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ABSTRACT

Recent advances in agentic workflows have enabled the automation of tasks such
as professional document generation. However, they primarily focus on textual
quality, neglecting visual structure and style, which are crucial for readability and
engagement. This gap arises mainly from the absence of suitable reward models to
guide agentic workflows toward producing documents with stronger structural and
stylistic quality. To address this, we propose DOCREWARD, a Document Reward
Model that evaluates documents based on their structure and style. We construct
a multi-domain dataset DOCPAIR of 117K paired documents, covering 32 do-
mains and 267 document types, each including a high- and low-professionalism
document with identical content but different structure and style. This enables
the model to evaluate professionalism comprehensively, and in a textual-quality-
agnostic way. DOCREWARD is trained using the Bradley-Terry loss to score doc-
uments, penalizing predictions that contradict the annotated ranking. To assess
the performance of reward models, we create a test dataset containing document
bundles ranked by well-educated human evaluators. Notably, DOCREWARD out-
performs GPT-4o and GPT-5 in accuracy by 30.6 and 19.4 percentage points, re-
spectively, demonstrating its superiority over baselines. In extrinsic evaluations,
both re-ranking and RL experiments demonstrating its utility in guiding genera-
tion agents toward producing human-preferred documents.

1 INTRODUCTION
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Figure 1: DOCREWARD automatically assesses document professionalism according to their struc-
ture and style, assisting existing agentic workflows for more professional document generation (left).
It outperforms GPT-5 by 19.4% in human preference accuracy (right).

Recent advances in agentic workflows have automated many complex tasks, such as code gener-
ation (Peng et al., 2023; Cherny & Anthropic, 2025; Hong et al., 2024), image generation (com-
fyanonymous, 2025), visual understanding (Zheng et al., 2025; Marsili et al., 2025), math reason-
ing (Yan et al., 2025), and travel planning (Xie et al., 2024). A key focus of agentic workflows is the
production of professional documents, including works like deep research (OpenAI, 2025a; Liang
et al., 2025; Qwen, 2025) and technical documentation generation (Dvivedi et al., 2024). However,
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existing research about professional document generation primarily focuses on improving textual
quality, neglecting the importance of visual structure and style, both of which play crucial roles in
shaping document professionalism. A well-organized structure helps the reader navigate the ma-
terial smoothly, while a consistent style makes the content more readable and engaging. Together,
these aspects help convey information more clearly and effectively. The neglect of structure and
style mainly stems from the lack of suitable reward models, which are capable of guiding agentic
workflows to produce documents with more professional structure and style.

To address this, we propose DOCREWARD, a Document Reward Model, specialized in assessing
document professionalism in structure and style, as shown in Figure 1. However, building a re-
ward model capable of providing a robust evaluation of visual structure and style is non-trivial, as
it requires both comprehensiveness and textual-quality-agnosticism. Specifically, comprehensive-
ness refers to the ability to evaluate documents across diverse types, qualities, structures, and styles,
while textual-quality-agnosticism, in this context, means that the model does not evaluate the inher-
ent quality of the textual content itself, but instead assesses how well the structure and style of a
document stand out, given the fixed content.

To achieve both comprehensiveness and textual-quality-agnosticism, we construct a multi-domain
dataset, DOCPAIR, consisting of 117K paired documents, covering 32 domains and 267 document
types, with each pair consisting of a high-professionalism sample and its low-professionalism coun-
terpart. The paired documents share identical content but differ in structure and style. The con-
struction of DOCPAIR consists of three phases: 1) Curating High-Quality Professional Documents.
We curate a set of high-quality documents with strong professionalism in structure and style, from
various domains (e.g., government, education, science, etc.) 2) Expanding Source Documents via
Agents. Next, we extract both the textual content and the rendered pages of the source documents.
Subsequently, multiple generation agents are prompted to produce a new document that preserves the
textual content of the original and adheres to appropriate structure and style. 3) Ranking Documents.
When comparing a source document with its generated counterparts, the original human-authored
version is always preferred. In other cases, we use the original professional document as a refer-
ence and employ GPT-5 (OpenAI, 2025b) to rank document bundles by their structural and stylistic
professionalism.

Based on the constructed dataset, we train DOCREWARD to take rendered document pages as inputs
and output a score reflecting the document’s professionalism in structure and style. The predicted
scores of paired documents are optimized using the Bradley-Terry loss (Bradley & Terry, 1952;
Ouyang et al., 2022), which penalizes violations of the annotated order.

To demonstrate the superiority and utility of DOCREWARD, we perform both intrinsic and extrin-
sic evaluations. For intrinsic evaluation, we create a test set of 473 human-annotated pairs across
multiple document domains. Each pair is ranked by expert human annotators according to the pro-
fessionalism of the paired documents’ structure and style. Notably, as shown in Figure 1 (right),
DOCREWARD outperforms GPT-4o (Hurst et al., 2024) and GPT-5 (OpenAI, 2025b) by 30.6 and
19.4 percentage points, respectively, in accuracy on the test set, demonstrating its superiority over
existing approaches. For extrinsic evaluation, we evaluate DOCREWARD through two complemen-
tary experiments. 1) DOCREWARD is used as a re-ranking model for improving agentic work-
flow without changing the agent itself. A human evaluation shows that DOCREWARD as a reward
model achieves a significantly higher win rate of 60.8%, compared to GPT-5’s 37.7%. 2) We fur-
ther demonstrate the utility of DOCREWARD as the reward model for reinforcement-learning of
both open- and closed-source agentic workflows. This integration improves the document genera-
tion performance of Qwen2.5-Coder and GPT-4o in terms of structure and style. To conclude, the
above experiments demonstrate that DOCREWARD can guide generation agents to produce human-
preferred documents, making it a valuable tool to improve document generation.

The contributions of this paper are summarized as follows:

• We propose DOCREWARD, a Document Reward Model specialized in assessing document pro-
fessionalism in terms of structure and style.

• To equip DOCREWARD with comprehensiveness and textual-quality-agnosticism, we construct
a multi-domain dataset DOCPAIR, consisting of 117K paired documents across 32 domains and
267 document types. This enables the model to evaluate professionalism in structure and style
comprehensively and independently of inherent textual content quality.
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• Comprehensive experiments demonstrate that DOCREWARD not only surpasses GPT-4o and GPT-
5 in evaluating document professionalism in terms of structure and style, but also serves effectively
as a reward model for RL, improving the document generation performance of both open-source
and closed-source agentic workflows.

2 TASK FORMULATION

A document’s professionalism is determined by its textual content, structure, and style. Although
large language models excel at evaluating textual quality, they are limited in assessing structure and
style. To bridge this gap, we develop reward models tailored to these dimensions to advance agentic
workflows in producing documents with more professional structure and style. In this section, we
formulate the task and provide a clear definition of its objectives.

Let {Di}Ni=1 denote a set of N documents, where each document Di consists of textual content
Dtext,i and rendered images Dimg,i. The document reward model Rθ assigns scores to documents
that share the same textual content, such that the scores reflect their structural and stylistic quality.
This process is formalized as follows:

max
θ

Sim
(
π∗,Argsort(Rθ(Dimg,1),Rθ(Dimg,2), . . . ,Rθ(Dimg,N ))

)
(1)

s.t. Dtext,i = Dtext,j ,∀i, j,

where “Sim” is a predefined similarity function that measures the agreement between the true and
predicted quality orders. “Argsort” returns the indices of documents sorted by their predicted
scores. π∗ denotes the true indices reflecting the relative ranking of the documents in terms of
structure and style.

In this paper, document professionalism in structure and style is defined as follows:

• Structure: Proper use of white space, appropriate margins, clear section breaks, well-structured
text alignment, adequate paragraph spacing, proper indentation, inclusion of page headers and
footers, and logical, coherent organization of content.

