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Abstract
Modern ML systems increasingly augment input
instances with additional relevant information to
enhance final prediction. Despite growing interest
in such retrieval-augmented models, their funda-
mental properties and training are not well under-
stood. We propose a statistical framework to study
such models with two components: 1) a retriever
to identify the relevant information out of a large
corpus via a data-dependent metric; and 2) a pre-
dictor that consumes the input instances along
with the retrieved information to make the final
predictions. We present a principled method for
end-to-end training of both components and draw
connections with various training approaches in
the literature. Furthermore, we establish excess
risk bounds for retrieval-augmented models while
delineating the contributions of both retriever and
predictor towards the model performance.We val-
idate the utility of our proposed training methods
along with the key takeaways from our statistical
analysis on open domain question answering task
where retrieval augmentation is important.

1. Introduction
Recent advancements in machine learning (ML) have not
only led to breakthroughs on long-standing challenging
tasks across various fields, but they have also inspired a
great deal of interest to develop ML models that can solve
even harder tasks (Meinhardt et al., 2022; Lewkowycz
et al., 2022; Cramer, 2021) or focus on completely new
fields (Austin et al., 2021; OpenAI, 2023; Singhal et al.,
2023). While scaling the size of parametric ML models,
such as neural networks, is becoming the predominant ap-
proach to meet such demands (Brown et al., 2020; Chowd-
hery et al., 2022; Touvron et al., 2023; Dosovitskiy et al.,
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2021; Dehghani et al., 2023), the excellent performance re-
alized by this approach is marred by drawbacks such as high
computational cost, inefficient storage of world knowledge
in parameters, lack of transparency in model behavior, and
reduced grounding/factuality of model predictions.

Recognizing these shortcomings, retrieval-augmented mod-
els (RAMs) have emerged as a promising alternative. Such
models typically employ two components, namely retriever
and predictor, during inference on a given input instance:
The retriever first identifies instance-specific relevant in-
formation from a data-store, and then the predictor jointly
processes the retrieved information and the input instance to
make a final prediction. In practice, RAMs have enjoyed fa-
vorable performance vs. compute trade-off (Borgeaud et al.,
2021; Das et al., 2021; Thai et al., 2023) as employing
moderate-size parametric models as retriever and predictor
in a RAM often matches or exceeds the performance of a
much larger standalone ML model that directly maps input
instances to predictions. Similarly, conditioning prediction
on the retrieved information has shown to exhibit improved
grounding (Shuster et al., 2021; Lin et al., 2023; Asai et al.,
2023). Furthermore, having access to an external corpus
can obviate the need to store task-specific world knowledge
in model parameters and enable incorporating dynamically
evolving knowledge (Izacard et al., 2022; Liska et al., 2022).

Despite these desirable characteristics, training RAMs
presents multiple challenges. The natural approach of in-
dependently training retriever and predictor can be sub-
optimal (Izacard et al., 2022). Moreover, it requires col-
lecting intermediate supervision on the instance-dependent
relevant information to retrieve, which is missing in com-
mon datasets and expensive to obtain in general. A common
strategy to circumvent the lack of intermediate supervision
is to perform end-to-end training which presents its own
unique challenges in the context of RAMs. Fundamentally,
the retrieval corresponds to the non-differentiable discrete
operation of selecting relevant information from a data-store,
e.g., via top-k selection based on retriever scores, which pre-
vents direct gradient propagation to the entire receiver. Sev-
eral clever solutions to above-mentioned issues have been
proposed in the literature that focus on different training
objectives to propagate learning signal from the predictor
into the retriever. However, a formal study that unifies these
solutions is missing from the literature.
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Another key challenge that prevents the resource-efficient
development and deployment of RAMs is the limited under-
standing of their basic properties such as their generalization
behavior and expressive power. For instance, how do the
retriever and predictor components interact to ensure good
task-specific performance? Are there any principles guiding
the selection of the retriever and predictor components? How
does (size of) the data-store feature in the final performance
of a RAM?

In this paper, we address both aforementioned shortcoming
in the literature pertaining RAMs. To unify the training of
RAMs, we begin with writing down the natural objective
function, which somehow has eluded the literature. This nat-
ural objective simply minimizes the expected prediction loss,
where the expectation is taken over the distribution induced
by the retriever. Empirically, we find this objective to be
effective on standard benchmarks: NaturalQuestions (NQ;
Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017).

As for the generalization and expressive power, we present
an excess risk bound for RAMs that captures the effect
of retrieval and prediction function classes. The proposed
bound allows us to highlight how retriever and predictor
components play complementary roles to reduce approxi-
mation error as we increase their respective function class
complexity. We also capture the role of data store in improv-
ing the model performance by reducing the approximation
error. On the generalization front, we carefully decouple the
generalization term in the excess risk over the predictor and
retriever function classes. This allows us to tightly control
the generalization term with only logarithmic dependence
on the data store size. As a concrete instantiation for our ex-
cess risk bounds, we consider feed-forward neural networks
of varying depth for both the retriever and the predictor.

To summarize, our main contributions include:

• We present a principled objective for end-to-end training
of RAMs focusing on a classification setting (Sec. 2 3)
and draw connections between existing approaches for
training RAMs (Sec. 3.6).

• We derive excess risk bound highlighting the role played
by retriever and predictor functions classes as well as
the data-store towards ensuing improved performance by
RAMs (Sec. 3.4); capturing the trade off between model
capacities at retriever and predictor (Sec. 3.5).

• We validated the utility of the proposed objective on two
standard QA benchmarks: NaturalQuestions (NQ) and
TriviaQA (Sec. 4).

2. Problem setup
In this paper, we focus on developing a systematic under-
standing of RAMs with learned retrievers in a classification
setting where the model has access to a data-store. Towards

this, we begin by formally defining the problem setup and
providing the necessary background along with the nota-
tions used.

Let’s first consider the standard classification setting which
requires predicting a class in Y for a given instance x ∈ X.
Assume that DXY captures the underlying data distribu-
tion and one has access to n training examples Sn ,
{(xi, yi)}i∈[n] that are independent and identically dis-
tributed (i.i.d.) according to DXY . Given Sn, one hopes
to learn a classifier f : X→ R|Y| that minimizes the miss-
classification error:

R(f) = P(X,Y )∼DXY
[

arg max
y∈Y

fy(X) 6= Y
]
, (1)

where fy(x) denotes the score that f assigns to the y-th
class, given the input instance x. Since directly optimizing
the miss-classification error or 0/1-loss poses computational
challenges, one typically selects the classifier that minimizes
the empirical risk associated with a well behaved surrogate
loss function ` : R|Y| × Y→ R on the training sample Sn:

R`,n(f) =
1

n

∑
i∈[n]

`
(
f(xi), yi

)
. (2)

The (population) risk associated with the surrogate loss
function takes the following form:

R`(f) = E(X,Y )∼DXY
[
`
(
f(X), Y

)]
. (3)

Different from the standard classification setup described
above, we now consider the classification task with access
to a data-store: Given an instance x, the classifier can po-
tentially leverage a data-store I ⊆ Z – a collection of po-
tentially relevant information or evidences, where Z de-
notes the space of all possible evidences. Accordingly, one
can define the empirical and population risks of a classifier
f(·, I) : X→ R|Y| as follows:

R`,I,n(f) =
1

n

∑
i∈[n]

`
(
f(xi, I), yi

)
, (4)

R`,I(f) = E
[
`
(
f(X, I), Y

)]
, (5)

where expectation is take over in (X,Y ) ∼ DXY as well
as the possible randomness in f(·, I). However, due its pro-
hibitive computational cost, such a general classifier that
directly processes the entire data-store for each prediction
is far from how an additional data-store is utilized by ML
models in practice.

This motivates us to study the following explicit retrieval-
augmented classification setup to utilize the data-store:
Given an input instance x ∈ X, one first retrieves input-
dependent supporting evidences Ex ⊂ I with the help of a
retriever model which has access to the entire data-store I.
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Now, given x and Ex, one invokes a predictor model to pre-
dict the class associated with x. Thus, a retriever-augmented
classification setup consists of two key components mod-
els: 1) retriever model and 2) predictor model, which we
formally introduce next.

Retriever model. For the retrieval stage, we rely on a re-
triever model to capture the relevance of an evidence z ∈ I

towards the input instance x ∈ X. Let rθ : X× Z→ R be
the retriever model parameterized by θ ∈ Θ that assigns a
relevance score rθ(x, z) to the instance-evidence pair (x, z).
Furthermore, for each instance x, the retriever model rθ
induces the following distribution over the set of potential
evidences:

pθ,I
(
z|x
)

=
exp

(
rθ(x, z)

)∑
z′∈I exp

(
rθ(x, z′)

) , ∀ z ∈ I. (6)

There are multiple strategies to construct the set of input-
dependent supporting evidences Ex based on rθ. For exam-
ple, for a fixed integer k ≥ 1, one could select k evidences
corresponding to the k highest scores in {rθ(x, z)}z∈I. An-
other strategy is to sample k evidences according to the
distribution pθ,I(·|x) in (6). Here, one could perform the
sampling with or without replacement. In what follows, we
denote the retrieved supporting evidence for the instance
x as Exθ to highlight the dependence on the underlying re-
triever model.

Predictor model. Let hξ : X× I∗ → R|Y| be the predictor
model parameterized by ξ ∈ Ξ, where I∗ denotes the Kleene
star on I. Given x ∈ X and E ∈ I∗, the predictor model hξ
assigns a score to each class in Y, defining a distribution
over Y as follows:

pξ
(
y|x,E) =

exp
(
hyξ (x, E)

)∑
y′∈Y exp

(
hy
′

ξ (x, E)
) , ∀ y ∈ Y, (7)

where hyξ (·, ·) denotes the score assigned to the y-th class
by the predictor model hξ.

For ease of exposition, we focus on the setting with k =
|Exθ | = 1,∀x ∈ X, in our analysis throughout this paper.
This corresponds to retrieving a single supporting evidence
for each input instance. Our analysis can be generalized
to k > 1 by working with a Ĩ ⊆ Ik as the new data-store
and p̃θ,I(·|x) as a distribution over Ĩ obtained by suitably
modifying pθ,I in (6). For example, when k supporting ev-
idences are sampled with replacement, then the following
holds ∀(z1, . . . , zk) ∈ Ik.

p̃θ,I
(
(z1, . . . , zk)

∣∣x) =
∏
j∈[k]

pθ,I(zj |x).

Empirical risk minimization and excess risk for
RAMs. For a pair of retriever and predictor models pa-
rameterized by θ and ξ, respectively, we can define the
empirical and population risks associated with a (surrogate)
loss function ` as follows:

R`,I,n(ξ, θ) =
1

n

∑
i∈[n]

∑
z∈I

pθ(z|x)`
(
hξ(xi, z), yi

)
, (8)

R`,I(ξ, θ) = E
[
`
(
hξ(X, EXθ ), Y

)]
. (9)

Note that the expectation in (9) is taken over (X,Y ) ∼
DXY as well as the randomness involved in the retrieval
stage, e.g., sampling the evidences according to pθ,I(·|x)
in (6). Given a pair of predictor class Ξ and retriever class
Θ, let (ξ̂, θ̂) denote the predictor-retriever pair obtained via
empirical risk minimization (ERM) as follows:

(ξ̂, θ̂) ∈ arg min
(ξ,θ)∈Ξ×Θ

R`,I,n(ξ, θ). (10)

Let Fall denote the set of all measurable functions from
X× Z to R|Y|. The optimal risk for the classification with
access to the data-store is achieved by the best possible
predictor f `opt,I ∈ F when it has access to the best retrieved
evidence in I. In particular, we have

f `opt,I = arg min
f∈Fall

E
[

min
z∈I

`(f(X, z), Y )
]
. (11)

Given f `opt,I, we defined the excess risk of a predictor-
retriever pair (ξ, θ) as follows:

∆`,I(ξ, θ) = R`,I(ξ, θ)−R`,I(f `opt,I)

, R`,I(ξ, θ)− E
[

min
z∈I

`(f `opt,I(X, z), Y )
]
. (12)

With the formal definition of the classification setting with
access to a data-store and the necessary background in place,
we proceed to address the two key objectives of this work:
1) Proposing a natural and efficient joint end-to-end training
procedure for the predictor-retriever pair in a RAM; and 2)
Developing a rigorous statistical understanding of RAMs
focusing on the interaction between predictor and retriever
components towards reducing overall excess risk.

