

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOCREWAD: A DOCUMENT REWARD MODEL FOR STRUCTURING AND STYLIZING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap arises mainly from the absence of suitable reward models to guide agentic workflows toward producing documents with stronger structural and stylistic quality. To address this, we propose DOCREWAD, a **Document Reward Model** that evaluates documents based on their structure and style. We construct a multi-domain dataset DOCPAIR of 117K paired documents, covering 32 domains and 267 document types, each including a high- and low-professionalism document with identical content but different structure and style. This enables the model to evaluate professionalism comprehensively, and in a textual-quality-agnostic way. DOCREWAD is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. To assess the performance of reward models, we create a test dataset containing document bundles ranked by well-educated human evaluators. Notably, DOCREWAD outperforms GPT-4o and GPT-5 in accuracy by **30.6** and **19.4** percentage points, respectively, demonstrating its superiority over baselines. In extrinsic evaluations, both re-ranking and RL experiments demonstrating its utility in guiding generation agents toward producing human-preferred documents.

1 INTRODUCTION

Figure 1: DOCREWAD automatically assesses document professionalism according to their structure and style, assisting existing agentic workflows for more professional document generation (left). It outperforms GPT-5 by 19.4% in human preference accuracy (right).

Recent advances in agentic workflows have automated many complex tasks, such as code generation (Peng et al., 2023; Cherny & Anthropic, 2025; Hong et al., 2024), image generation (comfyanonymous, 2025), visual understanding (Zheng et al., 2025; Marsili et al., 2025), math reasoning (Yan et al., 2025), and travel planning (Xie et al., 2024). A key focus of agentic workflows is the production of professional documents, including works like deep research (OpenAI, 2025a; Liang et al., 2025; Qwen, 2025) and technical documentation generation (Dvivedi et al., 2024). However,

existing research about professional document generation primarily focuses on improving textual quality, neglecting the importance of visual structure and style, both of which play crucial roles in shaping document professionalism. A well-organized structure helps the reader navigate the material smoothly, while a consistent style makes the content more readable and engaging. Together, these aspects help convey information more clearly and effectively. The neglect of structure and style mainly stems from the lack of suitable reward models, which are capable of guiding agentic workflows to produce documents with more professional structure and style.

To address this, we propose DOCREWAD, a **Document Reward Model**, specialized in assessing document professionalism in structure and style, as shown in Figure 1. However, building a reward model capable of providing a robust evaluation of visual structure and style is non-trivial, as it requires both *comprehensiveness* and *textual-quality-agnosticism*. Specifically, comprehensiveness refers to the ability to evaluate documents across diverse types, qualities, structures, and styles, while textual-quality-agnosticism, in this context, means that the model does not evaluate the inherent quality of the textual content itself, but instead assesses how well the structure and style of a document stand out, given the fixed content.

To achieve both comprehensiveness and textual-quality-agnosticism, we construct a multi-domain dataset, DOCPAIR, consisting of 117K paired documents, covering 32 domains and 267 document types, with each pair consisting of a high-professionalism sample and its low-professionalism counterpart. The paired documents share identical content but differ in structure and style. The construction of DOCPAIR consists of three phases: 1) *Curating High-Quality Professional Documents*. We curate a set of high-quality documents with strong professionalism in structure and style, from various domains (e.g., government, education, science, etc.) 2) *Expanding Source Documents via Agents*. Next, we extract both the textual content and the rendered pages of the source documents. Subsequently, multiple generation agents are prompted to produce a new document that preserves the textual content of the original and adheres to appropriate structure and style. 3) *Ranking Documents*. When comparing a source document with its generated counterparts, the original human-authored version is always preferred. In other cases, we use the original professional document as a reference and employ GPT-5 (OpenAI, 2025b) to rank document bundles by their structural and stylistic professionalism.

Based on the constructed dataset, we train DOCREWAD to take rendered document pages as inputs and output a score reflecting the document’s professionalism in structure and style. The predicted scores of paired documents are optimized using the Bradley-Terry loss (Bradley & Terry, 1952; Ouyang et al., 2022), which penalizes violations of the annotated order.

To demonstrate the superiority and utility of DOCREWAD, we perform both intrinsic and extrinsic evaluations. For intrinsic evaluation, we create a test set of 473 human-annotated pairs across multiple document domains. Each pair is ranked by expert human annotators according to the professionalism of the paired documents’ structure and style. Notably, as shown in Figure 1 (right), DOCREWAD outperforms GPT-4o (Hurst et al., 2024) and GPT-5 (OpenAI, 2025b) by 30.6 and 19.4 percentage points, respectively, in accuracy on the test set, demonstrating its superiority over existing approaches. For extrinsic evaluation, we evaluate DOCREWAD through two complementary experiments. 1) DOCREWAD is used as a re-ranking model for improving agentic workflow without changing the agent itself. A human evaluation shows that DOCREWAD as a reward model achieves a significantly higher win rate of 60.8%, compared to GPT-5’s 37.7%. 2) **We further demonstrate the utility of DOCREWAD as the reward model for reinforcement-learning of both open- and closed-source agentic workflows.** This integration improves the document generation performance of Qwen2.5-Coder and GPT-4o in terms of structure and style. To conclude, the above experiments demonstrate that DOCREWAD can guide generation agents to produce human-preferred documents, making it a valuable tool to improve document generation.

The contributions of this paper are summarized as follows:

- We propose DOCREWAD, a **Document Reward Model** specialized in assessing document professionalism in terms of structure and style.
- To equip DOCREWAD with comprehensiveness and textual-quality-agnosticism, we construct a multi-domain dataset DOCPAIR, consisting of 117K paired documents across 32 domains and 267 document types. This enables the model to evaluate professionalism in structure and style comprehensively and independently of inherent textual content quality.

108 • Comprehensive experiments demonstrate that DOCREWAD not only surpasses GPT-4o and GPT-
 109 5 in evaluating document professionalism in terms of structure and style, but also serves effectively
 110 as a reward model for RL, improving the document generation performance of both open-source
 111 and closed-source agentic workflows.

113 **2 TASK FORMULATION**

116 A document’s professionalism is determined by its textual content, structure, and style. Although
 117 large language models excel at evaluating textual quality, they are limited in assessing structure and
 118 style. To bridge this gap, we develop reward models tailored to these dimensions to advance agentic
 119 workflows in producing documents with more professional structure and style. In this section, we
 120 formulate the task and provide a clear definition of its objectives.

121 Let $\{D_i\}_{i=1}^N$ denote a set of N documents, where each document D_i consists of textual content
 122 $D_{\text{text},i}$ and rendered images $D_{\text{img},i}$. The document reward model \mathcal{R}_θ assigns scores to documents
 123 that share the same textual content, such that the scores reflect their structural and stylistic quality.
 124 This process is formalized as follows:

$$\begin{aligned} 125 \max_{\theta} \text{Sim}(\pi^*, \text{Argsort}(\mathcal{R}_\theta(D_{\text{img},1}), \mathcal{R}_\theta(D_{\text{img},2}), \dots, \mathcal{R}_\theta(D_{\text{img},N}))) \\ 126 \text{s.t. } D_{\text{text},i} = D_{\text{text},j}, \forall i, j, \end{aligned} \quad (1)$$

128 where “Sim” is a predefined similarity function that measures the agreement between the true and
 129 predicted quality orders. “Argsort” returns the indices of documents sorted by their predicted
 130 scores. π^* denotes the true indices reflecting the relative ranking of the documents in terms of
 131 structure and style.

133 In this paper, document professionalism in structure and style is defined as follows:

135 • *Structure*: Proper use of white space, appropriate margins, clear section breaks, well-structured
 136 text alignment, adequate paragraph spacing, proper indentation, inclusion of page headers and
 137 footers, and logical, coherent organization of content.

138 • *Style*: Appropriate font choices (type, size, color, readability), clear heading styles, effective
 139 use of emphasis (bold, italics), bullet points, numbering, and consistent formatting.

140 By optimizing \mathcal{R}_θ based on these factors, we obtain a reward model capable of assessing the struc-
 141 tural and stylistic professionalism in a comprehensive and textual-quality-agnostic way.

144 **3 DOCREWAD**

146 We propose DOCREWAD, a reward model specializing in assessing the structural and stylistic
 147 professionalism of documents. DOCREWAD is trained on DOCPAIR, a diverse dataset of 117K
 148 document pairs (Section 3.1), and is optimized with a preference-based objective for structural and
 149 stylistic assessment (Section 3.2). The following sections detail the data construction pipeline and
 150 model design.

