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Figure 1: Overview of the SURDS benchmark and the proposed method’s performance. The
upper part illustrates the SURDS benchmark, which comprises six challenging tasks within driving
scenarios, divided into single-object and multi-object categories. The lower part presents three radar
charts evaluating the proposed method: the bottom left compares its performance against large-scale
open-source and proprietary models; the bottom center highlights comparisons with existing spatial
understanding methods; and the bottom right shows successive enhancements from the base model.

Abstract

Accurate spatial reasoning in outdoor environments—covering geometry, object
pose, and inter-object relationships—is fundamental to downstream tasks such
as mapping, motion forecasting, and high-level planning in autonomous driving.
We introduce SURDS, a large-scale benchmark designed to systematically eval-
uate the spatial reasoning capabilities of vision language models (VLMs). Built
on the NUSCENES dataset, SURDS comprises 41,080 vision–question–answer
training instances and 9,250 evaluation samples, spanning six spatial categories:
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orientation, depth estimation, pixel-level localization, pairwise distance, lateral
ordering, and front–behind relations. We benchmark leading general-purpose
VLMs, including GPT, Gemini, and Qwen, revealing persistent limitations in
fine-grained spatial understanding. To address these deficiencies, we go beyond
static evaluation and explore whether alignment techniques can improve spatial
reasoning performance. Specifically, we propose a reinforcement learning–based
alignment scheme leveraging spatially grounded reward signals—capturing both
perception-level accuracy (location) and reasoning consistency (logic). We fur-
ther incorporate final-answer correctness and output-format rewards to guide fine-
grained policy adaptation. Our GRPO-aligned variant achieves overall score of
40.80 in SURDS benchmark. Notably, it outperforms proprietary systems such
as GPT-4o (13.30) and Gemini-2.0-flash (35.71). To the best of our knowledge,
this is the first study to demonstrate that reinforcement learning–based align-
ment can significantly and consistently enhance the spatial reasoning capabilities
of VLMs in real-world driving contexts. We release the SURDS benchmark,
evaluation toolkit, and GRPO alignment code through: https://github.com/
XiandaGuo/Drive-MLLM.

1 Introduction

Understanding complex spatial structures—such as object orientation, relative position, and geomet-
ric layout—within either discrete images or sequential videos [8] serves as a fundamental challenge
in embodied perception and multi-modal scene understanding. Such spatial reasoning abilities are
essential for a wide range of downstream tasks, including motion prediction [29, 86, 55, 32, 60],
planning [65, 7, 49] and map construction [79, 19]. While we have witnessed huge progress in per-
object centered recognition tasks with the assistance of various large-scale dataset [21, 30, 58],
including detection [38, 39], tracking [42, 24], optical flow estimation [22, 57], depth estima-
tion [37, 34–36] and semantic segmentation [16, 40], the inter-object spatial relation reasoning from
RGB images in autonomous driving has been largely ignored even despite its vital importance in
achieving fully holistic 3D scene understanding.

In the vision community, spatial relation reasoning within a single image has received increasing
attention [68] by leveraging datasets such as Visual Genome [44]. However, existing works primar-
ily focus on simple 2D positional relations (e.g., left/right, top/bottom), which fail to capture the
richness and address the ambiguity of 3D spatial dependencies critical on real-world environments.
Meanwhile, the recent emergence of large language models (LLMs) [61, 75] and their multimodal
variants (VLMs) [1, 52, 15, 78] has opened promising avenues for high-level vision-language rea-
soning. Yet, the extent to which these models can perform on spatial understanding remains unclear.

Despite recent efforts on spatial question answering, such as BLINK [27], SpatialBot [11], Spatial-
RGPT [11], most prior studies focus on controlled indoor environments or rely on auxiliary modules
such as depth estimators or object detectors. These designs limit generalization to dynamic and vi-
sually complex scenes. In contrast, spatial reasoning is required in outdoor scenarios, especially
driving scenarios. At the same time, a growing number of works have begun to directly employ
LLMs for planning or decision-making in autonomous driving [73, 80, 59, 23], yet such approaches
often overlook a key prerequisite: without first establishing the spatial reasoning capability of these
models, deploying them for real-world driving actions is inherently unreliable. This highlights the
urgent need for a dedicated benchmark to systematically evaluate VLMs’ spatial understanding in
driving contexts.

In this work, we propose to systematically evaluate and improve the spatial reasoning capabilities
of VLMs via a new large-scale benchmark: SURDS. Built on the nuScenes [10] dataset, SURDS
comprises multi-view driving scenes captured from six surrounding cameras. From this, we respec-
tively curate 41,080 training and 9,250 validation vision–question–answer (VQA) samples designed
to probe fine-grained spatial understanding across six dimensions: orientation, depth, pixel-level
position, pairwise distance, lateral ordering, and front–behind relations. Each query is paired with
linguistically diverse, contextually grounded questions and evaluated using task-specific metrics.
We compare the proposed SURDS benchmark with existing spatial understanding benchmarks in
Table 1. SURDS is the first spatial understanding benchmark in driving scenarios.
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Table 1: Comparison between our work and other spatial understanding benchmarks. Scale
denotes the total number of QA pairs in the benchmark. Annotation Types indicate how spatial
relations are labeled. Reasoning indicates whether the framework focuses on reasoning. Method
denotes whether it proposes a specific approach to enhance spatial understanding. w/o Depth means
the framework does not use depth information during training or evaluation. w/o Visual Mark indi-
cates no visual annotations are added to the image.