3. Joint training and excess risk
Recall that training a RAM involves training both the re-
triever rθ : X×Z→ R and the predictor hξ : X×I→ R|Y|
components of the model without access to intermediate su-
pervision on retrieval, which is infeasible to obtain in most
practical settings. Thus, it becomes critical to devise meth-
ods to jointly train rθ and hξ with access to only labeled
instances Sn = {(xi, yi)}i∈[n] ⊆ X× Y with the predictor
guiding the retriever training based on how valuable the
retriever-provided evidences are towards the correct final
prediction.

Towards this, we leverage the empirical risk from (8) along
with the log-loss `(hξ(x, z), y) = − log pξ(y|x, z), where
pξ(y|x, z) is defined in (7). In particular, this leads to the
following joint end-to-end training objective:

Ln(ξ, θ; I) , Rlog,I,n(ξ, θ)

= − 1

n

∑
i∈[n]

∑
z∈I

pθ,I(z|xi) · log pξ(yi|xi, z). (13)
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Note that the objective in (13) aims to improve the end-to-
end performance of a RAM in deployment in the sense that
the objective aims to minimize the expected loss given the
selected evidences as per the retriever-induced distribution.
One can use gradient-based methods to jointly minimize the
objective in (13) with respect to (ξ, θ); however, its efficient
implementation is non-trivial due to the sum over entire data-
store I. In App. C.1, we discuss some approximate design
choices. Lastly, please refer to Sec. 3.6 for connections
between our proposed objective in (13) and some of the
existing end-to-end training approaches for RAMs.

Next, to study the generalization and expressive power of
RAMs, we want to bound the excess risk ∆`,I(ξ̂, θ̂) as de-
fined in (12). We consider X to be a compact subspace of
Rdx and, for simplicity, take X ⊆ [−1, 1]dx . Similarly, we
consider that each retrieval example z ∈ I is embedded in
the space [−1, 1]dz . We consider a data-store that polynomi-
ally scales with training data size, i.e., |I| = poly(n). For
the purpose of analysis, we specialize our log-loss to be
bounded by `max > 0, which is given as

`(hξ(x, z), y) = min(`max,− log pξ(y|x, z)) (14)

= min

(
`max, log

( ∑
y′∈Y

exp(hy
′

ξ (x, z))
)
− hyξ (x, z)

)
,

where pξ(y|x, z) and hyξ (x, z) are defined in (7).

3.1. Excess risk decomposition

Our excess risk relies on separating out the contribution
coming from the retriever and the predictor during the joint
training. Moreover, the retriever and predictor errors can be
each split into generalization and approximation error.

The population risk optimizer of our joint training over the
space Ξ×Θ is defined as

ξ∗joint, θ
∗
joint

= arg min
(ξ,θ)∈Ξ×Θ

EX
[
EZ∼pθ(·|X)EY |X`

(
hξ(X,Z), Y )

]
.

For a predictor ξ, sample x ∈ X and retrieved example
z ∈ I, let us denote the risk averaged over the labels Y as

gξ(x, z) = EY |X=x[`
(
hξ(x, z), Y )]. (15)

For any fixed predictor ξ (not necessarily in Ξ) and fixed
data-store I, the retriever that optimizes the joint population
risk is given as p∗,ξ(z|x) = 1arg minz′∈I gξ(x,z

′)(z), where
a tie is broken arbitrarily. Note that, for each sample x, the
best retrieved evidence z may change. We define the optimal
predictor within the class Ξ with best possible retriever as

ξ∗ = arg min
ξ∈Ξ

EX
[

min
z∈I

gξ(X, z)
]
.

The optimal retriever within the class Θ for a given predictor
ξ is defined as

θ(ξ) = arg min
θ∈Θ

EX
[
EZ∼pθ(·|X)gξ(X,Z)

]
.

The excess risk for the classes Θ and Ξ can be bounded as

∆`,I(ξ̂, θ̂)

≤
∑

(θ,ξ)∈{(θ̂,ξ̂),(θ∗joint,ξ∗joint)}

|R`,I(ξ, θ)−R`,I,n(ξ, θ)|

︸ ︷︷ ︸
Generalization Error

+R`,I(ξ
∗, θ(ξ∗))− EX

[
min
z∈I

gξ∗(X, z)
]

︸ ︷︷ ︸
retriever error

+ EX
[

min
z∈I

gξ∗(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

predictor error

(16)

3.2. Generalization error

We first bound the generalization error and relate it to the
covering number of the retriever and predictor class.

As our loss is bounded by `max, through standard concen-
tration bounds (Shalev-Shwartz & Ben-David, 2014), we
obtain that, for any δ > 0, with probability at least (1− δ):

|R`,I(ξ∗joint, θ
∗
joint)−R`,I,n(ξ∗joint, θ

∗
joint)| ≤ 3`max

√
log(1/δ)

n .

However, (ξ̂, θ̂) is learned from the data. A high probability
generalization error requires taking union over the space of
Ξ×Θ. We employ Rademacher complexity based general-
ization error bounds. Next, the covering number of the space
Ξ is used to bound the associated Rademacher complexity.
See Shalev-Shwartz & Ben-David (2014) for details.

We define two norms which are used in defining the covering
numbers for Θ and Ξ. In particular, ∀u ∈ Rn×|I| and fixed
ξ ∈ Ξ, θ ∈ Θ,

‖u‖2,[n],ξ =
(

1
n

∑
i∈[n]

(∑
z∈I

ui,z`
(
hξ(xi, z), yi

))2)1/2

,

‖u‖2,[n],θ =
(

1
n

∑
i∈[n]

(∑
z∈I

pθ(z|xi)ui,z
)2)1/2

. (17)

We also define N (Ξ, ν, ‖ · ‖2,[n],θ) to be the ν-covering
number for the class Ξ with respect to the norm ‖ · ‖2,[n],θ,
and N (Θ, ν, ‖ · ‖2,[n],ξ) to be the ν-covering number for
the class Θ with respect to the norm ‖ · ‖2,[n],ξ. Then we
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have the generalization bound given as

|R`,I(ξ̂, θ̂)−R`,I,n(ξ̂, θ̂)| ≤ inf
ε∈[0,`max/2]

(
8ε

+ 24√
n

∫ `max

2

ε

fN (ν/2; Θ,Ξ) + fN (ν/2; Ξ,Θ)dν
)
,

(18)

for fN (ν;A,B) = supb∈B
√

log(N (A, ν, ‖ · ‖2,[n],b)).

We use ideas in Zhang (2023) to upper bound the covering
number with pseudo-dimension (defined in the Appendix A)
of the function class. This allows us to have a log |I| depen-
dence in the generalization error, while working with norm
unbounded function classes.

3.3. Approximation error

We next proceed to bound the retriever and predictor ap-
proximation errors. Towards this, we extensively use the
Sobolev functions spaces. A Sobolev space for a domain Ω
is characterized by two quantities, κ – the number of weak-
derivatives a (real-valued) function within it possesses, and
Lp(Ω) – the norm with respect to which these derivatives are
integrable. Please see Appendix A for a complete definition.

3.3.1. RETRIEVER ERROR

The retriever error is given by how well the score function
rθ(x, z) approximates the optimal retriever given ξ∗. In
order to do so we first need to impose some smoothness
constraints on the function gξ∗ : X× Z→ R. In particular,
we assume the following.

Assumption 3.1 (Complexity of gξ∗). There exists a base-
line function bξ∗ : [−1, 1]dx → R such that the func-
tion gapξ∗ : [−1, 1]dx+dz → R defined by gapξ∗(x, z) ,
(gξ∗(x, z)− bξ∗(x)) lies in the Sobolev space with κ deriva-
tives and L∞([−1, 1]dx+dz ) norm.

The above assumption says that for the predictor ξ∗ the
loss profile (averaged over labels in Y) gξ∗(x, z), has two
components – a (possibly) complex bξ∗(x) component that
is uniform over z, and a ‘smooth’ gapξ∗(x, z) component.
In other words, given two similar retrieved evidences, the
predictor incurs similar losses when each of the evidences
is utilized with an input instance.

Then, for any τ > 0, we can bound the retriever loss as
follows:

R`,I(ξ
∗, θ(ξ∗))− EX

[
min
z∈I

gξ∗(X, z)
]

≤ inf
θ∈Θ

`max‖rθ + τ · gapξ∗‖∞ +
log |I|
τ2

(19)

3.3.2. PREDICTOR ERROR

The predictor error is measured with the optimal retrieval
(as the retriever error is considered separately above). For
this, we need to first quantify how the retrieval augmentation
using the data-store I helps.

Usefulness of retrieval set: We start with characteriza-
tion of the prediction task in the presence of the data-
store I ⊂ Z. We assume that there exists a score function
h∗ : X × Z → R|Y|, and the corresponding probability
distribution

py∗(x, z) =
exp(hy∗(x, z))∑
y′ exp(hy

′
∗ (x, z))

, (20)

that approximates pyDXY (x) := PY∼DY |X (y|X = x) well
for all x ∈ X and y ∈ Y. Furthermore, we want this score
function h∗ to lie coordinate wise in a Sobolev space. The
following assumption formalizes this.
Assumption 3.2 (Retrieval quality). There exists a score
function h∗ : X× Z→ R|Y| such that
1. for each y ∈ Y, the function hy∗ lies in the Sobolev space

with κI derivatives and finite L∞([−1, 1]dx+dz ) norm,
2. for any x ∈ X, there exists a retrieved evidence z∗(x) ∈ I

such that py∗(x, z), as defined in (20), satisfies

max
y∈Y

sup
x∈X
|py∗(x, z∗(x))− pyDXY (x)| ≤ cI|I|−γI .

Note that this is independent of the retriever class Θ and Ξ,
and captures intrinsic property of the data-store I. The tuple
(γI, dz, κI) defines the usefulness of I. In particular, the
higher γI the closer the approximation; and the higher the
κI and smaller the embedding dimension dz the ‘simpler’
the score function used for this approximation.

Under the Assumption 3.2, we bound the predictor error as

EX
[

min
z∈I

gξ∗(X, z)
]
−R`,I(f `opt,I) ≤

inf
ξ∈Ξ

2EX
[

max
y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
+

(|Y| − 1) exp(−`max) + cI|I|−γI . (21)

One key step in arriving to the above inequality is ex-
pressing the loss of f `opt,I using the probability function
h∗ defined in Assumption 3.2. In particular, under Assump-
tion 3.2, we show that

EX
[

min
z∈I

gf`opt,I(X, z)
]
≥ EX

[
gh∗(X, z

∗(X))
]
−

(|Y| − 1) exp(−`max)− cI|I|−γI .

3.4. Final excess risk bound

We now combine the three components of the excess risk
bounds under Assumptions 3.1 and 3.2 and discuss the
design tradeoffs. The following theorem captures our main
theoretical result.
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Theorem 3.3 (Excess risk of joint training). Under Assump-
tion 3.1 and 3.2, the excess risk for the retriever class Θ and
predictor class Ξ is bounded as

∆`,I(ξ̂, θ̂) ≤ 3`max( 1
n +

√
log(n)
n )+

inf
ε∈[0,

`max

2 ]

8ε+ 24√
n

∫ `max

2

ε

fN (ν2 ; Θ,Ξ) + fN (ν2 ; Ξ,Θ)dν

+ inf
θ∈Θ

inf
τ>0

`max‖rθ + τ · gapξ∗‖∞ +
log |I|
τ2

+ inf
ξ∈Ξ

2EX
[

max
y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
+

(|Y| − 1) exp(−`max) + cI|I|−γI ,

where fN (ν;A,B) , supb∈B
√

log(N (A, ν, ‖ · ‖2,[n],b))
and ‖ · ‖2,[n],θ and ‖ · ‖2,[n],ξ are defined in (17).