152 **3.1 DATA CONSTRUCTION**

154 As shown in Figure 2, we first collect a set of high-quality real-world source documents. The
 155 source documents are then expanded by multiple generation agents, and the resulting documents are
 156 grouped by shared textual content. Finally, each group of documents is annotated with a ranking π^*
 157 in terms of structure and style quality. The overall process results in DOCPAIR, a dataset comprising
 158 117K document pairs, covering 32 domains and 267 document types. The construction procedure is
 159 detailed step by step below:

160 **Curating High-Quality Professional Documents.** As illustrated in Figure 2 (top), we first curate
 161 a corpus of human-authored Microsoft Word documents that spans both highly formal institutional
 162 writing and everyday professional communication. We draw on two complementary sources:

Figure 2: The data construction pipeline for DOCREWAD.

- *Government and institutional corpora*: GovDocs1 (Garfinkel et al., 2009) and NapierOne (Davies et al., 2022). GovDocs1 is a publicly available collection compiled from U.S. government (.gov) websites, including policy reports, administrative forms, statistical reports, public guidance, and meeting minutes, etc. NapierOne is a modern, comprehensive document dataset sourced from a wide range of public institutional materials and common office documents. These corpora provide authoritative, consistently professional exemplars of document structure and style.
- *Web document corpus*: We also draw from a diverse set of documents discovered in the CommonCrawl repository¹. This corpus captures a broad range of real-world professional documents from business, education, nonprofit, healthcare, and other sectors, such as proposals, syllabi, newsletters, technical manuals, and policy briefs. It substantially enhances structural and stylistic diversity across professional genres.

To ensure suitability for reward-model training, we apply a light-weight preprocessing and filtering pipeline before data construction. First, all files are converted to DOCX format to enable programmatic access and modification via PYTHON-DOCX². Next, we discard extreme or malformed cases (exceeding 20 pages, files larger than 1 MB dominated by images, and files smaller than 10 KB with trivial content). To efficiently reduce residual noise, we employ GPT-5 as a rigorous automated heuristic to flag poor structure/style on a [0, 10] scale; documents scoring above 8 are retained. A manual inspection of 200 randomly sampled retained documents confirms that this automated filter preserves high-quality professional samples.

Finally, we analyze the distribution of domains and document types to assess coverage. The filtered collection spans 32 domains (e.g., government, education, nonprofit, medical, scientific, legal, business, academic, technical) and over 267 document types (e.g., job descriptions, government forms, policy documents, meeting minutes, press releases, course syllabi). The top 10 domains and top 30 document types are shown in Figure 3 and Figure 4, respectively, demonstrating both breadth and diversity. These high-quality, professional documents form the foundation for constructing subsequent document bundles and comparison pairs.

Expanding Source Documents via Agents. As shown in Figure 2 (middle), to obtain documents with the same textual content but different structure and style, we construct two types of agents to synthesize new documents given the textual content (and rendered pages) of the source documents. To further increase the diversity of the synthesized documents, each agent can be empowered by different LLMs. The two proposed agents are detailed as follows:

¹<https://commoncrawl.org/>

²<https://python-docx.readthedocs.io/en/latest/>

Figure 3: Top 10 Document Domain Distribution (Total: 32).

Figure 4: Top 30 Document Type Distribution.

- *Textual Content to Document.* The textual content is first extracted from the source documents, discarding all formatting, styling, and layout information. Then, advanced generation agents (e.g., GPT-4o, OpenAI o1 (OpenAI, 2024), Claude Sonnet 4 (Anthropic, 2025), and GPT-5) are used to synthesize DOCX documents via PYTHON-DOCX. This process simulates the real-world task of generating professionally structured and styled documents from plain text.
- *Refinement for Better Structure and Style.* To further improve the structure and style of synthesized documents, we refine them by comparing with the original human-authored documents in terms of structure and style. The refinement process consists of two stages: 1) Generation agents are provided with the PYTHON-DOCX code, rendered pages, and structured textual representation of the synthesized document, along with the rendered pages of the original human-authored document, to generate a refinement plan. 2) Using this refinement plan, the agents modify the PYTHON-DOCX code to produce refined documents with better structure and style.

Since generation agents may omit textual content from the original documents, we remove any synthesized documents whose textual content deviates significantly from that of the original human-authored one. The remaining synthesized documents are then grouped with their originals to facilitate subsequent processing. For the details and prompts of this phase, please refer to Appendix A.3 and Appendix A.6.

Ranking Documents. As shown in Figure 2 (bottom), the collected documents within the same group share identical textual content and are organized into pairs. The annotation task is to assess the relative professionalism in terms of structure and style for each pair, which is carried out under the following two cases:

- *Real v.s. Synth.* If any sample in the pair is from the human-authored professional documents 3.1, it is directly designated as the preferred (winner).
- *Synth v.s. Synth.* When both samples in the pair are generated by agents, we prompt GPT-5 with a document triplet $\{D_{\text{real}}, D_{\text{synth1}}, D_{\text{synth2}}\}$, where the human-authored professional document D_{real} is used as a reference to decide which synthetic sample is preferred. GPT-5 achieves an average accuracy of 92.5% on a human-annotated evaluation set consisting of 120 pairs in our preliminary test, demonstrating that the triple-wise annotation method is reliable and well-aligned with human judgment. The prompt is presented in Appendix A.6.

The two types of annotations are both guided by human-authored professional documents, and serve complementary purposes: “Real v.s. Synth” pairs steer agentic workflows toward human-level document generation, while “Synth v.s. Synth” pairs promote self-refinement. The data statistics of the constructed dataset, *i.e.*, DOCPAIR, are shown in Table 1.

270	271	272	273	Domains	Doc. Types	Docs	Avg. Page	Doc. Pairs		
								Total	Real vs. Synth	Synth vs. Synth
274	275	276	277	32	267	69,137	3.2	117,108	36,664	80,444

Table 1: Data statistics of the constructed DOCPAIR.

277 3.2 MODEL STRUCTURE AND OPTIMIZATION

279 We adopt Qwen-2.5-VL (Bai et al., 2025) as the base model due to its advanced native multi-image
280 input capabilities, which allow for a more comprehensive analysis of multi-page documents. An N-
281 page document is converted into N images, which are then input into the model. A regression head
282 is added to predict a scalar score on top of the output hidden states. More implementation details
283 are presented in Appendix A.2.

284 We optimize DOCREWAD using the Bradley-Terry (BT) loss, which is specifically designed for
285 learning from pairwise preferences. Specifically, let D_{img}^w and D_{img}^l be the rendered pages of the
286 preferred (winner) and those of the less preferred (loser) in a paired comparison, respectively, then,
287 the DOCREWAD (formatted as \mathcal{R}_θ), takes in the rendered pages of each document and outputs
288 scores, separately, which are supervised with the following objective:

$$\min_{\theta} -\log \sigma(\mathcal{R}_\theta(D_{\text{img}}^w) - \mathcal{R}_\theta(D_{\text{img}}^l)), \quad (2)$$

290 where σ is the sigmoid function, defined as $\sigma(x) = \frac{1}{1+e^{-x}}$. This objective encourages the model to
291 assign a higher score to the preferred document compared to the less preferred one.

293 4 EXPERIMENTS

296 We conduct experiments to evaluate the effectiveness of DOCREWAD in assessing both structural
297 and stylistic professionalism of documents. This section includes evaluation dataset annotation,
298 quantitative comparisons with strong baselines, extrinsic evaluation of document generation, and
299 qualitative analyses.

300 4.1 EVALUATION DATASET COLLECTION AND HUMAN ANNOTATION

302 A subset of the curated documents in Section 3.1 is set aside as evaluation documents. To diversify
303 the evaluation dataset, we consider the following six types of documents using the method described
304 in Section 3.1. Four of them are obtained via the *Textual Content to Document* agent, which gen-
305 erates DOCX documents using different LLMs (e.g., GPT-4o, OpenAI o1, Claude Sonnet 4, and
306 GPT-5). One type comes from the *Refinement for Better Structure and Style* agent, where GPT-5 is
307 employed to refine synthesized documents. The last type consists of the original human-authored
308 documents. Together, these six types constitute the origins of samples in our evaluation dataset. For
309 each set of documents sharing the same content but differing in structure and style, human experts
310 meticulously rank their quality based on structure and style. To facilitate model evaluation, these
311 ranked relationships are converted into a total of 473 comparison pairs, each consisting of two doc-
312 uments and a binary label indicating the preferred one. To ensure the quality of human annotation,
313 two highly educated annotators annotate the same subset of documents; then, **we evaluate annotation**
314 **consistency among human annotators using Cohen’s Kappa and observe a high agreement of 83.4**.
315 The detailed inter-annotator agreement results are presented in Table 5.

316 4.2 BASELINES AND EVALUATION SETTINGS

318 We evaluate our approach against several strong language models, including GPT-4o, Claude Sonnet
319 4, and GPT-5. Two evaluation settings are considered: *pairwise* and *pointwise*. In the pairwise
320 setting, the model receives the rendered pages of two documents and is instructed to predict which
321 document exhibits superior structure and style. In the pointwise setting, the model is provided with
322 the rendered pages of a single document and assign a scalar score for structure and style without any
323 reference document. The evaluation metric is accuracy, defined as the proportion of predictions that
correctly match human annotations in the evaluation dataset.

