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Abstract001

Multimodal Large Language Model (MLLM)002
often suffer from hallucinations. They over-rely003
on partial cues and generate incorrect responses.004
Recently, methods like Visual Contrastive De-005
coding (VCD) and Instruction Contrastive De-006
coding (ICD) have been proposed to mitigate007
hallucinations by contrasting predictions from008
perturbed or negatively prefixed inputs against009
original outputs. In this work, we uncover that010
methods like VCD and ICD fundamentally in-011
fluence the model’s internal attention dynam-012
ics. This observation suggests that their effec-013
tiveness may not stem merely from surface-014
level modifications to logits but from deeper015
shifts in attention distribution. Inspired by this016
insight, we propose an attention-steerable con-017
trastive decoding framework that directly in-018
tervenes in the model’s attention mechanisms019
to offer a more principled approach to mitigat-020
ing hallucinations. Specifically, we introduce021
positive and negative steering as two comple-022
mentary directions for adapting the model’s023
internal attention distributions. Rather than024
passively adjusting logits – as it is commonly025
done – our method dynamically modulates at-026
tention pathways within the contrastive decod-027
ing process. This enables selective enhance-028
ment or suppression of visual feature contri-029
butions in a structured manner. Furthermore,030
we propose a dynamic selection mechanism to031
identify text-centric heads – those that predom-032
inantly attend to text over visual features – for033
targeted positive steering, as well as a comple-034
mentary mechanism to select the most critical035
visual tokens for negative steering, enabling036
more effective attention adjustments. Our ex-037
periments across multiple MLLM architectures038
(e.g., LLaVA-1.5 7B, LLaVA-NeXT 7B, Phi2-039
SigLIP) and diverse decoding methods (greedy040
search, beam search, nucleus sampling) demon-041
strate that our approach significantly reduces042
hallucinations and improves the performance043
on benchmarks such as POPE, CHAIR, and044
MMHAL-BENCH, while simultaneously en-045

hancing performance on standard VQA bench- 046
marks, including MMMU, MM-VET, SCI- 047
ENCEQA, TEXTVQA, and GQA. 048

1 Introduction 049

Recent advances in large language models (LLMs) 050

(Yang et al., 2024; Touvron et al., 2023; Abdin 051

et al., 2024; Raffel et al., 2023; Brown et al., 2020; 052

Devlin et al., 2019) have led to impressive results in 053

a wide array of natural language processing tasks. 054

Building on these successes, researchers have ex- 055

tended LLMs by visual inputs that enable multi- 056

modal large language models (MLLMs) such as 057

LLaVA (Liu et al., 2023b, 2024b). These MLLMs 058

can handle complex tasks like image captioning 059

(Anderson et al., 2018), visual question answering 060

(Agrawal et al., 2016), and multimodal dialogue 061

(Das et al., 2017). Existing approaches (Dai et al., 062

2023; Liu et al., 2023b, 2024b; Zhou et al., 2024; 063

Chen et al., 2023a; Alayrac et al., 2022) show re- 064

markable potential to bridge the gap between vision 065

and language. 066

Despite these achievements, MLLMs often in- 067

herit a critical limitation from LLMs: the tendency 068

to produce hallucinations (Huang et al., 2024b; Bai 069

et al., 2024; Liu et al., 2024a). These hallucina- 070

tions arise when a model over-relies on partial or 071

misleading cues, generating responses that are in- 072

correct or do not correspond to the provided input. 073

To mitigate hallucinations, two general strate- 074

gies have emerged: training-phase interventions 075

and inference-phase interventions. In the training 076

phase, auxiliary supervision (Chen et al., 2023b) or 077

reinforcement learning (Ben-Kish et al., 2024) can 078

help align model outputs with factual or human- 079

preferred references. However, these approaches 080

require additional data or complex reward model- 081

ing, which may be costly or infeasible in certain 082

scenarios. In contrast, inference-phase methods 083

(Zhou et al., 2024; Zhao et al., 2024; Deng et al., 084

2024; Wang et al., 2024; Leng et al., 2023) aim to 085
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Figure 1: Impact of VCD and ICD on attention dis-
tribution. We conduct an image description task us-
ing LLaVA-1.5 on 500 randomly sampled images from
the COCO dataset while monitoring the internal atten-
tion distribution within the LLM component. We com-
pare the changes in attention under different settings of
Visual Contrastive Decoding (VCD), Instruction Con-
trastive Decoding (ICD), and their combination, relative
to the original LLaVA model. The x-axis represents dif-
ferent attention categories: system tokens (sys), visual
tokens (vis), textual tokens (text), and output tokens
(output). The y-axis indicates the attention difference
relative to the original model. VCD (solid blue bars)
reduces attention to visual tokens while slightly increas-
ing attention to textual tokens, with a stronger effect as
the number of noising steps increases. ICD (hatched
bars) exhibits a similar trend, further decreasing visual
attention and increasing text attention, where stronger
negative prefixes (see text in the legend) result in a more
pronounced shift. When combining VCD and ICD (dot-
ted bars), the reduction in visual attention is further
amplified, while the focus on textual tokens increases.
These findings indicate that the effectiveness of VCD
and ICD originates from underlying shifts in the model’s
attention distribution rather than solely from the con-
trastive decoding process.