• Style: Appropriate font choices (type, size, color, readability), clear heading styles, effective
use of emphasis (bold, italics), bullet points, numbering, and consistent formatting.

By optimizing Rθ based on these factors, we obtain a reward model capable of assessing the struc-
tural and stylistic professionalism in a comprehensive and textual-quality-agnostic way.

3 DOCREWARD

We propose DOCREWARD, a reward model specializing in assessing the structural and stylistic
professionalism of documents. DOCREWARD is trained on DOCPAIR, a diverse dataset of 117K
document pairs (Section 3.1), and is optimized with a preference-based objective for structural and
stylistic assessment (Section 3.2). The following sections detail the data construction pipeline and
model design.

3.1 DATA CONSTRUCTION

As shown in Figure 2, we first collect a set of high-quality real-world source documents. The
source documents are then expanded by multiple generation agents, and the resulting documents are
grouped by shared textual content. Finally, each group of documents is annotated with a ranking π∗

in terms of structure and style quality. The overall process results in DOCPAIR, a dataset comprising
117K document pairs, covering 32 domains and 267 document types. The construction procedure is
detailed step by step below:

Curating High-Quality Professional Documents. As illustrated in Figure 2 (top), we first curate
a corpus of human-authored Microsoft Word documents that spans both highly formal institutional
writing and everyday professional communication. We draw on two complementary sources:
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Figure 2: The data construction pipeline for DOCREWARD.

• Government and institutional corpora: GovDocs1 (Garfinkel et al., 2009) and
NapierOne (Davies et al., 2022). GovDocs1 is a publicly available collection compiled
from U.S. government (.gov) websites, including policy reports, administrative forms,
statistical reports, public guidance, and meeting minutes, etc. NapierOne is a modern,
comprehensive document dataset sourced from a wide range of public institutional materials
and common office documents. These corpora provide authoritative, consistently professional
exemplars of document structure and style.

• Web document corpus: We also draw from a diverse set of documents discovered in the Com-
monCrawl repository1. This corpus captures a broad range of real-world professional docu-
ments from business, education, nonprofit, healthcare, and other sectors, such as proposals,
syllabi, newsletters, technical manuals, and policy briefs. It substantially enhances structural
and stylistic diversity across professional genres.

To ensure suitability for reward-model training, we apply a light-weight preprocessing and filtering
pipeline before data construction. First, all files are converted to DOCX format to enable program-
matic access and modification via PYTHON-DOCX2. Next, we discard extreme or malformed cases
(exceeding 20 pages, files larger than 1 MB dominated by images, and files smaller than 10 KB with
trivial content). To efficiently reduce residual noise, we employ GPT-5 as a rigorous automated
heuristic to flag poor structure/style on a [0, 10] scale; documents scoring above 8 are retained. A
manual inspection of 200 randomly sampled retained documents confirms that this automated filter
preserves high-quality professional samples.

Finally, we analyze the distribution of domains and document types to assess coverage. The filtered
collection spans 32 domains (e.g., government, education, nonprofit, medical, scientific, legal, busi-
ness, academic, technical) and over 267 document types (e.g., job descriptions, government forms,
policy documents, meeting minutes, press releases, course syllabi). The top 10 domains and top 30
document types are shown in Figure 3 and Figure 4, respectively, demonstrating both breadth and di-
versity. These high-quality, professional documents form the foundation for constructing subsequent
document bundles and comparison pairs.

Expanding Source Documents via Agents. As shown in Figure 2 (middle), to obtain documents
with the same textual content but different structure and style, we construct two types of agents to
synthesize new documents given the textual content (and rendered pages) of the source documents.
To further increase the diversity of the synthesized documents, each agent can be empowered by
different LLMs. The two proposed agents are detailed as follows:

1https://commoncrawl.org/
2https://python-docx.readthedocs.io/en/latest/
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Figure 3: Top 10 Document Domain Dis-
tribution (Total: 32).
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Figure 4: Top 30 Document Type Distribution.

• Textual Content to Document. The textual content is first extracted from the source documents,
discarding all formatting, styling, and layout information. Then, advanced generation agents
(e.g., GPT-4o, OpenAI o1 (OpenAI, 2024), Claude Sonnet 4 (Anthropic, 2025), and GPT-5)
are used to synthesize DOCX documents via PYTHON-DOCX. This process simulates the real-
world task of generating professionally structured and styled documents from plain text.

• Refinement for Better Structure and Style. To further improve the structure and style of synthe-
sized documents, we refine them by comparing with the original human-authored documents
in terms of structure and style. The refinement process consists of two stages: 1) Generation
agents are provided with the PYTHON-DOCX code, rendered pages, and structured textual rep-
resentation of the synthesized document, along with the rendered pages of the original human-
authored document, to generate a refinement plan. 2) Using this refinement plan, the agents
modify the PYTHON-DOCX code to produce refined documents with better structure and style.

Since generation agents may omit textual content from the original documents, we remove any
synthesized documents whose textual content deviates significantly from that of the original human-
authored one. The remaining synthesized documents are then grouped with their originals to facili-
tate subsequent processing. For the details and prompts of this phase, please refer to Appendix A.3
and Appendix A.6.

Ranking Documents. As shown in Figure 2 (bottom), the collected documents within the same
group share identical textual content and are organized into pairs. The annotation task is to assess
the relative professionalism in terms of structure and style for each pair, which is carried out under
the following two cases:

• Real v.s. Synth. If any sample in the pair is from the human-authored professional docu-
ments 3.1, it is directly designated as the preferred (winner).

• Synth v.s. Synth. When both samples in the pair are generated by agents, we prompt GPT-
5 with a document triplet {Dreal, Dsynth1, Dsynth2}, where the human-authored professional
document Dreal is used as a reference to decide which synthetic sample is preferred. GPT-5
achieves an average accuracy of 92.5% on a human-annotated evaluation set consisting of 120
pairs in our preliminary test, demonstrating that the triple-wise annotation method is reliable
and well-aligned with human judgment. The prompt is presented in Appendix A.6.

The two types of annotations are both guided by human-authored professional documents, and serve
complementary purposes: “Real vs. Synth” pairs steer agentic workflows toward human-level doc-
ument generation, while “Synth vs. Synth” pairs promote self-refinement. The data statistics of the
constructed dataset, i.e., DOCPAIR, are shown in Table 1.
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Domains Doc. Types Docs Avg. Page Doc. Pairs
Total Real vs. Synth Synth vs. Synth

32 267 69,137 3.2 117,108 36,664 80,444

Table 1: Data statistics of the constructed DOCPAIR.

3.2 MODEL STRUCTURE AND OPTIMIZATION

We adopt Qwen-2.5-VL (Bai et al., 2025) as the base model due to its advanced native multi-image
input capabilities, which allow for a more comprehensive analysis of multi-page documents. An N-
page document is converted into N images, which are then input into the model. A regression head
is added to predict a scalar score on top of the output hidden states. More implementation details
are presented in Appendix A.2.

We optimize DOCREWARD using the Bradley-Terry (BT) loss, which is specifically designed for
learning from pairwise preferences. Specifically, let Dw

img and Dl
img be the rendered pages of the

preferred (winner) and those of the less preferred (loser) in a paired comparison, respectively, then,
the DOCREWARD (formatted as Rθ), takes in the rendered pages of each document and outputs
scores, separately, which are supervised with the following objective:

min
θ

− log σ
(
Rθ(D

w
img)−Rθ(D

l
img)

)
, (2)

where σ is the sigmoid function, defined as σ(x) = 1
1+e−x . This objective encourages the model to

assign a higher score to the preferred document compared to the less preferred one.

4 EXPERIMENTS

We conduct experiments to evaluate the effectiveness of DOCREWARD in assessing both structural
and stylistic professionalism of documents. This section includes evaluation dataset annotation,
quantitative comparisons with strong baselines, extrinsic evaluation of document generation, and
qualitative analyses.

