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Abstract

Recent breakthroughs in foundation models have revolutionized the science domain
with their promising generalization performance to solve challenging open ques-
tions. In chemistry and biology, the textual data enriches comprehensive knowledge
about the molecule’s functionalities, thus serving as a complementary modality to
the chemical structures. However, existing multi-modal foundation models mainly
focus on 2D topology rather than 3D geometry. To handle this issue, we construct
a large-scale 3D structure-text dataset with conformations calculated by semi-
empirical quantum methods. Then we propose MoleculeSTM-3D, a geometry-text
multi-modal foundation model to align the two modalities through contrastive
learning. For downstream, we apply MoleculeSTM-3D to the reactivity-oriented
molecule editing task. Our empirical results demonstrate that it achieves a 9.00%
higher editing success rate and significantly reduces invalid molecule generation
by 10.07% compared to baseline methods. These preliminary results reveal the
potential of utilizing MoleculeSTM-3D to solve more challenging tasks.

1 Introduction

The rapid advancement of artificial intelligence (AI) has revolutionized various scientific fields,
including chemistry [1, 2, 3, 4], materials science [5, 6, 7], and biology [8, 9, 10, 4, 11]. AI’s
ability to process vast amounts of data and recognize complex patterns has opened up unprecedented
opportunities for scientific discovery, ranging from molecule generation [12] to protein folding
prediction [13, 14]. A crucial aspect of these breakthroughs is the application of foundation models
(FMs) [15]—large-scale predictive or generative models trained on extensive datasets—which have
played a transformative role across various scientific domains. These models are characterized by
their capability to learn general-purpose representations that can be adapted to a wide range of
downstream tasks with minimal fine-tuning [16, 17].

In the field of AI for science, research into multi-modal foundation models [18, 19] is growing,
reflecting their potential to integrate multiple data modalities, enrich representations, and enhance
task performance across a broad spectrum of downstream applications. These models aim to leverage
the strengths of different data sources, such as textual information and structural data, to create more
comprehensive and robust representations [10]. In the context of chemistry, multi-modal founda-
tion models seek to integrate textual descriptions with molecular structures, to enhance molecular
representations[20, 21, 22]. Textual descriptions, often detailing the chemical and pharmacological
attributes of molecules, complement the structural data, which represent the spatial configuration and
bonding patterns within molecules. This approach leverages the complementary nature of these two
modalities, as textual data provide high-level insights about molecular characteristics, while structural
data capture the molecular geometry and atomic interactions essential for understanding molecular
behavior in chemical reactions. By combining these distinct yet related modalities, multi-modal
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Figure 1: Pipeline of pretraining in MoleculeSTM-3D with two branches, the 3D structure (pink) and
textual description (blue).

models are able to generate richer and more nuanced molecular representations, leading to improved
performance in various downstream tasks.

One notable example of a multi-modal foundation model is MoleculeSTM [3], which maps structural
and textual representations into a joint space using contrastive learning, reducing the representation
distance between a molecule’s chemical structure and its textual description while increasing the
distance between different molecules. To demonstrate the advantages of introducing the language
modality, the researchers designed two challenging downstream tasks: the structure-text retrieval task
and the text-based molecule editing task, and they applied the pretrained MoleculeSTM in a zero-shot
manner, achieving promising results. However, the model has limitations: for molecular structural
data, it only focuses on 1D SMILES and 2D graphs, without considering the more information-rich
3D molecular graphs. Additionally, for molecule editing tasks that require a generative model, it uses
MegaMolBart [23], a BART-based pretrained sequence-to-sequence model that can only process and
generate SMILES as sequence data, significantly limiting its ability to generate more effective and
robust molecules.

Recent studies have begun to explore the integration of 3D structural data with textual data to improve
molecular representations [24, 25]. While this approach shows promise for creating richer and more
comprehensive representations, these efforts are still in the early stages and face several significant
challenges. One of the most critical obstacles is the lack of benchmark:

• Dataset. The shortage of large-scale, high-quality multi-modal datasets that combine detailed tex-
tual descriptions with accurate 3D structural data for molecules makes it difficult to train sophisticated
multi-modal models capable of fully capturing the complexities of molecular structures alongside
their textual attributes.