3.5. Illustrative example: MLPs

We instantiate both our retriever and predictor classes
to be multi-layer perceptron (MLP) with depth Lret &
width Wret = O(dx + dz) and depth Lpred & width
Wpred = O(|Y|(dx + dz)), respectively. The class
MLP

(
Rd,Rk;L,W

)
is defined in Appendix A. The spe-

cialized excess risk bound for this setting is given as

Theorem 3.4 (Excess risk for MLP). Under Assump-
tion 3.1 and 3.2, the excess risk for the retriever class
Θ = MLP

(
Rdx+dz ,R;Lpred, O(dx + dz)

)
and predictor

class Ξ = MLP
(
Rdx+dz ,R|Y|;Lpred, O(|Y|(dx + dz))

)
is bounded as

∆`,I(ξ̂, θ̂) ≤ Õ
(
`max√
n

(Lret + Lpred|Y|)
)

+

O
(
`maxL

− 4κ
3(dx+dz)

ret log1/3(|I|)
)

+

O

(
L
− 2κI

(dx+dz)
pred + (|Y| − 1) exp(−`max) + cI|I|−γI

)
.

Finally, to capture the optimal trade-off under finite data
size n, we consider classes of retriever and predictors that
change with the data size, denoted by Θn and Ξn, with
growing depths Lret,n and Lpred,n respectively. Similarly,
we also consider growing upper bound on the loss function

by `max,n. Let dtot = dx + dz . For Lret,n = n
3dtot

6dtot+8κ ,

Lpred,n = (
√
n/|Y|)

dtot
2dtot+4κI , and `max,n = log |Y| +

κI

(dtot+2κI) log n, the excess risk is bounded by

O

(
n
− 2κ

3dtot+4κ + max
(
|I|−γI ,

( n

|Y|2
)− κI

dtot+2κI

))
.

We should contrast the above result with the prediction
when there is no retrieval. Let us assume that the functions
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Figure 1. Left: Excess risk bound as we vary retriever and pre-
dictor size for a fixed n and I based on Theorem 3.4. Note that
different size combination of predictor and retriever achieves same
risk bound. Right: Excess risk bound of RAM as we increase
data-store size in contrast to direct MLP predictor with no retrieval.
We plot for various values of n, with each cure corresponding to a
fixed n.

pyDXY (x) for all y ∈ Y lies in the Sobolev space with deriva-
tive κtrue and L∞ norm. The predictor excess risk rate with

Lpred,n = (
√
n/|Y|)

dx
dx+2κtrue is O((n/|Y|2)

− κtrue

dx+2κtrue ).

Note that our analysis indicates that we may potentially
gain through retrieval: For large enough retrieval set |I| ≥

(n/|Y|2)
κIγ
−1
I

dtot+2κI , as the data size n increases and we have
κ > 3dtot

2dx
κtrue & κI >

dtot
dx
κtrue (see Fig. 1).

3.6. Connections with prior end-to-end training

We conclude our treatment of end-to-end training of RAMs
by drawing parallels between our proposed method with
some representative approaches from the literature.

EMDR2 Sachan et al. (2021) minimize the following objec-
tive based on the negative log-likelihood:

LEMDR2

n (ξ, θ; I) = − 1

n

∑
i∈[n]

log pξ,θ,I(y|x)

= − 1

n

∑
i∈[n]

log
(∑
z∈I

pθ,I(z|xi) · pξ(yi|xi, z)
)
. (22)

It follows from the convexity of − log(·) and Jensen’s in-
equality that our objective in (13) upper bounds the EMDR2

objective in (22); as a result, minimizing the former also
minimizes the latter but not vice versa.

Perplexity distillation (PDist) Another approach for joint
training of RAMs in the literature involves optimizing
two distinct objectives for training the predictor and re-
triever components. For example, Izacard et al. (2022) pro-
pose multiple objectives for retriever training, including
PDist (Sachan et al., 2023) which is defined as follows:

LPDIST
I,n (θ; ξ, I) =

1

n

∑
i∈[n]

CE
(
pPDIST
ξ,I (Z|xi, yi), pθ,I(Z|xi)

)
, (23)

where CE(·, ·) denotes the cross entropy between two dis-
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Method
small base large

small base large small base large small base large

No retriever, train predictor ξ
Cross-Entropy 19.6 25.5 29.1

Fixed retriever θ0, train predictor ξ
Cross-Entropy 23.2 26.6 28.3 27.5 32.4 34.7 32.2 36.4 37.8

Fixed predictor ξ?(θ0), train retriever θ
EMDR2 23.9 28.5 31.0 29.2 34.2 36.6 33.4 38.0 40.8
PDist 30.1 34.5 38.4 34.0 39.7 42.8 37.6 42.8 44.7
Cross-Entropy + PG 25.9 30.6 31.7 31.5 36.4 37.9 36.0 40.2 41.4
Cross-Entropy + TopK 29.4 35.5 37.9 33.8 39.7 43.0 37.2 42.3 45.0

Jointly train predictor ξ and retriever θ
EMDR2 24.1 30.4 32.7 30.4 35.6 39.3 34.5 39.7 42.1
PDist 28.7 33.2 36.6 33.3 37.1 38.8 36.2 40.2 41.6
Cross-Entropy + PG 27.1 31.0 32.7 33.3 37.2 38.2 36.5 39.8 41.4
Cross-Entropy + TopK 32.8 37.8 40.1 36.6 41.8 44.8 38.8 43.8 46.4

Table 1. Exact match accuracy on NQ. We measure the performance of RAMs across various training paradigms and model sizes. Top
row specifies the predictor size and the second row specifies the retriever size.

tributions and

pPDIST
ξ,I (z|x, y) = pξ(y|x, z)/

∑
z′∈I

pξ(y|x, z′) ∀ z ∈ I,

represents a predictor-assigned distribution over evidences
based on their utility towards making correct prediction. As
for the predictor training, they optimize an objective akin to
(13) with respect to ξ. Besides this similarity in the predictor
training, our approach for retrieval training has a subtle con-
nection with PDist. Note that PDist optimizes forward cross-
entropy between the predictor and the retriever induced
distributions to train the retriever. On the other hand, our ob-
jective in (13) is closer to 1

n

∑
i CE(pθ,I(Z|xi), pPDIST

ξ,I ), the
reversed cross-entropy between the two distributions. The
former has the “mean-seeking” behavior whereas the latter
has the “mode-seeking” behavior (Huszár, 2015; Gu et al.,
2023; Agarwal et al., 2023).

Similarity with RLHF/RLAIF Note that the per-example
objective of our retrieval training approach takes the form:

EZ∼pθ,I(·|xi)
[
`
(
hξ(xi, Z), yi

)]
, (24)

i.e., the predictor model provides feedback on the (value) of
the evidences sampled by the retriever model. Alternatively,
one can view −`

(
hξ(xi, Z), yi

)
as the reward assigned to

the evidence z by the predictor model hξ and retriever model
aims to select those evidences that maximize this reward
value. This is similar to RLHF (Ziegler et al., 2019) or
RLAIF (Bai et al., 2022) paradigm, where the underlying
LLM aims to sample those generations which maximize
the reward assigned by a reward model. However, note that
in RLHF/RLAIF paradigm the policy network and reward
model are not jointly trained together unlike in RAM.

4. Experiments
There have been numerous successful practical applications
of RAMs in the literature (e.g., Sachan et al. (2021); Izac-
ard et al. (2022)). Here, we present a brief empirical study
for such models in order to corroborate the benefits pre-
dicted by our theoretical results. In particular, we consider
the task of open-domain question answering and show that
proposed objective is competitive to the objectives proposed
in the literature and observe the trade-offs in model capacity
between retriever and predictor model.

Data Our evaluation is based on two benchmark datasets:
NQOpen (Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017), which serve as sources for supervised exam-
ples (x, y), while chunked Wikipedia 2018 is used as the
data-store I following literature (Karpukhin et al., 2020a).
Consistent with established practices, we employ the ex-
act match metric to assess the correspondence between the
predicted answers and the ground truth. Additionally, we
introduce a recall metric to measure the frequency at which
the answer string appears within the retrieved documents.

Models We implement the retriever component using
GTR (Ni et al., 2022) and the predictor component using
T5 (Raffel et al., 2020). We sweep across small, base, and
large configurations for both retriever and predictor. The
details regarding the model sizes, expressed in terms of the
number of parameters, are provided in Table 6 (App. C).

Methods We compare following approaches: 1) utilizing
no retriever, directly training predictor, 2) employing a fixed
retriever, but training the predictor, 3) using a fixed predictor,
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Method
small base large

small base large small base large small base large

No retriever, train predictor ξ
Cross-Entropy 17.9 23.1 28.0

Fixed retriever θ0, train predictor ξ
Cross-Entropy 31.5 34.9 38.8 37.0 40.6 44.4 43.4 45.9 49.7

Fixed predictor ξ?(θ0), train retriever θ
EMDR2 34.6 41.3 48.3 40.1 48.2 53.4 46.0 50.7 54.9
PDist 45.7 53.3 57.2 50.8 53.2 61.6 53.5 55.4 62.3
Cross-Entropy + PG 43.2 46.7 54.3 48.6 56.1 55.1 51.7 56.4 56.7
Cross-Entropy + TopK 43.6 50.4 54.4 48.6 54.9 58.5 52.1 56.6 60.3

Jointly train predictor ξ and retriever θ
EMDR2 37.0 43.1 49.7 42.4 50.5 55.6 47.1 53.4 59.2
PDist 46.7 54.3 57.3 48.8 56.7 60.7 51.0 58.5 63.3
Cross-Entropy + PG 47.0 52.9 55.7 49.9 57.6 61.1 52.1 59.8 59.2
Cross-Entropy + TopK 46.8 52.9 56.0 49.2 56.6 60.1 52.3 58.8 62.4

Table 2. Exact match accuracy on TriviaQA. We measure the performance of RAMs across various training paradigms and model sizes.
Top row specifies the predictor size and the second row specifies the retriever size.

but training the retriever, and 4) conducting joint training
of both components. For the joint training and the retriever
training phases, we experiment with multiple objectives:
EMDR2 (cf. (22)), PDist (cf. (23)), Cross-Entropy + PG
(cf. (40) in App. C.1), and Cross-Entropy + TopK (cf. (39) in
App. C.1). Efficiently implementing any of these objectives
is challenging due to the need to compute the gradient with
respect to expectation over the entire data-store. We consider
two approaches for computing the gradients approximately
by: 1) restricting the expectation to top-K elements similar
to EMDR2 and PDist; and 2) using REINFORCE (Williams,
1992) to obtain an unbaised estimate. More details can be
found in App. C.1.

Observation 1 The addition of a retrieval component
markedly enhances performance, as demonstrated in Ta-
bles 1 and 2, which present the exact match accuracy. Fur-
ther improvements are observed when the retriever is specifi-
cally trained while keeping the predictor fixed. Joint training
emerges as the most effective strategy.

Observation 2 Tables 4 and 5 (App. C) list the recall for the
presence of the answer string within the retrieved content.
PDist consistently achieves the highest recall, aligning with
expectations given its design for distilling the retriever based
on the predictor’s scores. However, despite its superior re-
call, other objectives may lead to better overall performance
than PDist, suggesting that different objectives optimize the
retriever and predictor with varying efficiencies.

Observation 3 Finally, in Table 3, we report the query per
second (QPS), as a proxy for computational cost, achieved
by different configuration of retriever and predictor model

sizes. For achieving a specific accuracy threshold (e.g.,
≥38.8 on NQ), multiple configurations are viable, such as
pairing a large predictor with a small retriever, a base model
for both, or a small predictor with a large retriever. The
associated query per second (QPS) rates for these configu-
rations are 135, 333, and 800, respectively, illustrating that
equivalent accuracy levels can be attained with significantly
differing QPS rate. This corroborates with our trade-offs
in excess risk bounds for MLPs with different capacity in
retriever and predictor components as illustrated in Figure 1.
Thus, adding capacity to different parts of the model has
different repercussion on quality and computational cost.