4.1 EVALUATION DATASET COLLECTION AND HUMAN ANNOTATION

A subset of the curated documents in Section 3.1 is set aside as evaluation documents. To diversify
the evaluation dataset, we consider the following six types of documents using the method described
in Section 3.1. Four of them are obtained via the Textual Content to Document agent, which gen-
erates DOCX documents using different LLMs (e.g., GPT-4o, OpenAI o1, Claude Sonnet 4, and
GPT-5). One type comes from the Refinement for Better Structure and Style agent, where GPT-5 is
employed to refine synthesized documents. The last type consists of the original human-authored
documents. Together, these six types constitute the origins of samples in our evaluation dataset. For
each set of documents sharing the same content but differing in structure and style, human experts
meticulously rank their quality based on structure and style. To facilitate model evaluation, these
ranked relationships are converted into a total of 473 comparison pairs, each consisting of two doc-
uments and a binary label indicating the preferred one. To ensure the quality of human annotation,
two highly educated annotators annotate the same subset of documents; then, we evaluate annotation
consistency among human annotators using Cohen’s Kappa and observe a high agreement of 83.4.
The detailed inter-annotator agreement results are presented in Table 5.

4.2 BASELINES AND EVALUATION SETTINGS

We evaluate our approach against several strong language models, including GPT-4o, Claude Sonnet
4, and GPT-5. Two evaluation settings are considered: pairwise and pointwise. In the pairwise
setting, the model receives the rendered pages of two documents and is instructed to predict which
document exhibits superior structure and style. In the pointwise setting, the model is provided with
the rendered pages of a single document and assign a scalar score for structure and style without any
reference document. The evaluation metric is accuracy, defined as the proportion of predictions that
correctly match human annotations in the evaluation dataset.

6
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Model Human Preference Accuracy (%)
Synth vs. Synth Real vs. Synth Overall

Pairwise Setting

Qwen2.5-VL-3B 47.03 60.89 54.97
Qwen2.5-VL-7B 52.97 61.62 57.93

GPT-4o (Hurst et al., 2024) 58.91 66.43 63.22
Claude Sonnet 4 (Anthropic, 2025) 57.86 69.02 64.26

GPT-5 (OpenAI, 2025b) 64.78 72.32 69.1

Pointwise Setting

Qwen2.5-VL-3B 36.63 33.58 34.88
Qwen2.5-VL-7B 41.58 57.93 50.95

GPT-4o (Hurst et al., 2024) 50.99 64.21 58.56
Claude Sonnet 4 (Anthropic, 2025) 48.02 66.79 58.77

GPT-5 (OpenAI, 2025b) 64.85 73.43 69.77

DOCREWARD-3B (Ours) 72.77 97.42 86.89
DOCREWARD-7B (Ours) 78.22 97.42 89.22

Table 2: Accuracy of Models on the proposed evaluation dataset. ’Real vs. Synth’ represents
evaluation pairs where a human-authored document is compared against a document generated by
an agent. ’Synth vs. Synth’ represents evaluation pairs where two agent-generated documents are
compared.

Reward Models Win Lose Tie

Random 24.6 66.2 9.2
GPT-5 37.7 40.0 22.3

DOCREWARD (Ours) 60.8 16.9 22.3

Table 3: Extrinsic evaluation results. DOCREWARD shows utility for professional document gener-
ation.

4.3 RESULTS ON EVALUATION DATASET

Superior Performance of DOCREWARD over Baselines. As presented in Table 2, on the human-
annotated evaluation dataset, DOCREWARD-3B and DOCREWARD-7B, achieve substantial im-
provements over strong baselines including GPT-4o, Claude Sonnet 4, and GPT-5. In particular,
DOCREWARD-7B achieves an overall human preference accuracy of 89.22% , 19.45 points higher
than the strongest closed-source baseline (GPT-5, 69.77%). In the critical “Real vs. Synth” setting,
DOCREWARD-7B achieves 97.42%, indicating near-perfect alignment with human judgments when
distinguishing professional human-authored documents from synthetic ones. Even in the more chal-
lenging “Synth vs. Synth” setting, DOCREWARD-7B maintains 78.22%, substantially higher than
GPT-5 (64.85%). These results demonstrate that DOCREWARD effectively captures structural and
stylistic quality signals that existing LLMs overlook.

4.4 IMPROVING DOCUMENT GENERATION WITH DOCREWARD

To demonstrate how DOCREWARD improves document generation, we conduct two complementary
experiments.

DOCREWARD is used as a re-ranking model for multiple rollouts. A document agent generates
N documents given the same text content, and then a reward model identifies the best one from
the documents according to their scores. We compare three reward models: random, GPT-5, and
DOCREWARD. Human annotators rank the selected documents from each reward model according
to their structure and style. Finally, we calculate the win/lose/tie rates for each reward model against
the others. As presented in Table 3, the random baseline performs poorly, winning only 24.6% of
comparisons and losing 66.2%. GPT-5 achieves more balanced results with a win rate of 37.7%.
By contrast, DOCREWARD substantially outperforms both baselines, achieving a win rate of 60.8%

7
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Reference
Document Base model + Rule + DocReward Base model + Rule + DocReward

Qwen3-Coder-1.5B + GRPO GPT-4o + Training-free GRPO

Figure 5: Visualization of generated documents reinforced by DOCREWARD.

and losing only 16.9% of the time. These results indicate that DOCREWARD’s reward signal bet-
ter captures the structural and stylistic qualities that humans value. The evaluation demonstrates
that plugging DOCREWARD into a standard document agent improves the output document without
changing the underlying agent. The evaluation details are presented in Appendix A.7.

RL via DOCREWARD enhances open- and closed source agentic workflows. We aim to enhance
document generation agentic workflows that take plain text as input and generate professional Word
document. We consider two kinds of rewards: 1) Rrule that penalizes documents that either result
from invalid python-docx code or differ from the input text after execution. Specifically, if the
code executes successfully, then Rrule = ROUGE(doc ori, doc gen); else Rrule will be zero. 2)
RDocReward that penalizes documents with poor structure and style. Overall, the reward assigned to
each generated document is defined as:

Rrule + α · Irule · σ(RDocReward), (3)

where α is a hyperparameter to balance the rewards, σ(·) is the Sigmoid operation to regularize the
value range of DOCREWARD to (0, 1), and Irule represents whether Rrule is larger than a threshold.

For open-source models, we adopt GRPO (Shao et al., 2024) as the reinforcement learning algo-
rithm, while employing training-free GRPO (Cai et al., 2025) for closed-source models. After RL,
human annotators are asked to rank the documents produced by six model variants. The evaluation
criterion is the professionalism of the document’s structure and styling. The experimental results
are shown in Table 4. Rule-based rewards substantially improve the success rate of document gen-
eration for both Qwen2.5-Coder and GPT-4o. Incorporating DocReward as reward further enhances
the performance of both open- and closed-source models, leading to higher success rates, improved
ROUGE-L scores, and better average rankings. These results demonstrate that DOCREWARD serves
as an effective reward model for professional structure and style. Figure 5 presents visualization of
documents generated by different models.

