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Abstract

Foundation models have emerged as a powerful
tool in AI, yet come with substantial computa-
tional cost, limiting their deployment in resource-
constraint devices. Several recent research has
been dedicated to improving the efficiency of
foundation models. These prior solutions often
yield models with static accuracy and latency foot-
print, and thus fall short in responding to potential
runtime perturbations, including varying input
characteristics (e.g., a static video vs. a dynamic
one) or changing resource availability (e.g., con-
tention due to other programs on the device). To
bridge this gap, we introduce AdaInf—an adap-
tive inference framework that treats a foundation
model as a collection of execution branches, and
learns a scheduler to decide on which branch
to execute, accounting for the input data and a
compute budget. We demonstrate preliminary re-
sults on CIFAR and ImageNet with vision and
vision-language models and across convolutional
networks and Transformers. Our results show
that AdaInf can achieve varying accuracy and la-
tency trade-offs. When compared to latest method,
AdaInf attains a major improvement in accuracy
under a wide range of latency budgets.

1. Introduction
Foundation models have revolutionized AI in recent years,
celebrating tremendous success in vision [7, 30, 6], lan-
guage [5, 27, 1, 29], and multimodal learning [32, 28, 22].
These models, trained on broad data, offer the potential to
adapt to a wide range of downstream tasks, leading to some
of the most exciting developments and applications in AI to
date. However, the high performance of these models comes
at a cost of increased model capacity and computation com-
plexity. This poses a significant challenge for deploying
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Figure 1. Multiple execution branches of ResNet50 [12] pretrained
on ImageNet. Each point refers a branch. x-axis: percentage of
MACs a branch uses in comparison to full model. y-axis: The
model accuracy on validation set of ImageNet.

these models on edge devices, where efficient inference is
essential and the computation budget is limited [40].
Extensive research has been dedicated to improving the ef-
ficiency of deep models, broadly applicable to foundation
models. This is often achieved by optimizing the model
architecture during training [42, 33], or by approximating
computational procedures at inference [3, 51]. A signif-
icant drawback of these approaches is that they produce
models with static accuracy and latency footprint. Such
static models fall short in responding to the runtime pertur-
bations when integrated in real-world computing systems,
severely restricting their applicability. Example perturba-
tions include varying input characteristics (e.g., a static
video vs. a dynamic one) or changing resource availabil-
ity (e.g., contention due to other programs on the device).
Several recent works have explored adaptive inference of
deep models [40, 23, 34, 35]. However, they only consider
the adaptation to the input data, and can not fulfill varying
latency budgets for the same input.

In departure from prior solutions, we investigate adaptive
inference of foundation models, aiming at an inference pro-
cedure that can achieve varying accuracy and latency trade-
offs in response to both input characteristics and resource
contention. Our work builds on two key insights. First, our
basic premise is that existing large pretrained models has
built-in redundancy. This is because modern training tech-
niques for deep models adopt aggressive regularization to

1



AdaInf: Adaptive Inference for Resource-Constrained Foundation Models

ensure generalization, in which input data is simplified (e.g.,
data augmentation [41]), model components are dropped
(e.g., stochastic depth [16, 49, 43, 44]), and redundancy
within components is encouraged (e.g., multiple redundant
attention head [24]). This redundancy allows us to treat a
model as a collection of execution branches. Second, our
key intuition is that these execution branches can be tailored
for runtime conditions, thereby achieving adaptive infer-
ence. For example, each branch can have a different latency
budget, and under this budget it can be tasked to specialize
in regions of the input space, as shown in Figure 1.

To this end, we present an adaptive inference framework
dubbed AdaInf. AdaInf treats a foundation model as a col-
lection of execution branches. It further learns a scheduler
to decide on the branch to execute, based on a compute bud-
get in terms of Multiply-Accumulate Operations (MACs),
as well as the input data. Specifically, we train a lightweight
scheduler that accounts for the latency budget and input
data, and predicts the best execution branch that meets the
budget while likely achieving a high accuracy. Importantly,
we adapt the base foundation model using parameter effi-
cient fine-tuning [14], in tandem with the learning of the
scheduler. In doing so, we ensure the compatibility be-
tween the foundation model and the scheduler, without the
need of updating the base model weights. In addition to
this content-aware scheduler, we also consider a content-
agnostic baseline.