Model	Human Preference Accuracy (%)		
	Synth vs. Synth	Real vs. Synth	Overall
Pairwise Setting			
Qwen2.5-VL-3B	47.03	60.89	54.97
Qwen2.5-VL-7B	52.97	61.62	57.93
GPT-4o (Hurst et al., 2024)	58.91	66.43	63.22
Claude Sonnet 4 (Anthropic, 2025)	57.86	69.02	64.26
GPT-5 (OpenAI, 2025b)	64.78	72.32	69.1
Pointwise Setting			
Qwen2.5-VL-3B	36.63	33.58	34.88
Qwen2.5-VL-7B	41.58	57.93	50.95
GPT-4o (Hurst et al., 2024)	50.99	64.21	58.56
Claude Sonnet 4 (Anthropic, 2025)	48.02	66.79	58.77
GPT-5 (OpenAI, 2025b)	64.85	73.43	69.77
DOCREWARD-3B (Ours)	72.77	97.42	86.89
DOCREWARD-7B (Ours)	78.22	97.42	89.22

Table 2: Accuracy of Models on the proposed evaluation dataset. 'Real vs. Synth' represents evaluation pairs where a human-authored document is compared against a document generated by an agent. 'Synth vs. Synth' represents evaluation pairs where two agent-generated documents are compared.

Reward Models	Win	Lose	Tie
Random	24.6	66.2	9.2
GPT-5	37.7	40.0	22.3
DOCREWARD (Ours)	60.8	16.9	22.3

Table 3: Extrinsic evaluation results. DOCREWARD shows utility for professional document generation.

4.3 RESULTS ON EVALUATION DATASET

Superior Performance of DOCREWARD over Baselines. As presented in Table 2, on the human-annotated evaluation dataset, DOCREWARD-3B and DOCREWARD-7B, achieve substantial improvements over strong baselines including GPT-4o, Claude Sonnet 4, and GPT-5. In particular, DOCREWARD-7B achieves an overall human preference accuracy of 89.22% , 19.45 points higher than the strongest closed-source baseline (GPT-5, 69.77%). In the critical "Real vs. Synth" setting, DOCREWARD-7B achieves 97.42%, indicating near-perfect alignment with human judgments when distinguishing professional human-authored documents from synthetic ones. Even in the more challenging "Synth vs. Synth" setting, DOCREWARD-7B maintains 78.22%, substantially higher than GPT-5 (64.85%). These results demonstrate that DOCREWARD effectively captures structural and stylistic quality signals that existing LLMs overlook.

4.4 IMPROVING DOCUMENT GENERATION WITH DOCREWARD

To demonstrate how DOCREWARD improves document generation, we conduct two complementary experiments.

DOCREWARD is used as a re-ranking model for multiple rollouts. A document agent generates N documents given the same text content, and then a reward model identifies the best one from the documents according to their scores. We compare three reward models: random, GPT-5, and DOCREWARD. Human annotators rank the selected documents from each reward model according to their structure and style. Finally, we calculate the win/lose/tie rates for each reward model against the others. As presented in Table 3, the random baseline performs poorly, winning only 24.6% of comparisons and losing 66.2%. GPT-5 achieves more balanced results with a win rate of 37.7%. By contrast, DOCREWARD substantially outperforms both baselines, achieving a win rate of 60.8%

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Reference Document	Qwen3-Coder-1.5B + GRPO	GPT-4o + Training-free GRPO			
	Base model	+ Rule	+ DocReward	Base model	+ Rule	+ DocReward
			<img alt="Screenshot			

	Success Rate↑	ROUGE-L↑	DocReward↑	Rank↓
Qwen2.5-Coder	30.0	20.61	0.0663	4.58
- w/ GRPO (rule)	98.0	97.94	0.1785	4.06
- w/ GRPO (rule&DocReward)	100.0	97.95	0.3046	2.84
GPT-4o	52.0	48.73	0.2682	3.18
- w/ Training-free GRPO (rule)	66.0	62.15	0.3189	2.70
- w/ Training-free GRPO (rule&DocReward)	78.0	74.33	0.4486	2.02

Table 4: Results of the reinforcement learning experiments. “DocReward” denotes the sigmoid-normalized DocReward score. “Rank” denotes the average ranking assigned by human annotators.

Figure 6: Case study: DOCREWAD’s scores reflect structural and stylistic professionalism.

between *Last Name* and excessive space between *First Name*, leading to an imbalanced layout. Key fields such as *Faculty/Department*, *Country*, and *Country Code* are not vertically aligned, causing a cluttered and disorganized layout. This poor alignment and inconsistent spacing result in a low score of 1.21 from DOCREWAD. Case (b) adopts a table-like arrangement, but the level-1 heading *The teaching staff member* is too small and does not stand out from the body text, diminishing its impact. Additionally, the lack of borders around input fields makes it hard to locate items easily, resulting in a moderate score of 2.11. Case (c) provides a clear and well-structured layout, with headings appropriately larger than the body text and better readability, earning the highest rating of 5.34. These results show that DOCREWAD effectively captures document professionalism in structure and style. Additional cases are provided in Appendix A.9.

4.6 VISUALIZATION OF ATTENTION MAP

To understand DOCREWAD’s internal decision-making process, we conduct probing experiments analyzing its attention maps within the language model part. The attention maps are computed over image patches. As shown in Figure 7, the attention maps reveal that the model relies more on structural and formatting cues than on semantic content when evaluating document professionalism. In Figure 7a, attention is focused on headings and numbering, indicating sensitivity to structure clarity and logical flow. The model also allocates considerable attention to page headers (i.e., “CS-66”) and footers at bottom right corner (i.e., “DEC. 2006”), suggesting that the inclusion of page headers and footers is an important signal of professional structure. In Figure 7b, the model attends strongly to bullet points, suggesting that formatting consistency and emphasis markers are key professionalism signals. In Figure 7c, attention is dispersed across table grids, highlighting the importance of text alignment and readability in structured tabular layouts. Moreover, the attention maps show notable focus on the four page corners, suggesting that DOCREWAD implicitly checks for uniform margins and balanced whitespace, which are strong indicators of professional layout design.

Figure 7: Visualization of attention maps. DOCREWAD captures structural and stylistic elements, such as headings, alignment, and whitespace, in its evaluation of document professionalism.

5 RELATED WORK

Aesthetic and Professionalism Assessment. In graphic design, AesthetiQ (Zhang et al., 2024) utilizes multimodal LLMs as preference evaluators to align layout generation with aesthetic requirements, while diffusion-based methods such as LACE (Li et al., 2023) introduce differentiable constraints to directly optimize layout attributes. For web and mobile interfaces, systems like Calista (Yu et al., 2019) and Android UIs (Fu et al., 2024) use explicit ratings and pairwise comparisons to model visual appeal, showing correlations with usability. Additionally, photo aesthetics are modeled using layout-aware CNNs such as A-Lamp (Li et al., 2018), and similar techniques extend to video (Liu & Yu, 2023). These studies show that aesthetic principles can guide AI development and that human preferences are reliable supervisory signals, but they focus on images or UI interfaces rather than multi-page documents, where professionalism depends on both structure and style.

Document AI. Document AI research mainly targets semantic parsing and content understanding. Models such as LayoutLM (Xu et al., 2020) and ReLayout (Jiang et al., 2024), along with OCR-based pipelines (Subramani et al., 2020), identify logical elements such as headings, tables, and semantic groups to support information extraction and classification. Recent work also explores automatic document or layout generation (Lin et al., 2023; Tang et al., 2023; Tian et al., 2025), but evaluation has primarily been limited to content correctness or basic formatting. As a result, the assessment of document professionalism—particularly visual structure and style—remains largely unexplored.

Preference Learning and Reward Models. A major challenge in professionalism assessment is acquiring feedback signals that reflect human judgment. Preference-based reward modeling addresses this issue by training on pairwise comparisons to approximate preferences, forming the basis of alignment methods like RLHF (Stiennon et al., 2020) and DPO (Rafailov et al., 2023). This demonstrates that preference data offers a scalable and effective way to align generative models with nuanced expectations.

6 CONCLUSION

In this paper, we introduced DOCREWAD, a Document Reward Model designed to assess structural and stylistic professionalism. Our key contributions include the construction of a multi-domain dataset DOCPAIR of 117K paired documents, each with high- and low-professionalism counterparts. We train DOCREWAD using the Bradley-Terry loss. Rigorous evaluation on a human-annotated test set demonstrated DOCREWAD’s superior performance, outperforming GPT-4o and GPT-5 by **30.6**, **19.4** percentage points, respectively in human preference accuracy. Moreover, a human preference evaluation demonstrates its utility to guide generation agents toward producing human-preferred documents.