4.5 CASE STUDY

We present a case study on documents with identical textual content but different structures and
styles in Figure 6. In case (a), the allocation of whitespace is ineffective, with insufficient space

8
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Success Rate↑ ROUGE-L↑ DocReward↑ Rank↓
Qwen2.5-Coder 30.0 20.61 0.0663 4.58
- w/ GRPO (rule) 98.0 97.94 0.1785 4.06
- w/ GRPO (rule&DocReward) 100.0 97.95 0.3046 2.84
GPT-4o 52.0 48.73 0.2682 3.18
- w/ Training-free GRPO (rule) 66.0 62.15 0.3189 2.70
- w/ Training-free GRPO (rule&DocReward) 78.0 74.33 0.4486 2.02

Table 4: Results of the reinforcement learning experiments. “DocReward” denotes the sigmoid-
normalized DocReward score. “Rank” denotes the average ranking assigned by human annotators.

imbalanced layout

misaligned

(a) score: 1.21

vertically aligned

small font size

missing 

table borders

(b) score: 2.11

vertically aligned

proper font size

table borders 

for readability

(c) score: 5.34

Figure 6: Case study: DOCREWARD’s scores reflect structural and stylistic professionalism.

between Last Name and excessive space between First Name, leading to an imbalanced layout. Key
fields such as Faculty/Department, Country, and Country Code are not vertically aligned, causing
a cluttered and disorganized layout. This poor alignment and inconsistent spacing result in a low
score of 1.21 from DOCREWARD. Case (b) adopts a table-like arrangement, but the level-1 heading
The teaching staff member is too small and does not stand out from the body text, diminishing its
impact. Additionally, the lack of borders around input fields makes it hard to locate items easily,
resulting in a moderate score of 2.11. Case (c) provides a clear and well-structured layout, with
headings appropriately larger than the body text and better readability, earning the highest rating
of 5.34. These results show that DOCREWARD effectively captures document professionalism in
structure and style. Additional cases are provided in Appendix A.9.

4.6 VISUALIZATION OF ATTENTION MAP

To understand DOCREWARD’s internal decision-making process, we conduct probing experiments
analyzing its attention maps within the language model part. The attention maps are computed
over image patches. As shown in Figure 7, the attention maps reveal that the model relies more on
structural and formatting cues than on semantic content when evaluating document professionalism.
In Figure 7a, attention is focused on headings and numbering, indicating sensitivity to structure clar-
ity and logical flow. The model also allocates considerable attention to page headers (i.e., “CS-66”)
and footers at bottom right corner (i.e., “DEC. 2006”), suggesting that the inclusion of page headers
and footers is an important signal of professional structure. In Figure 7b, the model attends strongly
to bullet points, suggesting that formatting consistency and emphasis markers are key profession-
alism signals. In Figure 7c, attention is dispersed across table grids, highlighting the importance
of text alignment and readability in structured tabular layouts. Moreover, the attention maps show
notable focus on the four page corners, suggesting that DOCREWARD implicitly checks for uniform
margins and balanced whitespace, which are strong indicators of professional layout design.
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numbering

page header

page footers

(a)

bullet points

page corners

page corners

(b)

table borders

table corners

page corners

(c)

Figure 7: Visualization of attention maps. DOCREWARD captures structural and stylistic elements,
such as headings, alignment, and whitespace, in its evaluation of document professionalism.

5 RELATED WORK

Aesthetic and Professionalism Assessment. In graphic design, AesthetiQ (Zhang et al., 2024)
utilizes multimodal LLMs as preference evaluators to align layout generation with aesthetic re-
quirements, while diffusion-based methods such as LACE (Li et al., 2023) introduce differentiable
constraints to directly optimize layout attributes. For web and mobile interfaces, systems like Cal-
ista (Yu et al., 2019) and Android UIs (Fu et al., 2024) use explicit ratings and pairwise comparisons
to model visual appeal, showing correlations with usability. Additionally, photo aesthetics are mod-
eled using layout-aware CNNs such as A-Lamp (Li et al., 2018), and similar techniques extend to
video (Liu & Yu, 2023). These studies show that aesthetic principles can guide AI development and
that human preferences are reliable supervisory signals, but they focus on images or UI interfaces
rather than multi-page documents, where professionalism depends on both structure and style.

Document AI. Document AI research mainly targets semantic parsing and content understanding.
Models such as LayoutLM (Xu et al., 2020) and ReLayout (Jiang et al., 2024), along with OCR-
based pipelines (Subramani et al., 2020), identify logical elements such as headings, tables, and
semantic groups to support information extraction and classification. Recent work also explores
automatic document or layout generation (Lin et al., 2023; Tang et al., 2023; Tian et al., 2025), but
evaluation has primarily been limited to content correctness or basic formatting. As a result, the
assessment of document professionalism—particularly visual structure and style—remains largely
unexplored.

Preference Learning and Reward Models. A major challenge in professionalism assessment is
acquiring feedback signals that reflect human judgment. Preference-based reward modeling ad-
dresses this issue by training on pairwise comparisons to approximate preferences, forming the
basis of alignment methods like RLHF (Stiennon et al., 2020) and DPO (Rafailov et al., 2023). This
demonstrates that preference data offers a scalable and effective way to align generative models with
nuanced expectations.

6 CONCLUSION

In this paper, we introduced DOCREWARD, a Document Reward Model designed to assess structural
and stylistic professionalism. Our key contributions include the construction of a multi-domain
dataset DOCPAIR of 117K paired documents, each with high- and low-professionalism counterparts.
We train DOCREWARD using the Bradley-Terry loss. Rigorous evaluation on a human-annotated test
set demonstrated DOCREWARD’s superior performance, outperforming GPT-4o and GPT-5 by 30.6,
19.4 percentage points, respectively in human preference accuracy. Moreover, a human preference
evaluation demonstrates its utility to guide generation agents toward producing human-preferred
documents.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Following the completion of the draft by the human authors, a large language model was employed
to enhance the clarity and academic tone of specific sections.

A.2 MODEL IMPLEMENTATION DETAILS

Our document reward model is built upon the Qwen2.5-VL multimodal architecture, with the max-
imum input pixels set to 300,000. It is configured with a maximum context length of 16,000 tokens
to ensure comprehensive understanding. Training utilizes the AdamW optimizer with a learning
rate of 1e-6 and a batch size of 256 over 3 epochs. All training was conducted on 8 NVIDIA A100
GPUs. The training code is based on LLaMA-Factory (Zheng et al., 2024).

A.3 SOURCE DOCUMENTS EXPANSION

To ensure that the reward model learns to assess differences in structure and style rather than content,
we applied a rigorous filtering process. Using python-docx, we extracted text from pairs of
Microsoft Word DOCX documents and computed their word counts. Only synthetic documents
with a word count difference of no more than 20 words from the original document and a ROUGE-
L score exceeding a threshold are retained, ensuring comparable content while isolating variation in
structure and style. For the constructed training dataset DOCPAIR, both GPT-4o and GPT-5 serve as
the base models of agents.

A.4 ANNOTATION PROTOCOL AND RELIABILITY

Annotation Guidelines. The annotation guidelines consist of general principles that are formulated
in an explicit, objective manner. For instance, extremely narrow margins that produce an almost
fully saturated page layout are commonly regarded as unprofessional across different cultural and
regional contexts. The detailed guideline for human annotation are presented in Figure 8.

Independence from annotators’ cultural and professional backgrounds. The annotation was
performed by three Ph.D. students from diverse fields (computer science, marketing, and mathemat-
ics). We measured inter-annotator reliability using Cohen’s Kappa; the results are shown in Table 5.
The high agreement indicates that the annotations follow clear, well-defined rules that do not de-
pend on the annotators’ professional training or cultural background, demonstrating the guidelines’
generality and objectivity.

A.5 GENERALIZATION ABILITY OF DOCREWARD

Out-of-Domain Evaluation. Table 6 reports the in-domain and out-of-domain results across differ-
ent models. Firstly, DocReward-7B (85.55) remains superior to all baseline models, including the
closed-source model GPT-5 (71.11). This trend is consistent with the in-domain results. Secondly,
The performance of DocReward-7B decreases by merely 3.67 percentage points when transitioning
from in-domain to out-of-domain evaluations. Such a small performance gap indicates that DocRe-
ward generalizes effectively to unseen domains.