• Evaluation. The lack of innovative downstream tasks designed to specifically evaluate the ef-
fectiveness of 3D structural data further hampers progress. Most existing evaluation tasks are not
designed to fully leverage the rich geometric information encoded in 3D molecular structures, making
it difficult to accurately assess the impact of 3D data on model performance.

Our contributions. In response to the aforementioned limitations, we propose a Geometry-text
Multi-modal Foundation Model, called MoleculeSTM-3D. In this work, we focus on aligning the
latent representations of 3D structural data and textual descriptions of the same molecules to generate
richer, more robust, and more effective representations for downstream tasks. Our main contributions
are as follows:

• 3D Structure-Text Dataset Construction: We construct a novel dataset containing approximately
163K molecules with 202K text-structure pairs. The textual data, sourced from PubChem, provides
comprehensive descriptions of each molecule, including its physical, chemical, biological, and
pharmacological properties. The structural data, extracted from the PubChemQC PM6 dataset,
includes the constituent atoms and their corresponding 3D coordinates.

• Alignment of 3D and Textual Modalities: We process the 3D structural information and textual
descriptions of the same molecules using one of state-of-the-art 3D GNNs and the cutting-edge
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pretrained language models, respectively, to obtain two distinct latent representations. We apply
contrastive learning to align latent representations between 3D molecular structures and textual
descriptions. This alignment enables our model to integrate both modalities effectively, enhancing
molecular representations for various downstream applications.

• Reactivity-oriented Molecule Editing Task: To demonstrate the effectiveness of our joint latent
representation, we propose a novel and challenging downstream task: reactivity-oriented molecule
editing. This task is designed to modify molecules to increase their reactivity toward the specific
reaction type which is described by a textual description. Additionally, we introduce benchmark
metrics to rigorously evaluate the editing performance.

Using the learned alignment between 3D structures and textual representations, we apply our model
to perform reactivity-oriented molecule editing. Empirically, our model demonstrates a significant
improvement in performance, with an average increase of 9.00% in editing success rate and a 10.07%
decrease in invalid molecule generation rate, showcasing the robustness and effectiveness of our
multi-modal foundation model.

2 3D Structure-Text Dataset Construction

To combine textual and 3D structural latent representations of the same molecules and obtain more
robust joint latent representations, we first need to collect both structural and textual data for the same
molecules, forming 3D structure-text pairs.

2.1 Textual Data Component

For the textual data part of our dataset, we choose to extract it from PubChem Dataset [26], which is
an online database managed by the National Center for Biotechnology Information (NCBI) of the
United States and provides detailed chemical substances and biological activity data. This resource
includes the structure, properties, biological activity and related information of millions of chemical
substances, making it an ideal source for extracting textual information. Through the official API or
website provided by PubChem, researchers can easily access detailed records of specific compounds,
including chemical names, synonyms, molecular weights, and more. Among these records are
comprehensive textual descriptions of molecules, which are especially valuable for constructing
structure-text pairs.

We adopt the method of processing and extracting text from MoleculeSTM. First, we use one of the
PubChem APIs, PUG View [27], to download the textual descriptions of molecules. Specifically,
PUG View is a REST-style web service that provides information content that is not directly contained
within the primary PubChem Substance, Compound, or BioAssay records. Its purpose is primarily
to drive the PubChem database summary record web pages, but can also be used independently as
a programmatic web service. PUG View is mainly designed to provide complete summary reports
on individual PubChem records. It has many types of records, and here we focus on the annotations
records, which contain textual descriptions of molecules. These textual descriptions are constantly
updated and increased. As of the time we downloaded, there were a total of 422 pages of data.
Each page is downloaded in JSON file format. In each JSON file, there is a key called "strings,"
and its corresponding value is a comprehensive description of a molecule, including its physical
properties, chemical properties, and more. We use it as the textual description we need. In order
to obtain standardized and uniform text data that is easy for the pretrained language model to load,
we preprocess these text descriptions into a consistent format, and store them as JSON files indexed
by PubChem ID (CID). It should be noted that each molecule may have more than one annotation.
Therefore, there are a total of 333K molecules with relevant textual descriptions, and a total of 396K
PubChem ID-text pairs. With this, we have preliminarily completed the establishment of the textual
data component.

