to make sure that the overall gradient com-
putations in each step are uniform across all algorithms. Performance with different values of I is
evaluated separately. For each algorithm, we used a batch size of 16 per client, and the learning
rates were tuned from the set {0.001, 0.01, 0.05, 0.1}, the learning rate was dropped to 1/10th after
90 communication rounds. For fairness-constrained classification on the Adult dataset, we use a
logistic regression model. For this experiment, we adopt the parameter settings suggested in Had-
dadpour et al. (2022), for FedDRO we keep the same setting as in the earlier task. All results are
averaged over 5 independent runs.

Figure 3: Comparison of FedDRO, GCIVR, and the unconstrained baseline
(first two figures). Performance of FedDRO with different I (rightmost figure).

Discussion. In Fig-
ure 1, we evaluate the
performance of Fed-

DRO against the parallel
implementations of the
centralized baselines
on unbalanced CIFAR
datasets. Note that Fed-

DRO provides superior
training and comparable
test accuracy to the
state-of-the-art methods. In Figure 2, we evaluate the performance of FedDRO for a different
number of local updates, I . Note that as I increases the performance improves, however, beyond
a certain, I , the performance doesn’t improve capturing the effect of client drift because of
data heterogeneity. Finally, in Figure 3 we assess the test performance of FedDRO against the
distributed baseline GCIVR on the Adult dataset. We observe that FedDRO outperforms both
GCIVR and unconstrained formulation in terms of accuracy and matches the constraint violation
performance of GCIVR as communication rounds increase. Finally, for the rightmost image we
evaluate the performance of FedDRO with different values of I , we notice that increasing the value
of I leads to improved performance, however, beyond a certain threshold (approximately over 32),
the performance saturates as a consequence of client drift.

Conclusion and limitations. In this work, we first established that vanilla FedAvg algorithms are
incapable of solving CO problems in the FL setting. To address this challenge, we showed that
additional (low-dimensional) embeddings of the stochastic compositional objective are required to
be shared to guarantee convergence of the SGD-based FL algorithms to solve CO of the form (2).
To this end, we proposed FedDRO, the first federated CO framework that achieves linear speedup
with the number of clients without requiring the computation of large batch sizes. We conducted
numerical experiments on various real data sets to show the superior performance of FedDRO com-
pared to state-of-the-art. An interesting future problem to be addressed includes limiting the privacy
leakage of FedDRO while sharing the low-dimensional embeddings.
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