Table 5: Pairwise Cohen’s Kappa among annotators.

Annotator 1 Annotator 2 Annotator 3 Average

Annotator 1 - 83.40 80.92 82.15
Annotator 2 83.40 - 85.90 84.65
Annotator 3 80.92 85.90 - 83.41

Average 82.15 84.65 83.41 83.40
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Guidelines for Human Annotation

Target:
Each document group contains N documents. Their textual content is the

same, but their structure and style differ. The first document in
each group is the original human-authored document, which serves
as a reference during annotation. Based on the level of
professionalism in structure and style across the N documents, the
annotator should rank the documents. Note that there may exist
cases where human-authored documents are not the best one.

Annotation Format Example:
For example, for the document group with ID 10655307, suppose the

human-annotated professionalism ranking is 1 > 5 > 3 > 2 > 4,
where 1 is judged to be the most professionally structured and
formatted document, and 4 is the least professional. Then the
annotation format should be: 10655307 \t 15324

Evaluation Criteria:

1. **Layout and Design**:
- Consistent formatting and spacing

- Proper use of headings, subheadings, and other structures, and
proper hierarchy (e.g., long paragraphs should use body text style
rather than heading styles, and headings should not be formatted
as body text)
- Appropriate margins and white space usage (e.g., page margins or
table column widths that are excessively wide or narrow are not
appropriate)

2. **Readability and Typography**:
- Consistent and appropriate font choices
- Proper Text size (e.g., overly large or overly small text is not
suitable)
- Appropriate line spacing and clear paragraph structure
- Proper Text alignment

3. **Professional Standards**:
- Document structure and organization
- Use of professional elements (headers, footers, page numbers)
- Consistency across pages (if multiple pages provided)

4. **Visual Elements**:
- Quality and placement of images, tables, or charts
- Integration of visual elements with text
- Professional presentation of data

Figure 8: Detailed guideline for human annotation.

Table 6: In-domain and out-of-domain performance.

Model In-domain Out-of-domain
Qwen2.5 VL-3B 34.88 31.10
Qwen2.5 VL-7B 50.95 45.92
GPT-4o 58.56 57.04
GPT-5 69.77 71.11
DocReward-3B 86.89 81.85
DocReward-7B 89.22 85.55
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Table 7: Cross-lingual robustness evaluation across multiple languages. “Non-English” denotes the
average performance on documents written in non-English languages.

French Spanish Rusian Non-English Avg. English Drop
Qwen2.5 VL-3B 35.00 33.75 22.50 30.42 34.88 -4.46%
Qwen2.5 VL-7B 48.75 42.50 27.50 39.58 50.95 -11.37%
GPT-4o 47.50 52.50 42.50 47.50 58.56 -11.06%
GPT-5 57.50 76.25 47.50 60.42 69.77 -9.35%
DocReward-3B 77.50 82.50 72.50 77.50 86.89 -9.39%
DocReward-7B 78.75 88.75 66.25 77.90 89.22 -11.32%

Cross-Lingual Robustness: To evaluate robustness across languages, we conduct experiments in
French, Spanish, and Russian. The results are as shown in Table 7. Firstly, the DocReward-7B model
achieved a high score of 77.90, substantially outperforming all baseline models (exceeding GPT-5
(60.42) by 17.48 percentage points). This is consistent with the conclusions drawn from the English
evaluation. Secondly, all models, including the baselines, exhibited performance degradation in non-
English settings. For example, GPT-5 dropped by 9.35%. The performance drops of DocReward
(−9.39%, −11.32%) are comparable to those of the closed-source models GPT-4o (−11.06%) and
GPT-5 (−9.35%), indicating that DocReward demonstrates strong cross-lingual robustness.

A.6 PROMPTS

Domain and Type Classification Prompt

You are an expert document quality evaluator and domain classifier.
Your task is to assess the professionalism, layout quality, and
readability of documents based on their visual appearance, and
classify the document’s domain.

You will be provided with screenshot images of document pages. First,
classify the document domain and then evaluate the document on
quality criteria.

**DOMAIN AND DOCUMENT TYPE CLASSIFICATION**:
Classify the document on two levels:

1. **Domain Classification**: Choose the broad domain category (e.g.,
technical, personal, legal, scientific, government, financial,
medical, business, education, marketing, academic, news,
entertainment, sports, non_profit, religious, insurance,
real_estate, automotive, travel, hospitality, retail,
manufacturing, logistics, etc.)

2. **Document Type Classification**: Identify the specific document
type within that domain. Examples include:
- Technical: engineering_report, user_manual,
software_documentation, specification_document, etc.
- Personal: cv, personal_report, resume, personal_letter, etc.
- Legal: legal_brief, legal_opinion, contract, regulatory_text,
court_filing, etc.
- Scientific: technical_paper, research_publication,
scientific_study, laboratory_report, etc.
- Government: regulation, white_paper, official_report,
government_form, policy_document, etc.
- Financial: audit_report, investment_report, financial_statement,
banking_document, etc.
- Medical: pharmaceutical_document, clinical_report,
medical_manual, research_study, etc.
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- Business: corporate_memo, business_plan, presentation,
financial_report, marketing_brochure, etc.
- Education: thesis, textbook, academic_report, research_paper,
course_material, etc.
- Marketing: brand_guidelines, campaign_brief,
advertising_proposal, market_analysis, social_media_strategy, etc.
- Academic: dissertation, grant_proposal, conference_paper,
journal_article, literature_review, etc.
- News: press_release, news_article, interview_transcript,
editorial, media_kit, etc.
- Entertainment: production_notes, script, event_program,
casting_call, performance_review, etc.
- Sports: athlete_profile, game_report, coaching_guide,
training_manual, tournament_bracket, etc.
- Non_profit: annual_report, fundraising_proposal, impact_report,
volunteer_handbook, grant_application, etc.
- Religious: ceremony_program, sermon_notes, prayer_book,
religious_text, pastoral_letter, etc.
- Insurance: claims_form, policy_document, underwriting_report,
risk_assessment, coverage_summary, etc.
- Real_estate: lease_agreement, property_listing, market_analysis,
appraisal_report, property_brochure, etc.
- Automotive: parts_catalog, service_manual, recall_notice,
safety_report, warranty_document, etc.
- Travel: travel_guide, itinerary, visa_application,
booking_confirmation, hotel_brochure, etc.
- Hospitality: staff_handbook, menu, guest_services_guide,
reservation_system, event_planning_document, etc.
- Retail: inventory_report, product_catalog, customer_survey,
sales_analysis, store_policy, etc.
- Manufacturing: production_schedule, quality_control_report,
equipment_manual, safety_protocol, process_documentation, etc.
- Logistics: delivery_schedule, shipping_manifest,
transportation_plan, warehouse_inventory, supply_chain_analysis,
etc.

Choose the most specific and accurate document type that describes the
document’s purpose and content. You may use other document types
not listed above if they better describe the document.

Document Scoring Prompt for Proprietary Models (point-wise)

You are an expert document quality evaluator. Your task is to assess
the professionalism, layout quality, and readability of documents
based on their visual appearance.