correct or filter erroneous outputs without retrain-086

ing. Contrastive decoding is particularly appealing087

as it leverages negatively perturbed or prefixed in-088

puts to steer the model away from hallucinations in089

a training-free manner. Two notable recent meth-090

ods for contrastive decoding are Visual Contrastive091

Decoding (VCD) (Leng et al., 2023) that perturbs092

an input image (e.g., via noising) to generate a “neg-093

ative result” of logits, which is then subtracted from094

the original logits to suppress hallucinations, and095

second, Instruction Contrastive Decoding (ICD)096

(Wang et al., 2024) that prepends a negative pre-097

fix to the prompt (e.g., “You are a confused ob-098

ject detector”) to generate a signal that shifts the099

model’s predictions away from hallucinated con-100

tent. Both methods offer a lightweight, yet effec-101

tive approach to reducing hallucinations. However,102

upon closer examination, we find that these meth-103

ods construct contrasting branches through surface- 104

level modifications – either perturbing the image 105

(VCD) or prefixing the prompt (ICD) – without 106

explicitly addressing the underlying cause of hallu- 107

cinations. Attention steering like OPERA and PAI 108

(Liu et al., 2024c; Huang et al., 2024a) is also a 109

common inference-phase remedy to reduce halluci- 110

nation. However, PAI introduces the notion of “text 111

inertia” – the tendency of an MLLM to keep gen- 112

erating text-driven content even when the image is 113

removed – but does not articulate why steering the 114

attention matrix is the necessary lever to overcome 115

this inertia. 116

In our experiments (Fig. 1), we observe that 117

both VCD and ICD consistently cause fundamen- 118

tal shifts in the internal attention distribution: they 119

tend to reduce attention on visual tokens and am- 120

plify attention on textual tokens. This insight raises 121

a natural question: why not directly steer the atten- 122

tion mechanism itself? To this end, we propose an 123

Attention-Steerable Contrastive Decoding (ASCD) 124

framework to manipulate attention. Specifically, 125

the attention modification is integrated into a con- 126

trastive decoding pipeline to either enhance visual 127

cues or to suppress negative signals. We further de- 128

velop a dynamic head-selection mechanism to iden- 129

tify “text-centric” heads that disproportionately fo- 130

cus on textual cues, enabling more targeted positive 131

adjustments. In parallel, we introduce a comple- 132

mentary mechanism that restricts negative steering 133

to only the most critical visual tokens, ensuring that 134

suppression is applied solely where necessary to 135

mitigate hallucinations while preserving essential 136

visual details. In summary, our contributions are as 137

follows: (1) We analyze how recent contrastive de- 138

coding methods (VCD, ICD) create “negative sam- 139

ples” that fundamentally alter attention; (2) We pro- 140

pose an attention-steerable contrastive decoding 141

method that explicitly modulates attention distribu- 142

tions to offer a more principled way to mitigate hal- 143

lucinations in the inference phase; (3) We faithfully 144

reproduce VCD and ICD to ensure fair compari- 145

son with prior work. Across three representative 146

MLLM backbones (LLaVA-1.5 7B, LLaVA-NeXT 147

7B, and Phi2-SigLIP), three decoding schemes 148

(greedy, nucleus, and beam search), and three 149

hallucination-focused benchmarks (Rohrbach et al., 150

2019; Li et al., 2023b; Sun et al., 2023) (POPE, 151

CHAIR, MMHAL-BENCH), our approach consis- 152

tently reduces hallucinations and strengthens vi- 153

sual grounding. At the same time, it improves 154

performance on standard VQA benchmarks (Yue 155
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et al., 2024; Yu et al., 2024; Lu et al., 2022; Singh156