2.2 Structural Data Component

For the 3D structural data part of our dataset, it’s important to note that commonly used molecular
datasets do not meet our needs. We require 3D data for a broad range of molecules, and the volume
required is substantial. However, well-known datasets that provide molecular 3D structures often
have limitations in both the variety of molecules and the number of available entries. For instance, the
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QM9 dataset [28] only includes 3D data for molecules with fewer than nine heavy atoms, covering
just 134K molecules. Many of the molecules in our textual data fall outside this range, significantly
limiting the dataset size and negatively impacting pretraining performance, which ultimately reduces
the robustness of the latent representations. Therefore, we use the relatively new molecular dataset,
PubChemQC PM6 [29], which optimizes molecular geometries and electronic properties calculated
by the PM6 method for 94.0% of the 91.6 million molecules cataloged in PubChem Compounds
retrieved on August 29, 2016.

There are a total of about 86M molecules with 3D structural data, and each molecule may have
multiple sets of structural data corresponding to different states; besides the consistently present
ground state (S0), molecules may also exist in cationic, anionic, and the lowest triplet states (T0). Here
we only focus on the 3D structural data of the ground state S0, because this is the state in which most
molecules exist in nature, with the lowest energy and the most stable. All these molecular data are
divided into 4860 compressed files in tar.xz format according to their PubChem ID (CID) and stored
on a Sharepoint webpage. Since the PubChem IDs corresponding to the molecules in our text data
are roughly evenly distributed across the entire range, we need to download and process nearly all of
these compressed files. Since these compressed packages are all on the Sharepoint website, we choose
to use a web crawler to download these compressed packages in a semi-automatic and semi-manual
way. We decompress them one by one to retrieve the molecular data whose corresponding CIDs that
also appear in our textual data part, and then extract the JSON files containing their structural data
of the ground state S0. It’s important to note that these compressed files are extremely large, with
the whole decompressed data amounting to several terabytes. Downloading them via crawling and
decompressing all the compressed packages is both time-consuming and cumbersome. Since not all
of the 333K molecules with textual descriptions have corresponding 3D structural data, we eventually
identify and extract the 3D structural data of the ground state S0 for 163,467 corresponding molecules,
each stored in a separate JSON file. After removing the molecules from the text data component
that do not have corresponding 3D structures, we finalize a 3D structure-text dataset consisting of
163,467 molecules, forming a total of 202,272 3D structure-text pairs, each with corresponding
textual descriptions and 3D structural data of the ground state S0.

3 3D Structure-Text Multi-modal Pretraining Framework

3.1 Text Modality Architecture

For the textual descriptions in our dataset, we require a language model that can understand and
process the textual descriptions of molecules, encoding them into latent representations that capture
each molecule’s characteristics and properties for further use. Therefore, we chose two language
models for experimentation: SciBERT and Llama2-7B.

SciBERT [30], based on the BERT architecture, is a powerful transformer-based model that captures
contextual relationships in text by processing words bidirectionally, making it ideal for grasping
nuanced and intricate textual meanings. Specifically, SciBERT is pretrained on a large corpus of
scientific texts, including a random sample of 1.14 million papers from Semantic Scholar. This corpus
consists of 18% computer science papers and 82% biomedical papers, using the full text rather than
just abstracts. The average paper length is 154 sentences (2,769 tokens), resulting in a total corpus
size of 3.17 billion tokens. Since 82% of the corpus is from the biomedical domain, we believe
SciBERT is well-suited to understanding comprehensive molecular descriptions and encoding them
into textual latent representations.