You will be provided with screenshot images of document pages.
Evaluate the document on the following criteria:

1. **Layout and Design**:
- Professional appearance and visual appeal
- Consistent formatting and spacing
- Proper use of headings, subheadings, and hierarchy
- Appropriate margins and white space usage
- Overall visual balance and organization

2. **Readability and Typography**:
- Font choices and consistency
- Text size and legibility
- Line spacing and paragraph structure
- Text alignment and justification
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3. **Professional Standards**:
- Document structure and organization
- Use of professional elements (headers, footers, page numbers)
- Consistency across pages (if multiple pages provided)
- Overall polish and attention to detail

4. **Visual Elements**:
- Quality and placement of images, tables, or charts
- Integration of visual elements with text
- Professional presentation of data

Rate the document on a scale from 0 to 10, where:
- 9 to 10: Exceptional professional quality
- 7 to 8: High professional standard
- 5 to 6: Good professional appearance
- 4: Average / acceptable quality
- 2 to 3: Below average, needs improvement
- 0 to 1: Poor quality, significant issues

Your response should follow this format:
1. First, provide a detailed analysis of each evaluation criteria

mentioned above
2. Then, conclude with a final numerical score on a new line starting

with "SCORE: " followed by the number (e.g., "SCORE: 7.250")

Document Scoring Prompt for Proprietary Models(Pair-wise)

You are an expert document quality evaluator. Your task is to compare
two documents and determine which one has better professionalism,
layout quality, and readability based on their visual appearance.

You will be provided with screenshot images of all pages from two
documents: Document A and Document B. Compare the documents on the
following criteria:

1. **Layout and Design**:
- Professional appearance and visual appeal
- Consistent formatting and spacing
- Proper use of headings, subheadings, and hierarchy
- Appropriate margins and white space usage
- Overall visual balance and organization

2. **Readability and Typography**:
- Font choices and consistency
- Text size and legibility
- Line spacing and paragraph structure
- Text alignment and justification

3. **Professional Standards**:
- Document structure and organization
- Use of professional elements (headers, footers, page numbers)
- Consistency across pages
- Overall polish and attention to detail

4. **Visual Elements**:
- Quality and placement of images, tables, or charts
- Integration of visual elements with text
- Professional presentation of data

Your response should follow this format:
1. First, provide a detailed comparative analysis of each evaluation

criteria for both documents
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2. Then, conclude with your preference on a new line starting with
"PREFERENCE: " followed by either "A" or "B" (e.g., "PREFERENCE:
A", "PREFERENCE: B")

Choose the document that demonstrates superior overall quality,
professionalism, and visual presentation.

Document Scoring Prompt for Proprietary Models (triple-wise)

You are an expert document quality evaluator. Your task is to compare
two documents and determine which one has better professionalism,
layout quality, and readability based on their visual appearance.

You will be provided with screenshot images of all pages from three
documents: Document A, Document B, and the Original document
(ground truth reference). The Original document serves as a
reference standard. Compare Documents A and B on the following
criteria:

1. **Layout and Design**:
- Professional appearance and visual appeal
- Consistent formatting and spacing
- Proper use of headings, subheadings, and hierarchy
- Appropriate margins and white space usage
- Overall visual balance and organization

2. **Readability and Typography**:
- Font choices and consistency
- Text size and legibility
- Line spacing and paragraph structure
- Text alignment and justification

3. **Professional Standards**:
- Document structure and organization
- Use of professional elements (headers, footers, page numbers)
- Consistency across pages
- Overall polish and attention to detail

4. **Visual Elements**:
- Quality and placement of images, tables, or charts
- Integration of visual elements with text
- Professional presentation of data

Your response should follow this format:
1. First, provide a detailed comparative analysis of each evaluation

criteria for both documents, taking the Original document as
reference for quality standards

2. Then, conclude with your preference on a new line starting with
"PREFERENCE: " followed by either "A" or "B" (e.g., "PREFERENCE:
A", "PREFERENCE: B")

Choose the document that demonstrates superior overall quality,
professionalism, and visual presentation.

Prompt for Document Generation

Based on the following plain text content (extracted from a DOCX
document), generate Python code using python-docx library to
create a new, well-formatted DOCX document with appropriate styles
and formatting:

Plain Text Content (no formatting):
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{editing_plan}

Output file: {output_file_path}

TASK OVERVIEW:
You are given ONLY the plain text content of a document (without any

formatting, styles, or structure information). Your job is to:
1. Analyze the text content to infer document structure (headings,

paragraphs, lists, etc.)
2. Create a new DOCX document from scratch
3. Apply appropriate professional formatting and styles to make it

look like a proper document
4. Add visual hierarchy, consistent formatting, and professional

appearance

IMPORTANT REQUIREMENTS:
1. Create a completely NEW DOCX document based on the plain text

content
2. **PRESERVE ALL TEXT CONTENT**: Include every single word, sentence,

paragraph, and character from the given plain text content. Do NOT
omit, skip, or modify any text content.

3. **NO CONTENT CHANGES**: Only infer and apply formatting/structure.
The actual text content must remain exactly the same as provided.

4. Analyze the text content to infer document structure and apply
appropriate formatting

5. Generate Python code that creates a professional-looking document
with proper hierarchy and styling

6. Ensure ALL provided text appears in the final document in the
original order

7. **YOUR CODE WILL BE EXECUTED**: The generated Python code will be
run directly, so it must be complete, executable, and include the
document.save() function to save the DOCX file to the specified
output path.

8. **DO NOT USE PLACEHOLDERS OR OMITTED CODE**: The generated code
MUST be complete and explicit. Do NOT use comments or placeholders
such as "# ... (Continue to add other sections and paragraphs
similarly)" or "# Add more content here". The code must include
ALL content from the original plain text, fully processed and
added to the document.

**OUTPUT PATH REQUIREMENTS:**
- You MUST use the exact output path provided: {output_file_path}
- DO NOT create your own filename or path
- DO NOT save to current directory with arbitrary names like

’output.docx’, ’document.docx’, etc.
- DO NOT use variables like ’output_path’ without setting them to the

exact provided path

CODE STRUCTURE REQUIREMENTS:
Your generated Python code must follow this EXACT structure:

‘‘‘python
import os
from docx import Document
from docx.shared import Inches, Pt
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.enum.style import WD_STYLE_TYPE
# Add other imports here...

# Create new document
doc = Document()

# Add content here with appropriate formatting

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

# Process the text content and add to document...

# Create output directory if needed
os.makedirs(os.path.dirname(output_file_path), exist_ok=True)
try:

print(’CODE: output_file_path = ’, output_file_path)
except:

print(’CODE: output_file_path ERROR! ’)
doc.save(output_file_path)
‘‘‘

Prompt for Document Refinement (Phase 1 - Plan Generation)

You are a document formatting analysis expert. Your task is to analyze
the differences between a previously generated document and the
ground truth document, then create a specific refinement plan.

**Input Information:**

**1. Previous Generated Code:**
‘‘‘python
{previous_code}
‘‘‘

**2. Previous Generated Document Screenshot:**
{previous_doc_screenshot_info}

**3. Ground Truth Document Screenshot:**
{gt_screenshot_info}

**4. Ground Truth Document Representation:**
‘‘‘
{gt_doc_repr}
‘‘‘

**Important Context Limitations:**
Due to input context length constraints, the Ground Truth Document

Representation, Ground Truth Document Screenshot, and Previous
Generated Document Screenshot may only contain the initial/front
portions of the documents. However, the Previous Generated Code is
complete and contains the full implementation. When analyzing
differences, focus primarily on the visible portions but consider
that the documents may extend beyond what is shown.

**Task:**
Compare the previous generated document with the ground truth

document. Identify the 5 most important differences and create a
specific, actionable refinement plan with concrete implementation
details needed to modify the previous generated code.

**Output Format:**
Provide a detailed refinement plan with specific values and

implementation details:

## Top 5 Key Differences and Improvements Needed:

For each improvement, specify:
1. **Location/Text**: Where the issue occurs (partial text content for

identification, table position, paragraph number, etc.)
2. **What needs to be changed** (exact element/section)
3. **Current state** (what the code currently does)
4. **Target state** (what it should be)
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5. **Specific implementation** (exact font sizes, spacing values,
alignment settings, etc.)