5. Discussion and related work
Several works have proposed some form of retrieval aug-
mented models. Here, we provide a brief account of the
evolution of RAMs and discuss how our proposed joint-
learning objective and the framework for excess risk analy-
sis compare with existing end-to-end training methods.

Augment with local neighborhood The first approaches
dating back to 1970s employed just augmenting training
instance in the local neighborhood of the input space (Stone,
1977; 1980). Such approaches gained a lot of attention as
parametric regression was not adequate in various practical
applications of the time. This line of work aims to fit a low-
degree polynomial at each point in the data set based on a
subset of data points, which resulted in a rich literature on
local polynomial regression in low dimensions. (Katkovnik
& Kheisin, 1979; Cleveland, 1979; Pinsker, 1980; Donoho
& Liu, 1988; Ruppert & Wand, 1994; Ibragimov & Has Min-
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small base large

small base large small base large small base large

822.60 819.83 800.89 334.30 333.22 331.06 135.06 135.34 134.87

Table 3. Query per second. We measure the query per second processed by RAMs as a proxy for computational cost across various
model sizes. Top row specifies the predictor size and the second row specifies the retriever size.

skii, 2013). These classical ideas have found their applica-
tion in many ML algorithms such as face recognition (Jain
& Learned-Miller, 2011), dimensionality reduction via local
linear embeddings (Roweis & Saul, 2000), domain adapta-
tion (Yang et al., 2021), test time training on neighboring
points (Sun et al., 2020; Gandelsman et al., 2022), etc. Re-
cently, Basu et al. (2023) generalized this setup of augment-
ing with a local neighborhood of the input instance in the
context of modern ML models like neural networks and pro-
posed a statistical framework to study such retrieval-based
models. However, they do not consider a learned or a spe-
cialized distance metric to find the augmenting set, which is
critical for realizing good performance in practice (Schon-
berger et al., 2017; Karpukhin et al., 2020b) and studied in
the present work.

Fixed retriever augmentation Next generation re-
trieval augmented models started to deploy either a hand
crafted or a learned retriever. Zhang et al. (2006) em-
ployed SIFT (Lowe, 1999) based retrieval followed by a
SVM (Cortes & Vapnik, 1995) classifier to improve per-
formance on multiple vision tasks. Chen et al. (2009) stud-
ied generalization bounds for SVM-kNN methods – one
of the limited works in this domain with formal analy-
sis. For natural language understanding, methods like TF-
IDF (Sparck Jones, 1972) were employed in the tasks like
case based reasoning (Leake et al., 1996) and open-domain
question answering (ODQA; Voorhees et al. 1999). Unlike
many previous methods, one retrieves relevant text passages
in ODQA settings as opposed to retrieving labelled train-
ing pairs. With introduction of transformers (Vaswani et al.,
2017), both retriever and predictor models based on encoder
and decoder, respectively, have become popular across var-
ious domains, including image classification (Long et al.,
2022; Iscen et al., 2023), text classification (Wang et al.,
2022; Zemlyanskiy et al., 2022), ODQA (Lee et al., 2019;
Izacard & Grave, 2021), language modelling (Borgeaud
et al., 2021), and even protein folding prediction (Cramer,
2021). Even using the same transformer model as both re-
triever and predictor boosts performance in language mod-
eling (Khandelwal et al., 2020). Unlike SVM-kNN (Chen
et al., 2009), to best of our knowledge, a formal analysis
of retrieval-augmented approaches with modern neural net-
works is missing from the literature. Interestingly, retrieving
examples also helps in-context learning (Rubin et al., 2022;
Li et al., 2023). Our framework covers this scenario with z

representing the in-context examples retrieved from a data-
store of examples. Our risk bounds can provide insights into
why in-context learning with retrieved few-shot examples
performs better than a zero-shot model.

End-to-end trained retriever augmentation For ODQA,
Guu et al. (2020) proposed maximizing the marginalized
likelihood by considering the retrieved set as a latent vari-
able. EMDR2 (Sachan et al., 2021) optimized the same
objective by approximating it based on the retriever induced
distribution on the elements that receive top-K scores by
the retriever. Hindsight (Paranjape et al., 2022) instead op-
timizes the ELBO by introducing a variational distribution
with access to the outputs. VOD (Liévin et al., 2023) further
generalized the standard ELBO based on KL divergence by
employing Rényi divergence thereby tightening the lower
bound. On the other hand, Atlas (Izacard et al., 2022) pro-
posed an auxiliary loss for training the retriever directly
rather than following the latent variable approach. Interest-
ingly, RAG (Lewis et al., 2020) proposed to only train the
query encoder for retriever, leaving the retrieval index fixed,
thereby alleviating much of the end-to-end training diffi-
culties of RAMs, but at cost of limiting model adaptation
flexibility. None of these prior works studied statistical prop-
erties vis-à-vis expressivity and generalization of RAMs.

6. Conclusion
In this work, we initiate the development of a theoretical
framework to study the statistical properties of RAMs with
data-dependent retrieval. Our excess-risks analysis allows
us to highlight how retriever and predictor components play
complementary roles in reducing approximation error as
we increase their respective function class complexity. We
surface both theoretically and empirically a Pareto surface
achieving the same performance with different size predic-
tors and retrievers. As future work, it would be interesting
to study the effect of dynamically updatable data-store and
multi-step retrievals for making predictions.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Preliminaries
Definition A.1 (Rademacher complexity). Given a sample S = {zi = (xi, yi)}i∈[n] ⊂ Z and a real-valued function class
F : Z→ R, the empirical Rademacher complexity of F with respect to S is defined as

RS(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(zi)

]
, (25)

where σ = {σi}i∈[n] is a collection of n i.i.d. Bernoulli random variables. For n ∈ N, the Rademacher complexity R̄n(F)
and worst case Rademacher complexity Rn(F) are defined as follows.

R̄n(F) = ES∼Dn [RS(F)] , and Rn(F) = sup
S∼Zn

RS(F). (26)

Definition A.2 (Covering nsumber). Let ε > 0 and ‖ · ‖ be a norm defined over Rn. Given a function class F : Z→ R and
a collection of points S = {zi}i∈[n] ⊂ Z, we call a set of points {uj}j∈[m] ⊂ Rn an (ε, ‖ · ‖)-cover of F with respect to S,
if we have

sup
f∈F

min
j∈[m]

‖f(S)− uj‖ ≤ ε, (27)

where f(S) =
(
f(z1), . . . , f(zn)

)
∈ Rn. The ‖ · ‖-covering number N (F, ε, ‖ · ‖) denotes the cardinally of the minimal

(ε, ‖ · ‖)-cover of F with respect to S. In particular, if ‖ · ‖ is an normalized-`p norm (‖v‖ = ( 1
dim(v)

∑dim(v)
i=1 |vi|p)1/p),

then we simply use N (F, ε,F, ‖‖Lp , S) to denote the corresponding `p-covering number.

When S is unambiguous we may drop it, i.e. write N (F, ε,F, ‖‖Lp)

Definition A.3 (Multi-layer perceptron (MLP)). We consider for both retrieval and predictor, the class of multi-layer-
perceptron, aka fully connected Deep Neural Network, with Relu nonlinearity σ(x) = max(x, 0). An MLP is specified by
the number of layers L, width W . We define an affine transform AW,b(Rd1 ,Rd2) = Wx+ b, with weight W ∈ Rd2 ×Rd1
and bias b ∈ Rd2 . Let σ ◦AW,b(Rd1 ,Rd2) define the elementwise application of Relu non-linearity on the affine transform.
The class of L layers and W width MLP is defined as

MLP(Rd,Rk;W,L) = {AWL,bL ◦ σ ◦AWL−1,bL−1
◦ . . . σ ◦AW0,b0}, (28)

where WL ∈ Rk×W and bL ∈ Rk, Wi ∈ RW×W and bi ∈ RW for 1 ≤ i ≤ (L− 1), and W0 ∈ RW×d and b0 ∈ RW .

Definition A.4 (Sobolev space). We denote the set of functions with finite Lp norm over Ω as Lp(Ω) i.e. for any f ∈ Lp(Ω),

‖f‖Lp(Ω) =
( ∫

s∈Ω
f(s)pds

)1/p
<∞ for p ≥ 1. Note for p =∞ we have ‖f‖L∞(Ω) = ess sups∈Ω |f(s)|. Let α ∈ Ndin

denote a multi-index, and |α| =
∑
i∈din αi be it’s degree. We denote by Dα the weak-derivative with respect to multi-index

α for any function.

For an integer κ > 0, the Sobolev semi-norm Wκ(Lp(Ω)) for a function f that has weak-derivatives of order κ is defined as

∀1 ≥ p <∞, |f |Wκ(Lp(Ω)) =
( ∑
α:|α|=κ

‖Dαf‖pLp(Ω)

)1/p
, |f |Wκ(L∞(Ω)) = max

α:|α|=κ
‖Dαf‖L∞(Ω).

The Sobolev normWκ(Lp(Ω)) for the same function f is defined as ‖f‖Wκ(Lp(Ω)) = ‖f‖Lp(Ω) + |f |Wκ(Lp(Ω)). A function
f with all weak-derivatives of order κ, and a finite Wκ(Lp(Ω)) norm lies in the Sobolev space with κ derivatives and Lp(Ω)
norm.

In our approximation guarantees for MLP retreiver and predictor classes later, we use Theorem 1 in (Siegel, 2023). We
restate the theorem here for completeness.

Theorem A.5 (Restated Theorem 1 in (Siegel, 2023)). For a function f0 : Ω→ R in the Sobolev space with κ derivatives
and Lq(Ω), p, q ∈ [1,∞) and κ ∈ (0,∞) satisfying (1/q−1/p) ≤ s/d, we have for some C = c(κ, d) <∞, Ω = [−1, 1]d

and W = 25d+ 31

inf
f∈MLP(Rd,R;W,L)

‖f − f0‖Lp(Ω) ≤ C‖f0‖Wκ(Lq(Ω))L
− 2κ
d .
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Our VC Dimension bounds of MLP is based on the (Bartlett et al., 2019) which is in turn used for generalization bounds.
We collect some necessary definitions and results from (Bartlett et al., 2019) and restate here for completeness.

Definition A.6 (VC dimension and growth of a binary function class). For H , a class of functions fromA to 0, 1 the growth
function of H evaluate on a input set of size m, is defined as

ΠH(m) = max
a1,...,am∈A

|{h(a1), . . . , h(am) : h ∈ H}|.

The V Cdim(H) is defined as the largest m such that ΠH(m) = m, where if no such m is there we have V Cdim(H) =∞.

Definition A.7 (Pseudo dimension of real valued function class). Let F be a class of functions from some space
A to the real R. The pseudo-dimension of class F , denoted by Pdim(F), is the largest m such that there exists
{a1, . . . , am, r1, . . . , rm} ∈ Am × Rm such that for any binary sequence {b1, . . . , bm} ∈ {0, 1}m there exists a function
f ∈ F satisfying ∀i : f(ai) > ri ⇐⇒ bi = 1.

Note Pseudo-dimension is same as the VC dimension of the subgraph of class F which is used in (Zhang, 2023). We denote
by sgn(f) the sign of the function f : A → R from and sgn(x) = 1(x ≥ 0), and let sgn(F) = {sgn(f) : f ∈ F}.
We define the VC dimension of the real valued function class F as V Cdim(F) := V Cdim(sgn(F)). It is mentioned in
(Bartlett et al., 2019) that for neural network with a fixed architecture and fixed activation functions, namely class MLP, we
have the V Cdim(sgn(MLP)) = Pdim(MLP).

We now adapt Theorem 6 in (Bartlett et al., 2019) to use it for the class MLP(Rd,R;L,W ) specialized for Relu non-linearity,
i.e. in terminology of (Bartlett et al., 2019), number of breakpoint pnt = 1, and degree of polynomial is deg = 1.1

Theorem A.8 (Adapted Theorem 6 in (Bartlett et al., 2019)). Consider the neural network class MLP(Rd,R;L,W ) that
has Relu non-linearity. Let Wtot,l denote the total number of parameters upto layer l ≤ (L− 1), and ul denote the number
of units in layer l. Also define the parameters L̄ = 1

Wtot,L

∑L
l=1Wtot,l ≤ L, and R =

∑L
l=1 lkl ≤ L2W . Then for the

function class F of all real-valued functions computed by the MLP class and m

Πsgn(F)(m) ≤
L∏
l=1

2

(
2emkll

Wtot,l

)Wtot,l

≤ (4emL)Wtot,L .