In addition, we experiment with Llama2-7B [31], a state-of-the-art large language model from Meta’s
Llama series. Llama2-7B is a generative transformer-based model with 7 billion parameters, designed
for a wide range of natural language processing tasks. Unlike SciBERT, which is specifically tailored
for scientific texts, Llama2-7B is a general-purpose model but exhibits remarkable performance
across diverse text datasets due to its scale and the quality of its training data. By leveraging its
vast capacity, Llama2-7B can also capture complex semantic relationships and offer robust latent
representations for molecular descriptions.
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3.2 3D Structure Modality Architecture

For the molecular 3D structural data, our goal is to obtain a robust latent representation that captures
the rich 3D information of each molecule. Symmetry-informed geometric representations, which
leverage physical principles (i.e., group theory for depicting symmetric particles) into spatial rep-
resentations, have emerged as a promising approach. To process our 3D structural data, we need
a 3D GNN model. Additionally, to effectively capture and handle the rotational and translational
equivariance of molecules in 3D geometric space while maintaining physical consistency, we need
an SE(3)-equivariant model capable of generating symmetry-informed geometric representations.
To meet these requirements, we select a pretrained PaiNN [32, 33], one of the state-of-the-art 3D
equivariant graph neural networks. PaiNN leverages the message-passing mechanism, which fa-
cilitates information propagation along the graph structure by updating node embeddings through
neighborhood aggregation. This equivariant GNN simultaneously updates both invariant and equiv-
ariant features, making it suitable for practical tasks, such as molecular dynamics simulations, that
require equivariant outputs.

3.3 Contrastive Learning Paradigm

Once we obtain both the structural and textual latent representations of the same molecule, our goal
is to combine these two representations to create a more comprehensive and robust molecular latent
representation. The textual latent representation can be viewed as domain knowledge that strengthens
the structure latent representation. To achieve this, we employ contrastive learning, which works by
reducing the representation distance between a molecule’s chemical structure and textual description,
while increasing the distance between different molecules. Through this approach, we map the 3D
structural and textual latent representation spaces into a joint latent space, ensuring that the latent
representation of the molecule contains both structural and textual information (Figure 1).

It is important to note that our 3D GNN model and language model operate independently, each
generating its own latent space from the dataset. This independence allows us to utilize pretrained
checkpoints for both models, enabling us to focus solely on pretraining through contrastive learning
to efficiently map these two spaces into a joint space, thereby enhancing training efficiency and
boosting the joint latent space’s ability to capture complex relationships.

Specifically, we use two projectors to convert the 3D structure and textual latent representations into a
space with the same dimensions. In this space, for the same molecule, we have both its structural and
textual latent representations, referred to as a positive 3D structure-text pair. We then create a negative
3D structure-text pair by combining the structural and textual latent representations from different
molecules. Then, we pretrain using EBM-NCE or InfoNCE, which align positive 3D structure-text
pairs while contrasting them against negative pairs. The objectives for EBM-NCE [34] and InfoNCE
[35] are:

LEBM-NCE =− 1
2

(
2 · Exc,xt

[
log σ(E(xc, xt))

]
+ Exc,xt′

[
log(1− σ(E(xc, xc′t)))

]
+ Exc′ ,xt

[
log(1− σ(E(xc′ , xt)))

])
, (1)

LInfoNCE = − 1
2 · Exc,xt

[
log exp(E(xc,xt))

exp(E(xc,xt))+
∑
x
t′

exp(E(xc,xt′ ))
+ log exp(E(xc,xt))

exp(E(xc,xt))+
∑
x
c′

exp(E(xc′ ,xt))