### Example format:
**Issue**: [Specific formatting problem]
- **Location**: Text containing "Document Header" or Table in section

2, row 1
- **Current**: Font size 12pt, left alignment
- **Target**: Font size 14pt, center alignment
- **Implementation**: Set ‘run.font.size = Pt(14)‘ and

‘paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER‘

**Issue**: [Table formatting problem]
- **Location**: Table with headers "Product Name, Price"
- **Current**: No borders, default spacing
- **Target**: 1pt black borders, 6pt cell padding
- **Implementation**: Add table border properties with ‘width=1pt,

color=black‘ and set cell margins to ‘6pt‘

Focus on providing exact values (font sizes in pt, spacing in
pt/inches, specific color values, alignment constants) and
concrete python-docx implementation steps. **Limit to exactly 5
most important differences** that will have the biggest visual
impact.

Prompt for Document Refinement (Phase 2 - Code Generation)

You are a document generation expert. Your task is to generate
improved Python code that addresses the specific formatting issues
identified in the refinement plan.

**Input Information:**

**1. Previous Generated Code:**
‘‘‘python
{previous_code}
‘‘‘

**2. Refinement Plan:**
‘‘‘
{refinement_plan}
‘‘‘

**3. Output File Path:**
- Output file: {output_file_path}

**Task:**
Based on the previous code and the refinement plan, generate a

**complete and improved Python code** that creates a document
matching the ground truth as closely as possible. This should be a
standalone, executable script that generates the entire document
from scratch.

**Requirements:**
1. **Generate complete Python code** - not just modifications, but a

full working script
2. **Apply all improvements** specified in the refinement plan
3. **Create the entire document** structure and content to match

ground truth
4. **Use appropriate libraries** (python-docx for high-level

operations, direct XML manipulation for precise control)
5. **Include error handling** for robustness
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6. **Save to specified output path** - the code must generate a
complete document file

7. **DO NOT use main() function wrapper** - code should execute
directly at top level

8. **Use exact output path provided**: {output_file_path}

**CODE STRUCTURE REQUIREMENTS:**
Your generated Python code must follow this structure (NO main()

function):

‘‘‘python
import os
from docx import Document
from docx.shared import Inches, Pt
from docx.enum.text import WD_ALIGN_PARAGRAPH
# Add other imports as needed...

# Create new document
doc = Document()

# Add all content here with appropriate formatting
# Apply all improvements from refinement plan...

# Save the document
output_file_path = "{output_file_path}"
os.makedirs(os.path.dirname(output_file_path), exist_ok=True)
doc.save(output_file_path)
print("CODE: output_file_path = ", output_file_path)
‘‘‘

**Advanced Formatting Capabilities:**
- **python-docx API**: Use for standard document operations
- **Direct XML manipulation**: Use when python-docx doesn’t provide

sufficient control
- Access underlying XML: ‘element._element‘
- XPath queries: ‘element.xpath()‘
- Direct attribute setting: ‘element.set()‘ on XML nodes
- Namespace operations: Use ‘qn()‘ for proper namespace handling
- Document XML access: ‘document.element.body‘ for document-level
changes

**Code Structure:**
The code should be a complete script that:
- Creates a new document
- Builds the entire document structure and content
- Applies all formatting to match the ground truth
- Saves the complete document to output_file_path

**Output Format:**
Provide a complete, executable Python script that implements the

improvements specified in the refinement plan.

**XML Manipulation Reference:**
When python-docx API is insufficient, you can use direct XML

manipulation. Here are helper functions and examples for reference:

*Helper functions (include only if needed):*
‘‘‘python
def set_xml_attribute(element, attr_name, attr_value):

"""Set XML attribute directly on element"""
if hasattr(element, ’_element’):

element._element.set(qn(attr_name), attr_value)
else:
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element.set(qn(attr_name), attr_value)

def add_xml_element(parent, tag_name, **attributes):
"""Add XML element with attributes"""
element = OxmlElement(qn(tag_name))
for attr, value in attributes.items():

element.set(qn(attr), value)
parent.append(element)
return element

‘‘‘

*Example XML operations:*
- For precise spacing control: ‘p_element = paragraph._element;

spacing_element = add_xml_element(p_element, ’w:spacing’,
before="120", after="120")‘

- For table borders: ‘table_element = table._element; table_props =
add_xml_element(table_element, ’w:tblPr’)‘

- For direct attribute setting: ‘element._element.set(qn(’w:val’),
’value’)‘

**Focus on:**
- Precise implementation of the refinement plan using both python-docx

API and direct XML manipulation
- Proper python-docx syntax and XML node manipulation for fine-grained

control
- Maintaining document integrity while applying improvements
- Clear, maintainable code structure with comprehensive error handling
- Complete document generation (not just partial modifications)

A.7 DETAILS OF EXTRINSIC EVALUATION

The Textual Content to Document defined in Section 3.1 is adopted as the document agent, with
the base model being GPT-5. Three reward models, including random, GPT-5, and DOCREWARD
are compared. Once the document agent generates candidates and the reward model selects the
top-ranking document from N candidates, a highly educated annotator is asked to rank the three
documents selected, according to the definitions of professional structure and style defined in Fig-
ure 8. As a result, documents from each reward model are annotated 130 comparison pairs against
those of another reward model. Finally, the win/lose/tie rate of each reward model is calculated on
the comparison pairs against the other reward models.

A.8 ABLATION STUDY OF INPUTS

In designing the input channels for DOCREWARD, we experimented with two different configura-
tions: a purely visual channel method and a combination method of visual and additional parsing
information. The experimental results are summarized in Table 8.

Model Human Preference Accuracy (%)
Synth vs. Synth Real vs. Synth Overall

image-only (3B) 70.92 94.98 85.00
image + OCR text & bbox (3B) 63.13(-7.79) 92.46(-2.52) 80.30(-4.7)

image-only (7B) 73.75 97.99 87.94
image + OCR text & bbox (7B) 68.08(-5.67) 95.98(-2.01) 84.41(-3.53)

Table 8: Additional text and bounding box of text span are not helpful for the assessment of profes-
sional structure and style.

A.9 MORE EXAMPLES OF CASE STUDY
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Australian Capital Territory

Radiation Protection
(
Council Member, Chair and Deputy Chair) 
Appointment
2021
(No 1
)

Disallowable instrument DI 2021 – 221
made under the
Radiation Protection Act 2006, s68 (Council members), s70 (Chair and deputy chair)

1 Name of instrument
This instrument is the Radiation Protection (Council Members, Chair and Deputy Chair) 
Appointment 2021 (No 1).
2 Commencement
This instrument commences on 1 October 2021.
3 Appointment of Council Members
In accordance with section 68 of the Radiation Protection Act 2006, I appoint the following 
people as members of the Radiation Council:
Name Applicable Radiation Protection Act Provision
Ms Fiona Jolly 68 (2) (a) (member of the public)
Ms Elizabeth Croft 68 (2) (d) (person with qualifications and 

experience relevant to assisting the Council carry 
out its functions)

Dr Stephen Tims 68 (2) (c) (person with expert knowledge in the 
physical properties of radiation)

Mr Brad Whittaker 68 (2) (d) (person with qualifications and 
experience relevant to assisting the Council carry 
out its functions)

Ms Jayanti Gupta 68 (2) (a) (member of the public)
4 Appointment of Chair
In accordance with section 70 of the Radiation Protection Act 2006, I appoint Ms Elizabeth Croft
as Chair of the Radiation Council.
5 Appointment of Deputy Chair
In accordance with section 70 of the Radiation Protection Act, I appoint Ms Fiona Jolly as the 
deputy chair of the Radiation Council.
6 Term of Appointment
The appointments in this instrument commence 1 October 2021 and are effective for a period of
12 months.
Rachel Stephen-Smith MLA
Minister for Health
1 September 2021

Unauthorised version prepared by ACT Parliamentary Counsel’s Office

(a) score: 1.92

Australian Capital Territory

Radiation Protection (Council Member, Chair and
Deputy Chair) Appointment 2021 (No 1)

Disallowable instrument DI2021–221

made under the

Radiation Protection Act 2006, s68 (Council members), s70 (Chair and
deputy chair)

1 Name of instrument
This instrument is the Radiation Protection (Council Members, Chair and Deputy Chair) 
Appointment 2021 (No 1).