et al., 2019; Hudson and Manning, 2019), including157

MMMU, MM-VET, SCIENCEQA, TEXTVQA,158

and GQA whereas other methods suffer from de-159

graded performance on these benchmarks.160

2 Related Work161

Multimodal Large Language Models. Multi-162

modal Large Language Models (MLLMs) have163

significantly advanced the field of artificial intel-164

ligence by integrating vision and language under-165

standing, enabling a wide range of vision-language166

tasks (Dai et al., 2023; Zhu et al., 2023; Liu et al.,167

2024b, 2023b; Alayrac et al., 2022; Chen et al.,168

2023a; Zhou et al., 2024). These models typically169

follow a two-stage training paradigm: (1) large-170

scale pretraining on web-scale image-text pairs171

(Liu et al., 2023b; Li et al., 2023a) to learn cross-172

modal representations, and (2) visual instruction173

tuning (Liu et al., 2023a; Bi et al., 2025) on task-174

specific datasets to enhance multimodal instruction-175

following capabilities. While this paradigm has176

led to substantial improvements in vision-language177

reasoning, MLLMs still face key challenges, such178

as hallucination – where the model generates con-179

tent that is inconsistent with the given visual input.180

(Huang et al., 2024b; Bai et al., 2024; Liu et al.,181

2024a).182

Mitigating Hallucinations in MLLMs. Hallu-183

cination in MLLMs is particularly pronounced in184

open-ended generation tasks, where models may185

produce content that is not aligned with the pro-186

vided visual input (Huang et al., 2024a; Jing et al.,187

2024; Zhang et al., 2023). Some approaches focus188

on the mitigation of data bias, scaling-up of vi-189

sion resolution, and alignment optimization. Love-190

nia et al. (2024) introduce a technique that mines191

95,000 negative samples by replacing original cat-192

egories, attributes, or quantity information with193

similar but incorrect alternatives. This fine-grained194

approach effectively enriches the contrastive sig-195

nal during training, thereby enhancing the model’s196

robustness. Chen et al. (2024) propose InternVL,197

which scales the vision encoder up to 6 billion pa-198

rameters and processes images with widths ranging199

from 1,664 to 6,144 pixels. While this method200

improves visual detail and alignment, it requires201

significant computational resources for pretraining202

with large-scale data. Sun et al. (2023) employ203

Reinforcement Learning from Human Feedback204

(RLHF) (Stiennon et al., 2022) to align different205

modalities during training. This optimization strat- 206

egy leads to a reduction in hallucinations by better 207

integrating visual and textual cues. 208

Contrastive Decoding Approaches. Recent 209

work has explored contrastive decoding as an effec- 210

tive, training-free means to mitigate hallucinations. 211

For instance, Leng et al. (2023) introduced Visual 212

Contrastive Decoding (VCD), which perturbs the 213

input image to generate a negative logit branch that 214

is subtracted from the original predictions, while 215

Wang et al. (2024) employs a negative prompt to 216

steer outputs away from hallucinated content. Huo 217

et al. (2024) leverages a Context and Text-aware To- 218

ken Selection (CT2S) strategy to selectively retain 219

the most informative vision tokens in early decoder 220

layers, thereby amplifying beneficial multimodal 221

context and suppressing spurious hallucinations. 222

3 Preliminaries 223

Modern MLLMs integrate text and visual inputs 224

based on powerful encoders that enable merging 225

the modalities into a unified representation that is 226

processed by a multi-layer Transformer. While 227

these models enable producing coherent responses, 228

they heavily rely on internal attention mechanisms 229

that dictate how visual and textual cues are com- 230

bined. As discussed in Section 3.2, subtle vari- 231

ations in these attention distributions can signifi- 232

cantly impact the generated output. This observa- 233

tion motivates our approach: by explicitly modulat- 234

ing attention, we aim to enhance visual grounding 235

and mitigate hallucinations. 236

3.1 MLLM Formulation 237

We consider a multimodal large language model 238

(MLLM) that processes an image I and a text 239

prompt x = {x1, . . . , xN} to generate an output 240

sequence y = {y1, . . . , yM} in an autoregressive 241

manner. Let θ denote the model parameters. For- 242

mally, the model maximizes: 243

y∗ = argmax
y

M∏
t=1

pθ

(
yt

∣∣∣ I,x, y<t

)
, (1) 244

where y<t denotes all previously generated tokens. 245

Embeddings. A unified input is obtained from 246

encoded image and embedded text: 247

Z = [fv(I); ft(x)]. (2) 248

Transformer Architecture. The MLLM pro- 249

cesses Z through L Transformer layers (Vaswani 250
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System: A chat between a curious user and an artificial 
intelligence assistant. The assistant gives helpful, 
detailed, and polite answers to the human's questions.

Question: What is the color of the orange here?

last token

vissys text output

last token

vissys text output

decrease ↓

vision attention

increase ↑
text attention

last token

vissys text output

Answer: blue

Answer: orange

Answer: orange

(b) negative-steered
logits

(1 + α) ⨂ − α ⨂ =

(d) attention-steerable
contrastive decoding

logits

negative-steered logitspositive-steered logits
attention-steerable

contrastive
decoding logits

decrease ↓
text attention

last token

vissys text output

Answer: blue

last token

vissys text output

Answer: blue

(c) positive-steered
logits

increase ↑

vision attention

last token

vissys text output

Answer: blue

(a) 

Figure 2: A motivating example of proactive attention steering in a visually ambiguous scenario. (a) shows the
conversation context where the “orange” is actually tinted blue. (b) shows how the logits vary based on negative-
steering. (c) shows how the logits vary based on positive-steering. (d) illustrates how attention-steerable contrastive
decoding, which combines both negative and positive steering in a unified framework, reduce hallucinations and
produce perception-driven answers.

et al., 2023):251

H(l) = TransformerLayer(l)
(
H(l−1)

)
, H(0) = Z.

(3)252

Output Prediction. The final hidden state h
(L)
t253

is mapped to a probability distribution over the254

vocabulary:255

pθ(yt | I,x, y<t) = Softmax
(
h
(L)
t WP

)
, (4)256

where WP is the output projection matrix.257

3.2 Proactive Steering of Attention258

In Figure 1, we show how Visual Contrastive De-259

coding (VCD) and Instruction Contrastive Decod-260

ing (ICD) indirectly alter attention distributions.261

Building on this insight, we now ask: what if we262

explicitly steer the model’s attention? Figure 2263

provides a motivating example, illustrating how ac-264

tively modulating attention can influence the final265

logits distribution.266

Consider a simple query: “What is the color267

of the orange here?” The conversation context268

(Figure 2a) is based on LLaVA-1.5 7B, with a pro-269

vided image in which the “orange” fruit appears270

to be tinted blue. We experiment with two dis-271

tinct attention-steering scenarios: negative-steered272

logits (Figure 2b) and positive-steered logits (Fig-273

ure 2c). In each case, we proportionally adjust274

the visual or textual attention before finalizing the275

output distribution.276

In the negative-steered branch, we reduce at-277

tention to visual tokens or boost attention to the278

textual tokens. As shown in the histogram of logits, 279

the model reduces its reliance on the visual input, 280

causing it to fall back more heavily on the LLM’s 281

inherent priors. As a result, it is more likely to 282

generate answers that align with typical linguistic 283

associations rather than the actual content of the 284

image – insisting the color is “orange”. Conversely, 285

the positive-steered branch increases attention to 286

visual tokens or downgrades textual tokens, making 287

the model more sensitive to the actual (albeit unex- 288

pected) color in the image. This leads the model to 289

answer “blue” with higher probability. 290

In addition to these unidirectional adjustments, 291

we further integrate attention steering into the con- 292

trastive decoding framework. Instead of using the 293

original logits directly (as in VCD or ICD), we in- 294

ject the attention-modulated logits. Mathematically, 295

we redefine the contrastive decoding formulation 296

by replacing the original logits adjustment with a 297

positively steered version: 298

pfinal
θ = (1 + α)p

pos-steered
θ − αp

neg-steered
θ , (5) 299

where ppos-steered
θ and pneg-steered

θ represent the output 300

logits modified by positively or negatively steered 301

attention. 302

By integrating contrastive decoding with explicit 303

attention manipulation, our attention-steerable con- 304

trastive decoding framework (Figure 2d), sharpens 305

the output distribution which enhances the likeli- 306

hood of the correct response, while reducing the 307

impact of competing distractors. 308
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Figure 3: Distribution of text-centric heads across dif-
ferent models and experiment settings. Each heatmap
visualizes how frequently a given head occurs among
the most text-focused heads. The panel in the center
(a) show the result of LLaVA-1.5 with a generation
length of 64 tokens; (b) and (c) show results of the same
model with longer generation (512 tokens) and a dif-
ferent image set. Despite these changes, LLaVA-1.5
exhibits minimal JS divergence, which indicates consis-
tent text-centric heads. In contrast, Phi2-SigLIP (d) and
LLaVA-NeXT (e) deviate substantially from LLaVA-
1.5, revealing model-specific attention biases and higher
JS divergence.