540 REFERENCES
541542 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, May
543 2025. Accessed: 2025-09-24.544 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
545 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
546 2025.547 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
548 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.549 Yuzheng Cai, Siqi Cai, Yuchen Shi, Zihan Xu, Lichao Chen, Yulei Qin, Xiaoyu Tan, Gang Li,
550 Zongyi Li, Haojia Lin, et al. Training-free group relative policy optimization. *arXiv preprint
551 arXiv:2510.08191*, 2025.552 Boris Cherny and Anthropic. Claude code: Best practices for agentic coding. <https://www.anthropic.com/engineering/claude-code-best-practices>, April 2025. Ac-
553 cessed: 2025-09-24.554 comfyanonymous. Comfyui: A modular graph-based interface for diffusion workflows. <https://github.com/comfyanonymous/ComfyUI>, 2025. Commit #⟨commit-hash⟩, accessed:
555 YYYY-MM-DD.556 Simon R Davies, Richard Macfarlane, and William J Buchanan. Napierone: A modern mixed file
557 data set alternative to govdocs1. *Forensic Science International: Digital Investigation*, 40:301330,
558 2022.559 Shubhang Shekhar Dvivedi, Vyshnav Vijay, Sai Leela Rahul Pujari, Shoumik Lodh, and Dhruv
560 Kumar. A comparative analysis of large language models for code documentation generation. In
561 *Proceedings of the 1st ACM international conference on AI-powered software*, pp. 65–73, 2024.562 Yuzheng Fu, Yulin Zhang, Yuchen Li, Ruoyu Zheng, and Qiming Liu. Aesthetic prediction of
563 mobile app user interface by hybrid deep learning. *IEEE Transactions on Multimedia*, 2024.564 Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing science to digital
565 forensics with standardized forensic corpora. *digital investigation*, 6:S2–S11, 2009.566 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
567 Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
568 a multi-agent collaborative framework. International Conference on Learning Representations,
569 ICLR, 2024.570 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
571 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
572 arXiv:2410.21276*, 2024.573 Zhouqiang Jiang, Bowen Wang, Junhao Chen, and Yuta Nakashima. Relayout: Towards real-world
574 document understanding via layout-enhanced pre-training. *arXiv preprint arXiv:2410.10471*,
575 2024.576 Chenglong Li, Jiansheng Wang, Song Yan, Chen Song, and Lianyi He. A-lamp: Adaptive layout-
577 aware multi-patch deep cnn for photo aesthetic assessment. In *Proceedings of the 26th ACM
578 international conference on Multimedia*, pp. 177–185, 2018.579 Yuxin Li, Qinglin Zhang, Chen Fang, Jin Xiao, and Wen Xu. Towards aligned layout generation via
580 diffusion model with aesthetic constraints. In *The Eleventh International Conference on Learning
581 Representations (ICLR)*, 2023.582 Xinbin Liang, Jinyu Xiang, Zhaoyang Yu, Jiayi Zhang, Sirui Hong, Sheng Fan, and Xiao Tang.
583 Openmanus: An open-source framework for building general ai agents, 2025. URL <https://doi.org/10.5281/zenodo.15186407>.

594 Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang Yang, Jian-Guang Lou, and Dongmei Zhang. Layout-
 595 prompter: Awaken the design ability of large language models. *Advances in Neural Information*
 596 *Processing Systems*, 36:43852–43879, 2023.

597

598 Chang Liu and Han Yu. Ai-empowered persuasive video generation: A survey. *ACM Computing*
 599 *Surveys*, 55(13s):1–31, 2023.

600

601 Damiano Marsili, Rohun Agrawal, Yisong Yue, and Georgia Gkioxari. Visual agentic ai for spatial
 602 reasoning with a dynamic api. In *Proceedings of the Computer Vision and Pattern Recognition*
 603 *Conference (CVPR)*, pp. 19446–19455, June 2025.

604

605 OpenAI. Openai o1 system card. [https://openai.com/index/](https://openai.com/index/openai-o1-system-card/)
 606 openai-o1-system-card/, December 2024. Updated: December 5, 2024. Accessed:
 607 2025-09-24.

608

609 OpenAI. Introducing deep research. [https://openai.com/index/](https://openai.com/index/introducing-deep-research/)
 610 introducing-deep-research/, February 2025a. Accessed: 2025-09-24.

611

612 OpenAI. Gpt-5 system card. <https://openai.com/index/gpt-5-system-card/>, Au-
 613 gust 2025b. Accessed: 2025-09-24.

614

615 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 616 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 617 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 618 27730–27744, 2022.

619

620 Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
 621 productivity: Evidence from github copilot. *arXiv preprint arXiv:2302.06590*, 2023.

622

623 Alibaba Cloud / Qwen. Deep research — qwen. [https://chat.qwen.ai/](https://chat.qwen.ai/?inputFeature=deep_research)
 624 ?inputFeature=deep_research, 2025. Accessed: 2025-09-24.

625

626 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 627 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 628 *in neural information processing systems*, 36:53728–53741, 2023.

629

630 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 631 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 632 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

633

634 Long Ouyang Stiennon, Jeffrey Wu, Daniel M Ziegler, Ryan Lowe, Jeremy Voss, Alec Radford,
 635 Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback. *Advances*
 636 *in Neural Information Processing Systems*, 33:11345–11358, 2020.

637

638 Nishant Subramani, Alexandre Matton, Malcolm Greaves, and Adrian Lam. A survey of deep
 639 learning approaches for ocr and document understanding. *arXiv preprint arXiv:2011.13534*, 2020.

640

641 Zecheng Tang, Chenfei Wu, Juntao Li, and Nan Duan. Layoutnuwa: Revealing the hidden layout
 642 expertise of large language models. *arXiv preprint arXiv:2309.09506*, 2023.

643

644 Jiaxu Tian, Xuehui Yu, Yaxing Wang, Pan Wang, Guangqian Guo, and Shan Gao. Relayout: In-
 645 tegrating relation reasoning for content-aware layout generation with multi-modal large language
 646 models. *arXiv preprint arXiv:2507.05568*, 2025.

647

648 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
 649 Yu Su. Travelplanner: A benchmark for real-world planning with language agents. *arXiv preprint*
 650 *arXiv:2402.01622*, 2024.

651

652 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-
 653 training of text and layout for document image understanding. In *Proceedings of the 26th ACM*
 654 *SIGKDD international conference on knowledge discovery & data mining*, pp. 1192–1200, 2020.

648 Yibo Yan, Shen Wang, Jiahao Huo, Philip S. Yu, Xuming Hu, and Qingsong Wen. MathA-
649 gent: Leveraging a mixture-of-math-agent framework for real-world multimodal mathematical
650 error detection. In Georg Rehm and Yunyao Li (eds.), *Proceedings of the 63rd Annual Meet-
651 ing of the Association for Computational Linguistics (Volume 6: Industry Track)*, pp. 69–82,
652 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
653 288-6. doi: 10.18653/v1/2025.acl-industry.7. URL <https://aclanthology.org/2025.acl-industry.7/>.

654 Huimin Yu, Meng Wu, and Bo Cui. Calista: A deep learning-based system for understanding and
655 evaluating website aesthetics. *ACM Transactions on Information Systems (TOIS)*, 37(4):1–27,
656 2019.

657 Xueru Zhang, Chen Peng, Xin Liao, Shugong Hou, Yang Fan, Li Liang, Yaohui Zhao, and Chunhui
658 Zhang. Aesthetiq: Enhancing graphic layout design via aesthetic-aware preference alignment
659 of multi-modal large language models. In *The Twelfth International Conference on Learning
660 Representations (ICLR)*, 2024.

661 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
662 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv
663 preprint arXiv:2403.13372*, 2024.

664 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
665 Xing Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. *arXiv
666 preprint arXiv:2505.14362*, 2025.