2 Commencement
This instrument commences on 1 October 2021.

3 Appointment of Council Members
In accordance with section 68 of the Radiation Protection Act 2006, I appoint the following 
people as members of the Radiation Council:

Name Applicable Radiation Protection Act 
Provision

Ms Fiona Jolly 68 (2) (a) (member of the public)

Ms Elizabeth Croft 68 (2) (d) (person with qualifications and 
experience relevant to assisting the Council 
carry out its functions)

Dr Stephen Tims 68 (2) (c) (person with expert knowledge in 
the physical properties of radiation).

Mr Brad Whittaker 68 (2) (d) (person with qualifications and 
experience relevant to assisting the Council 
carry out its functions)

Ms Jayanti Gupta 68 (2) (a) (member of the public)

4 Appointment of Chair
In accordance with section 70 of the Radiation Protection Act 2006, I appoint Ms Elizabeth Croft
as Chair of the Radiation Council.

5 Appointment of Deputy Chair
In accordance with section 70 of the Radiation Protection Act, I appoint Ms Fiona Jolly as the 
deputy chair of the Radiation Council.

(b) score: 3.50

Australian Capital Territory

Radiation Protection (Council Member, 
Chair and Deputy Chair) Appointment 2021 
(No 1)

Disallowable instrument DI2021–221

made under the  

Radiation Protection Act 2006, s68 (Council members), s70 (Chair and deputy chair) 

1 Name of instrument

This instrument is the Radiation Protection (Council Members, Chair 
and Deputy Chair) Appointment 2021 (No 1).

2 Commencement 

This instrument commences on 1 October 2021. 

3 Appointment of Council Members

In accordance with section 68 of the Radiation Protection Act 2006, I 
appoint the following people as members of the Radiation Council:

Name Applicable Radiation Protection Act 
Provision 

Ms Fiona Jolly 68 (2) (a) (member of the public)

Ms Elizabeth Croft 68 (2) (d) (person with qualifications and 
experience relevant to assisting the Council 
carry out its functions)

Dr Stephen Tims 68 (2) (c) (person with expert knowledge in the
physical properties of radiation).

Mr Brad Whittaker 68 (2) (d) (person with qualifications and 
experience relevant to assisting the Council 
carry out its functions)

Ms Jayanti Gupta 68 (2) (a) (member of the public)

Unauthorised version prepared by ACT Parliamentary Counsel’s Office

(c) score: 5.47

Figure 9: Example 1 of documents with different structures and styles.

Job Description

Community Sight Loss Adviser (Bristol, Bath, South Gloucs)
Salary: £20,000 - £22,000 depending on experience
Hours of work: 35 (Part-time would be considered for the right candidate)
Location: Bristol
Direct Reports: Volunteers
Contract status:Permanent after satisfactory probationary period
Annual Leave: 25 days plus bank holidays
Organisation Details:
Vision West of England exists to reduce the impact of sight loss, supporting
blind and partially sighted people to lead independent lives and to secure
equal access to services.
As a Community Sight Loss Adviser, you will play a lead role in delivering
our Information, Advice and Guidance Service for people living with sight
loss across Bristol, Bath and South Gloucestershire. You will assess the
needs of people with sight loss and prepare appropriate action plans to
ensure that  they are accessing support,  equipment  and training to help
them adjust to their sight loss.
You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and
organise community drop-in surgeries and social groups in key locations
across the region.
Responsibilities:
1. Provide information, advice and guidance to blind and partially-sighted

people using Vision West of England’s services, including the provision
of support with equipment and training to help clients adjust to their sight
loss.

2. Conduct one-to-one Sight Loss Assessments and prepare action plans
for clients.

3. Be the first point of contact for clients referred for rehabilitation services,
including conducting initial  screening assessment phone calls with all
clients.

4. Signpost  and/or  refer  clients  to  other  services  and  agencies  where
relevant.

5. Plan and organise Sight Loss Advice drop-in surgeries in key locations
across the Bristol, Bath, South Gloucs area.

(a) score: 2.28

Job Description

Community Sight Loss Adviser (Bristol, Bath, South Gloucs)
Salary: £20,000 - £22,000 depending on 

experience
Hours of work: 35  (Part-time would be considered for the

right candidate)
Location: Bristol
Direct Reports: Volunteers
Contract status: Permanent after satisfactory probationary 

period
Annual Leave: 25 days plus bank holidays

Organisation Details:
Vision West of England exists to reduce the impact of sight loss, supporting blind and 
partially sighted people to lead independent lives and to secure equal access to 
services.

As a Community Sight Loss Adviser, you will play a lead role in delivering our 
Information, Advice and Guidance Service for people living with sight loss across Bristol,
Bath and South Gloucestershire. You will assess the needs of people with sight loss and
prepare appropriate action plans to ensure that they are accessing support, equipment 
and training to help them adjust to their sight loss.

You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and organise 
community drop-in surgeries and social groups in key locations across the region.

Responsibilities:
 Provide information, advice and guidance to blind and partially-sighted people using 

Vision West of England’s services, including the provision of support with equipment 
and training to help clients adjust to their sight loss.

 Conduct one-to-one Sight Loss Assessments and prepare action plans for clients.
 Be the first point of contact for clients referred for rehabilitation services, including 

conducting initial screening assessment phone calls with all clients.
 Signpost and/or refer clients to other services and agencies where relevant.
 Plan and organise Sight Loss Advice drop-in surgeries in key locations across the 

Bristol, Bath, South Gloucs area.
 Work alongside the Volunteer Coordinator to oversee volunteers supporting clients 

and events in the region.
 Maintain effective working relationships with key partners, including local 

Rehabilitation Teams, Eye Clinic Liaison Officers and other charities offering services
relevant to our clients.

 Support the set-up and running of social peer support groups for people living with 
sight loss.

(b) score: 4.26

Job Description 

Community Sight Loss Adviser (Bristol, Bath, South Gloucs)

Salary: £20,000 - £22,000 depending on experience 

Hours of work: 35  (Part-time would be considered for the right candidate)

Location: Bristol 

Direct Reports: Volunteers

Contract status: Permanent after satisfactory probationary period 

Annual Leave: 25 days plus bank holidays 

Organisation Details:

Vision West of England exists to reduce the impact of sight loss, supporting blind
and partially sighted people to lead independent lives and to secure equal access to
services.  

As a  Community Sight Loss Adviser, you will play a lead role in delivering our
Information, Advice and Guidance Service  for people living with sight loss across
Bristol, Bath and South Gloucestershire. You will assess the needs of people with
sight loss and prepare appropriate action plans to ensure that they are accessing
support, equipment and training to help them adjust to their sight loss. 

You will work alongside the Senior Sight Loss Adviser (Bristol) to plan and organise 
community drop-in surgeries and social groups in key locations across the region.

Responsibilities:

1. Provide information, advice and guidance to blind and partially-sighted people
using Vision West of England’s services, including the provision of support with
equipment and training to help clients adjust to their sight loss. 

2. Conduct  one-to-one  Sight  Loss  Assessments  and  prepare  action  plans  for
clients.

3. Be the first point of contact for clients referred for rehabilitation services,
including  conducting  initial  screening  assessment  phone  calls  with  all
clients.

4. Signpost and/or refer clients to other services and agencies where relevant.

5. Plan and organise Sight Loss Advice drop-in surgeries in key locations across
the Bristol, Bath, South Gloucs area.

(c) score: 12.09

Figure 10: Example 2 of documents with different structures and styles.
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