
DiffLight: A Partial Rewards Conditioned Diffusion
Model for Traffic Signal Control with Missing Data

Hanyang Chen1,2, Yang Jiang1,2, Shengnan Guo1,2∗, Xiaowei Mao1,2,
Youfang Lin1,2, Huaiyu Wan1,2

1School of Computer Science and Technology, Beijing Jiaotong University, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

{hanyangchen, jiangyang, guoshn, maoxiaowei, yflin, hywan}@bjtu.edu.cn

Abstract

The application of reinforcement learning in traffic signal control (TSC) has been
extensively researched and yielded notable achievements. However, most exist-
ing works for TSC assume that traffic data from all surrounding intersections is
fully and continuously available through sensors. In real-world applications, this
assumption often fails due to sensor malfunctions or data loss, making TSC with
missing data a critical challenge. To meet the needs of practical applications,
we introduce DiffLight, a novel conditional diffusion model for TSC under data-
missing scenarios in the offline setting. Specifically, we integrate two essential
sub-tasks, i.e., traffic data imputation and decision-making, by leveraging a Par-
tial Rewards Conditioned Diffusion (PRCD) model to prevent missing rewards
from interfering with the learning process. Meanwhile, to effectively capture the
spatial-temporal dependencies among intersections, we design a Spatial-Temporal
transFormer (STFormer) architecture. In addition, we propose a Diffusion Com-
munication Mechanism (DCM) to promote better communication and control
performance under data-missing scenarios. Extensive experiments on five datasets
with various data-missing scenarios demonstrate that DiffLight is an effective
controller to address TSC with missing data. The code of DiffLight is released at
https://github.com/lokol5579/DiffLight-release.

1 Introduction

With the acceleration of urbanization, the surge in the number of vehicles in cities has led to increas-
ingly severe traffic congestion and pollution problems [1]. Intersections, where traffic congestion
often occurs, become a key in addressing these problems. To this end, solving the traffic signal control
(TSC) problem is crucial for reducing traffic congestion in intersections by controlling traffic lights.
Over the years, many approaches have been developed to tackle the TSC problem, which can be
categorized into conventional approaches and reinforcement learning-based (RL-based) approaches.
Conventional approaches, like Fixed-time [2], SCOOT [3] and SCATS [4], have been widely deployed
in different cities. However, these approaches struggle to adapt to the inherent stochasticity and
highly dynamic nature of real-time traffic conditions, limiting their effectiveness in responding to
dynamic traffic demands.

Recently, reinforcement learning (RL) is introduced into TSC to enable adaptive traffic signal control
[5, 6, 7, 8, 9, 10, 11, 12, 13]. Unlike conventional approaches, RL-based approaches for TSC deploy
a learnable agent at each intersection, allowing traffic signals to be adjusted dynamically based on
real-time traffic conditions. However, most existing RL-based approaches for TSC assume that traffic

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/lokol5579/DiffLight-release

data from all surrounding intersections is fully and continuously available through deployed sensors.
In practice, this assumption is often unrealistic. Due to budget constraints, not all intersections can
be equipped with sufficient sensors. Even if necessary sensors are deployed, malfunctions or errors
could lead to incomplete data collection. Therefore, the research on TSC with missing data is more
in line with the needs of actual scenarios but has not been studied sufficiently yet.

Furthermore, existing RL-based approaches for TSC can be categorized into two types, i.e., online
approaches and offline approaches. Most RL-based approaches for TSC rely on the online setting,
interacting with the environment frequently. Specific to data-missing scenarios, MissLight [14]
composed of the traffic data imputation stage and decision-making stage has been proposed in the
online setting. However, frequent interaction with the real-world traffic environment is challenging
and potentially unsafe, especially when dealing with incomplete data. As an alternative, training
using offline traffic data with missing values offers a safer and more practical solution. Therefore,
we focus on the offline setting in this paper. Similar to the online setting, traffic data imputation and
decision-making for TSC with missing data are two sub-tasks we must confront in the offline setting.

Recently, diffusion models [15] have been introduced into offline RL due to their powerful generative
ability [16, 17, 18, 19, 20]. These approaches frame sequential decision-making as conditional
generative modeling and utilize the generative ability of the diffusion model to capture complex
policy distribution in offline datasets to make better decisions. Additionally, in the context of TSC
with missing data, traffic data imputation is equally critical. Inspired by existing works [21, 22, 23],
we approach traffic data imputation as a conditional generative problem, similar to decision-making.
Considering the similarity of the two sub-tasks, we propose to unify traffic data imputation and
decision-making for TSC with missing data by utilizing the powerful generative ability of the diffusion
model.

There are several challenges that must be addressed to integrate the two sub-tasks mentioned above
effectively. Firstly, in RL-based approaches for TSC, rewards which are typically vehicle queue
length, are critical for the performance of controllers. However, due to the absence of traffic data,
only partial rewards are available. A straightforward solution might be to fill in the missing rewards
with padded values, which could confuse the imputed rewards with the actual ones, leading to a
negative impact on performance. Secondly, relying solely on traffic data of the local intersection
makes it challenging to capture the dynamic and spatial-temporal dependencies in the traffic network
for traffic data imputation and decision-making tasks. The complexity of traffic flow often requires a
broader context, as traffic data from the local intersection may not adequately reflect the behaviors
and interactions occurring across the entire network. The absence of traffic data from neighboring
intersections may further exacerbate this issue, hindering the ability to capture these dependencies
and potentially leading to a decline in performance.

To tackle these challenges, we introduce DiffLight, a novel conditional diffusion model for TSC
with missing data. We propose a Partial Rewards Conditioned Diffusion (PRCD) model for both
traffic data imputation and decision-making under data-missing scenarios to prevent missing rewards
from interfering with the learning process. Meanwhile, to effectively capture the spatial-temporal
dependencies among intersections, we design the noise model as a Spatial-Temporal transFormer
(STFormer) architecture. In addition, we propose a Diffusion Communication Mechanism (DCM)
to enable communication and promote the capture of spatio-temporal dependencies in the traffic
network through the propagation of generated observations, facilitating better control in scenarios
with missing data. Extensive experiments on five datasets with various data-missing scenarios are
conducted to evaluate the effectiveness of DiffLight. The experimental results indicate that DiffLight
is highly competitive for TSC with missing data.

2 Preliminaries

2.1 Partially Observable Markov Decision Process

We consider a partially observable Markov decision process (POMDP) in the offline setting, defined
as a tuple ⟨S,A,P,R,Ω,O, γ⟩. S is the state space, and st ∈ S denotes the state at time t. A is the
set of available actions and at ∈ A denotes the action of an agent at time t. The observation ot ∈ Ω
observed by the agent is part of the state st and can be derived from the function O(st). rt = R(st)
is the immediate reward of an agent at time t. P and γ denote the transition probability function

2

and the discount factor separately. The optimization objective is to learn a policy π for agents to
maximize the expected return Est,at [Rt], where Rt =

∑
t γ

trt.

2.2 Traffic Signal Control with Missing Data

𝑙in
1

𝑙in
2

𝑙in
3

𝑙out
3

𝑙out
2

𝑙out
1

𝑙in
4 𝑙in

5 𝑙in
6𝑙out

4𝑙out
5𝑙out

6

𝑙out
7

𝑙out
8

𝑙out
9

𝑙in
9

𝑙in
8

𝑙in
7

𝑙out
10 𝑙out

11 𝑙out
12𝑙in

10𝑙in
11𝑙in

12 A B

C D

Figure 1: Illustration of a four-way inter-
section with 12 traffic movements and 4
traffic signal phases.