Paper Scale Annotation Types Data Source Reasoning Method w/o Depth w/o Visual Mark

BLINK (ECCV2024) [27] 3,807 Image QA pairs Web ✗ ✗ ✓ w/ Marked point
SpatialRGPT (NeurIPS2024) [18] 1,406 Image QA pairs Web ✓ ✓ ✗ w/ Mask
SpatialBot (ICRA2025) [11] 174 Image QA pairs Web ✓ ✓ ✗ w/ Marked point & Bbox
VSI bench (CVPR2025) [81] ∼5,000 Video QA pairs Indoor ✓ ✗ ✓ ✓

SURDS (ours) 9,250 Image QA pairs Driving ✓ ✓ ✓ ✓

Using SURDS, we systematically evaluate the spatial reasoning capabilities of several frontier
VLMs, including GPT-4o, GPT-4o-mini, Gemini, and Gemini 2.5 Pro. Our analysis reveals four
converging lines of evidence that existing models still lack robust spatial grounding. Our evaluation
reveals that current VLMs, including large-scale models, surprisingly struggle with spatial reason-
ing, showing poor absolute localization and brittle multi-object relational understanding abilities.
Meanwhile, if the performance the spatial performance grows accordingly as the model scales up
still remains unclear.To explore potential improvements, we first scale up synthetic spatial data via
agent-centric scene construction (see Figure 3), which yields a baseline with an overall accuracy of
26.94 on our benchmark. Building on top of this, we propose a specially designed perception with
reasoning process reward as shown in Figure 3 and together with the original final answer reward
and format reward, we employ Group Relative Policy Optimization towards reasoning-level signals.
Our GRPO-aligned model further boosts the performance to 40.80, not only reaching SoTA com-
pared with the models at the same scale but also surpassing the most advanced large models such as
GPT-4o (13.30), Gemini-2.0-flash (35.71), and Qwen2.5-VL-72B (33.47). Our experiments reveal
the current spatial understanding ability for most existing SoTA works. Our benchmark exposes
critical limitations in the spatial reasoning capabilities of large models within driving scenarios, and
we further demonstrate that reinforcement learning–based alignment can substantially enhance these
abilities. To facilitate future research, we release the comprehensive dataset, evaluation toolkit, and
alignment pipeline that offer hands-on resources for advancing grounded spatial understanding in
VLMs.

• We propose SURDS, the first large-scale benchmark for evaluating fine-grained spatial
understanding of VLMs in realistic driving scenarios, respectively, contains 41,080 training
pairs and 9,250 test pairs.

• Our evaluations on SURDS reveal fundamental spatial reasoning limitations in existing
models and demonstrate that model scale alone does not ensure spatial competence.

• Comprehensive experiments with different training strategies ranging from supervised fine-
tuning, reinforcement learning to post-train alignment, provide valuable insight for follow-
up researchers.

2 Related Work

Large Vision Language Models (LVLM) Benefiting from the huge success in large language
models (LLMs) [9, 61, 62] in recent years, a new research venue has been focusing on extend-
ing natural language-based large models (especially the GPT family LLM) to multimodal large
language models (VLM) [1, 47, 48, 66, 74, 25]. Among all of them, encompassing vision into
language has made dramatic progress and various vision language models (VLM) have been devel-
oped [5, 6, 47, 48, 51, 52] for various crossmodal tasks such as visual question answer (VQA) [3, 31]
and crossmodal reasoning [84, 41, 28, 71], owing to the availability of various large image-text
datasets [50, 43, 69, 12]. Typical VLM models include BLIP family [47, 48], LLaVA family [51, 52]
and Qwen-VL family [4, 5, 76]. They either innovate in network architecture [17, 64, 47, 48] or
adopt novel training strategy [5, 87]. For example, regarding the network architecture innovation,
QWen-VL [5] and MiniGPT-4 [87] employ ViT [2] like network as visual encoder, LLaVA [64]
instead employs CLIP ViT-L/14 [67] for visual encoding and InternVL [17] uses InternViT-6B for
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Figure 2: Overview of the pipeline for constructing the SURDS dataset. The visual elements
shown in the image (e.g., bounding boxes and textual descriptions) are illustrative only and do not
appear in the actual dataset. The system filters objects based on labels (left), applies additional
filtering using text descriptions generated by a vision language model (center), and produces object
descriptions (right), ensuring high-quality annotations for each image.

visual encoding. Regarding the training strategy, Qwen-VL [5] employs a three-stage strategy: first
pre-train on massive image-text pairs, then multi-task pre-train over seven major tasks, and finally
fine-tune with instruction on over 350,000 dialogues. MiniGPT-4 [87] adopts a two-stage training
strategy by first pre-training on composite dataset including Conceptual Captions [13], LAION [70]
and SBU [63] and then fine-tuning on high-quality image description dataset.