3.3 Text-centric Heads309

Previously, we have highlighted the impact of ad-310

justing attention. In this section, we discuss which311

heads in the model are most prone to over-reliance312

on textual cues. To this end, we conduct an exper-313

iment to identify "text-centric" heads, i.e., those314

with disproportionately high text-to-visual atten-315

tion ratios, and examine their consistency under316

different generation conditions and image sets. The317

experiment setup is detailed in Appendix A.318

Results and Observations. Figure 3 shows the319

resulting heatmaps F for multiple models and gen-320

eration settings. The panel in the center (a) corre-321

sponds to LLaVA-1.5 on N = 500 images with a322

generation length of 64 tokens. The two heatmaps323

at the bottom show results of the same model but324

with either an increased generation length to 512 to-325

kens (b, bottom left), or using a different set of 500326

images (c, bottom right). Despite these changes,327

the distribution of top text-focus heads remains vi-328

sually similar, and the small Jensen–Shannon (JS)329

divergences confirm that these text-centric heads330

are largely invariant under different sampling con-331

ditions for the same model.332

In contrast, the Phi2-SigLIP (d, top-left) and333

LLaVA-NeXT (e, top-right) panels deviate signif-334

icantly from LLaVA-1.5 even under the same ex-335

𝓕𝒑𝒐𝒔𝒕𝒊𝒗𝒆_𝒔𝒕𝒆𝒆𝒓
Head 1
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Head 4
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Head 6*

Head 1
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Head 3

Head 4
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𝓕𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆_𝒔𝒕𝒆𝒆𝒓
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: non-steered attentionCritical Visual TokensHead h* : myopic head

vissys text output

Figure 4: Illustration of positive and negative steering.
Left: text-centric heads are boosted (positive_steer) to
emphasize visual content; Right: a small set of critical
visual tokens is suppressed (negative_steer), inducing a
stronger contrastive effect. These selective adjustments
work in tandem to reduce hallucinations and improve
grounding.

periment settings, with higher JS divergence. This 336

suggests that each model has its own unique set 337

of heads that consistently favor textual attention 338

over visual cues. However, within a single model, 339

the text-centric heads persist across varied prompts, 340

image sets, and generation lengths. 341

Implications. The consistent presence of the 342

text-centric heads within the same model indicates 343

that certain heads are inherently prone to focus- 344

ing on textual signals rather than visual content. 345

In Section 4.2 we describe how this insight can 346

be leveraged to selectively target the problematic 347

heads when applying our positive steering strategy. 348

Rather than uniformly amplifying attention across 349

all heads, we concentrate on those that are most 350

responsible for text-dominant attention, thereby 351

avoiding unnecessary modifications to heads that 352

are well-balanced in their visual-textual focus. 353

4 Methodology 354

In this section, we present our attention-steerable 355

contrastive decoding framework, which explicitly 356

modulates the model’s attention to mitigate hallu- 357

cinations. Our approach has two stages: (1) Text- 358

centric Head Selection, which identifies the heads 359

most prone to text-centric bias, and (2) Attention 360

Steering, where we apply positive steering to text- 361

centric heads and negative steering to a small subset 362

of visually critical tokens. We then integrate these 363

adjusted logits for generation into a contrastive de- 364

coding pipeline. 365

4.1 Text-centric Head Selection 366

As detailed in Algorithm 1, we start by identifying 367

the most text-centric heads using a small reference 368

dataset (e.g., 500 images) for a task (e.g., image 369

description). For each sample, we compute the 370
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Algorithm 1 Text-centric Head Selection (Offline)

Require: Reference dataset {I1, . . . , IN}, MLLM
with L layers and H heads per layer, Final text-
centric head count κTCH

Ensure: HPOS (set of selected text-centric heads)
1: Initialize a global counter F ∈ RL×H to zeros
2: for i← 1 to N do
3: Run MLLM on image Ii (e.g., image de-

scription)
4: for all head (r, c) in layer-head grid do
5: Compute attention ratio:

Qi(r, c) =
textAttn(r, c)
visAttn(r, c)

6: end for
7: Identify top-32 indices of Qi (largest ra-

tios) and store in Ii
8: for all (r, c) ∈ Ii do
9: F (r, c)← F (r, c) + 1

10: end for
11: end for
12: Sort all heads (r, c) in descending order by

F (r, c)
13: Select top κTCH heads:

HPOS ← first κTCH heads in sorted list

14: returnHPOS

ratio of textual attention to visual attention (Eq. 6371

in Appendix A) and take the top 32 heads with the372

highest ratio. We accumulate these counts over all373

samples, then choose the top κTCH heads as “text-374

centric”. This step is motivated by our finding375

(Section 3.3) that certain heads consistently favor376

textual content over visual cues.377

4.2 Attention Steering378

Text-centric Head Awareness and Critical Vi-379

sual Token Selection. As shown in Figure 4, we re-380

fine our method by incorporating text-centric head381

selection for positive steering and critical token382

identification for negative steering. Specifically,383

given the selected text-centric heads, we positively384

steer them by increasing their attention weights385

with a strength of αPOS. Figure 5a highlights how386

targeted steering in text-centric heads improves the387

positive steering effectiveness. Simultaneously, we388

apply negative steering to the top κVIS most critical389

visual tokens – those receiving the highest aggre-390

gate attention across heads – reducing their atten-391

tion scores by αNEG across all heads. Through this392

strategy, we deliberately obscure only the most piv-393

otal cues – this targeted suppression is sufficient to394

induce a strong hallucination effect in the negative395

branch, leading to improved contrastive decoding396

Algorithm 2 Attention-Steerable Contrastive De-
coding

Require: Image I, Text-centric headsHPOS (from
Algorithm 1), Critical vis-token count κVIS,
Steer strengths αPOS, αNEG, Contrastive weight
α, Truncation threshold β, MLLM with L lay-
ers and H heads per layer