]
, (2)

where σ is the sigmoid activation function, xc and xt form the structure-text pair for each molecule,
and xc′ and xt are the negative samples randomly sampled from the noise distribution, which we
use the empirical data distribution. E(·) is the energy function with a flexible formulation, and we
use the dot product on the jointly learned space, i.e., E(xc, xt) = ⟨pc ◦ fc(xc), pt ◦ ft(xt)⟩, where
◦ is the function composition. Here, fc represents the PaiNN model used to encode 3D structural
data, and ft denotes a pretrained language model used to encode textual descriptions. pc and pt are
projectors designed to convert the 3D structure and textual latent representations into a space with the
same dimensions.
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4 Reactivity-oriented Molecule Editing Task

To evaluate the effectiveness and robustness of the joint latent representations which combine 3D
structural and textual information of the same molecules, we design a reactivity-oriented molecule
editing task. The goal of this task is to modify the chemical structure of molecules, such as by
changing functional groups [36] or scaffold hopping [37], to increase their reactivity toward a specific
type of reaction. In organic chemistry, although thousands of molecules can participate in various
reactions, most reactions fall into a few primary types of reaction. The main types of reactions include
nucleophilic substitution (SN1, SN2), electrophilic addition, elimination (E1, E2), polymerization,
and condensation reactions. These reaction types have distinct characteristics and are strongly
correlated with specific structural features of the reactants. Therefore, our aim is to determine
whether, for a given molecule, specifying the desired type of reaction through a text description can
result in an edited molecule with increased reactivity toward the expected type of reaction. This
downstream task not only demonstrates whether the pretrained language model can correctly interpret
the implicit characteristics of specific reaction types from the textual description, but also shows
whether the joint latent representation, which integrates both 3D structural and textual data of the
same molecule, can accurately align molecular properties with structural features to output valid and
reasonable edited molecules. In essence, this downstream task serves as a strong validation of the
superiority of the multi-modal latent representation that incorporates textual information.

To achieve this task, we need a generative model to output the edited molecules. The generative model
has its own latent space, while we have the 3D structure-text joint latent space through pretraining.
Based on the joint latent representation corresponding to the textual description of the desired
reaction type, the ML editing methods can learn a semantically meaningful direction in the latent
representation space of the generative model. The generative model then outputs edited molecules
with the desired properties by moving along this direction. It’s important to note that we need a 3D
graph generative model capable of handling 3D molecules. We choose LDM-3DG [38], which is one
of the state-of-the-art (SOTA) models. LDM-3DG proposes performing 3D graph diffusion in a latent
space rather than the original space, ensuring that the latent space is low-dimensional but high-quality.
This low-dimensional latent space is learned in a data-driven manner by pretraining a 3D graph
autoencoder (AE). To differentiate it from the latent space obtained after diffusion, we refer to this as
the AE-encoded latent space. LDM-3DG innovates the AE architecture by strategically decomposing
topological and geometric features, ensuring that the symmetry constraints of permutation and SE(3)
transformations are disentangled and properly addressed in separate but cascaded AE models. The
diffusion generative model (DGM) is then trained in the resulting latent space to model distributions.
After adding noise through the diffusion process, the latent space is further transformed, which we
refer to as the diffusion latent space. In the context of LDM-3DG, this diffusion latent space serves
as the latent space of the generative model, enabling the generation of 3D molecular structures with
desired properties.

Specifically, the pipeline for this downstream task is divided into two parts (Figure 2). The first
part is space alignment, where we need to align the latent representation of the same molecule in
the generative model with its latent representation in MoleculeSTM-3D, thereby aligning the two
different latent spaces. To achieve this, we use two adaptor modules: one maps the representation
space from MoleculeSTM-3D to the generative model’s space, and the other maps the generative
model’s space to MoleculeSTM-3D. The alignment is then optimized using the following objective
functions:

L = ∥mg2f ◦ fg(xc)− pc ◦ fc(xc)∥2 , (3)

where ◦ is the function composition function, and mg2f is the adaptor module optimized to align the
two latent spaces. Here, fg corresponds to the process in LDM-3DG that generates the molecule’s
diffusion latent representation via the autoencoder (AE) followed by the diffusion process.