Visual-Language Benchmarks

In the pre-LLM era, most public vision-language datasets were single-task oriented, limiting their
ability to holistically evaluate multimodal reasoning. Representative examples include image cap-
tioning [50], visual question answering [3, 31], and OCR [54]. With the emergence of LLMs,
more comprehensive and multi-task datasets have been curated to better assess general-purpose
multimodal reasoning. Among them, MME [26] focuses on Yes/No questions, visual perception,
and language reasoning; MMBench [53] expands coverage across diverse domains with a circu-
lar evaluation design; Seed-Bench [46, 45] introduces multi-image and video inputs; and MM-
Vet [82] aggregates multiple sub-tasks, including OCR, recognition, and math reasoning. Beyond
recognition-centric benchmarks, recent efforts target broader cognitive abilities. MMMU [83] em-
phasizes domain knowledge reasoning, HallusionBench [33] investigates hallucinations and visual
illusions, MathVista [56] focuses on math-based visual understanding, BLINK [27] probes holistic
perception, and Mega-Bench [14] scales evaluation to 500+ real-world tasks.

3 SURDS Benchmark

Recent advancements have seen VLMs being directly employed for autonomous driving and embod-
ied intelligence, which heavily depend on sophisticated spatial perception and reasoning. However,
these works lack a detailed investigation into the spatial reasoning abilities of VLMs to demonstrate
how reliable current models are on spatial information.

Data Source We construct our benchmark on the nuScenes [10] dataset, which is a large-scale
public dataset specifically designed for autonomous driving research. It collects rich sensor data,
including images from six cameras covering a full 360◦ field of view, along with LiDAR, radar,
and GPS/IMU data. The dataset is captured in the urban environments of Boston and Singapore,
featuring a diverse range of traffic conditions, weather scenarios, and times of day. This diversity
ensures that the models are tested on a wide array of real-world driving situations, enhancing the
robustness of the evaluation.
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Figure 3: Overview of data generation and model training. The lower part illustrates how COT-
augmented QA data is generated: sampled QA pairs are processed by a vision reasoning model to
infer solutions, followed by a vision-language model that extracts general reasoning steps and rules.
These rules are used to generate COT-augmented QA pairs, which are then validated and corrected.
The upper part shows the training pipeline: after SFT, the model is further optimized using process-
reward-based training guided by four custom rewards.

Data Filtering To ensure that each bounding box corresponds to a clearly visible and unambigu-
ous object, we adopt a multi-stage filtering pipeline comprising both label-based and description-
based strategies, as shown in Figure 2. These filters collectively remove occluded, edge-aligned,
ambiguous, and undersized objects:

• Occlusion Removal. We discard objects that are heavily occluded by other annotated
instances when the ratio r = |A∩B|

min(|A|,|B|) , where A and B denote the areas of the two
bounding boxes, exceeds 0.8. To further account for occlusion caused by unlabeled obsta-
cles (e.g., fences), we project the lidarseg point clouds from nuScenes onto the image plane
and remove any object whose bounding box contains too few LiDAR points of the correct
semantic class, suggesting that the object is not meaningfully visible.

• Edge and Size Filters. We exclude objects whose center points lie outside image bound-
aries, as well as those with pixel areas below a minimal size threshold. To prevent identity
ambiguity, we also remove images containing multiple objects of the same class (e.g., sev-
eral pedestrians or vehicles).

• Description-based Filtering. Even after geometric filtering, some objects remain seman-
tically ambiguous due to blur or annotation noise. We use instruction-blip-13B to generate
object-level descriptions and discard any instance producing unclear or non-specific text.
For retained samples, we standardize references to reduce linguistic bias—vehicles are de-
scribed solely by color (e.g., “white and black car”), while pedestrians are identified by
clothing (e.g., “adult wearing a blue shirt”).

Starting from 28,130 training and 6,019 validation multi-view scenes (6 cameras per scene), we
retain 27,152 and 5,919 images with clearly visible objects, respectively. These form the founda-
tion for our QA benchmark, yielding 41,080 training and 9,250 validation vision–question–answer
(VQA) instances.

Benchmark Construction To systematically evaluate VLMs’ spatial reasoning capabilities in
realistic driving contexts, we construct a large-scale QA benchmark consisting of 41,080 training
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and 9,250 validation vision–question–answer (VQA) instances. These are derived from filtered
images captured by six cameras in the nuScenes dataset. We design six spatial tasks across two cat-
egories. The single-object subset focuses on basic spatial comprehension—yaw angle classification,
pixel-level localization, and depth range estimation—each probing a distinct axis of object-centric
reasoning. The multi-object subset introduces relational reasoning, including pairwise distance com-
parison, left–right ordering, and front–back understanding, requiring the model to analyze spatial
relationships across multiple objects. The prompt templates formulated for various VQA tasks are
provided in Appendix B.

4 Post-Train Alignment for Boosting Spatial Understanding

4.1 Data Generation by Test-Time CoT Scaling

RL training primarily enhances a VLM’s performance based on existing knowledge [20], while SFT
functions serves as a process of knowledge injection. We argue that models with smaller parameter
sizes lack inherent reasoning capabilities and thus require SFT to introduce reasoning knowledge.
Since the constructed dataset does not contain chain-of-thought (CoT) annotations, it is necessary to
generate reasoning traces for each QA pair.

To provide more insights for the community, we employ open-source models to generate CoTs. As
shown at the bottom side of Figure 3, we first use the visual reasoning model QVQ to reflect on
and reason through a sampled set of k QA pairs. These thought processes are then summarized
and distilled into reasoning rules consisting of generalizable solution steps using Qwen2.5-VL-72B.
By feeding these rules alongside the original QA pairs into Qwen2.5-VL-72B, we generate new
QA pairs annotated with CoTs. These outputs are subsequently validated and corrected by the
model itself, resulting in an automated pipeline for constructing high-quality QA datasets with COT
annotations. The prompts used to generate CoT reasoning for the data are provided in Appendix D.
This method is motivated by two empirical observations: 1) Directly generating CoTs in batch using
QVQ is computationally expensive and often results in verbose, unstructured, or format-inconsistent
outputs; 2) Relying solely on Qwen2.5-VL-72B for CoT generation leads to degraded output quality
and increased hallucinations.