Ensure: pfinal
θ (final logits from ASCD)

Step 1: Forward Pass with Positive Steering
1: for l← 1 to L do
2: for h← 1 to H do
3: Compute attention matrix A

(l)
h

4: if (l, h) ∈ HPOS then
5: A

(l)
h ← A

(l)
h + αPOS |A(l)

h |
6: end if
7: end for
8: Normalize A(l) and continue
9: end for

10: Obtain logits ppos-steered
θ

Step 2: Forward Pass with Negative Steer-
ing

11: for l← 1 to L do
12: for h← 1 to H do
13: Compute attention matrix A

(l)
h

14: Identify top-κVIS critical visual tokens
V

15: for all v ∈ V do
16: A

(l)
h (v) ← A

(l)
h (v) −

αNEG |A(l)
h (v)|

17: end for
18: end for
19: Normalize A(l) and continue
20: end for
21: Obtain logits pneg-steered

θ
Step 3: Contrastive Decoding with Trunca-
tion

22: praw
θ ← (1 + α) p

pos-steered
θ − αp

neg-steered
θ

23: cutoff ← log(β) + max(praw
θ )

24: pfinal
θ ← praw

θ .masked_fill(ppos-steered
θ <

cutoff,−∞)
25: return pfinal

θ

compared to a blanket suppression of all visual 397

tokens. In Figure 5b, we demonstrate the impact 398

of selectively applying negative steering to critical 399

visual tokens. 400

Integration with Contrastive Decoding with 401

Truncation. Building on the attention-steering 402

process, we first obtain two output distributions: 403

p
pos-steered
θ from the positively steered branch and 404

p
neg-steered
θ from the negatively steered branch. We 405

then combine these into contrastive decoding with 406

a truncation mechanism, as detailed in the Step 3 407

of Algorithm 2. This process not only reinforces 408

visually grounded predictions but also effectively 409

mitigates the influence of spurious textual biases. 410
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(a) Effectiveness of positive-steering 
only for text-centric heads

(b) Effectiveness of negative-steering
only for critical visual token 

Figure 5: Comparative effectiveness of selective at-
tention steering. (a): Positive steering applied only
to text-centric heads (32 heads with the highest text-
to-visual ratio) outperforms random or blanket head
selection across various decoding strategies (Greedy,
Nucleus, Beam), leading to higher POPE Accuracy and
F1. (b): Negative steering focused on a small subset of
critical visual tokens, integrated with contrastive decod-
ing, significantly reduces CHAIR metrics (less halluci-
nation) and boosts POPE metrics compared to randomly
suppressing visual tokens of the same number. These
results validate that targeted attention modulation on
text-centric heads (for positive steering) and critical
visual tokens (for negative steering) yields stronger hal-
lucination mitigation and more grounded responses.

5 Experiments411

To evaluate the effectiveness of our attention-412

steerable contrastive decoding framework in mit-413

igating hallucinations in MLLMs, we conduct a414

range of experiments. This includes three di-415

verse benchmarks – CHAIR, POPE, and MMHal-416

Bench – each designed to assess different aspects417

of object hallucinations. To ensure the broad ap-418

plicability and robustness of our approach, we also419

test it on three representative models – LLaVA-1.5420

7B, LLaVA-NeXT 7B, Phi2-SigLIP, and employ421

three different decoding strategies: greedy search,422

nucleus sampling, and beam search. Details of423

the experimental settings are provided in Appendix424

B. Furthermore, we evaluate performance on stan-425

dard VQA benchmarks including MMMU, MM-426

VET, ScienceQA, TextVQA, and GQA to verify427

that the proposed method preserves – rather than di-428

minishes – the model’s original visual understand-429

ing.430

It is important to note that current benchmarks431

for evaluating multimodal models are highly vari-432

able. For example, baseline models such as LLaVA-433

1.5 7B often report different metric values between434

different papers. Moreover, the CHAIR metric435

relies on random image sampling, which further436

complicates direct comparisons between papers. To437

address these issues, we faithfully reproduced both438

VCD and ICD using the parameters specified in439

Model Decoding Method CHAIRs (↓) CHAIRi (↓)

LLaVA-1.5 7B

greedy
Orig 53.2 13.5
VCD 56.8 15.2
ICD 52.8 13.2

ASCD 35.6 8.6

nucleus
Orig 59.0 17.4
VCD 59.8 16.6
ICD 57.4 15.6

ASCD 43.6 11.3

beam
Orig 54.8 15.3
VCD 58.8 16.4
ICD 52.6 13.9

ASCD 40.8 10.1

LLaVA-NeXT 7B

greedy
Orig 31.6 7.5
VCD 37.2 9.7
ICD 32.8 8.4

ASCD 21.8 7.0

nucleus
Orig 30.4 8.0
VCD 40.4 10.4
ICD 39.4 9.9

ASCD 21.2 6.7

beam
Orig 34.0 8.5
VCD 36.6 9.1
ICD 31.8 7.6

ASCD 21.0 6.5

Phi2-SigLIP

greedy
Orig 29.0 6.9
VCD 39.4 9.6
ICD 33.4 7.7

ASCD 21.8 5.4

nucleus
Orig 36.0 9.8
VCD 36.0 8.1
ICD 37.0 9.4

ASCD 26.0 8.0

beam
Orig 30.4 6.9
VCD 36.0 8.4
ICD 31.0 7.0

ASCD 24.6 5.7

Table 1: CHAIR Evaluation Results. Lower CHAIRs
and CHAIRi values indicate better performance in re-
ducing hallucination. The best values for each metric
within a model-decoding combination are highlighted
in bold.