We conduct preliminary experiments on CIFAR and Im-
ageNet using pre-trained ResNet and CLIP models. Our
results shows that AdaInf can achieve varying accuracy and
latency trade-offs in response to the input data and the la-
tency budget. Further, when compared to latest method,
AdaInf attains a major improvement in accuracy under a
wide range of latency budgets.

2. Related Work
Several adaptive inference methods have been proposed to
dynamically allocate model components during inference,
aiming to improve both efficiency and accuracy. For con-
volutional networks, methods have been developed to skip
layers during the inference [9, 19, 45, 2, 50]. For vision
transformers, various approaches have been proposed to
enhance efficiency, such as selecting different patches of
images [46, 33, 31], and using different attention heads and
blocks [23]. Additionally, similar ideas have been explored
for language models, where models actively select tokens
during inference [34]. While these methods provide algo-
rithms for efficient inference by using a subset of model
components, they are limited by their design to select a
single execution plan per input without considering the com-
pute budget. This design results in fixed accuracy and MACs
for each input and cannot adapt to varying compute budget

for the same input. In contrast, our work considers the com-
pute budget as MACs limits, and develops a framework that
predicts feasible plans under varying budgets for each input.

3. Adaptive Inference for Foundation Models
We formally define our problem of adaptive inference. We
assume that a pre-trained foundation model can be decom-
posed into a collection of execution branches. While in this
paper we focus on branches formed by skipping some of
the layers within the model, this concept can be easily ex-
tended to other operations including resizing an input image
or dropping certain attention heads in a Transformer block.
Given a sample input and a MACs requirement denoting the
compute budget, the goal of adaptive inference is design a
scheduler to select a execution branch of the model, such
that the inference compute cost falls below the budget, and
the expected prediction performance is maximized.

Let fθ be the foundation model in consideration, and gβ(·, ·)
a light-weighted scheduler. Given a input sample (x, y) and
MACs requirement M ∈ R, gβ(·, ·) will output the execu-
tion plan for the forward pass of foundation model f , as
p = gβ(x,M). In this case, p can indicate the skipping of
intermediate layers within the model. With minor abuse
of the symbols, we denote the prediction outputted by exe-
cuting p on fθ as f̂(x, p), and resulting inference MACs as
M̂(x, p).

We propose AdaInf, a framework that adaptively deter-
mines the execution plan to skip or retain certain layers
during inference. AdaInf aims at maximizing the predic-
tion performance of f̂(x, p), while ensuring the computing
budget (i.e., M̂(x, p) ≤ M ). To this end, we consider the
following loss function for training.

L = LCE(y, f̂(x, p)) + λLmacs(M̂,M), (1)

where LCE is the standard cross entropy loss to maximize
prediction performance, Lmacs denotes the hinge loss (i.e.,
Lmacs(M̂,M) = max{0, M̂(x, p) − M}.) to constraint
the computing budget, and λ is a coefficient balancing the
two loss terms. We set λ = 1 in our experiments.

Our key design choice is to employ the loss function for
learning the scheduler and adapting the foundation model
with parameter-efficient fine-tuning (e.g., LoRA [15]). This
design allows us to use any pre-trained foundation model
checkpoint,1 while incorporating a scheduler and an adapter
that are trained for adaptive inference, without the need of
altering the weights in the original model.

In what follows, we describe our design of execution
branches, and present the learning of the scheduler.

1The pre-trained model may be trained with or without using
the stochastic depth technique.
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Figure 2. The AdaInf framework, which consists of a look-up-table retriever, a scheduler and foundation model. Once receiving MACs
requirement l, look-up-table retriever identifies the best model branch under requirement and output the plan. In the meantime, the sample
input will feed into first block of main recognition model to get embedding, the embedding will be part of the input to the scheduler, the
scheduler takes embedding of both image input and MACs input, combine them together and predict the execution plan. The framework
will compare the plan by retriver and scheduler, choose the best one and guide the forward pass of rest of foundation model.

Design of Execution Branches. Most current foundation
models feature backbones with residual connections. For
simplicity, we consider a foundation model fθ consisting of
N blocks, each linked by a residual connection. For a model
block denoted as F with input x and output y, the output is
y = x+ F(x). We consider skipping some of these blocks.
To skip a block, we set the block forward as y = x. As
shown in Figure 1, skipping certain blocks during inference
does not lead to significant accuracy drops. To make the
input compatible, the first block is always retained, while
the remaining blocks can be dropped by the scheduler.