Moreover, we have

V Cdim(F ) = L+ L̄Wtot,L log2(4e
∑
l

lkl log2(
∑
l

2elkl)) = O(L̄Wtot,L log(L2W )).

We generalize the above result to capture the MLP with multi dimensional output as used by our predictor.

Theorem A.9 (Multi-ouput version of Theorem 6 in (Bartlett et al., 2019)). Consider the neural network class
MLP(Rd,Rk;L,W ) that has Relu non-linearity. Let Wtot,l, ul, L̄, and R be as defined in Theorem A.8. Then for the
function class F of all real-valued functions computed by the MLP class with k dimensional output we have

V Cdim(F ) = L+ L̄Wtot,L log2(4e
∑
l

lkl log2(
∑
l

2elkl)) = O(L̄Wtot,L log(L2W )).

Proof. We proceed with our proof now for the class MLP(Rd,RK ;L,W ). F is the class of k dimensional output function
computed by the MLP class. Let a ∈ RWtot,L parameterize one function f ∈ F . We need to find the V Cdim of the set
{sgn(f(xi, j, a)) : a ∈ RWtot,L , i ∈ [m], j ∈ [k]}. We partition the above set with respect to y and obtain the following
inequality.

|{sgn(f(xi, j, a)) : a ∈ RWtot,L , i ∈ [m], j ∈ [k]}|

≤
∑
j∈[k]

|{sgn(f(xi, j, a)) : a ∈ RWtot,L , i ∈ [m]}| ≤
∑
j∈[k]

Πsgn(MLP(Rd,R;L,W ))(m) ≤ k2L(2eRm/Wtot,L)Wtot,L .

1Originally in (Bartlett et al., 2019) degree is denoted by d and break point by p, but we use deg and pnt, respectively, to avoid
confusion.
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For the second inequality we notice that for a fixed j the function f(xi, j, a) is computed by MLP(Rd,R;L,W ) and
bound it with the growth function Πsgn(MLP(Rd,R;L,W )) over m points. Therefore, for the third inequality we can apply
the specified bound for Πsgn(MLP(Rd,R;L,W ))(m) inside the proof of Theorem 6 in (Bartlett et al., 2019). Here, we have
specialized for Relu nonlinearlity, i.e. breaking point pnt = 1, and degree deg = 1. Applying Lemma 6 in (Bartlett et al.,
2019) we obtain

V Cdim(MLP(Rd,Rk;L,W )) ≤ L log(k) +Wtot,L log2(4eR log2(4eR)) = O(L log(k) + L2W 2 log(LW )).

Finally, we state the following proposition that is a bounded version of the Gibb’s inequality, that maximizes the cross
entropy of a discrete probability function.
Proposition A.10 (Truncated Gibb’s inequality). Let us consider two discrete distributions α, β over alphabet size K. Then
for any constant C > 0, we have

K∑
i=1

αi min(C,− log(βi)) ≥
K∑
i=1

αi min(C,− log(αi))− (K − 1) exp(−C).

Proof. For two discrete distributions α, β over alphabet size K.

K∑
i=1

αi min(C,− log(βi))

= −
K∑
i=1

αi log(max(exp(−C), βi))

= −
K∑
i=1

αi log(αi) +

K∑
i=1

αi log
(
αi/max(exp(−C), βi)

)
≥ −

K∑
i=1

αi log(αi) + (

K∑
i=1

αi) log
( K∑
i=1

αi/

K∑
i=1

max(exp(−C), βi))
)

≥ −
K∑
i=1

αi log(αi)− log(1 + (K − 1) exp(−C))

≥ −
K∑
i=1

αi log(αi)− (K − 1) exp(−C)

≥
K∑
i=1

αi min(C,− log(αi))− (K − 1) exp(−C)

The first inequality follows from the log-sum-inequality. The second inequality inequality uses the fact that∑K
i=1 max(exp(−C), βi) is maximized by setting one βi = 1 for some 1 ≤ i ≤ K, while the rest are set to 0. The

second last inequality follows by log(1 + x) ≤ x. The final inequality states taking a minimum with C can only decrease
the value.

B. Derivations of main result
As discussed in Section 2, the objective here is to study how the excess risk in Eq. (12). Our excess risk has three main
components, generalization error, retriever approximation error, and predictor approximation error. In this section, we
structure our results somewhat differently than the main body to capture the general setting of learning retriever with a
fixed predictor, and vice versa. We first prove excess risk bounds for Learning the Retriever, then excess risk bounds for
Learning the Predictor. Finally, we combine the results to obtain the final joint learning guarantees, which are presented in
the paper. For the rest of the analysis. We need to specify the space of retrieved examples to define the complexity of the gap
function. We recall that our retrieved samples are embedded in a compact subspace of Rdz , for simplicity say Z ⊆ [−1, 1]dz .
Similarly, we assume X to be a compact subspace of Rd, for simplicity X ⊆ [−1, 1]dx .
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B.1. Learning the retriever
We first study learning the retriever over class Θ when the predictor ξ is fixed. The task of the retriever is to minimize

E(X,Y )∼D[EZ∼pθ(·|X)`(hξ(X,Z), Y )] = EX
[
EZ∼pθ(·|X)EY |X`(hξ(X,Z), Y )|X]

]
= EX

[
EZ∼pθ(·|X)gξ(X,Z)

]
,

where gξ(X,Z) = EY |X`(hξ(X,Z), Y ). We have a closed form for the optimal retriever when not restricted within a
function class. The optimal retriever is p∗,ξ(z|x) = 1arg minz′∈I gξ(x,z

′)(z), where a tie is broken arbitrarily.

For the fixed predictor ξ, the retriever that minimizes the empirical risk given, θ̂(ξ), and the retriever that minimizes the
population risk, θ(ξ), over the class Θ are defined as

θ̂(ξ) = arg min
θ∈Θ

1

n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
, θ(ξ) = arg min

θ∈Θ
EX
[
EZ∼pθ(·|X)gξ(X,Z)

]
.

Here, the probability is defined using the softmax operator for a given θ ∈ Θ as

pθ,I
(
z|x
)

=
exp

(
rθ(x, z)

)∑
z′∈I exp

(
rθ(x, z′)

) , ∀ z ∈ I, x ∈ X.

Hardness of retrieval: We assume the gξ(x, z) function is in the Sobolev space with κ derivatives as defined in Section A.
The following is the restatement of Assumption 3.1 but for any ξ ∈ Ξ and not just the optimal one ξ∗.
Assumption B.1 (Complexity of gξ). For any ξ ∈ Ξ, there exists a baseline bξ : [−1, 1]dx → R such that the function
gapξ : [−1, 1]dx+dz → R with baseline bξ, as defined by gapξ = (gξ(x, z) − bξ(x)) lies in the Sobolev space with κ
derivatives and L∞([−1, 1]dx+dz ) norm.

As noted earlier this means that the predictor loss has a possibly ‘complex’ component bξ(x), and a relatively ‘smooth’
component gapξ(x, z) that ensures two retrieved examples that are close gives similar loss for the predictor for any given
sample x ∈ X. As gapξ(x, z) solely determines the optimal retrived set, it’s smoothness defines the hardness of retrieval.

Excess risk decomposition: The excess error in retriever learning is given as
R`,I(ξ, θ̂(ξ))−R`,I(f `opt,I)

=
∑

θ=θ(ξ),θ̂(ξ)

∣∣ 1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
− EX

[
EZ∼pθ(·|X)gξ(X,Z)

]∣∣
︸ ︷︷ ︸

retriever generalization error

+R`,I(ξ, θ(ξ))− EX
[

min
z∈I

gξ(X, z)
]

︸ ︷︷ ︸
retriever approximation error

+EX
[

min
z∈I

gξ(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

error from predictor ξ

.

B.1.1. GENERALIZATION ERROR:
We now proceed to bound the generalization error using the Radamacher complexity. With probability at least (1− δ) for
any δ > 0, ∣∣∣EX[EZ∼pθ̂(ξ)(·|X)gξ(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ̂(ξ)(z|xi)`
(
hξ(xi, z), yi

)∣∣∣
≤ 2Eσ

[
max
θ∈Θ

1

n

∑
i∈[n]

σi
∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)]
+ 3`max

√
log(2/δ)

n

≤ 2× inf
ε∈[0,cξ/2]

(
4ε+ 12√

n

∫ cξ/2

ε

√
log(N (Θ, ν, ‖ · ‖2,[n],ξ))dν

)
+ 3`max

√
log(2/δ)

n

Using covering number bound with chaining we obtain the final inequality, where

cξ = sup
θ∈Θ

(
1
n

∑
i∈[n]

(∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

))2)1/2

,

and N (Θ, ν, ‖ · ‖2,[n],ξ) denote the covering number of the retriever function Θ with error ν in L2 norm w.r.t. the set
{(xi, yi) : i ∈ [n]} and ξ fixed,

‖u‖2,[n],ξ =
(

1
n

∑
i∈[n]

(∑
z∈I

ui,z`
(
hξ(xi, z), yi

))2)1/2

,∀u ∈ Rn×|I|.
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The generalization error in retriever learning depends on the covering number of Θ (which we shall see is dependent on the
embedding space of the retrieved examples).
As θ(ξ) is a fixed retriever, we do not need to take any union bound over the retriever space. Therefore, we have∣∣∣EX[EZ∼pθ(ξ)(·|X)gξ(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ(ξ)(z|xi)`
(
hξ(xi, z), yi

)∣∣∣ ≤ 3`max

√
log(2/δ)

n .

B.1.2. APPROXIMATION ERROR:
The approximation error of learning the retriever depends on the hardness of the function minz∈I gξ(X, z). We recall that
this term is approximated using softmax over rθ(X,Z).
We want to approximate the term minz∈I gξ(x, z) for all x ∈ X, by

∑
z∈I pθ,I(z|x)gξ(x, z). We can break down the

approximation into two parts. First we show that the function softmax(−τ × gξ(x, z)) approximates minz gξ(x, z) for large
τ . In particular, if τ = O(log(|I|)/δ) then softmax approximates max with error δ (see, (McSherry & Talwar, 2007; Epasto
et al., 2020)). Next, we show that pθ,I

(
z|x
)

can approximate softmax(−τ × gξ(x, z)) well in L2 norm.
We define

p̃ξ(z|x) =
exp(−τgξ(x, z))∑
z′ exp(−τgξ(x, z′))

=
exp(−τ(gξ(x, z)− bξ(x)))∑
z′ exp(−τ(gξ(x, z′)− bξ(x)))

.

Here recall that bξ(x) is the baseline function in Assumption 3.1. An example of such baseline is bξ(x) = minz̃ gξ(x, z̃) the
loss under the optimal retrieved sample for each x ∈ X.
We have for any θ ∈ Θ

R`,I(ξ, θ(ξ))− EX
[

min
z∈I

gξ(X, z)
]

≤ R`,I(ξ, θ)− EX
[

min
z∈I

gξ(X, z)
]

= EX
[∑
z∈I

(pθ,I(z|x)− p̃ξ(z|x))gξ(x, z)
]

+ EX
[∑
z∈I

p̃ξ(z|x)−min
z∈I

gξ(x, z)
]

≤ EX
[
‖gξ(x, ·)‖∞‖pθ,I(·|x)− p̃ξ(·|x)‖1

]
+

log(|I|)
τ2

≤ EX
[
‖gξ(x, ·)‖∞‖rθ(x, ·) + τgapξ(x, ·)‖∞

]
+

log(|I|)
τ2

≤ `max‖rθ + τgapξ‖∞ +
log(|I|)
τ2

In the first inequality, the first term in the final inequality is simply using norm bounds for inner product while the second
term in the final inequality follows from Theorem 3.1 in (Epasto et al., 2020) which originates from (McSherry & Talwar,
2007). The second inequality uses the fact that softmax functions over K classes follow ‖sm(x)− sm(y)‖∞ ≤ ‖x− y‖1
(see (henrikl , https://math.stackexchange.com/users/351007/henrikl)). In the final inequality, we bound the results using the
L2 norm bound of the inner product, and use `max to bound the norm of gξ.
As the above bound hold for any τ > 0, by optimizing of τ and θ we obtain,

R`,I(ξ, θ(ξ))− EX
[

min
z∈I

gξ(X, z)
]
≤ inf
θ∈Θ

inf
τ>0

`max‖rθ + τgapξ‖∞ +
log(|I|)
τ2

. (29)

Note the above bound hold for any θ ∈ Θ. Therefore, if there exists a θ ∈ Θ such that the function rθ(x, z) approximates
the function −τgapξ(x, z) well, then we end up with small approximation error. For that purpose, we need to impose some
smoothness condition on the gap function, gapξ(x, z) for (x, z) ∈ X× I, to provide approximability results using MLP.