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table of Contents in Appendix

702	A Appendix	15
703	A.1 The Use of Large Language Models	15
704	A.2 Model Implementation Details	15
705	A.3 Source Documents Expansion	15
706	A.4 Annotation Protocol and Reliability	15
707	A.5 Generalization ability of DocReward	15
708	A.6 Prompts	17
709	A.7 Details of Extrinsic Evaluation	25
710	A.8 Ablation Study of Inputs	25
711	A.9 More Examples of Case Study	25
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A APPENDIX**
757758 **A.1 THE USE OF LARGE LANGUAGE MODELS**
759760 Following the completion of the draft by the human authors, a large language model was employed
761 to enhance the clarity and academic tone of specific sections.
762763 **A.2 MODEL IMPLEMENTATION DETAILS**
764765 Our document reward model is built upon the Qwen2.5-VL multimodal architecture, with the max-
766 imum input pixels set to 300,000. It is configured with a maximum context length of 16,000 tokens
767 to ensure comprehensive understanding. Training utilizes the AdamW optimizer with a learning
768 rate of 1e-6 and a batch size of 256 over 3 epochs. All training was conducted on 8 NVIDIA A100
769 GPUs. The training code is based on LLaMA-Factory (Zheng et al., 2024).
770771 **A.3 SOURCE DOCUMENTS EXPANSION**
772773 To ensure that the reward model learns to assess differences in structure and style rather than content,
774 we applied a rigorous filtering process. Using `python-docx`, we extracted text from pairs of
775 Microsoft Word DOCX documents and computed their word counts. **Only synthetic documents**
776 **with a word count difference of no more than 20 words from the original document and a ROUGE-**
777 **L score exceeding a threshold are retained**, ensuring comparable content while isolating variation in
778 structure and style. For the constructed training dataset DOCPAIR, both GPT-4o and GPT-5 serve as
779 the base models of agents.
780781 **A.4 ANNOTATION PROTOCOL AND RELIABILITY**
782783 **Annotation Guidelines.** The annotation guidelines consist of general principles that are formulated
784 in an explicit, objective manner. For instance, extremely narrow margins that produce an almost
785 fully saturated page layout are commonly regarded as unprofessional across different cultural and
786 regional contexts. The detailed guideline for human annotation are presented in Figure 8.
787788 **Independence from annotators' cultural and professional backgrounds.** The annotation was
789 performed by three Ph.D. students from diverse fields (computer science, marketing, and mathematics). We measured inter-annotator reliability using Cohen's Kappa; the results are shown in Table 5.
790 The high agreement indicates that the annotations follow clear, well-defined rules that do not depend
791 on the annotators' professional training or cultural background, demonstrating the guidelines'
792 generality and objectivity.
793794 **A.5 GENERALIZATION ABILITY OF DOCREWARD**
795796 **Out-of-Domain Evaluation.** Table 6 reports the in-domain and out-of-domain results across different
797 models. Firstly, DocReward-7B (85.55) remains superior to all baseline models, including the
798 closed-source model GPT-5 (71.11). This trend is consistent with the in-domain results. Secondly,
799 The performance of DocReward-7B decreases by merely 3.67 percentage points when transitioning
800 from in-domain to out-of-domain evaluations. Such a small performance gap indicates that DocRe-
ward generalizes effectively to unseen domains.
801802 Table 5: Pairwise Cohen's Kappa among annotators.
803

	Annotator 1	Annotator 2	Annotator 3	Average
Annotator 1	-	83.40	80.92	82.15
Annotator 2	83.40	-	85.90	84.65
Annotator 3	80.92	85.90	-	83.41
Average	82.15	84.65	83.41	83.40

810

811

812

Guidelines for Human Annotation

813

Target:

814

Each document group contains N documents. Their textual content is the same, but their structure and style differ. The first document in each group is the original human-authored document, which serves as a reference during annotation. Based on the level of professionalism in structure and style across the N documents, the annotator should rank the documents. Note that there may exist cases where human-authored documents are not the best one.

815

816

817

818

819

820

Annotation Format Example:

821

For example, for the document group with ID 10655307, suppose the human-annotated professionalism ranking is 1 > 5 > 3 > 2 > 4, where 1 is judged to be the most professionally structured and formatted document, and 4 is the least professional. Then the annotation format should be: 10655307 \t 15324

822

823

824

825

826

827

Evaluation Criteria:

828

1. **Layout and Design**:

829

- Consistent formatting and spacing

830

- Proper use of headings, subheadings, and other structures, and proper hierarchy (e.g., long paragraphs should use body text style rather than heading styles, and headings should not be formatted as body text)

831

- Appropriate margins and white space usage (e.g., page margins or table column widths that are excessively wide or narrow are not appropriate)

832

2. **Readability and Typography**:

833

- Consistent and appropriate font choices
- Proper Text size (e.g., overly large or overly small text is not suitable)

834

- Appropriate line spacing and clear paragraph structure

835

- Proper Text alignment

836

3. **Professional Standards**:

837

- Document structure and organization
- Use of professional elements (headers, footers, page numbers)

838

- Consistency across pages (if multiple pages provided)

839

4. **Visual Elements**:

840

- Quality and placement of images, tables, or charts
- Integration of visual elements with text

841

- Professional presentation of data

842

843

844

845

846

847

848

849

Figure 8: Detailed guideline for human annotation.

850

851

852

853

854

855

Table 6: In-domain and out-of-domain performance.

856

857

858

859

860

861

862

863

Model	In-domain	Out-of-domain
Qwen2.5 VL-3B	34.88	31.10
Qwen2.5 VL-7B	50.95	45.92
GPT-4o	58.56	57.04
GPT-5	69.77	71.11
DocReward-3B	86.89	81.85
DocReward-7B	89.22	85.55

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 7: Cross-lingual robustness evaluation across multiple languages. “Non-English” denotes the average performance on documents written in non-English languages.

	French	Spanish	Rusian	Non-English Avg.	English	Drop
Qwen2.5 VL-3B	35.00	33.75	22.50	30.42	34.88	-4.46%
Qwen2.5 VL-7B	48.75	42.50	27.50	39.58	50.95	-11.37%
GPT-4o	47.50	52.50	42.50	47.50	58.56	-11.06%
GPT-5	57.50	76.25	47.50	60.42	69.77	-9.35%
DocReward-3B	77.50	82.50	72.50	77.50	86.89	-9.39%
DocReward-7B	78.75	88.75	66.25	77.90	89.22	-11.32%

Cross-Lingual Robustness: To evaluate robustness across languages, we conduct experiments in French, Spanish, and Russian. The results are as shown in Table 7. Firstly, the DocReward-7B model achieved a high score of 77.90, substantially outperforming all baseline models (exceeding GPT-5 (60.42) by 17.48 percentage points). This is consistent with the conclusions drawn from the English evaluation. Secondly, all models, including the baselines, exhibited performance degradation in non-English settings. For example, GPT-5 dropped by 9.35%. The performance drops of DocReward (-9.39% , -11.32%) are comparable to those of the closed-source models GPT-4o (-11.06%) and GPT-5 (-9.35%), indicating that DocReward demonstrates strong cross-lingual robustness.

A.6 PROMPTS

Domain and Type Classification Prompt

You are an expert document quality evaluator and domain classifier. Your task is to assess the professionalism, layout quality, and readability of documents based on their visual appearance, and classify the document’s domain.

You will be provided with screenshot images of document pages. First, classify the document domain and then evaluate the document on quality criteria.

DOMAIN AND DOCUMENT TYPE CLASSIFICATION:
Classify the document on two levels:

1. **Domain Classification**: Choose the broad domain category (e.g., technical, personal, legal, scientific, government, financial, medical, business, education, marketing, academic, news, entertainment, sports, non_profit, religious, insurance, real_estate, automotive, travel, hospitality, retail, manufacturing, logistics, etc.)
2. **Document Type Classification**: Identify the specific document type within that domain. Examples include:
 - Technical: engineering_report, user_manual, software_documentation, specification_document, etc.
 - Personal: cv, personal_report, resume, personal_letter, etc.
 - Legal: legal_brief, legal_opinion, contract, regulatory_text, court_filing, etc.
 - Scientific: technical_paper, research_publication, scientific_study, laboratory_report, etc.
 - Government: regulation, white_paper, official_report, government_form, policy_document, etc.
 - Financial: audit_report, investment_report, financial_statement, banking_document, etc.
 - Medical: pharmaceutical_document, clinical_report, medical_manual, research_study, etc.

```

918 - Business: corporate_memo, business_plan, presentation,
919 financial_report, marketing_brochure, etc.
920 - Education: thesis, textbook, academic_report, research_paper,
921 course_material, etc.
922 - Marketing: brand_guidelines, campaign_brief,
923 advertising_proposal, market_analysis, social_media_strategy, etc.
924 - Academic: dissertation, grant_proposal, conference_paper,
925 journal_article, literature_review, etc.
926 - News: press_release, news_article, interview_transcript,
927 editorial, media_kit, etc.
928 - Entertainment: production_notes, script, event_program,
929 casting_call, performance_review, etc.
930 - Sports: athlete_profile, game_report, coaching_guide,
931 training_manual, tournament_bracket, etc.
932 - Non_profit: annual_report, fundraising_proposal, impact_report,
933 volunteer_handbook, grant_application, etc.
934 - Religious: ceremony_program, sermon_notes, prayer_book,
935 religious_text, pastoral_letter, etc.
936 - Insurance: claims_form, policy_document, underwriting_report,
937 risk_assessment, coverage_summary, etc.
938 - Real_estate: lease_agreement, property_listing, market_analysis,
939 appraisal_report, property_brochure, etc.
940 - Automotive: parts_catalog, service_manual, recall_notice,
941 safety_report, warranty_document, etc.
942 - Travel: travel_guide, itinerary, visa_application,
943 booking_confirmation, hotel_brochure, etc.
944 - Hospitality: staff_handbook, menu, guest_services_guide,
945 reservation_system, event_planning_document, etc.
946 - Retail: inventory_report, product_catalog, customer_survey,
947 sales_analysis, store_policy, etc.
948 - Manufacturing: production_schedule, quality_control_report,
949 equipment_manual, safety_protocol, process_documentation, etc.
950 - Logistics: delivery_schedule, shipping_manifest,
951 transportation_plan, warehouse_inventory, supply_chain_analysis,
952 etc.
953 Choose the most specific and accurate document type that describes the
954 document's purpose and content. You may use other document types
955 not listed above if they better describe the document.
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

Document Scoring Prompt for Proprietary Models (point-wise)

You are an expert document quality evaluator. Your task is to assess the professionalism, layout quality, and readability of documents based on their visual appearance.

You will be provided with screenshot images of document pages.
Evaluate the document on the following criteria:

1. **Layout and Design:**
 - Professional appearance and visual appeal
 - Consistent formatting and spacing
 - Proper use of headings, subheadings, and hierarchy
 - Appropriate margins and white space usage
 - Overall visual balance and organization
2. **Readability and Typography:**
 - Font choices and consistency
 - Text size and legibility
 - Line spacing and paragraph structure
 - Text alignment and justification

972
 973 3. ****Professional Standards**:**
 974 - Document structure and organization
 974 - Use of professional elements (headers, footers, page numbers)
 975 - Consistency across pages (if multiple pages provided)
 976 - Overall polish and attention to detail
 977
 978 4. ****Visual Elements**:**
 979 - Quality and placement of images, tables, or charts
 980 - Integration of visual elements with text
 981 - Professional presentation of data
 982 Rate the document on a scale from 0 to 10, where:
 983 - 9 to 10: Exceptional professional quality
 984 - 7 to 8: High professional standard
 985 - 5 to 6: Good professional appearance
 986 - 4: Average / acceptable quality
 987 - 2 to 3: Below average, needs improvement
 987 - 0 to 1: Poor quality, significant issues
 988
 989 Your response should follow this format:
 990 1. First, provide a detailed analysis of each evaluation criteria
 990 mentioned above
 991 2. Then, conclude with a final numerical score on a new line starting
 992 with "SCORE: " followed by the number (e.g., "SCORE: 7.250")

994 Document Scoring Prompt for Proprietary Models(Pair-wise)

995 You are an expert document quality evaluator. Your task is to compare
 996 two documents and determine which one has better professionalism,
 997 layout quality, and readability based on their visual appearance.
 998

1000 You will be provided with screenshot images of all pages from two
 1001 documents: Document A and Document B. Compare the documents on the
 1002 following criteria:

1003 1. ****Layout and Design**:**
 1004 - Professional appearance and visual appeal
 1005 - Consistent formatting and spacing
 1006 - Proper use of headings, subheadings, and hierarchy
 1007 - Appropriate margins and white space usage
 1008 - Overall visual balance and organization

1009 2. ****Readability and Typography**:**
 1010 - Font choices and consistency
 1011 - Text size and legibility
 1012 - Line spacing and paragraph structure
 1013 - Text alignment and justification

1014 3. ****Professional Standards**:**
 1015 - Document structure and organization
 1016 - Use of professional elements (headers, footers, page numbers)
 1017 - Consistency across pages
 1018 - Overall polish and attention to detail

1019 4. ****Visual Elements**:**
 1020 - Quality and placement of images, tables, or charts
 1021 - Integration of visual elements with text
 1022 - Professional presentation of data

1023 Your response should follow this format:

1024 1. First, provide a detailed comparative analysis of each evaluation
 1025 criteria for both documents

1026
 1027 2. Then, conclude with your preference on a new line starting with
 1028 "PREFERENCE: " followed by either "A" or "B" (e.g., "PREFERENCE:
 1029 A", "PREFERENCE: B")

1030 Choose the document that demonstrates superior overall quality,
 1031 professionalism, and visual presentation.

1032

1033 Document Scoring Prompt for Proprietary Models (triple-wise)

1034

1035 You are an expert document quality evaluator. Your task is to compare
 1036 two documents and determine which one has better professionalism,
 1037 layout quality, and readability based on their visual appearance.

1038 You will be provided with screenshot images of all pages from three
 1039 documents: Document A, Document B, and the Original document
 1040 (ground truth reference). The Original document serves as a
 1041 reference standard. Compare Documents A and B on the following
 1042 criteria:

1043 1. **Layout and Design**:**

- Professional appearance and visual appeal
- Consistent formatting and spacing
- Proper use of headings, subheadings, and hierarchy
- Appropriate margins and white space usage
- Overall visual balance and organization

1044 2. **Readability and Typography**:**

- Font choices and consistency
- Text size and legibility
- Line spacing and paragraph structure
- Text alignment and justification

1045 3. **Professional Standards**:**

- Document structure and organization
- Use of professional elements (headers, footers, page numbers)
- Consistency across pages
- Overall polish and attention to detail

1046 4. **Visual Elements**:**

- Quality and placement of images, tables, or charts
- Integration of visual elements with text
- Professional presentation of data

1047 Your response should follow this format:

1. First, provide a detailed comparative analysis of each evaluation criteria for both documents, taking the Original document as reference for quality standards
2. Then, conclude with your preference on a new line starting with "PREFERENCE: " followed by either "A" or "B" (e.g., "PREFERENCE: A", "PREFERENCE: B")

1048 Choose the document that demonstrates superior overall quality,
 1049 professionalism, and visual presentation.

1050

1051 Prompt for Document Generation

1052

1053 Based on the following plain text content (extracted from a DOCX
 1054 document), generate Python code using python-docx library to
 1055 create a new, well-formatted DOCX document with appropriate styles
 1056 and formatting:

1057

1058 Plain Text Content (no formatting):

1059

```

1080 {editing_plan}
1081
1082 Output file: {output_file_path}
1083
1084 TASK OVERVIEW:
1085 You are given ONLY the plain text content of a document (without any
1086     formatting, styles, or structure information). Your job is to:
1087 1. Analyze the text content to infer document structure (headings,
1088     paragraphs, lists, etc.)
1089 2. Create a new DOCX document from scratch
1090 3. Apply appropriate professional formatting and styles to make it
1091     look like a proper document
1092 4. Add visual hierarchy, consistent formatting, and professional
1093     appearance
1094
1095 IMPORTANT REQUIREMENTS:
1096 1. Create a completely NEW DOCX document based on the plain text
1097     content
1098 2. **PRESERVE ALL TEXT CONTENT**: Include every single word, sentence,
1099     paragraph, and character from the given plain text content. Do NOT
1100     omit, skip, or modify any text content.
1101 3. **NO CONTENT CHANGES**: Only infer and apply formatting/structure.
1102     The actual text content must remain exactly the same as provided.
1103 4. Analyze the text content to infer document structure and apply
1104     appropriate formatting
1105 5. Generate Python code that creates a professional-looking document
1106     with proper hierarchy and styling
1107 6. Ensure ALL provided text appears in the final document in the
1108     original order
1109 7. **YOUR CODE WILL BE EXECUTED**: The generated Python code will be
1110     run directly, so it must be complete, executable, and include the
1111     document.save() function to save the DOCX file to the specified
1112     output path.
1113 8. **DO NOT USE PLACEHOLDERS OR OMITTED CODE**: The generated code
1114     MUST be complete and explicit. Do NOT use comments or placeholders
1115     such as "# ... (Continue to add other sections and paragraphs
1116     similarly)" or "# Add more content here". The code must include
1117     ALL content from the original plain text, fully processed and
1118     added to the document.
1119
1120 **OUTPUT PATH REQUIREMENTS:**
1121 - You MUST use the exact output path provided: {output_file_path}
1122 - DO NOT create your own filename or path
1123 - DO NOT save to current directory with arbitrary names like
1124     'output.docx', 'document.docx', etc.
1125 - DO NOT use variables like 'output_path' without setting them to the
1126     exact provided path
1127
1128 CODE STRUCTURE REQUIREMENTS:
1129 Your generated Python code must follow this EXACT structure:
1130
1131 '''python
1132 import os
1133 from docx import Document
1134 from docx.shared import Inches, Pt
1135 from docx.enum.text import WD_ALIGN_PARAGRAPH
1136 from docx.enum.style import WD_STYLE_TYPE
1137 # Add other imports here...
1138
1139 # Create new document
1140 doc = Document()
1141
1142 # Add content here with appropriate formatting
1143'''

```