We formulate TSC with missing data as POMDP, and
consider TSC in a traffic network with several intersec-
tions. Agents are deployed at each intersection of the
traffic network. As illustrated in Figure 1, for a four-
way intersection, there are twelve traffic movements from
the intersection’s entrance lane lin to the departure lane
lout, and four pairs of traffic movements without con-
flict comprise four traffic signal phases, i.e., A, B, C,
D. For example, the traffic signal phase of the intersec-
tion in Figure 1 is phase-A which involves movement-2
= {l2in → l7out, l

2
in → l8out, l

2
in → l9out} and movement-8

= {l8in → l1out, l
8
in → l2out, l

8
in → l3out}.

In this paper, the observation ot contains the number of
vehicles Lnum and queue length Lqueue in every entrance
lane of the local intersection. Available actions are four
phases. The immediate reward rt is defined as the sum
of the queue length

∑
lin

Lqueue. Due to the lack or error of
sensors resulting in missing traffic data, ot and rt, which
are derived from traffic data, could be missing in a particu-
lar missing pattern. We consider random missing and kriging missing patterns detailed in Appendix
C.2. To simplify the problem, we assume that ot and rt in an intersection are missing simultaneously.

2.3 Diffusion Models for Reinforcement Learning

Diffusion model. Diffusion models [15, 24, 25], as a powerful generative model, provide a frame-
work to model the data generative process as a discrete diffusion process. Diffusion models consist of
two processes: the forward process and the reverse process. In this paper, the forward process is de-
fined as q(xk|xk−1) := N (

√
1− βkxk−1, βkI) by the Markov process, where βk is the variance of

the noise at timestep k. We adopt DDIM sampler [24] to sample in the reverse process in order to ac-
celerate sampling. DDIM sampler is parameterized with pθ(x

k−1|xk, x0) := N (µθ(x
k, k), (σk)2I),

which can be optimized by a simplified surrogate loss,

L(θ) := Ek∼U(1,K),ϵ∼N (0,I)[∥ϵθ(xk, k)− ϵ∥2]. (1)

The reverse process begins by sampling an initial noise xK ∼ N (0, I). The estimated mean of Gaus-
sian is µθ(x

k, k) =
√
ᾱk−1x̂0 +

√
1− ᾱk−1ϵθ(x

k, k) where x̂0 = 1√
ᾱk

(xk −
√
1− ᾱkϵθ(x

k, k)),

αk = 1− βk, ᾱk =
K∏

k=1

αk and ϵθ(x
k, k) is a predictor used to estimate noise.

Diffusing decision-making. Recently, many diffusion-based approaches have been proposed to
address decision-making problems in RL. Among existing works, Diffuser [16] chooses to diffuse on
an observation-action trajectory with returns as the condition to generate actions directly. Decision
Diffuser [16] focuses solely on diffusing the observation trajectory conditioned on returns. By
avoiding direct diffusion over actions, Decision Diffuser enhances performance in scenarios with
discrete actions. In this paper, considering the discrete nature of actions in TSC, we focus on
introducing the approach diffusing on the observation trajectory τ sampled from offline dataset D.
We denote the k-step denoised output of the diffusion model as xk(τ). The observation trajectory
would be diffused to generate ot+1. However, only diffusing on observation trajectory is not enough
to make decisions. An inverse dynamics model fϕ is adapted to generate the action at that makes the
observation transit from ot to ot+1,

at := fϕ(ot, ot+1). (2)

3

Classifier-free guidance. Classifier-free guidance [26] aims to learn the conditional distribution
q(x(τ)|y(τ)). It learns both a conditional ϵθ(xk(τ), y(τ), k) and an unconditional ϵθ(xk(τ), ϕ, k)
for the noise. Then, the perturbed noise ϵθ(x

k(τ), ϕ, k) + ω(ϵθ(x
k(τ), y(τ), k)− ϵθ(x

k(τ), ϕ, k))
can be used to generate samples, where ω is the guidance scale.

3 Methodology

In order to effectively unify traffic data imputation and decision-making for TSC with missing data,
we consider both of them as a conditional generative modeling problem via diffusion models,

max
θ

Eτ∼D[log pθ(x
0(τ)|y(τ))], (3)

where pθ is a learnable model distribution to estimate the conditional data distribution of trajectory
x0(τ), conditioned on y(τ). We construct our generative model according to the conditional diffusion
process,

q(xk(τ)|xk−1(τ)), pθ(x
k−1(τ)|xk(τ), x0(τ), y(τ)), (4)

with conditions as,

y(τ) := [r(τ), y′(τ)], y′(τ) := [τ ′
obs, τ

′
nei]. (5)

To facilitate a better understanding of the symbol definitions, we categorize the trajectory segments
into three types. The observed trajectory consists of data collected by sensors up to time t. The
missing trajectory includes data that have not been collected during this period. The observable
trajectory encompasses both the observed trajectory and the data that could potentially be collected
in the future. In this context, r(τ) is the observable reward trajectory, and τ ′

obs is the observed part
of trajectory τ from the local intersection. τ ′

nei = ∪Nfnei(τ
i) is the observed observations from

neighboring intersections, where τ i denotes the observation trajectory of the neighboring intersection
i, N is total number of neighboring intersections, fnei(·) represents the observed observations from
entrance lanes of all neighboring intersections that feed into the entrance lanes of the local intersection,
as shown in Figure 1. Due to discrete and high-frequent actions in TSC, we choose to diffuse solely
on observations and utilize the inverse dynamic model to generate actions, which demonstrates a
better performance proven in Appendix F.1 and F.6. We define the observation trajectory τ under
data-missing scenarios as,

τ := [ôt−C+1, ot−C+2, · · · , ôt, ôt+1, · · · , ôt+H], (6)

where ot is the observation collected by sensors, ôt is the uncollected observation up to time t or a
potentially collectible observation in the future, C is the length of historical observations and H is
the horizon of future observations. It should be noted that we generate H-step future observations to
enable effective long-horizon planning [16].

Figure 2 shows the overview of DiffLight, which consists of the Partial Rewards Conditioned
Diffusion (PRCD), a noise model with a Spatial-Temporal transFormer structure (STFormer), and the
Diffusion Communication Mechanism (DCM). We introduce each of them in the following sections.

3.1 Partial Rewards Conditioned Diffusion

Under data-missing scenarios, sensors deployed to collect traffic data for rewards may malfunction or
be lacking. The absence of partial rewards makes it challenging to calculate returns. Therefore, we
adopt partial rewards as the condition instead of returns [16, 17, 19], which can be expressed as,

r(τ) := [r̃t−C+1, rt−C+2, · · · , r̃t, rt+1, · · · , rt+H], (7)

where rt is the collected reward or a potentially collectible reward in the future, and r̃t is the
uncollected reward.

4

𝑡 − 𝐶 + 1

Traffic
Data

… …

Partial Rewards Conditioned Diffusion (PRCD) with STFormer

𝑡 − 𝐶 + 2 𝑡 𝑡 + 1 𝑡 + 𝐻

…Generated
Observation

DCM

Crossing

Communication
Cross-Attention

Temporal
Self-Attention

Spatial
Self-Attention

MLP

Former Block
× 𝒏

MLP

MLP

STFormer

Inverse Dynamics

1 2 3 4

… …

…

Figure 2: An overview of DiffLight. We demonstrate the signal control process of an intersection in
random missing. Traffic data is collected by sensors to derive rewards and observations. Missing
rewards and observations are masked. Only the observed part of the observation trajectory and
observable rewards from the local intersection, and observation trajectories from neighboring inter-
sections would be input into PRCD with STFormer. In the inference process, DCM would work
with STFormer to generate observations. The inverse dynamics model is used to generate actions to
control the traffic signal.