B.1.3. INSTANTIATION OF MLP RETRIEVER

We consider Θ to be the class of MLP defined in Equation (28).

Generalization error for MLP retriever: To bound the generalization error, we need to first bound the covering number
ofN (Θ, ν, ‖·‖2,[n],ξ), for Θ = MLP(Rdx+dz ,R;W,L). Here, X ⊆ Rdx and I ⊆ Rdz (i.e. the retrieved space is embeded in
Rdz ). We first want to bound the covering number N (Θ, ν, ‖ · ‖2,[n],ξ) with a covering number of MLP(Rdx+dz ,R;W,L).
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We have for a fixed data set Sn := {(x1, y1), . . . , (xn, yn)}, predictor ξ, and for two θ, θ′ ∈ Θ(
1
n

∑
i∈[n]

(∑
z∈I

(pθ(z|xi)− pθ′(z|xi))`
(
hξ(xi, z), yi

))2)1/2

≤ `max

(
1
n

∑
i∈[n]

(∑
z∈I

|pθ(z|xi)− pθ′(z|xi)|
)2)1/2

≤ `max

(
1
n

∑
i∈[n]

(∑
z∈I

|pθ(z|xi)− pθ′(z|xi)|
)2)1/2

≤ `max

(
1
n

∑
i∈[n]

(
max
z∈I
|rθ(xi, z)− rθ′(xi, z)|

)2)1/2

≤ `max sup
x∈Sn,z∈I

|rθ(x, z)− rθ′(x, z)|

Now consider a ‖ · ‖∞,n|I| norm cover of Θ, Θcov with cardinality N (Θ, ν/`max, ‖ · ‖∞,n|I|). Here, ‖ · ‖∞,n|I| is defined
as ‖u‖∞,n|I| = supxi∈Sn supz∈I |ui,z|, ∀u ∈ Rn×|I|.
For any θ ∈ Θ, there exists a θ′θ ∈ Θcov such that supx∈Sn,z∈I |rθ(x, z) − rθ′θ (x, z)| ≤ ν/`max. This means, that Θcov

forms a ν-cover in the ‖ · ‖2,[n],ξ norm. In other words, we have N (Θ, ν, ‖ · ‖2,[n],ξ) ≤ N (Θ, ν/`max, ‖ · ‖∞,n|I|).
In absence of norm bounds for the MLP weights and biases, direct covering number bound is not readily available. Therefore,
we will use pseudo-dimension of the class Θ from (Bartlett et al., 2019) to bound the covering number N (Θ, ν, ‖ · ‖∞,n|I|)
using (Zhang, 2023). In particular, if the pseudo-dimension of Θ is dV C , then we have logN (Θ, ν, ‖ · ‖∞,n|I|) ≤
1 + log(1 + dV C) + dV C log(max{2, en|I|/dV Cν}) as per Theorem 5.11 in (Zhang, 2023). From Theorem 6 in (Bartlett
et al., 2019) we know that for the class MLP(Rd,R;W,L) the pseudo-dimension isO(LNlog(M)), whereN is the number
of parameters, and M is the number of computation units. For fully connected network, we have N = O(LW 2), and

M = O(LW ). So the final generalization error is O
( `maxLW

√
log(LW ) log(n|I|)√

n

)
for large enough L (we will set L as a

function of the data size n which will satisfy this). This is obtained by setting ε = c/
√
n for a constant c, and δ = 1/n .

Approximation error for MLP retriever: Let Ω = [−1, 1]dx+dz . Our excess risk bounds closely follow the work of
(Siegel, 2023) which generalizes (Yarotsky, 2017).2

We consider Θ to be the class of multi-layer-perceptron (MLP), a.k.a. fully connected Deep Neural Network with Relu
nonlinearity as defined in Section A. From Theorem 1 in (Siegel, 2023) by taking p = q = ∞ in the theorem statement,
under Assumption B.1 we get that

inf
f∈MLP(Rdx+dz ,R;W,L)

‖f − gapξ‖L∞(Ω) ≤ C‖gapξ‖Wκ(L∞(Ω))L
−2κ/(dx+dz)

for Ω ∈ [−1, 1]dx+dz , W = 25(dx + dz) + 31 and C = c(κ, dx + dz) <∞ (independent of L).
Therefore, we have for Θ = MLP(Rdx+dz ,R; 25(dx + dz) + 31, L) under Assumption B.1 we have

R`,I(ξ, θ(ξ))− EX
[

min
z∈I

gξ(X, z)
]
≤ Cτ‖gξ‖L∞(Ω)‖gapξ‖Wκ(L∞(Ω))L

−2κ/(dx+dz) +
log(|I|)
τ2

.

This follows from the following series of inequalities:
R`,I(ξ, θ(ξ))− EX

[
min
z∈I

gξ(X, z)
]

≤ EX
[
‖gξ(x, ·)‖∞

]
EX
[
‖rθ(x, ·) + τgapξ(x, ·)‖∞

]
+

log(|I|)
τ2

= τEX
[
‖gξ(x, ·)‖∞

]
‖r̃θ − gapξ‖L∞(Ω) +

log(|I|)
τ2

≤ CτEX
[
‖gξ(x, ·)‖∞

]
‖gapξ‖Wκ(L∞(Ω))L

−2κ/(dx+dz) +
log(|I|)
τ2

≤ C ′`maxτL
−2κ/(dx+dz) +

log(|I|)
τ2

2We note (Siegel, 2023) works with Ω = [0, 1]d, and as mentioned therein, it can extend to bounded domain, e.g. [a, b]d which
includes our setting. Furthermore, one can extend to non-integer Sobolev and Besov spaces following (Siegel, 2023).
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The first inequality is what we derived earlier. The second equality, replaces r̃θ = −τrθ. The second last inequality follows
by optimizing r̃θ over the class Θ, as we see then −τrθ also lies in Θ, and applying Theorem 1 in (Siegel, 2023). The final
inequality combines C ′ = C‖gapξ‖Wκ(L∞(Ω)) and bounds EX

[
‖gξ(x, ·)‖∞

]
≤ `max.

As the choice of τ is not algorithmic, we can optimize for τ . In particular, we choose τ = cL−2κ/3(dx+dz) log1/3(|I|) to
obtain the approximation error bound as O(`maxL

−4κ/3(dx+dz) log1/3(|I|)), where we treat the remaining terms that are
independent of τ and L as constants.

Excess risk for MLP retriever learning: Adding approximation and generalization error we bound the excess risk as

Excess Risk ≤ EX
[

min
z∈I

gξ(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

error from predictor ξ

+O(`maxL
− 4κ

3(dx+dz) log1/3(|I|))︸ ︷︷ ︸
retriever approximation error

+O
(`maxLW

√
log(LW ) log(n|I|)√

n

)
︸ ︷︷ ︸

retriever generalization error

(30)

= EX
[

min
z∈I

gξ(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

error from predictor ξ

+ Õ(`maxn
− 2κ

3(dx+dz)+4κ )︸ ︷︷ ︸
retriever combined error

(31)

Here, we choose L = n
3(dx+dz)

6(dx+dz)+8κ and use the data-store size |I| = poly(n). Note we have W = O(dx + dz) which is
combined with the constants.

B.2. Learning the predictor
We now quantify the excess risk of a predictor ξ for a fixed predictor θ. For a fixed predictor θ, the task of the predictor is to
minimize

E(X,Y )∼DXY
[EZ∼pθ(·|X)`(hξ(X,Z), Y )] = E((X,Z),Y )∼DXY ×pθ(·|X)

[
`(hξ(X,Z), Y )|X]

]
The predictor now learns from the joint distribution DXY × pθ(·|X). We assume that the hardness of the classification task
performed by the predictor varies with the selected retriever θ.
Similar to retriever learning, for a fixed retriever θ, the predictor that minimizes the empirical risk given, ξ̂(θ), and the
predictor that minimizes the population risk, ξ∗(θ), over the class Ξ are defined as

ξ̂(θ) = arg min
ξ∈Ξ

1

n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
, ξ∗(θ) = arg min

ξ∈Ξ
EX
[
EZ∼pθ(·|X)gξ(X,Z)

]
,

where gξ(X,Z) = EY |X`(hξ(X,Z), Y ). We also define the predictor over the class Ξ with ‘optimal’ retrieval (possibly
outside of Θ) that minimizes the population risk as ξ∗ as ξ∗ = arg minξ∈Ξ EX

[
minz∈I gξ(X, z)

]
.

Usefulness of data-store: We start with characterization of the prediction task in presence of the data-store I. We consider
that there exists a score function h∗ : X× Z→ R|Y|, and corresponding probability distribution

py∗(x, z) =
exp(hy∗(x, z))∑
y′ exp(hy

′
∗ (x, z))

, (32)

that approximates well pyDXY (x) := PY∼DXY (y|X = x) for all x ∈ X and y ∈ Y. Furthermore, this score function h∗
lies coordinate wise in the Sobolev space. The Assumption 3.2 captures the above. We restate the assumption here for
convenience.
Assumption B.2 (Retrieval quality). There exists a score function h∗ : X× Z→ R|Y| such that

1. for each y ∈ Y, the function hy∗ lies in the Sobolev space with κI derivatives and finite L∞([−1, 1]dx+dz ) norm,

2. for any x ∈ X there exists a retrieved example z∗(x) ∈ I such that for py∗(x, z) as defined in Equation (32)
max
y∈Y

sup
x∈X
|py∗(x, z(x))− pyDXY (x)| ≤ cI|I|−γI .

The tuple (γI, dz, κI) defines the usefulness of the data-store I. In particular, the higher the γI the closer the approximation,
and the higher the κI and smaller the embedding dimension dz the ‘easier’ the score function used for this approximation.

Excess risk decomposition The excess risk decomposition is given as below.
R`,I(ξ̂(θ), θ)−R`,I(f `opt,I)
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≤
∑

ξ=ξ∗(θ),ξ̂(θ)

∣∣ 1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
− EX

[
EZ∼pθ(·|X)gξ(X,Z)

]∣∣
+R`,I(ξ

∗(θ), θ)−R`,I(f `opt,I)

≤
∑

ξ=ξ∗(θ),ξ̂(θ)

∣∣ 1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
− EX

[
EZ∼pθ(·|X)gξ(X,Z)

]∣∣
+R`,I(ξ

∗(θ), θ)−R`,I(ξ∗, θ)︸ ︷︷ ︸
≤0

+R`,I(ξ
∗, θ)−R`,I(f `opt,I)

≤
∑

ξ=ξ∗(θ),ξ̂(θ)

∣∣ 1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
− EX

[
EZ∼pθ(·|X)gξ(X,Z)

]∣∣
︸ ︷︷ ︸

generalization error

+R`,I(ξ
∗, θ)− EX

[
min
z∈I

gξ∗(X, z)
]

︸ ︷︷ ︸
retriever error

+EX
[

min
z∈I

gξ∗(X, z)
]
− EX

[
min
z∈I

gf`opt,I(X, z)
]

︸ ︷︷ ︸
predictor error

Note that in the second inequality as the retriever is fixed (and not optimized with predictor), we can substitute the predictor
ξ∗(θ) with ξ∗ to obtain an upper bound.