4.2 Reinforcement Training with Reward Modeling

After obtaining the CoT-augmented data, we use it to train the model to enhance its spatial reasoning
capabilities. The training pipeline is illustrated at the top side of Figure 3. We begin with SFT as
the cold start of the full model, including the training of the visual encoder, multimodal projector,
and language model, using the generated long CoT data.

Then, we apply reinforcement learning using GRPO [72] to enhance the model’s capacity for spatial
reasoning. In each training instance, the model is prompted to sequentially generate three compo-
nents: the bounding box of the queried object, a step-by-step reasoning trace, and the final answer.
Given that spatial reasoning is inherently object-centric, we assign a localization reward of 1 if the
predicted bounding box achieves an IoU greater than 0.5 with the ground-truth region. To encourage
output fidelity, a format reward of 1 is given if the model adheres to the prescribed output structure.
Additionally, an accuracy reward of 1 is granted when the final answer is correct.

To promote logical coherence in reasoning, we introduce a logic reward inspired by Embodied-
R [85], which assesses whether the reasoning trace leads to a correct answer. While the original
approach uses a frozen reference model to evaluate consistency by feeding in both the reasoning
trace and the question, we identify two limitations: (1) including the question can introduce answer
leakage, as the trace often implicitly encodes the answer; and (2) relying on a static external model
entails a trade-off between inference cost and reliability. To address both issues, we feed only the
reasoning trace into the model under training, which serves as its own verifier. This design is effi-
cient, incurs no additional computational overhead, and dynamically adapts to the model’s evolving
capabilities. A scalar logic reward of 1 is assigned if the inferred answer from the reasoning trace
matches the originally generated final answer; otherwise, the reward is 0. This combination of lo-
calization, format, accuracy, and logic rewards ensures that the model not only produces structurally
valid outputs, but also grounds its reasoning process in spatial consistency.
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Table 2: Comparison of our proposed method with other open-source and proprietary VLMs,
as well as specialized spatial understanding models. Yaw, Pixel, Depth, Dis, L/R, and F/B cor-
respond to the six spatial reasoning tasks illustrated in Figure 1. The Score column represents the
average performance across these six metrics. Bold: Best. Underline: Second Best.

Single-object Multi-objectModel Yaw Pixel Depth Dis L/R F/B Score

Random 5.73 1.12 34.27 8.76 11.57 11.89 12.22
GPT-4o 13.08 1.62 2.49 11.57 47.89 3.14 13.30
GPT-4o-mini 3.24 0.28 0.22 4.22 21.51 2.05 5.25
Gemini-1.5-pro 19.14 4.41 22.70 61.95 66.38 22.05 32.77
Gemini-2.0-flash 9.30 5.41 32.97 69.30 77.30 20.00 35.71
LLaVA-OV-Qwen2-72b-si 1.95 3.03 23.57 3.78 9.73 8.65 8.45
Qwen2.5-VL-72B-Instruct 11.57 6.13 44.00 58.05 66.16 14.92 33.47
Qwen2.5-VL-7B-Instruct 7.57 3.46 25.95 11.46 17.95 9.30 12.61
Qwen2.5-VL-3B-Instruct 6.27 3.81 27.68 17.84 14.81 10.49 13.48
SpatialBot [11] 0.00 0.00 12.00 0.00 0.00 0.00 2.00
SpatialRGPT [18] 1.30 0.55 10.59 1.95 0.86 7.35 3.77
Qwen2.5-VL-3B-SFT-GRPO-LocLogic 20.97 44.81 69.84 49.30 51.35 8.54 40.80

5 Experiments

5.1 Experimental Setup

Implementation Details We assess a variety of models, including state-of-the-art open-source and
proprietary models, as well as models specifically designed for spatial understanding. A random
baseline is also included for comparison, and the evaluated models are summarized in Table 2. All
models are prompted with standardized instructions and are required to generate outputs strictly
adhering to a predefined format. We employ the sglang framework* to accelerate inference and
reduce evaluation time. All training and evaluation are conducted on eight NVIDIA A800 GPUs.
For supervised fine-tuning, models are trained for 2 epochs with a learning rate of 1 × 10−6 and a
warm-up ratio of 10%. GRPO training is performed for 1 epoch using a maximum prompt length
of 4096 tokens, an output length of up to 512 tokens, and generating 4 samples per prompt. The
structured response format is provided in Appendix C.

Evaluation Metrics

To quantitatively evaluate model performance on the SURDS benchmark, we define a set of evalu-
ation metrics. For the Pixel Localization Estimation task, we adopt a centerness-based [77] metric.
For other tasks, a prediction receives a score of 1 if it matches the ground-truth answer, and 0 other-
wise. Given N QA pairs, the metric score for each task is computed as the average over all N pairs.
The final overall score is the average of all individual task scores.

To avoid misleading results from scalar regression metrics, we adopt a range-based categorical eval-
uation rather than predicting precise numeric values. This design better reflects human-like spatial
reasoning: for example, a person can usually tell whether a car is facing north, south, east, or west,
but cannot quote its exact yaw angle from a single image. In addition, this categorical scheme pre-
vents models from exploiting trivial solutions such as always predicting an average scalar value.
Overall, the dual-query, range-based evaluation provides a more robust and honest assessment of
fine-grained spatial reasoning ability.