```

1134 # Process the text content and add to document...
1135
1136 # Create output directory if needed
1137 os.makedirs(os.path.dirname(output_file_path), exist_ok=True)
1138 try:
1139     print('CODE: output_file_path = ', output_file_path)
1140 except:
1141     print('CODE: output_file_path ERROR! ')
1142 doc.save(output_file_path)
1143
1144
1145
1146
```

Prompt for Document Refinement (Phase 1 - Plan Generation)

```

1147 You are a document formatting analysis expert. Your task is to analyze
1148 the differences between a previously generated document and the
1149 ground truth document, then create a specific refinement plan.
1150
1151 **Input Information:**
1152
1153 **1. Previous Generated Code:**  

1154 ``'python  

1155 {previous_code}  

1156
1157 **2. Previous Generated Document Screenshot:**  

1158 {previous_doc_screenshot_info}
1159
1160 **3. Ground Truth Document Screenshot:**  

1161 {gt_screenshot_info}
1162
1163 **4. Ground Truth Document Representation:**  

1164 ``'  

1165 {gt_doc_repr}
1166
1167 **Important Context Limitations:**  

1168 Due to input context length constraints, the Ground Truth Document
1169 Representation, Ground Truth Document Screenshot, and Previous
1170 Generated Document Screenshot may only contain the initial/front
1171 portions of the documents. However, the Previous Generated Code is
1172 complete and contains the full implementation. When analyzing
1173 differences, focus primarily on the visible portions but consider
1174 that the documents may extend beyond what is shown.
1175
1176 **Task:**  

1177 Compare the previous generated document with the ground truth
1178 document. Identify the 5 most important differences and create a
1179 specific, actionable refinement plan with concrete implementation
1180 details needed to modify the previous generated code.
1181
1182 **Output Format:**  

1183 Provide a detailed refinement plan with specific values and
1184 implementation details:
1185
1186 ## Top 5 Key Differences and Improvements Needed:
1187
1188 For each improvement, specify:
1189 1. **Location/Text:** Where the issue occurs (partial text content for
1190     identification, table position, paragraph number, etc.)
1191 2. **What needs to be changed** (exact element/section)
1192 3. **Current state** (what the code currently does)
1193 4. **Target state** (what it should be)
1194
```

```

1188
1189 5. **Specific implementation** (exact font sizes, spacing values,
1190   alignment settings, etc.)
1191
1192  ### Example format:
1193  **Issue**: [Specific formatting problem]
1194  - **Location**: Text containing "Document Header" or Table in section
1195   2, row 1
1196  - **Current**: Font size 12pt, left alignment
1197  - **Target**: Font size 14pt, center alignment
1198  - **Implementation**: Set 'run.font.size = Pt(14)' and
1199   'paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER'
1200
1201  **Issue**: [Table formatting problem]
1202  - **Location**: Table with headers "Product Name, Price"
1203  - **Current**: No borders, default spacing
1204  - **Target**: 1pt black borders, 6pt cell padding
1205  - **Implementation**: Add table border properties with 'width=1pt,
1206   color=black' and set cell margins to '6pt'
1207
1208  Focus on providing exact values (font sizes in pt, spacing in
1209   pt/inches, specific color values, alignment constants) and
1210   concrete python-docx implementation steps. **Limit to exactly 5
1211   most important differences** that will have the biggest visual
1212   impact.
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

Prompt for Document Refinement (Phase 2 - Code Generation)

You are a document generation expert. Your task is to generate improved Python code that addresses the specific formatting issues identified in the refinement plan.

Input Information:

1. Previous Generated Code:
 ```python  
 {previous\_code}  
 ```

2. Refinement Plan:
 ```  
 {refinement\_plan}  
 ```

3. Output File Path:
 - Output file: {output_file_path}

Task:

Based on the previous code and the refinement plan, generate a **complete and improved Python code** that creates a document matching the ground truth as closely as possible. This should be a standalone, executable script that generates the entire document from scratch.

Requirements:

1. **Generate complete Python code** - not just modifications, but a full working script
2. **Apply all improvements** specified in the refinement plan
3. **Create the entire document** structure and content to match ground truth
4. **Use appropriate libraries** (python-docx for high-level operations, direct XML manipulation for precise control)
5. **Include error handling** for robustness

```
1242
1243 6. **Save to specified output path** - the code must generate a
1244     complete document file
1245 7. **DO NOT use main() function wrapper** - code should execute
1246     directly at top level
1247 8. **Use exact output path provided**: {output_file_path}
1248
1249 **CODE STRUCTURE REQUIREMENTS:***
1250 Your generated Python code must follow this structure (NO main()
1251     function):
1252
1253     '''python
1254     import os
1255     from docx import Document
1256     from docx.shared import Inches, Pt
1257     from docx.enum.text import WD_ALIGN_PARAGRAPH
1258     # Add other imports as needed...
1259
1260     # Create new document
1261     doc = Document()
1262
1263     # Add all content here with appropriate formatting
1264     # Apply all improvements from refinement plan...
1265
1266     # Save the document
1267     output_file_path = "{output_file_path}"
1268     os.makedirs(os.path.dirname(output_file_path), exist_ok=True)
1269     doc.save(output_file_path)
1270     print("CODE: output_file_path = ", output_file_path)
1271     '''
1272
1273
1274 **Advanced Formatting Capabilities:***
1275 - **python-docx API**: Use for standard document operations
1276 - **Direct XML manipulation**: Use when python-docx doesn't provide
1277     sufficient control
1278     - Access underlying XML: 'element._element'
1279     - XPath queries: 'element.xpath()'
1280     - Direct attribute setting: 'element.set()' on XML nodes
1281     - Namespace operations: Use 'qn()' for proper namespace handling
1282     - Document XML access: 'document.element.body' for document-level
1283     changes
1284
1285 **Code Structure:***
1286 The code should be a complete script that:
1287 - Creates a new document
1288 - Builds the entire document structure and content
1289 - Applies all formatting to match the ground truth
1290 - Saves the complete document to output_file_path
1291
1292 **Output Format:***
1293 Provide a complete, executable Python script that implements the
1294     improvements specified in the refinement plan.
1295
1296 **XML Manipulation Reference:***
1297 When python-docx API is insufficient, you can use direct XML
1298     manipulation. Here are helper functions and examples for reference:
1299
1300 *Helper functions (include only if needed):*
1301     '''python
1302     def set_xml_attribute(element, attr_name, attr_value):
1303         """Set XML attribute directly on element"""
1304         if hasattr(element, '_element'):
1305             element._element.set(qn(attr_name), attr_value)
1306         else:
```

```

1296         element.set(qn(attr_name), attr_value)
1297
1298     def add_xml_element(parent, tag_name, **attributes):
1299         """Add XML element with attributes"""
1300         element = OxmlElement(qn(tag_name))
1301         for attr, value in attributes.items():
1302             element.set(qn(attr), value)
1303         parent.append(element)
1304         return element
1305     ...
1306
1307     *Example XML operations:
1308     - For precise spacing control: 'p_element = paragraph._element;
1309         spacing_element = add_xml_element(p_element, 'w:spacing',
1310         before="120", after="120")'
1311     - For table borders: 'table_element = table._element; table_props =
1312         add_xml_element(table_element, 'w:tblPr')'
1313     - For direct attribute setting: 'element._element.set(qn('w:val'),
1314         'value')'
1315
1316     **Focus on:**
1317     - Precise implementation of the refinement plan using both python-docx
1318         API and direct XML manipulation
1319     - Proper python-docx syntax and XML node manipulation for fine-grained
1320         control
1321     - Maintaining document integrity while applying improvements
1322     - Clear, maintainable code structure with comprehensive error handling
1323     - Complete document generation (not just partial modifications)
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

A.7 DETAILS OF EXTRINSIC EVALUATION

The *Textual Content to Document* defined in Section 3.1 is adopted as the document agent, with the base model being GPT-5. Three reward models, including random, GPT-5, and DOCREWARD are compared. Once the document agent generates candidates and the reward model selects the top-ranking document from N candidates, a highly educated annotator is asked to rank the three documents selected, according to the definitions of professional structure and style defined in Figure 8. As a result, documents from each reward model are annotated 130 comparison pairs against those of another reward model. Finally, the win/lose/tie rate of each reward model is calculated on the comparison pairs against the other reward models.

A.8 ABLATION STUDY OF INPUTS

In designing the input channels for DOCREWARD, we experimented with two different configurations: a purely visual channel method and a combination method of visual and additional parsing information. The experimental results are summarized in Table 8.

Model	Human Preference Accuracy (%)		
	Synth vs. Synth	Real vs. Synth	Overall
image-only (3B)	70.92	94.98	85.00
image + OCR text & bbox (3B)	63.13 _(-7.79)	92.46 _(-2.52)	80.30 _(-4.7)
image-only (7B)	73.75	97.99	87.94
image + OCR text & bbox (7B)	68.08 _(-5.67)	95.98 _(-2.01)	84.41 _(-3.53)

Table 8: Additional text and bounding box of text span are not helpful for the assessment of professional structure and style.

A.9 MORE EXAMPLES OF CASE STUDY

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372

Australian Capital Territory
Radiation Protection
 (Council Member, Chair and Deputy Chair)
Appointment
 2021
 (No 1)
)
Disallowable instrument DI 2021 - 221
 made under the
 Radiation Protection Act 2006, s68 (Council members), s70 (Chair and deputy chair)
 1 Name of instrument
 This instrument is the Radiation Protection (Council Members, Chair and Deputy Chair) Appointment 2021 (No 1)
 2 Commencement
 This instrument commences on 1 October 2021.
 3 Appointment of Council Members
 In accordance with section 68 of the Radiation Protection Act 2006, I appoint the following people as members of the Radiation Council:

Name	Applicable Radiation Protection Act Provision
Ms Fiona Jolly	68 (2) (a) (member of the public)
Ms Elizabeth Croft	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Dr Stephen Tims	68 (2) (c) (person with expert knowledge in the physical properties of radiation)
Mr Brad Whittaker	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Mr Jayantil Gupta	68 (2) (a) (member of the public)

 4 Appointments of Chair and Deputy Chair
 In accordance with section 70 of the Radiation Protection Act 2006, I appoint Ms Elizabeth Croft as Chair of the Radiation Council.
 5 Appointment of Chair
 In accordance with section 70 of the Radiation Protection Act, I appoint Ms Fiona Jolly as the deputy chair of the Radiation Council.
 6 Term of Appointment
 The appointments in this instrument commence 1 October 2021 and are effective for a period of 12 months.
 Rachel Stephen-Smith MLA
 Minister for Health
 1 September 2021

Unauthorised version prepared by ACT Parliamentary Counsel's Office

(a) score: 1.92

Australian Capital Territory
Radiation Protection (Council Member, Chair and Deputy Chair) Appointment 2021 (No 1)

Disallowable instrument DI2021-221
 made under the
 Radiation Protection Act 2006, s68 (Council members), s70 (Chair and deputy chair)

1 Name of instrument
 This instrument is the Radiation Protection (Council Members, Chair and Deputy Chair) Appointment 2021 (No 1)

2 Commencement
 This instrument commences on 1 October 2021.

3 Appointment of Council Members
 In accordance with section 68 of the Radiation Protection Act 2006, I appoint the following people as members of the Radiation Council:

Name	Applicable Radiation Protection Act Provision
Ms Fiona Jolly	68 (2) (a) (member of the public)
Ms Elizabeth Croft	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Dr Stephen Tims	68 (2) (c) (person with expert knowledge in the physical properties of radiation)
Mr Brad Whittaker	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Mr Jayantil Gupta	68 (2) (a) (member of the public)

4 Appointment of Chair
 In accordance with section 70 of the Radiation Protection Act 2006, I appoint Ms Elizabeth Croft as Chair of the Radiation Council.

5 Appointment of Deputy Chair
 In accordance with section 70 of the Radiation Protection Act, I appoint Ms Fiona Jolly as the deputy chair of the Radiation Council.

(b) score: 3.50

Australian Capital Territory

Radiation Protection (Council Member, Chair and Deputy Chair) Appointment 2021 (No 1)

Disallowable instrument DI2021-221
 made under the
 Radiation Protection Act 2006, s68 (Council members), s70 (Chair and deputy chair)

1 Name of instrument
 This instrument is the Radiation Protection (Council Members, Chair and Deputy Chair) Appointment 2021 (No 1)

2 Commencement
 This instrument commences on 1 October 2021.

3 Appointment of Council Members
 In accordance with section 68 of the Radiation Protection Act 2006, I appoint the following people as members of the Radiation Council:

Name	Applicable Radiation Protection Act Provision
Ms Fiona Jolly	68 (2) (a) (member of the public)
Ms Elizabeth Croft	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Dr Stephen Tims	68 (2) (c) (person with expert knowledge in the physical properties of radiation)
Mr Brad Whittaker	68 (2) (d) (person with qualifications and experience relevant to assisting the Council carry out its functions)
Mr Jayantil Gupta	68 (2) (a) (member of the public)

(c) score: 5.47

1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398

Job Description
Community Sight Loss Adviser (Bristol, Bath, South Gloucs)
 Salary: £20,000 - £22,000 depending on experience
 Hours of work: 35 (Part-time would be considered for the right candidate)
 Location: Bristol
 Direct Reports: Volunteers
 Contract status: Permanent after satisfactory probationary period
 Annual Leave: 25 days plus bank holidays
Organisation Details:
 Vision West of England exists to reduce the impact of sight loss, supporting blind and partially sighted people to lead independent lives and to secure equal access to services.
 As a Community Sight Loss Adviser, you will play a lead role in delivering our Information, Advice and Guidance Service for people living with sight loss across Bristol, Bath and South Gloucestershire. You will assess the needs of people with sight loss and prepare appropriate action plans to ensure that they are accessing support, equipment and training to help them manage their sight loss.
 You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and organise community drop-in surgeries and social groups in key locations across the region.
Responsibilities:

- Provide information, advice and guidance to blind and partially-sighted people using Vision West of England's services, including the provision of support with equipment and training to help clients adjust to their sight loss.
- Conduct one-to-one Sight Loss Assessments and prepare action plans for clients.
- Be the first point of contact for clients referred for rehabilitation services, including conducting initial screening assessment phone calls with all clients.
- Signpost and/or refer clients to other services and agencies where relevant.
- Plan and organise Sight Loss Advice drop-in surgeries in key locations across the Bristol, Bath, South Gloucs area.

(a) score: 2.28

Job Description
Community Sight Loss Adviser (Bristol, Bath, South Gloucs)
 Salary: £20,000 - £22,000 depending on experience
 Hours of work: 35 (Part-time would be considered for the right candidate)
 Location: Bristol
 Direct Reports: Volunteers
 Contract status: Permanent after satisfactory probationary period
 Annual Leave: 25 days plus bank holidays
Organisation Details:
 Vision West of England exists to reduce the impact of sight loss, supporting blind and partially sighted people to lead independent lives and to secure equal access to services.
 As a Community Sight Loss Adviser, you will play a lead role in delivering our Information, Advice and Guidance Service for people living with sight loss across Bristol, Bath and South Gloucestershire. You will assess the needs of people with sight loss and prepare appropriate action plans to ensure that they are accessing support, equipment and training to help them adjust to their sight loss.
 You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and organise community drop-in surgeries and social groups in key locations across the region.
Responsibilities:

- Provide information, advice and guidance to blind and partially-sighted people using Vision West of England's services, including the provision of support with equipment and training to help clients adjust to their sight loss.
- Conduct one-to-one Sight Loss Assessments and prepare action plans for clients.
- Be the first point of contact for clients referred for rehabilitation services, including conducting initial screening assessment phone calls with all clients.
- Signpost and/or refer clients to other services and agencies where relevant.
- Plan and organise Sight Loss Advice drop-in surgeries in key locations across the Bristol, Bath, South Gloucs area.

(b) score: 4.26

Job Description
Community Sight Loss Adviser (Bristol, Bath, South Gloucs)
 Salary: £20,000 - £22,000 depending on experience
 Hours of work: 35 (Part-time would be considered for the right candidate)
 Location: Bristol
 Direct Reports: Volunteers
 Contract status: Permanent after satisfactory probationary period
 Annual Leave: 25 days plus bank holidays
Organisation Details:
 Vision West of England exists to reduce the impact of sight loss, supporting blind and partially sighted people to lead independent lives and to secure equal access to services.
 As a Community Sight Loss Adviser, you will play a lead role in delivering our Information, Advice and Guidance Service for people living with sight loss across Bristol, Bath and South Gloucestershire. You will assess the needs of people with sight loss and prepare appropriate action plans to ensure that they are accessing support, equipment and training to help them adjust to their sight loss.
 You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and organise community drop-in surgeries and social groups in key locations across the region.
Responsibilities:

- Provide information, advice and guidance to blind and partially-sighted people using Vision West of England's services, including the provision of support with equipment and training to help clients adjust to their sight loss.
- Conduct one-to-one Sight Loss Assessments and prepare action plans for clients.
- Be the first point of contact for clients referred for rehabilitation services, including conducting initial screening assessment phone calls with all clients.
- Signpost and/or refer clients to other services and agencies where relevant.
- Plan and organise Sight Loss Advice drop-in surgeries in key locations across the Bristol, Bath, South Gloucs area.

(c) score: 12.09

1399
 1400
 1401
 1402
 1403

Figure 9: Example 1 of documents with different structures and styles.