B.2.1. APPROXIMATION ERROR:
We specialize our analysis for the log-loss bounded by `max > 0 give as

`(hξ(x, z), y) = min(`max,− log(pξ(y|x, z))) = min(`max, log(
∑
y′∈Y

exp(hy
′

ξ (x, z)))− hyξ (x, z)). (33)

We now need to bound the predictor error (EX
[

minz∈I gξ∗(X, z)
]
− EX

[
minz∈I gf`opt,I(X, z)

]
) for the bounded log-loss.

We want to relate this term to the py∗(x, z) for which we have good control over its complexity. We first need a lower bound
for EX

[
minz∈I gf`opt,I

(X, z)
]

as a function of py∗(x, z). We proceed as follows:

EX
[

min
z∈I

gf`opt,I
(X, z)

]
≥ EX

[∑
y∈Y

pyDXY (X) min(`max,− ln(pyDXY (X)))
]
− (|Y| − 1) exp(−`max)

≥ EX
[∑
y∈Y

pyDXY (X) min(`max,− ln(py∗(X, z
∗(X)))

]
− (|Y| − 1) exp(−`max)

− EX
[

max
y∈Y

`max|py∗(X, z∗(X))− pyDXY (X)|
]

≥ EX
[∑
y∈Y

pyDXY (X) min(`max,− ln(py∗(X, z
∗(X)))

]
− (|Y| − 1) exp(−`max)− cI|I|−γI

= EX
[
gh∗(X, z

∗(X))
]
− (|Y| − 1) exp(−`max)− cI|I|−γI

In the first inequality, applying Proposition A.10 in Appendix A to our setting with C = `max and K = |Y| we obtain the
lower bound. The second inequality relies on the mean-value bound,

|min(C,− log(x))−min(C,− log(y))| ≤ max
x′∈[x,y]

∣∣ δ
δx min(C,− log(x))|x=x′(x− y)

∣∣ ≤ C|x− y|.
Next inequality is obtained by Assumption B.2 with z∗(x) is ad defined therein. The final inequality substitutes
gh∗(x, z

∗(x)) = EY |X=x[`(h∗(x, z
∗(x)), y)] where h∗(x, z) is the score function used in Equation (32).

We now derive an upper bound for the predictor error part of our excess risk bound. Let ξ ∈ Ξ be an arbitrary predictor
Predictor Error , EX

[
min
z∈I

gξ∗(X, z)
]
− EX

[
min
z∈I

gf`opt,I(X, z)
]

≤ EX
[

min
z∈I

gξ∗(X, z)
]
− EX

[
gh∗(X, z

∗(X))
]

+ (|Y| − 1) exp(−`max) + cI|I|−γI

≤ EX
[

min
z∈I

gξ(X, z)
]
− EX

[
gh∗(X, z

∗(X))
]

+ (|Y| − 1) exp(−`max) + cI|I|−γI

≤ EX
[
gξ(X, z

∗(X))
]
− EX

[
gh∗(X, z

∗(X))
]

+ (|Y| − 1) exp(−`max) + cI|I|−γI
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The second inequality follows by substituting the lower bound of EX
[

minz∈I gf`opt,I(X, z)
]
. As ξ∗ optimizes `-risk over Ξ,

we can substitute with the arbitrary predictor ξ to obtain an upper bound. The final inequality is obtained by substituting
z∗(X) instead of minimizing with respect to z ∈ I. Note that the final inequality holds for all ξ ∈ Ξ as the initial choice of ξ
was arbitrary.
Bounding the term EX

[
gξ(X, z

∗(X))
]
− EX

[
gh∗(X, z

∗(X))
]
, is similar to bounding the `-risk for classification with the

data distribution P(X = x, Z = z, Y = y) = PDXY (X = x, Y = y)1(z = z∗(X)). Our strategy is to bound `-risk with
L∞ distance between the score functions hyξ∗(x, z) and the score function hy∗(x, z) which lies in the Sobolev space as given
in the Assumption B.2. In particular, we have the following L∞ norm bound.

EX
[
gξ(X, z

∗(X))
]
− EX

[
gh∗(X, z

∗(X))
]

= EXY
[
`(hYξ (X, z∗(X)))− `(hY∗ (X, z∗(X)))

]
≤ EXY

[
|hYξ (X, z∗(X))− hY∗ (X, z∗(X))|+ max

y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
≤ 2EX

[
max
y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
The first inequality follows by substituting the bounded log-loss, and using the fact that for any two s, s′ ∈ RK ,
| log(

∑
k exp(sk))− log(

∑
k exp(s

′
k))| ≤ maxk |sk − s′k|.

We note that the above holds for all ξ. This gives the general approximation error bound as
Predictor Error ≤ inf

ξ∈Ξ
2EX

[
max
y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
+ (|Y| − 1) exp(−`max) + cI|I|−γI . (34)

B.2.2. GENERALIZATION ERROR:
The generalization error can be bounded in a similar manner as the retriever learning. The key difference here is that the
predictor is learnt over the space Ξ while the retriever is fixed.

|EX
[
EZ∼pθ(·|X)gξ̂(θ)(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ̂(θ)(xi, z), yi

)
|

≤ 2Eσ

[
max
ξ∈Ξ

1

n

∑
i∈[n]

σi
∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)]
+ 3`max

√
log(2/δ)

n

≤ 2× inf
ε∈[0,cθ/2]

(
4ε+ 12√

n

∫ cθ/2

ε

√
log(N (Ξ, ν, ‖ · ‖2,[n],θ))dν

)
+ 3`max

√
log(2/δ)

n

The final inequality again follows using covering number based bounds with chaining. We have used for a fixed retriever θ

cθ = sup
ξ∈Ξ

(
1
n

∑
i∈[n]

(∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

))2)1/2

,

and N (Ξ, ν, ‖ · ‖2,[n],θ) denote the covering number of the retriever function Ξ with error ν in L2 norm w.r.t. the set
{(xi, yi) : i ∈ [n]} and θ fixed,

‖u‖2,[n],θ :=
(

1
n

∑
i∈[n]

(∑
z∈I

pθ(z|xi)ui,z
)2)1/2

, ∀u ∈ Rn×|I|.

As ξ∗(θ) is fixed for a fixed θ we can directly bound, without any union over the learner/predictor space,

|EX
[
EZ∼pθ(·|X)gξ∗(θ)(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ∗(θ)(xi, z), yi

)
| ≤ 3`max

√
log(2/δ)

n .

Note the predictor approximation error is independent of retriever learning as it is compared with respect to the Bayes
optimal retriever (i.e. minz∈Igξ(x, z)).

B.2.3. INSTANTIATION OF MLP PREDICTOR

As a concrete example, we now consider the space Ξ = MLP(Rdx+dz ,RY;W,L).

Approximation error of MLP predictor: Our approximation results rely mainly on the results in (Siegel, 2023). The
key difference here is the output is now |Y| dimensional. We find MLP of depth L and width at most W ′ = O(dx + dz),
to individually approximate the functions hy∗(x, z) for each y ∈ Y. Later we can join these networks in parallel to obtain
a final network with depth L and width at most O((dx + dz)|Y|). In principle these networks may share sub-networks
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(e.g. the bit extraction networks, the sub-domain indexation network for p = q in (Siegel, 2023)) used for constructing the
approximation. However, this is out of scope for this work, and we leave this open.
From Theorem 1 in (Siegel, 2023) by taking p = q =∞ in the theorem statement, under Assumption B.2 we get that for
each y ∈ Y there exists a MLP fy ∈ MLP(Rdx+dz ,R;W,L) such that

‖fy − hy∗‖L∞(Ω) ≤ Cy‖hy∗‖Wκ(L∞(Ω))L
−2κI/(dx+dz)

for Ω ∈ [−1, 1]dx+dz , W = 25(dx + dz) + 31 and Cy = c(κI, dx + dz) < ∞ (independent of L). By concatenating the
networks fy for y ∈ Y in parallel (c.f. Lemma 5 in (Siegel, 2023)), and using the first layer to share the (dx + dz) input to
these parallel networks we obtain a MLP fopt ∈ MLP(Rdx+dz ,RK ;WY, L + 1), WY = O(|Y|(dx + dz)), such that we
have

‖fyopt − hy∗‖L∞(Ω) ≤
(

max
y∈Y

Cy‖hy∗‖Wκ(L∞(Ω))

)
L−2κI/(dx+dz).

By using ξ = fyopt in our bounds we obtain the predictor error as

Predictor Error ≤ 2
(

max
y∈Y

Cy‖hy∗‖Wκ(L∞(Ω))

)
L−2κI/(dx+dz) + (|Y| − 1) exp(−`max) + cI|I|−γI (35)

Generalization error for MLP predictor: We now bound the generalization error for Ξ which is the class of multi-layer
perceptron (MLP) with Relu nonlinearity given as MLP(R(dx+dz),R|Y|;W,L).
The first step is to bound the covering number N (Ξ, ν, ‖ · ‖2,[n],θ) norm with the covering number N (Ξ, ν, ‖ · ‖∞,n|I||Y|).
Where ‖ · ‖∞,n|I||Y| is defined as ‖u‖∞,n|I||Y| = supxi∈Sn supz∈I supy∈Y |ui,z,y|, ∀u ∈ Rn×|I|×|Y|.
We have for a fixed data set Sn := {(x1, y1), . . . , (xn, yn)} and retriever ξ, and two predictors ξ, ξ′ ∈ Ξ(

1
n

∑
i∈[n]

(∑
z∈I

pθ(z|xi)(`
(
hξ(xi, z), yi

)
− `
(
hξ′(xi, z), yi

)
)
)2)1/2

≤
(

1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)
(
`
(
hξ(xi, z), yi

)
− `
(
hξ′(xi, z), yi

))2)1/2

≤
(

1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)
(
|hyiξ (xi, z)− hyiξ′ (xi, z)|+ max

y∈Y
|hyξ (xi, z)− hyξ′(xi, z)|

)2)1/2

≤
(

1
n

∑
i∈[n]

∑
z∈I

pθ(z|xi)
(
|hyiξ (xi, z)− hyiξ′ (xi, z)|+ max

y∈Y
|hyξ (xi, z)− hyξ′(xi, z)|

)2)1/2

≤
√

2 sup
x∈X

sup
y∈Y

sup
z∈I
|hyξ (x, z)− hyξ′(x, z)|

The first inequality follows from Cauchy-Schwartz. For the case of bounded log-loss, we obtain the second inequality using
the fact that for any two s, s′ ∈ RK , | log(

∑
k exp(sk))− log(

∑
k exp(s

′
k))| ≤ maxk |sk − s′k|.

Let Ξcov be a ‖·‖∞,n|I||Y| norm cover for the space Ξ of cardinalityN (Ξ, ν, ‖·‖∞,n|I||Y|). That implies, for any ξ ∈ Ξ there
exists a ξ′(ξ) ∈ Ξcov such that supx∈X supy∈Y supz∈I |h

y
ξ (x, z)− hyξ′(x, z)| ≤ ν. Therefore, due to the above inequality,

we have
(

1
n

∑
i∈[n]

(∑
z∈I pθ(z|xi)(`

(
hξ(xi, z), yi

)
− `
(
hξ′(xi, z), yi

)
)
)2)1/2

≤ ν. So Ξcov forms a cover of Ξ with
respect to the ‖ · ‖2,[n],θ norm. Hence, N (Ξ, ν, ‖ · ‖2,[n],θ) ≤ N (Ξ, ν, ‖ · ‖∞,n|I||Y|).
We need to bound N (Ξ, ν, ‖ · ‖∞,n|I||Y|) next. Similar to the retrieval analysis, we first apply (Zhang, 2023) to bound the
covering number N (Ξ, ν, ‖ · ‖∞,n|I||Y|) with pseudo-dimension. However, we need slight reformulation of the function
hξ : X × Z → R|Y| to apply the results therein. Let us define function h̃ξ : X × Z × Y → R, where for each y ∈ Y we
have h̃ξ(x, y, z) = hyξ (x, z). It is easy to see that N (Ξ, ν, ‖ · ‖∞,n|I||Y|) covering of set Ξ remains unchanged due to this
reformulation. In particular, if the pseudo-dimension of {h̃ξ : ξ ∈ Ξ} is d̃V C , then we have logN (Ξ, ν, ‖ · ‖∞,n|I||Y|) ≤
1 + log(1 + d̃V C) + d̃V C log(max{2, en|I||Y|/d̃V Cν}) as per Theorem 5.11 in (Zhang, 2023).
Next we derive the pseudo-dimension of the class {h̃ξ : ξ ∈ Ξ} using (Bartlett et al., 2019). One challenge here
is that for the MLP we are considering the label y does not lie in the input space, rather this correspond to one co-
ordinate of the |Y|-dimensional output. This can be captured with the slight modification of Theorem 6 in (Bartlett
et al., 2019), namely Theorem A.9 in Appendix A. By Theorem A.9 we have for Ξ = MLP(Rdx+dz ,R|Y|;L,W ) the
VC dimension of Ξ as V Cdim(Ξ) = O(L log(|Y|) + L2W 2 log(LW )). The final generalization bound obtained is
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O
( `max

√
(L log(|Y|)+L2W 2 log(LW )) log(n|I||Y|)√

n

)
.