their original papers and repositories, ensuring that 440

our evaluations are conducted under consistent con- 441

ditions. This allows for a more reliable comparison 442

between our method and existing approaches. 443

CHAIR. Table 1 shows the CHAIR metrics 444

(CHAIRs and CHAIRi), which measure object hal- 445

lucination in image captioning. Across all mod- 446

els and decoding strategies, ASCD consistently 447

achieves lower CHAIR values than Orig, VCD, 448

or ICD, which illustrates ASCD’s effectiveness at 449

mitigating object-level hallucinations. 450

(a) Radar Chart of MMHal-Bench 
for LLaVA-1.5 7B (greedy)

(b) Radar Chart of MMHal-Bench 
for LLaVA-1.5 7B (nucleus)

Figure 6: Radar charts of MMHal-Bench results.
Each axis represents a different evaluation dimension
in MMHal-Bench, and a larger enclosed area indicates
better overall performance.
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Model Decoding Method Popular Acc Popular F1 Random Acc Random F1 Adv. Acc Adv. F1 Avg. Acc Avg. F1

LLaVA-1.5 7B

greedy
Orig 85.83 84.35 86.67 85.51 83.60 82.31 85.37 84.06
VCD 84.67 83.59 86.43 85.53 81.70 80.93 84.27 83.35
ICD 83.47 80.85 83.68 81.51 82.07 79.56 83.07 80.64
PAI - - - - - - 85.82 85.79

ASCD 87.20 86.69 89.48 89.09 82.90 82.97 86.53 86.25

nucleus
Orig 83.47 81.74 84.78 83.44 80.83 79.53 83.03 81.57
VCD 83.83 82.61 85.12 84.12 80.97 80.18 83.31 82.30
ICD 82.63 79.85 82.68 80.43 81.07 78.58 82.13 79.62
PAI - - - - - - 81.72 82.87

ASCD 86.47 85.56 87.94 87.26 82.83 82.39 85.75 85.07

beam
Orig 85.87 84.39 86.70 85.55 83.63 82.36 85.40 84.10
VCD 84.43 83.30 86.19 85.31 82.20 81.30 84.27 83.30
ICD 83.47 80.83 83.61 81.43 82.03 79.51 83.04 80.59
PAI - - - - - - 86.33 85.89

ASCD 87.20 86.69 89.48 89.09 82.87 82.95 86.52 86.24

LLaVA-NeXT 7B

greedy
Orig 83.97 81.77 85.09 83.26 82.73 80.64 83.93 81.89
VCD 84.87 83.12 86.19 84.84 83.53 81.89 84.86 83.28
ICD 84.53 82.63 85.70 84.15 83.10 81.33 84.44 82.70

ASCD 84.90 83.30 86.39 85.09 83.27 81.82 84.85 83.40

nucleus
Orig 81.73 79.26 83.61 81.75 79.87 77.81 81.74 79.61
VCD 84.20 82.51 84.78 83.26 81.67 80.07 83.55 81.95
ICD 83.60 81.68 85.29 83.78 82.13 80.47 83.67 81.98

ASCD 84.60 82.86 86.19 84.77 83.27 81.65 84.69 83.09

beam
Orig 84.17 82.04 85.26 83.49 82.90 80.88 84.11 82.14
VCD 84.67 82.86 86.19 84.81 83.13 81.42 84.66 83.03
ICD 84.57 82.68 85.74 84.19 83.13 81.37 84.48 82.75

ASCD 84.97 83.39 86.43 85.14 83.33 81.91 84.91 83.48

Phi2-SigLIP

greedy
Orig 87.10 85.95 88.45 87.57 86.03 84.97 87.19 86.16
VCD 86.00 85.14 87.97 87.37 84.70 84.09 86.22 85.53
ICD 85.50 84.14 87.25 86.15 84.73 83.44 85.83 84.58

ASCD 87.77 86.74 88.90 88.14 86.77 85.81 87.81 86.90

nucleus
Orig 85.73 84.49 86.87 85.87 83.93 82.96 85.51 84.44
VCD 85.60 84.72 86.91 86.21 84.30 83.64 85.60 84.86
ICD 84.90 83.46 85.98 84.86 83.00 81.73 84.63 83.35

ASCD 87.50 86.41 88.52 87.69 86.33 85.29 87.45 86.46

beam
Orig 87.10 85.95 88.45 87.57 86.03 84.97 87.19 86.16
VCD 86.43 85.63 87.90 87.36 84.57 83.92 86.30 85.64
ICD 85.50 84.14 87.25 86.15 84.73 83.44 85.83 84.58

ASCD 87.77 86.74 88.90 88.14 86.77 85.81 87.81 86.90

Table 2: POPE Evaluation Results. The best values for each metric within a model-decoding combination are
highlighted in bold. If our ASCD achieves the second-best result, it is additionally marked with an underline.