The second part is latent optimization, where the adaptor module trained in the first part comes into
play. For a given input molecule and a text description specifying the desired reaction type, the goal
is to directly optimize the latent representation w of the generative model. This w represents the
edited molecule’s latent representation. Using the previously obtained adaptor module, we transform
w into the joint latent representation in MoleculeSTM-3D. This way, the latent representations of
the edited molecule and reaction type description are in the same latent space, and we optimize w
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Figure 2: Pipeline of reactivity-oriented molecule editing task.

of the generative model to bring its corresponding representation in MoleculeSTM-3D as close as
possible to the textual latent representation. At the same time, we ensure that w does not stray too
far from the input molecule’s latent representation of the generative model. The purpose of this is
to modify the molecular structure to achieve the desired reactivity while preserving the molecule’s
core structure and fundamental characteristics, which is the essential requirement of molecule editing.
The optimization of w can be expressed by the following formula:

w = arg min
w∈W

(
− Lcosine-sim (mg2f (w), pt ◦ ft(xt)) + λ · Ll2 (w, fg(xc,in))

)
, (4)

where W is the latent code space, Lcosine-sim is the cosine-similarity, and Ll2 is the l2 distance, and λ
is a coefficient to balance these two similarity terms.

Finally, after obtaining the optimal w, LDM-3DG uses this latent representation to generate the edited
molecule through reverse diffusion and a 3D graph autoencoder (AE). It’s important to note that
during this editing process, both the MoleculeSTM-3D (fc, pc, ft, pt) and the LDM-3DG remain
frozen.

The choice of the diffusion latent space in LDM-3DG is crucial. As a latent diffusion model, LDM-
3DG is originally designed for de novo molecular generation in its paper. Consequently, the original
implementation uses a Gaussian-distributed latent space, which is obtained by fully noising the
AE-encoded latent space, as the diffusion latent space. However, in our scenario, the goal is not
to generate entirely new molecules but to make slight modifications to existing molecules while
preserving their core structural features to meet specific requirements.

To achieve this, we apply only mild diffusion to the AE-encoded latent space, ensuring that the
diffusion latent representation retains the essential characteristics of the original molecule. Subse-
quently, inference (reverse denoising) on this representation effectively modifies the molecule while
preserving its core structure, aligning seamlessly with our objectives for molecule editing. In contrast,
if the AE-encoded latent space of the input molecule undergoes full Gaussian noising, as per the
standard procedure in LDM-3DG, the resulting diffusion latent representation essentially becomes a
random point in the Gaussian space, leading to the generation of a completely new molecule.

Experiments confirm this distinction: when using the parameters from the original LDM-3DG
paper to noise the AE-encoded latent representation and then performing reverse denoising and AE
decoding, the resulting molecules differ significantly from the original input molecules in structure.
This outcome contradicts the fundamental intent of molecule editing. Conversely, by significantly
reducing the number of timesteps and noise intensity during diffusion (e.g., timestep=3, noise=1e-4),

7



Figure 3: (a) Schematic diagram of the SN2 reaction mechanism. (b) The three most important
factors affecting the reactivity of the substrate in an SN2 reaction.

the edited molecules maintain the essential structural features of the original molecules, thereby
meeting the requirements of molecule editing effectively.

5 Experiment

In organic chemistry, the main types of reactions include bimolecular nucleophilic substitution SN2,
unimolecular nucleophilic substitution SN1, electrophilic addition, bimolecular elimination E2,
and unimolecular elimination E1. For our experiment, we choose the bimolecular nucleophilic
substitution reaction SN2 [39] as the target reaction type, as SN2 reactions are among the most
common and widely applied in fields such as drug synthesis and molecule discovery.

SN2 reactions involve a single-step mechanism where the nucleophile attacks the carbon atom
from the opposite side of the leaving group, resulting in the simultaneous bond formation and
bond breaking (Figure 3 (a)). This reaction is characterized by its concerted mechanism, where the
rate of the reaction depends on the concentration of both the nucleophile and the substrate (hence,
"bimolecular").