There are two ways to handle the missing part of rewards: conditioning on the rewards with padded
values or conditioning on the partial observable rewards directly. Padding a specific value in the
missing part is a feasible way. However, padded values could confuse the imputed rewards with
the actual ones, leading to a negative impact on performance proven in Section 4.3. For better
decision-making, we choose to condition on only partial observable rewards. We assume that the
observable part and the missing part of the trajectory are collected by real sensors and virtual sensors
separately, and the distribution of traffic data collected by two kinds of sensors is independent. In this
case, the distribution in Equation 3 can be factorized as,

pθ(x
0(τ)|y(τ)) = pθ(x

0(τobs)|r(τ), y′(τ)) · pθ(x0(τmis)|y′(τ)), (8)

where τobs is the observable part of the trajectory τ from the local intersection, and τmis is the
missing part. We parameterize Equation 8 as the same form of locally conditioned diffusion [27, 28],
propose partial rewards conditioned diffusion (PRCD) with classifier-free guidance [26] and introduce
it into TSC with missing data. Given condition set c = {ϕ, r(τ)} and binary non-overlapping mask
set m = {mmis,mobs}, PRCD assigns partial rewards to corresponding observation sub-trajectory
masked by m, which can be formulated as,

ϵ̂θ(x
k(τ), k, y′(τ), c,m) :=mobs ⊙ ϵ̂θ(x

k(τ), k, y′(τ), r(τ))+

mmis ⊙ ϵ̂θ(x
k(τ), k, y′(τ), ϕ),

(9)

where ϵ̂θ(x
k(τ), k, y′(τ), ci) could be expressed using classifier-free guidance,

ϵ̂θ(x
k(τ), k, y′(τ), ci) :=ϵθ(x

k(τ), k, y′(τ), ϕ)+

ω(ϵθ(x
k(τ), k, y′(τ), ci)− ϵθ(x

k(τ), k, y′(τ), ϕ)),
(10)

where ci ∈ c. We provide a derivation for the feasibility of PRCD in Appendix E.

3.2 Diffusing with Spatial-Temporal Transformer

The noise model with a U-Net structure is widely applied in image generation [15, 24, 29, 30],
control [16, 17, 19] and other fields. However, it is hard to be applied to capture the spatial-temporal

5

dependencies in TSC. The emergence of Transformer [31] and its applications on spatial-temporal
modeling [32, 33, 34, 35] provide a promising solution to deal with it. In this section, we design
a Spatial-Temporal transFormer (STFormer) structure to effectively model the spatial-temporal
dependencies in TSC, which includes a data embedding layer, stacked L spatial-temporal encoder
layers, and an output layer. Data embedding layer embeds different inputs into embeddings, including
diffusion timestep, trajectory timestep, rewards, trajectory of the local intersection, and neighboring
intersections. Spatial-Temporal Encoder layer (STE) is composed of Communication Cross-Attention
module (CCA), Spatial Self-Attention module (SSA), and Temporal Self-Attention module (TSA).
CCA is designed to capture the spatial-temporal dependencies between the local intersection and
neighboring intersections. SSA and TSA are designed to capture the spatial dependencies and
temporal dependencies at the local intersection separately. Output layer is used to convert the output
of STE into the noise we desire to predict. We detail the structure of STFormer in Appendix B.2.

3.3 Diffusion Communication Mechanism

Observations of neighboring intersections are crucial for TSC with missing data [14]. However, due
to the possible absence of observations from neighboring intersections, the traffic signal could be
controlled ineffectively. For instance, we assume an extreme situation where there is no available
observation in both the local intersection and neighboring intersections. In this case, observation
trajectories of intersections are all masked by noise, leading to difficulty in decision-making at
the local intersection. Therefore, we propose a Diffusion Communication Mechanism (DCM) to
disseminate observation information generated by the noise model in the reverse process among
intersections. Formally, we formulate DCM as,

τ ′
nei =


∪N fnei(τ

i), k = K,

∪N fnei(
1√
ᾱk

(xk(τ i)−
√
1− ᾱk ϵ̂θ(x

k(τ), k, y′(τ), c,m))), k < K.
(11)

The reverse process begins by inputting original observations of neighboring intersections with
missing data. During diffusing, we predict x̂0(τ i), which is the same in Section 2.3. With the help
of DCM, generated observations of neighboring intersections could be spread from neighboring
intersections for better decisions of the agent at the local intersection. Note that we train our model
with ground-truth values collected from neighboring intersections and only use DCM in the inference
process.

3.4 Training and Inference of DiffLight

Training process. Given an offline dataset D which consists of observation trajectories, rewards
and actions, we train the reverse process pθ parameterized through the noise model ϵθ, and the inverse
dynamics model fϕ in DiffLight with the following loss,

L(θ) :=E(o,a,o′)∈D[∥a− fϕ(o, o
′)∥2 · 1(o, o′)]+

Ek,ϵ,β∼Bern(p)[∥ϵ̂θ(xk(τ), k, y′(τ), (1− β)r(τ) + βϕ,m)− ϵ∥2].
(12)

For each trajectory τ , we sample noise ϵ ∼ N (0, I) and a diffusion timestep k ∼ U(1,K),
construct a masked noise array of observations xk(τ) with τ ′

obs, and predict the noise
ϵ̂θ(x

k(τ), k, y′(τ), r(τ),m). Missing values in condition τ ′
nei are padded with zeros. It should

be noted that we ignore the rewards condition r(τ) with probability p and the inverse dynamics is
trained with individual transitions without missing observation o or o′. For the training process of
DiffLight, due to the inaccessibility of the ground-truth of missing data, we consider it self-supervised
learning. In random missing, given a trajectory τ and conditions, we can separate the observed
part into two parts and set one of them to miss. In kriging missing, we randomly mask the whole
trajectories of one observed intersection. Then, we can train the noise model ϵ̂θ by solving Equation
12.

Inference process. DiffLight is deployed to every intersection in the traffic network in the inference
process. Given rewards r(τ), a C-step observed trajectory of local intersection τ ′

obs with missing

6

data and trajectories of neighboring intersections τ ′
nei, the agent can impute the missing observations

of local intersection, predict the observations in the future and generate next action with Equation
2, 9 and 10. In order to sample a high reward trajectory, the rewards from time t+ 1 to t+H are
considered in r(τ), which is set to 1.

4 Experiments

4.1 Experimental Setup

Experiment Settings We conduct our experiments on CityFlow [36], a traffic simulator widely
used in various RL-based methods. Similar to existing work in [13], we set the phase number as four
and the minimum action duration as 15 seconds.

Datasets The datasets consist of two parts: offline datasets with missing data and real-world
traffic flow datasets with traffic networks. We apply five real-world traffic flow datasets [9, 37] for
comparison, including Hangzhou1 (D1

HZ), Hangzhou2 (D2
HZ), Jinan1 (D1

JN), Jinan2 (D2
JN) and Jinan3

(D3
JN). Corresponding offline datasets are composed of training trajectories of three online methods.

We detail the datasets in Appendix C.1. To simulate data-missing scenarios, we adopt masks of
different missing rates in different missing patterns, including random missing (RM) and kriging
missing (KM), to mask observations and rewards. We describe the details of two patterns and missing
rates in Appendix C.2.

Evaluation Metrics We use the average travel time (ATT) as the main metric for evaluation, which
is widely used to evaluate the performance of TSC. It calculates the average time all the vehicles
spend between entering and leaving the traffic network during simulation, which is formulated as,

ATT =
1

N

N∑
i=1

(
tli − tei

)
, (13)

where N is the total number of vehicles entering the road network, tei and tli are the entering time and
leaving time for the i-th vehicle respectively. The lower ATT indicates a better control performance.