Scheduler Learning We consider two types of schedulers:
(1) a content-agostic one implemented using a lookup table;
and (2) a content-aware one realized using a deep network.

• Content-agnostic Scheduler. This approach selects execu-
tion branches solely based on compute budget without con-
sidering the input. In this case, we construct a lookup table
for the scheduler. Specifically, we enumerate all branches
(2N−1 in total). We evaluate all branches’ accuracy on
the validation set, recording their accuracy and associated
MACs. We select the best branch in each MACs stage
and saved them in a lookup table (as number of branches
N goes larger, it’s hard to enumerate all 2N−1 branches,
we would random select a subset of M = 128 branches).
At inference time, given a MACs requirement input, this
content-agnostic scheduler selects a branch in the lookup
table that has (1) a compute budget satisfying the MACs
requirement, and (2) the highest recorded accuracy on the
validation set. This process is illustrated as a look-up-table
retriever in Figure 2. While this approach is simple and
efficient, it fails to consider the input characteristics.

• Content-aware Scheduler To allow adaptive selection of
different execution branches tailored to individual inputs,
we further consider learning a content-aware scheduler. This
scheduler takes both the input sample and the compute bud-
get, and outputs an execution plan (i.e., a selected execution
branch). Specifically, the input sample x passes through
the first block of the model to obtain embeddings, while
the MACs input M is processed by a simple MLP. The
scheduler then receives the two embeddings, concatenates
them, and outputs the probability of retaining each block
p = g(x,M), where the output p ∈ RN−1 with N being
the total number of blocks in the foundational model f , each
entry is a binary value deciding whether to keep or drop
certain block. This pipeline is illustrated in Figure 2. For
training the scheduler, we use Gumbel-Softmax trick to al-
low the back-propagation of the gradients. We refer reader
to Appendix B for full experimental details.

4. Experiments
Experimental Setup. We experiment with ResNet18 and
ResNet32 to demonstrate the idea and then expand our set-
ting into CLIP models [32] as an exemplary foundation
model. We pretrained ResNet on CIFAR100. We use a
pretrained CLIP model checkpoint from OpenCLIP [17],
which was trained on LAION-400m [36]. Within our AdaInf
framework, we treat the vision encoder of the CLIP models
as the recognition model. We finetune the vision transformer
in CLIP while keeping the other components unchanged.

We test our pipeline on CIFAR and ImageNet, finetuning
the model and training the scheduler on the training set, and
evaluating them on the validation set, respectively. Initially,
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(a) Results of ResNet18 on CIFAR100.
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(b) Results of ResNet32 on CIFAR100.

Figure 3. Results on ResNet pretrained on CIFAR100. Baseline: Look-up-table baseline. Upper Curve: The upper curve of the baseline.
Full FT: Results on fully finetune the ResNet. LoRA: LoRA finetune on ResNet. BlockDrop: results in [50].

we construct the Look-up Table as described in Section 3.
We train our content-aware scheduler and foundation model
using the LoRA technique [14]. MACs are normalized to
percentages relative to the full model’s capacity. During the
training phase, for each sample in the batch, we randomly
sample MACs uniformly from 0 to 1 as the MACs input. We
update the foundation model and content-aware scheduler
based on the loss described in (1), using the Adam optimizer
with a learning rate of 1e-3 and CosineAnnealing decay.

In the evaluation phase, we uniformly sample S = 128
MACs percentages from 0 to 1 as settings of our computing
budgets. These 128 settings are separately evaluated. For
each setting, we input the MACs percentage and perform
inference on all images from the validation set. We then
compute the average accuracy and corresponding MACs for
each setting, and plot their trade-offs.

Results. Figure 3 displays the performance of ResNet on
CIFAR100. We compare the outcomes using our trained
content-aware scheduler against those obtained from a look-
up-table baseline. Our framework consistently achieves
performance improvements over the baseline across various
MACs requirements. For example, with ResNet18, LoRA
finetuning in conjunction with our trained scheduler attains
an accuracy comparable to that of the full model while utiliz-
ing only 60% of the MACs. Full finetuning reaches the same
accuracy level using just 40% of the full MACs. To ensure a
fair comparison with related work, we include the results of
the BlockDrop study [50] in Figure 3. Since they trained a
single model without considering MACs input, their results
are represented as a single point in our findings. Our results
show a significant improvement over theirs. Figure 4 illus-
trates the results from the LoRA-finetuned OpenCLIP model
on ImageNet, where we observe similar performance gains.
On average, our finetuned models show a 20% improvement
in performance compared to the baseline.
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Figure 4. Results on ViT encoder of CLIP pretrained on LAION-
400m. Baseline: Look-up-table baseline constructed in Section 3.
Upper Curve: The upper curve of the baseline.