POPE. Table 2 reports the accuracy and F1451

scores under the POPE evaluation, which probes452

object presence with random, popular, and adver-453

sarial queries. Higher values indicate fewer hal-454

lucinations. Again, ASCD achieves the best or455

near-best performance in all cases. These gains456

persist across different model architectures, sug-457

gesting that attention steering is robust to model458

size and design variations.459

MMHal-Bench. Figure 7 illustrates the radar460

charts of MMHal-Bench results for LLaVA-1.5 7B461

under greedy and nucleus decoding. Each axis462

represents a sub-dimension of the benchmark, and463

a larger area signifies better overall performance.464

ASCD exhibits the largest enclosed area, outper-465

forming baseline, VCD, and ICD in most dimen-466

sions. This improvement aligns with the CHAIR467

and POPE findings, underscoring the benefit of se-468

lectively steering attention to reduce hallucinations.469

Standard VQA Benchmarks. To verify that470

ASCD does not sacrifice a model’s general visual-471

question-answering ability, it’s evaluated on five472

widely-used VQA datasets. Across all three back-473

bones and all decoding strategies, ASCD either474

matches or surpasses the original model on every475

dataset, while VCD and ICD consistently degrade 476

performance as shown in the Appendix C. 477

Summary. Our experiments confirm that ASCD 478

effectively reduces hallucinations and improves 479

alignment with visual content, regardless of the 480

model or decoding strategy employed. 481

6 Conclusion 482

We have shown that existing contrastive methods 483

(e.g. VCD and ICD) inadvertently shift the inter- 484

nal attention distribution in MLLM, prompting us 485

to investigate a more direct and principled way 486

to modulate attention. We proposed an attention- 487

steerable contrastive decoding framework that pos- 488

itively steers text-centric heads while negatively 489

steering only the most critical visual tokens. 490

Our method consistently reduces hallucinations 491

on CHAIR, POPE, and MMHal-Bench, outper- 492

forming both baseline and previous contrastive ap- 493

proaches with improved and uncompromised gen- 494

eral VQA capability. By targeting precisely those 495

heads and tokens, we effectively mitigate spuri- 496

ous textual biases while preserving essential visual 497

context. 498
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Limitations499

A key limitation of ASCD is its incompatibility500

with FlashAttention. Because our method must501

dynamically modify the attention matrix at infer-502

ence time, it cannot make use of the fused ker-503

nels, leading to higher memory consumption and504

slower decoding. A promising workaround is to505

distill the steering signal into the model during506

training: we can add an auxiliary loss – e.g., a507

KL-divergence term – that drives the native atten-508

tion distribution to approximate the ASCD target509

distribution. If successful, the model would inter-510

nalise the hallucination-mitigation behaviour, re-511

moving the need for on-the-fly edits and restoring512

FlashAttention speed-ups. We regard training-time513

attention regularization as a promising direction: it514

could distill the hallucination-robust behaviour dis-515

covered by training-free, attention-modified meth-516

ods into the model itself, so that at inference the517

model retains this robustness while fully benefit-518

ing from FlashAttention’s speed and memory effi-519

ciency.520
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A Text-centric Heads Experiment744

Settings745

The following setup applies to Section 3.3.746

We select N = 500 images {I1, . . . , IN} (from747

COCO) and run an MLLM (LLaVA-1.5) in an im-748

age description task. During each generation, we749

track the ratio of textual attention to visual attention750

for every head:751

Qi ∈ RR×C , Qi(r, c) =
textAttn(r, c)
visAttn(r, c)

, (6)752

where r and c index each head (for instance, R =753

C = 32). We then identify the top-k heads with754

the highest ratio values and mark them in a binary755

mask:756

Mi(r, c) =

{
1, if (r, c) ∈ top-k indices of Qi,

0, otherwise.
(7)757

Finally, we aggregate these masks across all N758

images:759

F =

N∑
i=1

Mi, (8)760

so that F (r, c) records how frequently head (r, c)761

appears among the most text-focused heads.762

B Evaluation Settings 763

B.1 Baseline Models and Decoding Methods 764

We evaluate our proposed approach using three rep- 765

resentative models and multiple decoding strategies 766

to demonstrate its broad applicability and robust- 767

ness. 768

LLaVA-1.5 7B is a minimalist yet efficient 769

model that has served as the foundation for exten- 770

sive studies in large multimodal modeling. LLaVA- 771

NeXT 7B builds on LLaVA-1.5 with improvements 772

in visual reasoning, higher input resolution, and 773

enhanced world knowledge, resulting in superior 774

performance on several benchmarks. Phi2-SigLIP 775

leverages the Phi-2 backbone and a SigLIP-based 776

vision tower, and is trained on the ShareGPT4V 777

dataset, offering a compact alternative with com- 778

petitive capabilities. 779

To assess the reliability and generalizability, 780

we experiment with three decoding strategies: 781

greedy search, nucleus sampling, and beam 782

search. Greedy decoding yields deterministic out- 783

puts, while nucleus sampling and beam search en- 784

able for more diverse generation. 785

B.2 Datasets 786

We evaluate our approach on three hallucination- 787

targeted benchmark datasets designed to probe ob- 788

ject hallucination in multimodal large language 789

models. 790

CHAIR. The Caption Hallucination Assessment 791

with Image Relevance (CHAIR) metric quantifies 792

the degree of hallucination in generated captions by 793

measuring the fraction of objects mentioned that do 794

not actually appear in the image. It is computed at 795

both the instance-level (CHAIRi) and the sentence- 796

level (CHAIRs), offering insight into how well a 797

caption adheres to veridical image content. 798

POPE. The Polling-based Object Probing Eval- 799

uation (POPE) assesses hallucination by querying 800

the model with binary questions (e.g., “Is there a 801

car in the image?”). By balancing queries about 802

present and absent objects, and using different 803

sampling strategies (random, popular, adversarial), 804

POPE effectively reveals the influence of language 805

priors on model predictions. This method provides 806

a robust measure of object hallucination across mul- 807

tiple datasets such as MSCOCO, A-OKVQA, and 808

GQA. 809

MMHal-Bench. MMHal-Bench is a new eval- 810

uation benchmark specifically designed to chal- 811

lenge large multimodal models in hallucination. 812
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Comprising 96 difficult questions based on images,813