Compared Methods We compare our method with Behavior Cloning (BC) [38] and offline ap-
proaches, including CQL [39], TD3+BC [40], Decision Transformer (DT) [41], Diffuser [16],
Decision Diffuser (DD) [17]. Similar to the existing work in [14], we adopt store-and-forward
method (SFM) [42], a rule-based method that has generally more stable performances, to impute
missing observations and rewards for these approaches. We detail these approaches and SFM in
Appendix D.

4.2 Performance under Data-Missing Scenarios

We train and test our method on all five datasets with different missing patterns and missing rates,
and compare our method with all baselines. DiffLight performs the best on most of the datasets. We
analyze experiments of different missing patterns below.

Random missing. In random missing, we can see that DiffLight achieves optimal or sub-optimal
performance compared with baselines in all datasets in Table 1. Diffusion-based approaches, including
Diffuser and DD, show a better performance than other baselines in most datasets. These diffusion-
based approaches utilize a noise model to predict noise and generate actions or observations, which
helps mitigate the disturbance caused by imputed observations and rewards during the diffusion
process. Compared with diffusion-based approaches, the performance of other baselines without the
diffusion process is disturbed by imputed observations and rewards more seriously.

7

Table 1: Comparing ATT for DiffLight and baselines in random missing. We report the mean and the
standard error for three trials.

Dataset Rate BC CQL TD3+BC DT Diffuser DD DiffLight

D1
HZ

10% 349.59 363.5 337.54 300.64 290.66 289.38 286.17±0.87
30% 350.08 368.53 338.21 315.64 302.39 298.67 292.81±0.66
50% 357.13 383.67 343.23 343.96 313.68 422.5 304.71±2.12

D2
HZ

10% 382.45 353.23 370.16 347.25 346.82 347.77 327.13±1.43
30% 388.73 352.55 376.06 360.59 366.24 364.6 330.68±2.63
50% 387.77 367.38 375.32 377.79 398.23 395.61 333.90±2.67

D1
JN

10% 320.6 299.07 315.54 308.78 272.51 260.76 272.18±0.93
30% 328.97 310.8 326.37 377.39 295.09 300.49 279.10±2.10
50% 355.47 322.25 351.2 439.89 324.75 517.99 290.02±2.18

D2
JN

10% 288.42 305.86 322.44 259.3 255.12 245.85 247.17±1.38
30% 297.26 308.13 330.43 263.24 271.53 256.16 254.87±0.69
50% 299.44 320.17 334.78 278.22 302.28 275.2 268.29±0.90

D3
JN

10% 301.35 291.26 281.75 257.66 246.90 242.56 246.65±0.94
30% 315.03 295.61 283.24 312.56 258.83 256.95 254.55±0.35
50% 326.55 301.1 292.98 382.93 272.36 351.92 265.76±0.01

Kriging missing. In kriging missing, DiffLight shows the best performance in most datasets in
Table 2. Unlike the results of random missing, DD does not perform well in kriging missing compared
with other baselines. Since DD must impute missing observations with the SFM model first, generate
future observations with the diffusion model, and then use the inverse dynamics to generate actions,
which leads to serious error accumulation. While other baselines generate actions directly, requiring
only roughly imputed observations and rewards.

Table 2: Comparing ATT for DiffLight and baselines in kriging missing. We report the mean and the
standard error for three trials.

Dataset Rate BC CQL TD3+BC DT Diffuser DD DiffLight

D1
HZ

6.25% 338.33 317.69 332.80 300.78 302.99 395.54 294.18±3.36
12.50% 346.83 317.94 332.43 310.37 305.93 483.47 294.11±4.34
18.75% 350.08 319.18 333.24 306.35 307.22 572.56 300.31±0.31
25.00% 354.86 328.83 341.89 381.94 328.79 836.46 302.16±1.23

D2
HZ

6.25% 380.18 354.08 374.04 347.53 363.69 370.80 330.40±0.11
12.50% 375.93 361.52 374.66 363.5 378.51 424.99 319.11±7.19
18.75% 380.74 362.82 376.48 374.69 413.48 435.13 327.61±9.68
25.00% 413.46 418.97 390.75 492.56 378.54 590.69 351.21±9.86

D1
JN

8.33% 319.85 302.35 317.17 306.52 332.44 595.34 280.75±0.11
16.67% 339.19 343.16 349.72 380.97 349.74 643.48 306.06±14.89
25.00% 392.91 398.66 391.32 432.56 410.5 995.99 329.67±16.04

D2
JN

8.33% 287.29 306.94 319.4 261.98 259.51 460.22 254.13±0.35
16.67% 299.41 314.43 321.88 267.67 270.15 731.49 272.76±1.42
25.00% 314.63 359.33 323.65 295.59 295.21 1049.19 325.20±26.63

D3
JN

8.33% 310.44 287.25 282.46 368.2 267.64 324.42 249.48±0.16
16.67% 327.7 311.89 295.07 322.96 294.27 399.67 274.13±2.50
25.00% 381.37 337.33 312.44 494.04 292.26 409.76 342.07±16.11

We provide the overall performance of DiffLight and baselines without missing data as well, which is
detailed in Appendix F.1. In addition, we provide further experiments on the influence of unobserved
locations of intersections in Appendix F.2, the limit of missing rates in Appendix F.3, and the
scalability of the approach in Appendix F.4.

8

4.3 Ablation Study

We further evaluate the effectiveness of different parts in DiffLight with the following variants. (1)
U-Net: this variant replaces STFormer with U-Net as the noise model and missing rewards input
are zero-padded. (2) STFormer: this variant uses STFormer as the noise model and keeps missing
rewards zero-padded. (3) STFormer+PRCD: this is equal to DiffLight which uses STFormer as the
noise model and is conditioned on partial rewards. It should be noted that DCM is adopted in both
STFormer and STFormer+PRCD and all missing observations would not be imputed by the SFM
model but are masked with Gaussian noise in order to be inpainted in the reverse process in ablation
experiments.

Table 3: Ablation study on Hangzhou1 and Jinan1.
Dataset Pattern and Rate U-Net STFormer STFormer+PRCD

D1
HZ

RM (50%) 668.38±65.54 350.60±9.88 304.71±2.12
KM (25%) 363.80±44.65 318.21±5.84 302.16±1.23

D1
JN

RM (50%) 509.64±41.15 374.41±3.61 290.02±2.18
KM (25%) 454.90±65.10 374.23±69.90 329.67±16.04

Table 3 shows the comparison of these variants on Hangzhou1 and Jinan1 with random missing
and kriging missing. Based on the results, we can find that STFormer which takes spatial-temporal
dependencies into consideration leads to a great performance improvement over U-Net. It shows that
capturing spatial-temporal dependencies is important in TSC. STFormer+PRCD performs better than
STFormer, indicating that padding values in rewards could be confused with the ground-truth rewards
and only conditioning on partial rewards could have a better performance. Due to the space limitation,
we provide further experiments on DCM in Appendix F.5 and the inverse dynamics in Appendix F.6.

4.4 Model Generalization

10% 30% 50%

10
%

30
%

50
%

1.00 1.00 0.99

1.00 1.00 1.00

1.01 1.01 1.00

(a) D1
HZ: RM

6.25% 12.50% 18.75% 25.00%

6.
25

%
12

.5
0%

18
.7

5%
25

.0
0%

1.00 1.02 1.11 1.22

1.00 1.00 1.00 1.02

0.98 0.98 1.00 1.02

0.99 1.00 0.99 1.00

(b) D1
HZ: KM

10% 30% 50%

10
%

30
%

50
%

1.00 1.06 1.06

1.00 1.00 0.99

1.01 1.00 1.00

(c) D1
JN: RM

8.33% 16.67% 25.00%

8.
33

%
16

.6
7%

25
.0

0%

1.00 0.99 1.12

1.01 1.00 1.06

1.03 0.98 1.00

(d) D1
JN: KM

Figure 3: The relative generalization performance of DiffLight in different missing rates. The x-axis
is the missing rate during testing and the y-axis is the missing rate during training. The formula used
to calculate the relative generalization performance is depicted below.