5.2 Main Results

The evaluation results of different models are presented in Table 2. Among proprietary models,
Gemini performed the best, achieving top results across several multi-object metrics. Among open-
source VLMs, Qwen also showed strong performance, ranking second in many metrics. The spe-
cialized spatial understanding model performed poorly across all tasks, while the SpatialBot model
could not be evaluated on several metrics due to its lack of instruction-following capability. Our
proposed method achieved first place in multiple single-object metrics, with a significant margin
over the second-best model—for instance, a nearly 60% improvement on the depth metric. It also

*https://github.com/sgl-project/sglang
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object.

achieves the highest overall score, outperforming the second-best approach by 14.25%. We visual-
ize example responses from different models across various tasks, as shown in Figure 4. It can be
seen that our proposed model performs well across multiple tasks. Furthermore, we visualize the
complete outputs of our proposed model across various tasks, demonstrating its strong reasoning
capabilities, as illustrated in Appendix A.

5.3 Discussion on Benchmarking Performance SOTA models

Here, we discuss the quantitative results of our benchmark with respect to four key aspects: single-
object evaluation, multi-object evaluation, the relationship between model size and performance,
and the impact of fine-tuning. Our benchmark offers three converging lines of evidence that current
open-source VLMs still lack robust spatial grounding. 1) single-object probes (yaw, pixel coordi-
nates, depth bins) reveal that most models—including several 70 B-parameter variants—perform at
or below random chance on orientation and depth, and seldom exceed 10% accuracy in sub-pixel
localization, underscoring a persistent inability to encode absolute pose or metric information. 2)
multi-object tests show a modest uptick in accuracy for simpler comparative questions (left–right
ordering, pairwise distance), yet performance collapses when the task demands non-canonical rea-
soning such as identifying the object “in front” under a forward-facing reference frame, indicating
that relative spatial heuristics remain brittle. 3) scaling analysis demonstrates that parameter count
is not a reliable predictor of spatial competence: larger models sometimes trail lighter counterparts,
implying that mere capacity expansion without explicit geometric priors does little to close the rea-
soning gap.

5.4 Ablation Study

Ablation of reward. We conducted ablation studies on our proposed method. The first set of
experiments focused on the composition of the reward. Since the basic GRPO framework inherently
includes the format reward and accuracy reward, we do not ablate these two. Instead, we examine
the effects of adding or removing the location reward and logic reward. As shown in Table 3,
incorporating either the location or logic reward individually led to only marginal improvements in
overall performance. However, when both rewards were applied together, the model experienced a
significant performance boost. These results suggest that without the supervision provided by the
location reward, the model’s object localization ability degrades—this ability forms the foundation
of spatial reasoning. Building on this, the inclusion of logic supervision further enhances the model’s
consistency and spatial reasoning capability.

The second set of experiments focuses on the value settings of the rewards. We compared the
conventional reward setting of 0, 1 with an alternative setting of -1, 1. The results show that using
0, 1 yields better performance. We attribute this to the sparsity of rewards during training—if the
model receives a penalty every time it fails to reason correctly, it would accumulate mostly negative
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Table 3: Ablation study on model performance under different reward settings after SFT. The
four types of rewards correspond to the representations illustrated in Figure 3. †means using -1 and
1 as binary rewards instead of 0 and 1.

Training reward Single-object Multi-objectBase model Format Loc Acc Logic Yaw Pixel Depth Dis L/R F/B Score

Qwen2.5-VL-3B-SFT ✗ ✗ ✗ ✗ 13.95 21.11 51.35 33.95 19.68 21.62 26.94
Qwen2.5-VL-3B-SFT ✓ ✗ ✓ ✗ 19.24 15.02 62.59 39.14 32.65 9.30 29.66
Qwen2.5-VL-3B-SFT ✓ ✓ ✓ ✗ 17.84 22.72 64.65 41.41 30.92 11.68 31.53
Qwen2.5-VL-3B-SFT ✓ ✗ ✓ ✓ 20.54 14.81 62.49 36.54 32.65 11.35 29.73
Qwen2.5-VL-3B-SFT ✓ ✓ ✓ ✓ 20.97 44.81 69.84 49.30 51.35 8.54 40.80
Qwen2.5-VL-3B-SFT† ✓ ✓ ✓ ✓ 18.16 22.61 62.05 39.14 32.22 15.14 31.55
Qwen2.5-VL-3B-SFT ✓ ✓ ✓ ✓ 20.97 44.81 69.84 49.30 51.35 8.54 40.80

Table 4: Ablation study on different training setups of our method, analyzing the impact of
SFT, GRPO, and the addition of location and logic rewards (LocLogic). SFT denotes supervised
fine-tuning, GRPO stands for Group Relative Policy Optimization.