5. Conclusion
In this study, we present AdaInf, an adaptive inference
framework that considers execution branches within a pre-
trained model, and dynamically selects different branch
based on the input sample and a latency budget during
inference. The heart of AdaInf lies in the learning of a
scheduler to decide on which branch to execute, aiming at
maximizing the accuracy while enforcing the latency bud-
get. Through experiments on CIFAR and ImageNet with
vision and vision-language models, we demonstrate that
our method attains an average accuracy improvement of
20% over the best average model baseline under the speci-
fied latency budget (in terms of MACs). Our method also
outperform latest approaches under the same MACs bud-
get, offering a more flexible framework. Admittedly, our
work is at an early stage and we will further investigate.
We consider that our preliminary results is worth reporting
and will provide useful insight to the adaptive inference of
foundation models.
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Impact Statement
Our work aims to improve the efficiency of foundation mod-
els in handling budget limited tasks. We foresee no imme-
diate negative ethical impact. We illustrate the empirical
results of adapting foundation models under different com-
puting budgets. We hope our work will facilitate practical
deployment of foundation models, while offering better un-
derstanding of these models.
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A. Full Related Work
Foundation models [4] are generally trained using self-supervised learning [6, 13, 26] on extensive datasets. Adapting
foundation models to downstream tasks has recently received significant attention. In the vision domain, the standard practice
involves learning a simple function, such as linear probing, on the representation from a foundation model, while keeping the
model frozen or performing minimal fine-tuning [6, 13, 52, 37, 54]. In NLP, prompt-based fine-tuning [10, 14] has become
prevalent, where a prediction task is transformed into a masked language modeling problem during fine-tuning. Instruction
tuning [47, 21, 8] has emerged as a way to enhance language models’ ability to follow natural language instructions,
including prompts, examples, and constraints. This approach aims to improve multi-task learning on training tasks and
generalization to unseen tasks. With the advances in large language models, parameter-efficient tuning has emerged as
an attractive solution. Prompt tuning [18, 20] learns an extra prompt token for a new task, while updating minimal or
no parameters in the model backbone. Another promising approach is in-context learning [25, 48, 38, 53, 39], where the
model is tasked to make predictions based on contexts supplemented with a few examples, with no parameter updates.
Our paper focuses on adapting foundation models to new tasks under computational constraints. We propose a framework
that generates viable plans for various MAC (Multiply-Accumulate Operations) budgets for each input sample, aiming to
minimize performance degradation.

B. Optimization
In this section we provide the details in our training pipeline.

During training phase, the training for scheduler will only occur when content-aware pipeline is executed, since look-up-table
involves no parameter update for the scheduler.

One optimization challenge is the output from last MLP layer of content-aware scheduler is probability of keeping each
block. In forward pass, the we perform sampling process from probability to binary decision vector p. The sampling process
is non-differentiable, preventing the computation of gradients beyond this point. A common workaround involves using a
score function estimator [11, 50]; however, this method often suffers from high variance and slow convergence. Instead,
we employ the reparameterization method, specifically the Gumbel-Max trick, to draw samples from the probabilities
while keeping the process differentiable. Given probability p ∈ RN−1, we apply Gumbel-Max trick to each element of p
independently, treating each entry as probability of Bernoulli random variable. To get p from probability, we have

bi =
exp ((log (pi) + g1) /τ)

exp ((log (1− pi) + g2) /τ) + exp ((log (pi) + g1) /τ)

for i = 1, 2, . . . . , N − 1, where g1, g2
iid∼ Gumbel(0, 1). The Gumbel(0, 1) distribution can be sampled using inverse

transform sampling by drawing u ∼ Unif(0, 1) and computing g = − log(− log(u)). τ here is the tunable temperature
parameter that affects the smoothness of the sampling process.

This technique allows for the sampling of discrete distributions while maintaining differentiability of the process, facilitating
gradient-based optimization even in the presence of discrete decision variables in the model.
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