In our task, we use textual descriptions of the key characteristics of SN2 reactions to guide the editing
of input molecules. The aim is to modify several critical factors affecting SN2 reactivity, such as the
leaving ability of the leaving group, the charge density on the carbon atom undergoing nucleophilic
attack, and the steric hindrance surrounding that carbon atom (Figure 3 (b)).

Dataset. Alcohol molecules are a typical class of compounds that rarely undergo SN2 reactions due
to the presence of the hydroxyl group (-OH), which is a poor leaving group. Therefore, we select
alcohol molecules to build a dataset for testing whether we can enhance their SN2 reactivity. It is
important to note that, to eliminate interference from other functional groups that may already be
reactive in SN2 reactions, we restrict the selected molecules to those containing only H, N, O and C
atoms. We exclude molecules with halogens or ether bonds, as these functional groups are relatively
better leaving groups. Additionally, we ensure that each selected molecule contains only one hydroxyl
group. Following these criteria, we randomly sample 100 molecules that meet the requirements from
the 3D structural data component of the 3D Structure-Text Dataset we build before.

Evaluation metrics. To evaluate whether the edited molecules are more likely to undergo an SN2
reaction, we propose novel evaluation metrics that assess the success of the editing based on three
key factors. A successful edit is defined as meeting the requirements of any one of these factors:

• Leaving Group: If the hydroxyl group in the original molecule is replaced by a better leaving
group, such as an ether linkage or halogen, while the basic structure of the molecule remains intact,
we consider the editing successful. A better leaving group increases the likelihood of the molecule
undergoing an SN2 reaction.

• Charge Density on the Carbon Atom: If the edited molecule remains an alcohol, we calculate
the charge density of the carbon atom attached to the hydroxyl group. If the charge density on this
reaction center carbon increases beyond a certain threshold compared to the original molecule, we
also consider the editing successful. A higher, more positive charge on the carbon atom indicates
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Table 1: Results of SN2 reactivity-oriented molecule editing task on alcohol molecules.

MoleculeSTM MoleculeSTM-3D

SMILES Graph SciBERT Llama2-7B

Editing Success Rate (%) 17.00 18.00 25.00 28.00
Invalid Molecule Generation Rate (%) 12.88 13.00 2.00 3.75

Figure 4: Different edited molecules generated by using different models.

that it is more electrophilic and more likely to be attacked by a nucleophile, thus facilitating the SN2
reaction.

• Steric Hindrance Around the Carbon Atom: If the molecule remains an alcohol after editing, we
also evaluate the number of atoms surrounding the carbon atom attached to the hydroxyl group. If the
number of atoms within a certain range around this reaction center carbon decreases by more than a
defined threshold, we deem the editing successful. Reduced steric hindrance around the carbon atom
makes it easier for nucleophiles to approach and attack, increasing the likelihood of an SN2 reaction.

Additionally, we apply some basic chemistry-based exclusions. If the edited molecule does not meet
certain fundamental conditions required for an SN2 reaction substrate, we consider this editing a
failure. For example, if an alcohol is originally a primary alcohol, but the edited molecule becomes
a tertiary alcohol, this is considered a failed editing. From a chemical standpoint, tertiary alcohols
cannot undergo SN2 reactions due to their high steric hindrance, making such a transformation
incompatible with the SN2 reaction mechanism.

Main Results. We test two versions of MoleculeSTM-3D: one using SciBERT as the language model,
and the other using Llama2-7B. We compare their performance against MoleculeSTM, which is one
of the state-of-the-art (SOTA) multi-modal foundation models, particularly well-suited for molecule
editing tasks. We use alcohol molecules as input molecules and test by providing the characteristics
of SN2 reaction substrates as the textual description. The results are as follows (Table 1):

We observe that, regardless of whether SciBERT or Llama2-7B is used as the language model,
MoleculeSTM-3D consistently outperforms MoleculeSTM, with an average increase of 9.00% in
editing success rate and an average decrease of 10.07% in invalid molecule generation rate. We
attribute this improvement to our use of 3D molecular structure data instead of 2D graph data or
SMILES. The 3D data provides a richer structural context of the molecules, and our use of SE(3)-
equivariant 3D GNNs allows for better processing of this 3D structural information, resulting in a
more comprehensive molecular representation. This aligns well with the core premise of our research.