Single-object Multi-objectModel Yaw Pixel Depth Dis L/R F/B Score

Qwen2.5-VL-3B 6.27 3.81 27.68 17.84 14.81 10.49 13.48
Qwen2.5-VL-3B-GRPO 14.59 3.75 29.19 35.68 39.89 22.70 24.30
Qwen2.5-VL-3B-GRPO-LocLogic 8.11 57.82 27.24 22.05 19.35 12.43 24.50
Qwen2.5-VL-3B-SFT 13.95 21.11 51.35 33.95 19.68 21.62 26.94
Qwen2.5-VL-3B-SFT-GRPO 19.24 15.02 62.59 39.14 32.65 9.30 29.66
Qwen2.5-VL-3B-SFT-GRPO-LocLogic 20.97 44.81 69.84 49.30 51.35 8.54 40.80

rewards. This causes gradients to remain negative or close to zero over extended periods, thereby
hindering learning progress.

Ablation of training We also conducted ablation studies on the training of the base model. Specif-
ically, we compared the standard GRPO training setup (using only format reward and accuracy
reward) with our proposed reward design that incorporates format reward, location reward, accu-
racy reward, and logic reward. Similarly, we applied the same training configurations to the SFT-
pretrained model. The results are presented in Table 4. Across both the non-SFT and SFT models,
GRPO training improves overall performance. However, for the non-SFT model, adding the location
and logic rewards did not lead to further improvements. In contrast, for the SFT model, incorporating
location and logic rewards resulted in a significant performance boost. We attribute this difference
to the weaker localization ability of the non-SFT model. Due to this limitation, the location reward
remains sparse and provides limited training benefit, leading to negligible performance gains.

6 Conclusion and Limitation Discussion

We introduce SURDS, a large-scale benchmark comprising 41,080 VQA training instances and
9,250 evaluation samples that span six spatial reasoning categories—orientation, depth estimation,
pixel-level localization, pairwise distance, lateral ordering, and front–behind relations. Bench-
marking state-of-the-art general-purpose VLMs on SURDS exposes persistent shortcomings in fine-
grained spatial understanding. To mitigate these deficiencies, we propose a reinforcement-learning
framework that integrates spatially grounded reward signals with a reasoning-consistency objective.
Extensive comparative and ablation experiments demonstrate that our approach yields substantial
performance gains over existing VLMs while empirically validating the efficacy of both the training
method and the reward design.

Nonetheless, the method remains untested on larger-scale model variants, and the benefits of linear
reward scaling and multi-stage GRPO schedules have yet to be clarified. In addition, our QA con-
struction primarily targets perception-level spatial reasoning. While these tasks naturally underpin
higher-level capabilities such as trajectory prediction and planning, SURDS does not yet include
such downstream QA pairs, which we leave for future work. Overall, we believe SURDS and its ac-
companying alignment strategy provide a solid foundation for advancing spatial reasoning in VLMs
and open promising directions toward safer and more capable autonomous driving systems.
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paper’s contributions and scope?
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Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
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• The answer NA means that the abstract and introduction do not include the claims
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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model well-specification, asymptotic approximations only holding locally). The au-
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions and a complete proof in the
method section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the implementation details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available at https://github.com/XiandaGuo/Drive-MLLM.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the implementation details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the implementation details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original owners of assets are all properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is used for data processing/filtering.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material on SURDS

A Example Illustrating the Reasoning Process

Question:

Task Description: 

The primary goal of this task is to identify the direction that the specified object is facing in the given image. The 

camera in the image is facing North, and you need to analyze the object's orientation based on this reference.

Question: Which direction is the white car facing in the image?

Options: \n- North\n- South\n- East\n- West

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>white car: [789, 519, 895, 601]</location>

<think>

Step 1: Establish a Reference Direction

The camera is facing North, so this is our baseline direction.

Step 2: Determine Object Position Relative to Camera

The white car is positioned in front of the camera on the road, moving towards the camera.

Step 3: Analyze Object Orientation Based on Reference and Position

Since the car is moving towards the camera and the camera is facing North, the car must be facing South.

Step 4: Consider Additional Contextual Clues

There are no visible contextual clues such as road markings or traffic signs that would suggest a different orientation 

for the car.

Step 5: Verify Consistency with Given Options

The derived orientation of the car facing South is consistent with the given options.

Step 6: Formulate a Clear Final Answer

After verifying the analysis, the final answer is clear.

</think>

<answer>South</answer>

Figure 5: Example of Yaw Angle Determination task.
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Question:

Task Description:

The primary goal of this task is to accurately identify and provide the coordinates of a specified object within a given 

image. Your task is to analyze the image, locate the object, and return its position in the form of coordinates [x, y].

Question: Where is the white car located in the image?

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>white car: [1179, 500, 1420, 637]</location>

<think>

Step 1: The task is to identify the coordinates of the white car in the image.

Step 2: The image shows a white car on the right side of the road, close to the curb.

Step 3: The white car is the object of interest, and its position should be identified.

Step 4: Estimating the coordinates, the white car appears to be around the middle-right of the image. The x-

coordinate is approximately 1320, and the y-coordinate is around 551.

Step 5: Verifying the solution, the coordinates seem plausible as they place the car near the middle-right of the 

image.

Step 6: No alternative scenarios are considered as the car is clearly visible and identifiable.

Step 7: The final answer is [1320, 551].

Step 8: The assumptions made are based on the visual cues and the car's position relative to the image boundaries.

</think>

<answer>[1320, 551]</answer>

Figure 6: Example of Pixel Location Estimation task.
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Question:

Task Description:

The primary goal of this task is to estimate the vertical distance of the specified object in the image from the camera, 

which is positioned at the origin. You need to analyze the image and choose the correct range of distance from the 

camera based on the visual cues provided.

Question: How far is the vertical distance of the white car in the picture from the camera?