along with detailed ground-truth answers and im-814

age content annotations, MMHal-Bench offers a815

comprehensive testbed to assess the model’s ability816

to produce veridical responses in ambiguous visual817

scenarios.818

We also evaluate our approach on five standard819

VQA benchmarks to verify that our method does820

not compromise, and may even enhance, the origi-821

nal VQA capabilities.822

MM-VET. The MM-VET benchmark eval-823

uates large multimodal models on integrated824

vision–language abilities that go beyond con-825

ventional VQA. It defines six core capabili-826

ties—recognition, OCR, knowledge, language gen-827

eration, spatial awareness, and math—and con-828

structs 16 task types that require their various com-829

binations. MM-Vet comprises 200 images paired830

with 218 open-ended questions; answers are graded831

by a GPT-4-based evaluator that yields unified832

scores, enabling fine-grained, per-capability diag-833

nostics.834

ScienceQA. The ScienceQA benchmark targets835

multimodal, curriculum-level science reasoning.836

It contains multiple-choice questions drawn from837

elementary- to high-school materials, each option-838

ally paired with text passages, natural or diagram-839

matic images, or both. In this study, answers are840

graded for accuracy.841

GQA. The GQA benchmark targets real-world842

compositional visual reasoning. Questions span843

objects, attributes, relations, spatial logic, compar-844

isons, and multi-hop inference, making GQA a845

stringent yardstick for models that aspire to deep846

vision-language understanding rather than pattern-847

matching.848

TextVQA. The TextVQA benchmark focuses849

on visual question answering that explicitly re-850

quires reading and reasoning over scene text. It851

contains 45,336 open-ended questions paired with852

28,408 everyday images drawn from the Open Im-853

ages dataset. Questions span practical tasks such854

as reading product labels, traffic signs, receipts,855

and clocks, so models must combine OCR, spatial856

grounding, and commonsense reasoning.857

MMMU. The Massive Multi-discipline Multi-858

modal Understanding and Reasoning (MMMU)859

benchmark gauges college-level, expert-style rea-860

soning across six broad disciplines—Art & Design,861

Business, Science, Health & Medicine, Humanities862

& Social Science, and Tech & Engineering.863

B.3 Hyperparameters 864

The experiments are conducted with the following 865

hyperparameter settings to obtain the best result: 866

κVIS = 0.1, αNEG = 1.0 867

LLaVA-1.5: κTCH = 32, αPOS = 0.6, α = 1.0, 868

and β = 0.5. 869

LLaVA-NeXT: κTCH = 32, αPOS = 0.7, α = 870

1.0, and β = 0.7. 871

Phi2-SigLIP: κTCH = 128, αPOS = 0.8, α = 872

0.5, and β = 0.1. 873

C Standard VQA Capability 874

Our approach substantially curbs hallucinations 875

through explicit attention steering while simulta- 876

neously enhancing performance on standard VQA 877

tasks, a trade-off that competing methods typically 878

fail to avoid. 879

C.1 MM-VET 880

Method MM-VET Score
Orig 31.2
VCD 30.3
ICD 33.2
ASCD 33.2

Table 3: MM-VET scores for different methods.

C.2 ScienceQA 881

Method SQA Score
Orig 67.55
VCD 67.55
ICD 67.32
ASCD 69.51

Table 4: SQA scores for different methods.

C.3 GQA 882

Method GQA Score
Orig 61.28
VCD 59.38
ICD 59.99
ASCD 61.27

Table 5: GQA scores for different methods.

12



C.4 TextVQA883

Method TextVQA Score
Orig 57.82
VCD 55.07
ICD 57.66
ASCD 57.91

Table 6: TextVQA scores for different methods.

C.5 MMMU884

Method MMMU Score
Orig 0.342
VCD 0.333
ICD 0.360
ASCD 0.348

Table 7: MMMU scores for different methods.

D Visualization Example885

LLaVA-1.5 (Orig):
The image depicts a group of people walking along a sidewalk near a river.
There are at least six people visible in the scene, with some of them walking
closer to the water and others further away. A woman is pushing a stroller, 
and a man is walking with a child in a stroller. The sidewalk is lined with 
parked cars, with a total of nine cars visible in the scene. Some cars are 
parked closer to the water, while others are situated further away. The
overall atmosphere of the scene is that of a pleasant day spent outdoors,
with people enjoying the company of others and the beautiful surroundings.

LLaVA-1.5 (VCD):
The image features a beach scene with a man sitting on a four-wheeler,
which is a type of all-terrain vehicle. The man is positioned near the water,
possibly observing the waves or preparing to ride the vehicle on the beach.
There are several other people in the scene, some of them closer to the
water and others further away. A surfboard can be seen lying on the sand, 
indicating that surfing might be a popular activity in this area. Additionally,
there is a boat visible in the background, adding to the beach atmosphere.

LLaVA-1.5 (ICD):
The image features a man riding a four-wheeler, also known as an ATV, on a
sandy beach near the ocean. He is wearing a helmet for safety while
enjoying his ride. The beach is lively, with several people scattered around, 
some closer to the water and others further away. In the background, there
is a pier extending out into the ocean, providing a picturesque view for the
beachgoers. The scene captures a fun and relaxing atmosphere, with people
enjoying their time by the water.

LLaVA-1.5 (ASCD):
The image features a man riding a four-wheeler, which is a type of all-
terrain vehicle, on a sandy beach near the ocean. The man is sitting on a
four-wheeler, which is an off-road vehicle with large tires, and he is driving it
on the beach. There are several other people in the background, some of
whom are standing on the pier. The pier extends out into the ocean,
providing a scenic view of the water. The beach is a popular spot for people
to enjoy the outdoors and engage in various activities.

Instruction: Describe the image in details.

Figure 7: Oringinal LLaVA-1.5 drifts completely, de-
scribing a riverside sidewalk, parked cars, and a stroller
that do not exist in the image. VCD and ICD correctly
identify the beach and ATV but still hallucinate extra
objects such as a surfboard and a boat (highlighted in
yellow). Our ASCD caption mentions only entities that
are actually present and omits non-existent items, illus-
trating the improved visual grounding achieved through
attention-steerable contrastive decoding.
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