We evaluate the generalization performance of DiffLight on Hangzhou1 and Jinan1 with different
missing rates. We train our method in a specific missing rate and test it on the same dataset with other
missing rates. To better compare the generalization performance among models trained in different
missing rates, we formulate the relative generalization performance as,

Pr = Pg/Po, (14)

where Pr is the relative generalization performance of the current missing rate, Pg is the performance
of the model trained in other missing rates, and Po is the performance of the model trained in the
current missing rate. The results in Figure 3 demonstrate that the generalization performance of
DiffLight is excellent in most situations. If we train DiffLight in a high missing rate and test it in a
lower missing rate, the performance of DiffLight remains stable. In contrast, if we train DiffLight in
a low missing rate and test it in a higher missing rate, the performance of DiffLight would decrease

9

slightly. As data with a higher missing rate has more complex missing situations, making it difficult
for models to handle these situations.

5 Related Work

Traffic Signal Control TSC approaches can be categorized into conventional and RL-based
methods. Conventional approaches like Fixed-time [2], SCOOT [3] and SCATS [4] have been widely
deployed in different cities. In recent years, RL-based approaches for TSC get more attention. DQN
algorithm is introduced into TSC in [5, 6, 7] for dynamic real-time control. Attention mechanisms
are applied to promote inter-agent communication [9] and build universal models [10]. Max-pressure
[8] and advanced-MP [13] are proposed to promote the performance of existing methods. TSC with
missing data is considered with the help of the imputation model in the online setting. However, there
is no existing work to solve this problem in the offline setting.

Diffusion-based Reinforcement Learning There are various works applying the diffusion model
to offline RL recently. Diffusion and deep q-learning are combined [18], demonstrating the potential
of diffusion in RL. The state-action trajectory is encoded in latent space [43], enhancing credit
assignment and reward propagation. In addition to methods relying on TD-learning, Diffuser [16]
and Decision Diffuser [17] are proposed as planners to generate the trajectory with a conditional
diffusion model. However, they are all studied under scenarios without missing data, while we model
TSC with missing data.

Traffic Data Imputation With the development of deep learning, RNN-based methods [44, 45, 46]
show good performance for traffic data imputation. In subsequent studies, diffusion models are
utilized to learn the complex distribution in traffic data [21, 22]. For TSC, store-and-forward method
(SFM) [42] is proven to have a more stable performance than neural networks [14]. In this paper, we
adopt SFM to impute observations and rewards for baselines.

6 Conclusion and Limitation

Conclusion In this paper, we introduce DiffLight, a novel conditional diffusion model designed
for TSC in scenarios with missing data. Our approach centers on the Partial Rewards Conditioned
Diffusion (PRCD) model, which addresses both traffic data imputation and decision-making in
the presence of incomplete data. This model helps prevent missing rewards from disrupting the
learning process. We address the challenge of capturing spatial-temporal dependencies across
intersections by designing a Spatial-Temporal transFormer (STFormer) architecture as the noise
model. Additionally, to enhance communication and control performance, we propose a Diffusion
Communication Mechanism (DCM) that facilitates the propagation of generated observations. We
conduct extensive experiments on different datasets and settings to demonstrate that DiffLight is an
effective controller to address TSC with missing data.

Limitation In this work, we only consider two missing patterns: random missing and kriging
missing. While in the real world, the missing pattern in the traffic network is more complex.
Meanwhile, we just adopt SFM which is similar to k-nearest neighbor (KNN) to impute the traffic
data for baselines. In addition, our approach is conditioned on partial rewards instead of returns which
could lead to the short-sightedness of agents. Future work could explore the influence on performance
in more different missing patterns even mixed missing patterns, adopt more different imputation
methods, and find out a more far-sighted method to control the traffic signals under data-missing
scenarios.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62372031).

10

References
[1] Juan Lu, Bin Li, He Li, and Abdo Al-Barakani. Expansion of city scale, traffic modes, traffic congestion,

and air pollution. Cities, 108:102974, 2021.

[2] Fo Vo Webster. Traffic signal settings. Technical report, 1958.

[3] PB Hunt, DI Robertson, RD Bretherton, and M Cr Royle. The scoot on-line traffic signal optimisation
technique. Traffic Engineering & Control, 23(4), 1982.

[4] PR Lowrie. Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of controlling
urban traffic. 1990.

[5] Elise Van der Pol and Frans A Oliehoek. Coordinated deep reinforcement learners for traffic light control.
Proceedings of learning, inference and control of multi-agent systems (at NIPS 2016), 8:21–38, 2016.

[6] Li Li, Yisheng Lv, and Fei-Yue Wang. Traffic signal timing via deep reinforcement learning. IEEE/CAA
Journal of Automatica Sinica, 3(3):247–254, 2016.

[7] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A reinforcement learning approach
for intelligent traffic light control. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2496–2505, 2018.

[8] Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. Presslight:
Learning max pressure control to coordinate traffic signals in arterial network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 1290–1298, 2019.

[9] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin
Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic signal control. In
Proceedings of the 28th ACM international conference on information and knowledge management, pages
1913–1922, 2019.

[10] Afshin Oroojlooy, Mohammadreza Nazari, Davood Hajinezhad, and Jorge Silva. Attendlight: Universal
attention-based reinforcement learning model for traffic signal control. Advances in Neural Information
Processing Systems, 33:4079–4090, 2020.

[11] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li.
Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 3414–3421, 2020.

[12] Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li. Metalight: Value-based
meta-reinforcement learning for traffic signal control. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 1153–1160, 2020.

[13] Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Expression might be enough:
representing pressure and demand for reinforcement learning based traffic signal control. In International
Conference on Machine Learning, pages 26645–26654. PMLR, 2022.

[14] Hao Mei, Junxian Li, Bin Shi, and Hua Wei. Reinforcement learning approaches for traffic signal control
under missing data. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, pages 2261–2269, 2023.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[16] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In International Conference on Machine Learning, pages 9902–9915. PMLR, 2022.

[17] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2022.

[18] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class
for offline reinforcement learning. In The Eleventh International Conference on Learning Representations,
2022.

[19] Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. arXiv preprint
arXiv:2305.17330, 2023.

11

[20] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xuelong
Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning.
Advances in neural information processing systems, 36, 2023.

[21] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information Processing Systems,
34:24804–24816, 2021.

[22] Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional
diffusion framework for spatiotemporal imputation. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE), pages 1927–1939. IEEE, 2023.

[23] Qianru Zhang, Haixin Wang, Cheng Long, Liangcai Su, Xingwei He, Jianlong Chang, Tailin Wu, Hongzhi
Yin, Siu-Ming Yiu, Qi Tian, et al. A survey of generative techniques for spatial-temporal data mining.
arXiv preprint arXiv:2405.09592, 2024.

[24] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020.

[25] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256–2265. PMLR, 2015.

[26] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[27] Ryan Po and Gordon Wetzstein. Compositional 3d scene generation using locally conditioned diffusion.
In 2024 International Conference on 3D Vision (3DV), pages 651–663. IEEE, 2024.

[28] Jiawei Ren, Mengmeng Xu, Jui-Chieh Wu, Ziwei Liu, Tao Xiang, and Antoine Toisoul. Move anything
with layered scene diffusion. arXiv preprint arXiv:2404.07178, 2024.

[29] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International conference on machine learning, pages 8162–8171. PMLR, 2021.