Furthermore, when comparing the SciBERT version to the Llama2-7B version within MoleculeSTM-
3D, we find that Llama2-7B slightly outperforms SciBERT. This may be due to Llama2-7B’s superior
capability in understanding the relationship between the molecular structures and the likelihood of
SN2 reactions from the textual descriptions of SN2 reaction characteristics.

Case One. To better illustrate the editing effects of different models, let’s take cyclopentanol as an
example (Figure 4):

• MoleculeSTM edits cyclopentanol into 1,1-cyclopentanediol. However, since both hydroxyl groups
are attached to the same carbon atom, this molecule is highly unstable and prone to losing a molecule
of water, forming cyclopentanone. This is considered a failed edit because it introduces instability.

• MoleculeSTM-3D (SciBERT) produces 1-methoxy-3-methylcyclohexane. In this case, the hy-
droxyl group is successfully converted into a methoxy group, which is a better leaving group for an
SN2 reaction. However, an additional methyl group is added elsewhere in the ring, which does not
contribute to increasing SN2 reactivity and is an unnecessary modification.
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Figure 5: Different edited molecules generated by using different textual descriptions.

• MoleculeSTM-3D (Llama2-7B) results in methoxycyclopentane. This edit simply converts the
hydroxyl group into a methoxy group, forming an ether bond, without making any other unnecessary
modifications. This directly enhances SN2 reactivity, making it a successful edit.

Case Two. We also discover that the textual content describing SN2 reactions significantly influences
the editing outcomes. We employ two different approaches to describe SN2 reactions (Figure 5):

• General Summary: This description provides an overview of the characteristics that a good SN2
substrate should possess. For example, using this type of description, the editing of allyl alcohol
results in propargyl alcohol, where the formation of a carbon-carbon triple bond increases the positive
charge density on the reaction carbon atom. This edit is considered effective.

• Specific Examples: This approach details specific molecules that are prone to SN2 reactions, such
as halogenated hydrocarbons, highlighting their characteristics and the reasons they facilitate SN2
reactions. With this description, the molecule edited from allyl alcohol is propargyl methyl ether,
which not only features a carbon-carbon triple bond to increase the positive charge density but also
forms a better leaving group, methoxy, making it a more successful edit.

Our experiments, conducted on the alcohol dataset mentioned earlier, indicate that using the General
Summary as the textual description yields 53 successful edits, whereas the Specific Examples
approach results in 66 successful edits, an improvement of 24.53%. These results suggest that
detailed, specific descriptions are more effective in achieving successful molecular edits.

6 Conclusion

In this work, to address the lack of large-scale 3D structure-text datasets and the absence of novel
downstream tasks to effectively evaluate the performance of multi-modal foundation models using
3D data in the field of chemistry, we take two key steps. First, we construct a comprehensive
3D Structure-text dataset, and second, we design an innovative and challenging downstream task,
the reactivity-oriented molecule editing task, along with corresponding evaluation metrics. We
then utilize PaiNN and SciBERT/Llama2-7B, applying a contrastive learning paradigm, to build
MoleculeSTM-3D, a multi-modal foundation model trained on our 3D structure-text dataset. Finally,
we apply MoleculeSTM-3D to the reactivity-oriented molecule editing task. Our results show that it
outperforms MoleculeSTM, achieving a 9.00% higher editing success rate and significantly reducing
invalid molecule generation by 10.07%. Although our preliminary tests have primarily focused on
SN2 reactions, the promising results lead us to believe that MoleculeSTM-3D will not only perform
well in reactivity-oriented molecule editing for more complex molecules and more difficult reaction
types, but will also demonstrate effectiveness in other more challenging downstream tasks.
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