Options:- Between 15 meters and 18 meters - Between 19 meters and 23 meters - Between 24 meters and 31 meters

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>white car: [777, 450, 871, 558]</location>

<think>

Step 1: Understand the Context and Question

The question asks for the vertical distance of the white car from the camera, which is positioned at the origin. The 

options provided are ranges of distances in meters.

Step 2: Identify Visual Cues and Reference Points

The image shows a road with trees on both sides and a white car in the distance. The car appears to be a standard-

sized vehicle, and the road markings can be used as reference points.

Step 3: Apply Principles of Perspective and Scaling

The white car appears smaller due to perspective, indicating it is farther away. The road markings can help estimate 

the distance. The car is positioned near the midpoint of the road, which suggests it is not extremely far away.

Step 4: Consider Environmental and Contextual Clues

The environment is a wide road with trees and a clear sky. The car is driving away from the camera, and the road 

appears to be a typical urban or suburban road.

Step 5: Make Educated Guesses Based on Reasonable Assumptions

Assuming the car is a standard-sized vehicle and using the road markings as a reference, the car appears to be 

between 24 meters and 31 meters away from the camera.

Step 6: Verify and Refine Estimates

Cross-checking the estimate with the given options, the range of 24 meters to 31 meters seems reasonable based on 

the visual cues and the typical dimensions of a standard-sized car.

Step 7: Select the Most Appropriate Option

Based on the analysis, the most appropriate option is \"Between 24 meters and 31 meters.\“

</think>

<answer>Between 24 meters and 31 meters</answer>

Figure 7: Example of Depth Range Determination task.

23



Question:

Task Description: 

The primary goal of this task is to determine which of the two objects is closer to the camera that captured the image 

below. You need to assess the relative distance between the two objects based on the camera's perspective.

Question: Which object, the orange rigid bus or the orange car, is closer to the camera?

Options: - The orange rigid bus - The orange car - Almost the same

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>orange rigid bus: [818, 438, 915, 527], orange car: [861, 483, 989, 568]</location>

<think>

1. **Identify Scene and Objects**: The scene is a road with an orange rigid bus and an orange car visible. The bus 

is farther down the road, and the car is closer to the camera.

2. **Consider Size and Perspective**: The bus appears smaller compared to the car. Since objects closer to the 

camera appear larger, this suggests the car is closer to the camera.

3. **Evaluate Clarity and Detail**: The car appears more detailed and sharper compared to the bus, which is further 

away and less detailed.

4. **Analyze Positioning and Overlap**: The car is positioned closer to the camera and partially overlaps the 

bus, indicating it is nearer to the camera's viewpoint.

5. **Examine Depth Cues**: Linear perspective shows that the road narrows into the distance, and the bus is 

closer to this narrowing point, suggesting it is farther away.

6. **Consider Lighting and Shadows**: The lighting and shadows on both objects are consistent with the car being 

closer to the camera.

7. **Visualize Camera Perspective**: Visualizing from the camera's perspective confirms that the car is closer, as it 

is larger, more detailed, and positioned closer in the frame.

8. **Cross-Verify Observations**: All observations consistently support the car being closer to the camera.

9. **Select the Best Answer**: Based on the analysis, the most appropriate answer is \"The orange car.\"

</think>

<answer>The orange car</answer>

Figure 8: Example of Distance Estimation task.
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Question:

Task Description:

The primary goal of this task is to determine the relative left-right positioning of the two objects from the camera's 

perspective.

Question: Which is further right, the gray truck or the red car?

Options: - The gray truck - The red car - Almost the same

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>gray truck: [1088, 401, 1599, 630], red car: [0, 399, 750, 846]</location>

<think>

Step 1: The image shows a gray truck and a red car parked near a building.

Step 2: The camera perspective is from a slightly elevated angle, looking towards the vehicles.

Step 3: The gray truck is positioned to the right of the red car relative to the camera's perspective.

Step 4: Comparing the positions, the gray truck is clearly further to the right compared to the red car.

Step 5: There are no significant depth or perspective effects that would distort the apparent left-right 

positioning.

Step 6: The analysis aligns with the visual evidence, confirming the gray truck is further right.

Step 7: Based on the analysis, the gray truck is the correct answer.

</think>

<answer>The gray truck</answer>

Figure 9: Example of Left/Right Determination task.
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Question:

Task Description:

The primary goal of this task is to determine the relative front-back positioning of the two objects from the camera's 

perspective, where the object farther from the camera is considered to be more forward.

Question: Is the blue rigid bus behind the gray car?

Options: - Yes – No - Almost the same in terms of front-back position

First, detect and list the target objects mentioned in the question from the image. Output their bounding boxes under 

the <location> tag. Next, reason carefully and step-by-step under the <think> tag to ensure logical accuracy and 

robustness, including any relevant error checks. Finally, provide a concise and definitive response in the <answer> 

tag. Use the following format: <location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>

<think>[Step-by-step reasoning with attention to detail and potential error checks]</think><answer>[Final 

answer]</answer>

Answer:

<location>blue rigid bus: [850, 452, 930, 523], gray car: [754, 491, 896, 604]</location>

<think>

Step 1: Identify the Key Objects and Their Descriptions

- The key objects are the blue rigid bus and the gray car.

- The blue rigid bus is visible in the distance, further down the road.

- The gray car is closer to the camera, positioned on the road in front of the bus.