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[32] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 922–929, 2019.

[33] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and hetero-
geneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data
Engineering, 34(11):5415–5428, 2021.

[34] Aosong Feng and Leandros Tassiulas. Adaptive graph spatial-temporal transformer network for traffic
forecasting. In Proceedings of the 31st ACM international conference on information & knowledge
management, pages 3933–3937, 2022.

[35] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-aware
dynamic long-range transformer for traffic flow prediction. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pages 4365–4373, 2023.

[36] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu,
Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for large scale
city traffic scenario. In The world wide web conference, pages 3620–3624, 2019.

[37] Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and
Zhenhui Li. Learning phase competition for traffic signal control. In Proceedings of the 28th ACM
international conference on information and knowledge management, pages 1963–1972, 2019.

[38] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, pages 4950–4957, 2018.

12

[39] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[40] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

[41] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

[42] Konstantinos Aboudolas, Markos Papageorgiou, and Elias Kosmatopoulos. Store-and-forward based
methods for the signal control problem in large-scale congested urban road networks. Transportation
Research Part C: Emerging Technologies, 17(2):163–174, 2009.

[43] Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and Glen Berseth.
Reasoning with latent diffusion in offline reinforcement learning. In The Twelfth International Conference
on Learning Representations, 2023.

[44] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

[45] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent imputation
for time series. Advances in neural information processing systems, 31, 2018.

[46] Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal data
streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical Engineering,
66(5):1477–1490, 2018.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[48] Qiang Wu, Liang Zhang, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Efficient pressure: Improving
efficiency for signalized intersections. arXiv preprint arXiv:2112.02336, 2021.

13

A Broad Impacts

Our proposed method demonstrates effective abilities in TSC with missing data. It can handle different missing
patterns and different missing rates when controlling traffic signals. Even in an intersection where there are no
observed neighboring intersections, DiffLight can perform competitively against baselines with SFM. Moreover,
the fast inference speed with fewer sampling steps and stable performance indicates that DiffLight can be
deployed to achieve real-time control in the real world. However, a potential negative impact of this work is that
bad decisions could lead to a collapse in the traffic network.

B The Details of DiffLight

B.1 Hyperparameters of DiffLight

In this section, we describe the details of hyperparameters,

• We set the batch size as 64 and each sample contains the trajectory of the whole intersections in the
traffic network. We train our model using Adam optimizer [47] with 2e−4 learning rate for 1.5e5 train
steps.

• We train DiffLight on NVIDIA GeForce RTX A5000 for around 15 hours and test it on the same GPU.
• We choose the probability p of removing the condition information to be 0.25 and guidance scale
α = 1.2.

• In DiffLight, we choose the length of historical observations C = 5 and the planning horizon of
observation trajectory H = 3.

• We use K = 100 for diffusion steps.

B.2 Structure of STFormer

STFormer is composed of a data embedding layer, stacked L spatial-temporal encoder layers, and an output
layer. We detail each of them as follows.

Data embedding layer. Different inputs are embedded into embeddings e with the same dimension D by
the data embedding layer which consist of separate MLPs fMLP(·),

edt := fMLP(k), ett := fMLP(t0:T−1), er := fMLP(R(τ)),

ectr := fMLP(x
k(τ)), entr := fMLP(τnei)

(15)

where t0:T−1 is the timestep of trajectory, edt, ett, er, ectr and entr represent the embedding of diffusion
timestep, trajectory timestep, rewards, trajectory of local intersection and partial trajectory of neighboring
intersection separately.

Spatial-temporal encoder layer. The spatial-temporal encoder layer, abbreviated as STE, is composed of
Communication Cross-Attention module, Spatial Self-Attention module and Temporal Self-Attention module.
We adopt the vanilla attention operator [31] in modules, represented as fAtt(Q,K, V). The following slice
notations are used to formulate attention modules. For the embedding of local intersection’s trajectory ectr ∈
RT×L×D where L is the number of entrance lanes, the t slice is et::

ctr ∈ RL×D and the l slice is e:l:
ctr ∈ RT×D .

For the embedding of neighboring intersections’ partial trajectories entr ∈ RL×(T ·L′)×D where L′ is the
number of neighboring intersections’ entrance lanes taken into consideration, the l slice is el::

ntr ∈ R(T ·L′)×D .

The Communication Cross-Attention module, abbreviated as CCA, is designed to capture the spatial-temporal
dependencies between the local intersection and neighboring intersections. As illustrated in Figure 1, el::

ntr

contains information of entrance lanes from neighboring intersections feeding into lane l. This module can be
formulated as,

fCCA(e
:l:
ctr, e

l::
ntr) := fAtt(e

:l:
ctr, e

l::
ntr, e

l::
ntr) (16)

e′:l:
ctr = fCCA(e

:l:
ctr, e

l::
ntr) + e:l:

ctr (17)

The Spatial Self-Attention module, abbreviated as SSA, and Temporal Self-Attention module, abbreviated
as TSA, are designed to capture the spatial dependencies and temporal dependencies separately in the local
intersection, which can be formulated as,

14

fSSA(e
′h::
ctr) := fAtt(e

′t::
ctr, e

′t::
ctr, e

′t::
ctr), fTSA(e

′:l:
ctr) := fAtt(e

′:l:
ctr, e

′:l:
ctr, e

′:l:
ctr) (18)

Therefore, the spatial-temporal encoder layer can be expressed as,

fSTE(ectr, entr) := fMLP(fSSA(ectr) + fTSA(ectr)) + ectr (19)

To simplify the expression, we omit the embedding of diffusion timestep, trajectory timestep and rewards in
Equation 16, 17, 18 and 19. In the implementation, the embedding of diffusion timestep and trajectory timestep
are added to every input of CCA, SSA and TSA, and the embedding of rewards is added to every input of SSA
and TSA.

Output layer. We use an MLP layer as the output layer to convert the output of the spatial-temporal encoder
layers into the noise we desire to predict.

C Datasets

C.1 Detials of Datasets

We apply five real-world traffic flow datasets in three cities of different sizes including Hangzhou and Jinan:
(1) Hangzhou datasets: the road network contains 16 (4×4) intersections with two traffic flow datasets,
including Hangzhou1 and Hangzhou2. (2) Jinan datasets: the road network contains 12 (3×4) intersections
with three traffic flow datasets, including Jinan1, Jinan2 and Hangzhou3. All these datasets are accessible in
https://traffic-signal-control.github.io/.

We train AttendLight [10], Efficient-CoLight [48] and Advanced-CoLight [13] in isolation for each dataset from
scratch until convergence. Then we collect all transitions in the replay buffer for each dataset during training.
We present the converged performance of three methods in Table 4.

Table 4: Converged performance of methods used to collect offline datasets.
Methods Hangzhou1 Hangzhou2 Jinan1 Jinan2 Jinan3

AttendLight 285.37 354.74 286.77 263.31 248.69
Efficient-CoLight 282.92 326.73 259.04 240.51 237.73

Advanced-CoLight 271.73 311.12 247.32 233.53 229.45

C.2 Missing Pattern

In TSC with missing data, missing patterns have a significant impact on the performance of control. In this paper,
as shown in Figure 4, we conduct our experiments on random missing and kriging missing: (1) Random missing:
traffic data collected by sensors for rewards and observations in every intersection is randomly masked with
10%∼50% probability. (2) Kriging missing: there is always no traffic data collected in certain intersections with
6.25%∼25.00% (1-intersection∼4-intersection) probability in Hangzhou1 and Hangzhou2, 8.33%∼25.00% (1-
intersection∼3-intersection) probability in Jinan1, Jinan2 and Jinan3, and all neighboring intersections surround
missing intersections are observable.

(a) Random missing (b) Kriging missing

Figure 4: Illustration of random missing and kriging missing pattern. Each node represents an
intersection in the road network and blocks with masks are traffic data with missing value.

15

https://traffic-signal-control.github.io/

D Baseline Methods

In this section, we make a brief introduction to baseline approaches and the Store-and-forward method (SFM).

Baseline approaches. We adopt six baseline approaches in experiments as follows:

• BC is a type of imitation learning, where the agent learns to mimic the behavior of an expert
demonstration. The agent is trained on a dataset of state-action pairs from the expert, and the goal is to
learn a policy that can replicate the expert’s actions given the same states.

• CQL is an RL algorithm that aims to learn a conservative Q-function, which provides a lower bound
on the true Q-values. This helps to address the issue of overestimation of Q-values, which can lead to
poor performance in practice.

• TD3+BC combines the TD3 algorithm with behavioral cloning. By incorporating BC into TD3,
the agent can leverage expert demonstrations to accelerate learning and improve sample efficiency.
TD3+BC offers the benefits of both TD3’s stability and BC’s ability to learn from expert demonstra-
tions.

• DT is a sequence-to-sequence model that casts reinforcement learning as a sequence modeling
problem. It takes as input a sequence of past states, actions, and rewards, and it outputs a sequence
of future actions that maximize the expected cumulative reward. We build DT based on the code
https://github.com/kzl/decision-transformer/.

• Diffuser is a diffusion-based approach for decision-making. Diffuser focuses on generating sequences
of actions that lead to desirable outcomes by iteratively refining these sequences. We build Diffuser
based on the code https://github.com/jannerm/diffuser.

• DD is a diffusion-based approach for decision-making. DD diffuses over state trajectories and
planning with an inverse dynamics model. We build DD based on the code https://github.com/
anuragajay/decision-diffuser.

To avoid non-convergence caused by missing data, we train baselines on datasets without missing data and test
them under data-missing scenarios with observations and rewards imputed by SFM.

Store-and-forward method. Since baselines cannot handle the data-missing scenarios, we adopt a rule-
based SFM to impute observations and rewards for baselines. It is proved that SFM has more stable performance
compared to learning neural networks [14]. In this paper, we model current observation as: f(Vt−1, k) =

Concat(∪lif
′(li, k)) and f ′(li, k) =

1
k

∑
lj
o
lj
t−1, where Vk

t−1 is the intersection at time t, li ∈ Vk
t−1 is a lane

and lj is the k’s neighboring lane connected by traffic movements. We set k as 12 in this paper.

E Proof of Partial Rewards Conditioned Diffusion

To prove that the aim of partial rewards conditioned diffusion is the same as the goal in Equation 3, we assume
that the observable part of the trajectory and the missing part of the trajectory are collected by real sensors and
virtual sensors separately, and the distribution of traffic data collected by two kinds of sensors are independent.
Thus, the distribution in Equation 3 can be factorized as follows,

p(x0(τ)|y(τ)) = p(x0(τobs), x
0(τmis)|y(τ))

= p(x0(τobs)|y(τ)) · p(x0(τmis)|y(τ))
= p(x0(τobs)|r(τ), y′(τ)) · p(x0(τmis)|r(τ), y′(τ))

= p(x0(τobs)|r(τ), y′(τ)) · p(x0(τmis)|y′(τ))

(20)

The distribution without rewards condition p(x0(τ)|y′(τ)) can be regarded as the marginal distribution of that
with rewards condition p(x0(τ)|y(τ)) = p(x0(τ)|r(τ), y′(τ)),

p(x0(τ)|y′(τ)) =

∫
p(r(τ))p(x0(τ)|r(τ), y′(τ))dr(τ) (21)

In this case, we can adopt the same diffusion model with classifier-free guidance to model
pθ(x

0(τobs)|r(τ), y′(τ)) and pθ(x
0(τmis)|y′(τ)).

16

https://github.com/kzl/decision-transformer/
https://github.com/jannerm/diffuser
https://github.com/anuragajay/decision-diffuser
https://github.com/anuragajay/decision-diffuser

F Additional Experiments Results

F.1 Performance without Missing Data

We train and test our method on all five datasets and compare our method with all baselines under no data-missing
scenarios. DiffLight performs the best on over half of the datasets. Meanwhile, DD demonstrates a better
performance than Diffuser, which shows that diffusing only on observations is a better choice in TSC.

Table 5: Overall performance in scenarios without missing data.
Dataset BC CQL TD3+BC DT Diffuser DD DiffLight

D1
HZ 342.26 318.42 327.19 297.46 289.64 284.79 283.92±0.10

D2
HZ 374.9 353.04 364.8 338.33 357.34 328.63 319.79±5.13

D1
JN 315.2 298.02 304.36 289.8 270.83 255.53 268.43±1.35

D2
JN 286.66 300.64 325.53 257.59 249.74 244.11 243.56±0.03

D3
JN 296.05 288.42 281.59 247.71 241.44 241.34 242.31±1.39

F.2 Influence of Unobserved Locations

In previous experiments, the unobserved intersections in kriging missing are not adjacent. In this section, we
study the influence of unobserved locations. We provide another mask of D1

HZ with a missing rate of 25% in
kriging missing, which contains a missing intersection where all neighboring intersections are missing. The
performance of this experiment is shown in Table 6. DiffLight still demonstrates the best performance.

Table 6: Performance in different unobserved locations.
Dataset BC CQL TD3+BC DT Diffuser DD DiffLight

D1
HZ w/ neighbors 354.86 328.83 341.89 381.94 328.79 836.46 302.16±1.23

D1
HZ w/o neighbors 398.77 361.11 447.79 427.62 465.61 745.85 344.02±8.72

F.3 Limit of Missing Rates

To further explore limits on missing proportions, we conduct experiments on the selected datasets in random
missing with missing rates of 70% and 90%. In the experiment, DiffLight remains an acceptable performance at
the missing rate of 70%. When the missing rate rises to 90%, the performance of DiffLight drops rapidly, which
shows that the limit for the missing rate is around 70%.

Table 7: Limit of missing rates in random missing.
Dataset RM(70%) RM(90%)

D1
HZ 326.29 878.31

D2
HZ 343.48 430.38

D1
JN 310.74 437.19

D2
JN 295.07 587.42

D3
JN 289.01 668.41

F.4 Scalability of DiffLight

To further evaluate the efficacy and validate the performance of our approach, we conduct experiments on the
New York dataset, which includes 48 intersections. In the experiment on the New York dataset, DiffLight
achieves the best performance in most scenarios, demonstrating its ability to deal with complex traffic scenarios
and control traffic signals in a larger-scale traffic network. In contrast, the performance of most baselines drops
rapidly, due to the cumulative effect of errors in state imputation and decision-making at more intersections.

17

Table 8: Scalability of DiffLight in random missing.
Dataset Rate BC CQL TD3+BC DT Diffuser DD DiffLight

DNY

10% 187.14 200.77 349.54 394.17 209.37 185.98 182.89
30% 226.23 254.73 540.18 605.81 241.32 229.44 244.93
50% 453.90 446.29 820.19 837.97 453.97 455.07 266.82

Table 9: Scalability of DiffLight in kriging missing.
Dataset Rate BC CQL TD3+BC DT Diffuser DD DiffLight

DNY

6.25% 515.40 242.15 496.41 894.76 741.99 765.64 197.22
12.50% 1304.52 470.69 859.98 930.78 951.49 1213.08 315.05
18.75% 1360.71 1154.71 989.99 1197.74 1034.02 929.25 350.66
25.00% 1442.31 1089.39 1108.67 1445.37 846.18 1393.23 454.56

F.5 Additional Ablation Study on Diffusion Communication Mechanism

We further evaluate the effectiveness of DCM with DiffLight w/ DCM and DiffLight w/o DCM. Table 10 shows
the comparison of these variants on Hangzhou1 and Jinan1. It should be noted that we adopt another mask of
D1

HZ used in Appendix F.2, which contains a missing intersection where all neighboring intersections are missing.
Based on the results, we can find that DiffLight w/ DCM shows better performance in kriging missing and the
performance of DiffLight w/ DCM is close to the performance of DiffLight w/o DCM in random missing. It is
proven that DCM sharing generated observations among intersections can promote the performance of TSC with
missing data effectively.