Step 2: Understand the Camera Perspective

- The camera is positioned at a lower angle, possibly from a vehicle, and is facing forward along the road.

- The objects are positioned along the road, with the bus being farther away and the car being closer to the 

camera.

Step 3: Interpret Relative Positioning Terms

- According to the task, \"forward\" means farther from the camera, and \"backward\" means closer to the 

camera.

- The blue rigid bus is farther from the camera compared to the gray car.

Step 4: Analyze Object Positions Relative to the Camera

- The gray car is closer to the camera than the blue rigid bus.

- Therefore, the blue rigid bus is more forward relative to the camera.

Step 5: Consider Possible Scenarios and Visualize

- Visualizing the scene confirms that the gray car is in front of the blue rigid bus from the camera's perspective.

Step 6: Evaluate Given Options and Select the Best Answer

- Given the options, \"No\" is the correct answer because the blue rigid bus is not behind the gray car; it is more 

forward from the camera's perspective.

Step 7: Verify Accuracy and Provide Final Answer

- The reasoning aligns with the task requirements and the provided information.

</think>

<answer>No</answer>

Figure 10: Example of Front/Behind Determination task.
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B Template for Generating VQA Tasks

Template for Yaw Angle Determination Task

Task Description:
The primary goal of this task is to identify the direction that the specified object is facing in
the given image. The camera in the image is facing {}, and you need to analyze the object’s
orientation based on this reference.

Question:
Which direction is {} facing in the image?
Options: - {} - {} - {} - {}

Template for Pixel Location Estimation Task

Task Description:
The primary goal of this task is to accurately identify and provide the coordinates of a
specified object within a given image. Your task is to analyze the image, locate the object,
and return its position in the form of coordinates [x, y].

Question:
Where is {} located in the image?

Template for Depth Range Determination Task

Task Description:
The primary goal of this task is to estimate the vertical distance of the specified object in the
image from the camera, which is positioned at the origin. You need to analyze the image
and choose the correct range of distance from the camera based on the visual cues provided.

Question:
How far is the vertical distance of {} in the picture from the camera?
Options: - {} - {} - {}

Template for Distance Estimation Task

Task Description:
The primary goal of this task is to determine which of the two objects is closer to the camera
that captured the image below. You need to assess the relative distance between the two
objects based on the camera’s perspective.

Question:
Which object, {} or {}, is {} to the camera?
Options: - {} - {} - Almost the same

Template for Left/Right Determination Task

Task Description:
The primary goal of this task is to determine the relative left-right positioning of the two
objects from the camera’s perspective.

Question:
Which is further {}, {} or {}?
Options: - {} - {} - Almost the same
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Template for Front/Behind Determination Task

Task Description:
The primary goal of this task is to determine the relative front-back positioning of the
two objects from the camera’s perspective, where the object farther from the camera is
considered to be more forward.

Question:
Is {} {} {}?
Options: - Yes - No - Almost the same in terms of front-back position

C Structured Response Format for the VQA Task

Structured Response Format with Location Tag

First, detect and list the target objects mentioned in the question from the image.
Output their bounding boxes under the <location> tag. Next, reason carefully and step-
by-step under the <think> tag to ensure logical accuracy and robustness, including any
relevant error checks. Finally, provide a concise and definitive response in the <answer> tag.

Use the following format:
<location>[[Detected target object]: [xmin, ymin, xmax, ymax], ...]</location>
<think>[Step-by-step reasoning with attention to detail and potential error checks]</think>
<answer>[Final answer]</answer>

Structured Response Format without Location Tag

Reason carefully and step-by-step under the <think> tag to ensure logical accuracy and
robustness, including any relevant error checks. Finally, provide a concise and definitive
response in the <answer> tag.

Use the following format:
<think>[Step-by-step reasoning with attention to detail and potential error checks]</think>
<answer>[Final answer]</answer>

D Prompts for High-Quality Chain-of-Thought Generation

Prompt for Generating Chain-of-Thought

Analyze the following task step by step to derive the best possible answer.
Task: {task}
Answer: {answer}
Please provide a detailed reasoning process, verify its accuracy, and then give your final
answer clearly.

Prompt for Summarizing Rules from Examples

You are given the following reasoning examples. Analyze these examples to identify the
underlying, generalizable problem-solving principles.
Examples: {examples}
Present your findings as bullet points in this format:
- Step 1: [core principle] - Step 2: [core principle] ...
Ensure these rules can be applied broadly to similar questions.
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Prompt for Generating Answers Using Extracted Rules

Use the following principles to answer the question:
{rules}
Question: {question} Answer: {answer}
Provide a concise solution with key reasoning steps in the following format: <think>[Your
step-by-step reasoning]</think> <answer>[Final answer]</answer>

Prompt for Verifying and Refining Reasoning and Answers

{response}
Evaluate the structured response above for logical consistency and completeness. Specifi-
cally:
1. Does the reasoning in <think> logically support the conclusion in <answer>?
2. Are there any internal contradictions, logical errors, or missing steps in the reasoning?
3. Is the reasoning chain complete and valid?
Provide your evaluation in the following format:
<reason>[A concise justification of your assessment or a brief note confirming the reason-
ing’s validity]</reason> <validation>Valid / Invalid</validation>
Then, regardless of validity, output the full response in the following format:
- Keep <answer> unchanged.
- Modify <think> only if necessary to ensure logical soundness.
<think>[final version of reasoning steps]</think>
<answer>[original final answer]</answer>
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