Table 10: Ablation study on Diffusion Communication Mechanism.
Dataset Pattern and Rate DiffLight w/ DCM DiffLight w/o DCM

D1
HZ

RM(50%) 304.71±1.26 303.13±2.23
KM(25%) 302.16±1.23 307.14±7.79

D1
JN

RM(50%) 290.02±1.26 289.16±3.89
KM(25%) 329.67±16.03 351.64±19.53

D1
HZ KM(25%) w/o neighbors 344.02±8.72 351.64±2.46

F.6 Additional Ablation Study on the Inverse Dynamics

We further evaluate the effectiveness of the inverse dynamics (ID) with DiffLight w/ ID and DiffLight w/o ID.
For DiffLight w/o inverse dynamics, we remove the inverse dynamics and extend the dimension of the noise
model to generate both observations and actions. Table 11 shows the comparison of these variants on Hangzhou1

and Jinan1. Based on the results, we can find that DiffLight w/ inverse dynamics shows better performance in
both random missing and kriging missing.

Table 11: Ablation study on the inverse dynamics.
Dataset Pattern and Rate DiffLight w/ ID DiffLight w/o ID

D1
HZ

RM(50%) 303.91 572.61
KM(25%) 301.08 386.92

D1
JN

RM(50%) 288.01 301.21
KM(25%) 334.12 395.46

F.7 Time Cost

To effectively demonstrate the usability of DiffLight, we conduct experiments to study the relationship between
inference speed and performance in Table 12 and 13. We adopt models trained with 100 steps and test them on

18

different sampling steps. We can see that with the decrease in sampling steps, the performance of DiffLight
remains stable. It is proven that DiffLight is able to handle the TSC task in an acceptable time with good
performance.

Table 12: Performance of DiffLight on different sampling steps.
Dataset Pattern and Rate 100-step 50-step 20-step 10-step

D1
HZ RM(50%) 301.62±0.42 301.90±2.79 300.75±0.39 300.95±1.77

D1
HZ KM(25%) 308.51±2.30 303.45±1.75 303.38±0.07 306.77±2.70

D1
JN RM(50%) 288.51±1.45 289.45±2.68 289.72±0.18 287.36±1.29

D1
JN KM(25%) 328.54±0.99 337.17±8.71 332.31±12.66 325.20±6.37

Table 13: Inference time cost of DiffLight on different sampling steps.
Dataset Pattern and Rate 100-step 50-step 20-step 10-step

D1
HZ RM(50%) 450.36±14.32 219.81±3.96 90.19±2.41 45.73±0.16

D1
HZ KM(25%) 442.37±9.56 219.87±4.05 89.64±3.17 46.14±1.00

D1
JN RM(50%) 449.01±7.19 218.31±2.69 90.23±1.77 45.50±0.76

D1
JN KM(25%) 436.30±8.85 218.26±2.55 88.41±1.47 45.92±0.51

G Discussion on MissLight

To better clarify the core differences between DiffLight and MissLight [14], we compare them from the following
two aspects.

Model training. MissLight is an online method with a state imputation model and a reward imputation
model, which means that interaction with the environment is necessary. In the online setting, if the method is
trained in the physical environment, safety problems must be taken into consideration. If the method is trained in
a simulated environment, the difference between the physical environment and the simulated environment could
affect the performance of the method to some extent when the online method is going to be employed in the
physical environment. In contrast, our approach, DiffLight, is an offline method based on the diffusion model.
In the offline setting, our method is trained using the collected dataset without interaction with the environment,
which avoids the problems mentioned above.

Model composition. MissLight is a two-stage method. In the first stage, state imputation and reward
imputation models are used to fill in the missing data. In the second stage, the DQN algorithm is employed
to complete the training process based on the imputed data. This approach suffers from the problem of error
accumulation during the training process. However, our proposed DiffLight model, which incorporates both a
diffusion model and an inverse dynamics model, can simultaneously train on missing data and collaboratively
achieve traffic signal control with missing data.

To better compare with MissLight, we implement the SDQN-SDQN (model-based) in [14] and replace the DQN
algorithm with the CQL algorithm to adapt the offline setting. We replaced the DQN algorithm with different
algorithms in the offline setting and imputed the states with the SFM model. Note that all the baselines in Section
4.2 were implemented with reference to the SDQN-SDQN (transferred) method in MissLight. To distinguish the
baseline of CQL implemented in Section 4.2, the new baseline is named CQL (model-based). We provide the
performance of CQL (model-based) in Table 14 and Table 15.

Table 14: Performance of CQL (model-based) in random missing.
Dataset Rate CQL CQL (model-based) DiffLight

D1
HZ

10% 363.50 376.85 285.96
30% 368.53 381.92 293.10
50% 383.67 388.51 303.91

D1
JN

10% 299.07 303.46 273.17
30% 310.80 324.15 280.32
50% 322.25 361.40 288.01

19

Table 15: Performance of CQL (model-based) in kriging missing.
Dataset Rate CQL CQL (model-based) DiffLight

D1
HZ

6.25% 317.69 389.66 291.80
12.50% 317.94 397.13 297.18
18.75% 319.18 449.80 299.96
25.00% 328.83 463.25 301.08

D1
JN

8.33% 302.35 374.20 280.83
16.67% 343.16 347.88 295.53
25.00% 398.66 400.55 334.12

DiffLight achieves competitive performance compared with CQL (transferred) and CQL (model-based). The
possible reason why DiffLight has better performance is that CQL (model-based) suffers from error accumulation
caused by the reward imputation model while DiffLight can directly make decisions with Partial Rewards
Conditioned Diffusion (PRCD).

20

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

21

• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4.1, Appendix B and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have submitted our data and code on: https://github.com/lokol5579/
DiffLight-release

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

22

https://github.com/lokol5579/DiffLight-release
https://github.com/lokol5579/DiffLight-release
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Appendix B.1 and Appendix F.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.

23

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured that the study complied with the NeurIPS Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: See Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper does not suffer from this risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

24

https://neurips.cc/public/EthicsGuidelines

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

25

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

26

	Introduction
	Preliminaries
	Partially Observable Markov Decision Process
	Traffic Signal Control with Missing Data
	Diffusion Models for Reinforcement Learning

	Methodology
	Partial Rewards Conditioned Diffusion
	Diffusing with Spatial-Temporal Transformer
	Diffusion Communication Mechanism
	Training and Inference of DiffLight

	Experiments
	Experimental Setup
	Performance under Data-Missing Scenarios
	Ablation Study
	Model Generalization

	Related Work
	Conclusion and Limitation
	Broad Impacts
	The Details of DiffLight
	Hyperparameters of DiffLight
	Structure of STFormer

	Datasets
	Detials of Datasets
	Missing Pattern

	Baseline Methods
	Proof of Partial Rewards Conditioned Diffusion
	Additional Experiments Results
	Performance without Missing Data
	Influence of Unobserved Locations
	Limit of Missing Rates
	Scalability of DiffLight
	Additional Ablation Study on Diffusion Communication Mechanism
	Additional Ablation Study on the Inverse Dynamics
	Time Cost

	Discussion on MissLight