Excess risk of predictor learning: We can now combine the generalization and approximation errors to obtain the final
excess risk. The final excess risk is upper bounded as

Excess Risk ≤ R`,I(ξ∗, θ)− EX
[

min
z∈I

gξ∗(X, z)
]

︸ ︷︷ ︸
error from retriever θ

+O(L−2κI/(dx+dz) + (|Y| − 1) exp(−`max) + cI|I|−γI)︸ ︷︷ ︸
predictor approximation error

+O
(`max

√
(L log(|Y|) + L2W 2 log(LW )) log(n|I||Y|)√

n

)
︸ ︷︷ ︸

predictor generalization error

(36)

= EX
[

min
z∈I

gξ(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

error from predictor ξ

+ Õ(|Y|
2κI

(dx+dz)+2κI n
− κI

(dx+dz)+2κI )︸ ︷︷ ︸
predictor combined error

(37)

We have retriever set grow polynomially with data, |I| = Ω(ns), and we let `max = log(|Y|) + s′ log(n).
For s ≥ κI

((dx+dz)+2κI)γI
, and s′ ≥ κI

((dx+dz)+2κI) the final error bound for predictor follows by setting L =

n
(dx+dz)

2(dx+dz)+4κI |Y|−
dx+dz

(dx+dz)+2κI . Note that the choice of L and W here are related to predictor size, and are independent of
the choices in retriever size.
Moreover, here we see Assumption B.2 forces the quality of retriever set to become the bottleneck in predictor excess risk,
if we have |I| = o(ns) for s = κI

((dx+dz)+2κI)γI
.

B.3. Joint learning of retriever and predictor
In this section, we consider the task of joint learning the predictor and retriever from the space Ξ and Θ, respectively. The
empirical optimizer pair (ξ̂joint, θ̂joint), and the population optimizer (ξ∗joint, θ

∗
joint) for the joint task are given as.

ξ̂joint, θ̂joint = arg min
ξ∈Ξ,θ̂∈Θ

1

n

∑
i∈[n]

∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)
, ξ∗joint, θ

∗
joint = arg min

ξ∈Ξ
EX
[
EZ∼pθ(·|X)gξ(X,Z)

]
.

Recall, the optimal predictor with best possible retrieval is ξ∗ = arg minξ∈Ξ EX
[

minz∈I gξ(X, z)
]
. We let the optimal

retriever for ξ∗ as θ(ξ∗) = arg minθ∈Θ EX
[
EZ∼pθ(·|X)gξ∗(X,Z)

]
.

The excess risk for the classes Θ and Ξ can be bounded as
R`,I(ξ̂joint, θ̂joint)−R`,I(f `opt,I)

≤
∑

(θ,ξ)∈{(θ̂joint,ξ̂joint),(θ∗joint,ξ∗joint)}

|R`,I(ξ, θ)−R`,I,n(ξ, θ)|+R`,I(ξ
∗
joint, θ

∗
joint)−R`,I(f `opt,I)

≤
∑

(θ,ξ)∈{(θ̂joint,ξ̂joint),(θ∗joint,ξ∗joint)}

|R`,I(ξ, θ)−R`,I,n(ξ, θ)|+R`,I(ξ
∗, θ(ξ∗))−R`,I(f `opt,I)

≤
∑

(θ,ξ)∈{(θ̂joint,ξ̂joint),(θ∗joint,ξ∗joint)}

|R`,I(ξ, θ)−R`,I,n(ξ, θ)|

︸ ︷︷ ︸
Generalization Error

+R`,I(ξ
∗, θ(ξ∗))− EX

[
min
z∈I

gξ∗(X, z)
]

︸ ︷︷ ︸
retriever error

+EX
[

min
z∈I

gξ∗(X, z)
]
−R`,I(f `opt,I)︸ ︷︷ ︸

predictor error

Here, we substitute the pair (ξ∗, θ(ξ∗)) for (ξ∗joint, θ
∗
joint) where the former may have higher loss than latter, but the predictor

error is easily controlled. Also, note that the retriever θ(ξ∗) is optimized for predictor ξ∗. Therefore, we can bound the
retriever error properly unlike the fixed predictor case. We next bound the generalization and approximation errors separately.

B.3.1. GENERALIZATION ERROR:
First, for the fixed (θ∗, ξ∗) pair we bound the generalization error as

|EX
[
EZ∼pθ∗ (·|X)gξ∗(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ∗(z|xi)`
(
hξ∗(xi, z), yi

)
| ≤ 3`max

√
log(2/δ)

n .
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Next, the generalization for the (ξ̂, θ̂) error can be bounded as.

|EX
[
EZ∼pθ̂(·|X)gξ̂(X,Z)

]
− 1

n

∑
i∈[n]

∑
z∈I

pθ̂(z|xi)`
(
hξ̂(xi, z), yi

)
|

≤ 2Eσ

[
max

(θ,ξ)∈Θ×Ξ

1

n

∑
i∈[n]

σi
∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

)]
+ 3`max

√
log(2/δ)

n

≤ 2× inf
ε∈[0,cmax/2]

(
4ε+ 12√

n

∫ cmax/2

ε

√
log(N (Θ× Ξ, ν, ‖ · ‖2,[n]))dν

)
+ 3`max

√
log(2/δ)

n ,

The second inequality again follows using covering number based bounds with chaining. We have used for a fixed retriever θ

cmax = sup
θ,ξ∈Θ×Ξ

( ∑
i∈[n]

(∑
z∈I

pθ(z|xi)`
(
hξ(xi, z), yi

))2)1/2

,

and N (Ξ, ν, ‖ · ‖2,[n]) denote the covering number of the retriever function Ξ with error ν in L2 norm w.r.t. the set
{(xi, yi) : i ∈ [n]},

‖u‖2,[n] :=
( ∑
i∈[n]

(∑
z∈I

ui,z
)2)1/2

, ∀u ∈ Rn×|I|.

The term can be bounded using the retriever and predictor learning complexities as√
log(N (Θ× Ξ, ν, ‖ · ‖2,[n])) ≤ max

ξ∈Ξ

√
log(N (Θ, ν/2, ‖ · ‖2,[n],ξ)) + max

θ∈Θ

√
log(N (Ξ, ν/2, ‖ · ‖2,[n],θ)).

This implies that the generalization error of joint learning is (orderwise) bounded by the sum of the generalization error of
retriever and predictor learning.

B.3.2. APPROXIMATION ERROR

Moreover, the approximation error of predictor and retriever decouples under our decomposition, and under Assumption B.1
and B.2. So the approximation error is also bounded by the sum of the approximation error of retriever with optimal predictor,
and the approximation error of predictor learning. Our derived bounds approximation error of the retriever holds uniformly
for all predictor, so it also holds for optimal predictor. This implies that the joint retriever and predictor learning error is
bounded (orderwise) by the sum of the predictor and retriever errors derived earlier in Equation (29), and Equation (34)
earlier.

Proof of Theorem 3.3. We define fN (ν;A,B) = supb∈B
√

log(N (A, ν, ‖ · ‖2,n,b)). Putting the approximation and gener-
alization errors together we obtain the final excess risk bound as

∆`,ξ(ξ̂, θ̂)

≤ 3`max( 1
n +

√
log(n)
n ) + inf

ε∈[0,
`max

2 ]

8ε+ 24√
n

∫ `max

2

ε

fN (ν2 ; Θ,Ξ) + fN (ν2 ; Ξ,Θ)dν

+ inf
θ∈Θ

inf
τ>0

`max‖rθ + τgapξ‖∞ +
log(|I|)
τ2

+ inf
ξ∈Ξ

2EX
[

max
y∈Y
|hyξ (X, z∗(X))− hy∗(X, z∗(X))|

]
+ (|Y| − 1) exp(−`max) + cI|I|−γI .

This completes the proof.

B.3.3. INSTANTIATION OF MLP RETRIEVER AND PREDICTOR

For the scenario where the retriever and predictor are MLP, we can reuse the earlier analysis to provide the excess risk bound
here.

Proof of Theorem 3.4. Let us recall from Appendix B.1.3, in Equation 30 a retriever MLP with depth Lret, and width

is Wret = O(dx + dz) gives an approximation error O

(
`maxL

− 4κ
3(dx+dz)

ret log1/3(|I|)

)
and the generalization error

O

(
`maxLW

√
log(LW ) log(n|I|)√

n

)
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Similarly, from Appendix B.2.3, in Equation (35), a MLP predictor with depth Lpred and width Wpred = O(|Y|(dx +

dz)) has an approximation error O
(
L
−2κI/(dx+dz)
pred + (|Y| − 1) exp(−`max) + cI|I|−γI

)
, and a generalization error

O

(
`max

√
(Lpred log(|Y|)+Lpred|Y| log(Lpred|Y|)) log(n|I||Y|)

√
n

)
The combined error in this case is given as

∆`,I(ξ̂, θ̂) ≤ Õ
(
`max√
n

(Lret + Lpred|Y|)
)

+O
(
`maxL

− 4κ
3(dx+dz)

ret log1/3(|I|)
)

+O

(
L
− 2κI

(dx+dz)
pred + (|Y| − 1) exp(−`max) + cI|I|−γI

)
.

This completes the proof.

Finally, combining excess risk in Equation (31) and (37), the joint learning excess error rate is given as

Joint Excess Risk MLP ≤


Õ

(
n
− 2κ

3(dx+dz)+4κ + |Y|
2κI

(dx+dz)+2κI n
− κI

(dx+dz)+2κI

)
, if |I| = Ω(n

κI
((dx+dz)+2κI)γI ),

Õ

(
n
− 2κ

3(dx+dz)+4κ + |I|−γI
)
, otherwise.

(38)
Here κ is defined in Assumption B.1, and (κI, γI) are defined in Assumption B.2. Also, dx is the embedding dimension of
input x ∈ X and dz is the embedding dimension of retrieved example z ∈ I.

C. More experiments

Method
small base large

small base large small base large small base large

EMDR2 40.0 47.7 52.0 41.5 48.0 51.4 41.6 48.8 52.6
PDist 49.7 57.4 61.3 48.6 57.0 61.0 47.7 55.7 58.9
Cross-Entropy + PG 44.9 52.6 54.7 45.3 53.3 55.2 44.9 51.7 54.9
Cross-Entropy + TopK 48.9 56.8 60.9 47.9 55.5 59.6 46.7 54.3 58.2

Table 4. Recall on NQ. We measure the recall of answer string being present in the retrieved passage performance of RAMs across
various training objectives and model sizes. Top row specifies the predictor size and the second row specifies the retriever size.

C.1. Implementation details
Computing the objective (13), let alone its gradient, requires evaluating the reader and predictor over the entire data-store I

making it prohibitively expensive. We explore two ways to approximately compute the objective:

Top-K approximation This approach involves constraining the summation to a specific subset. Periodically we compute
pθ(z|x) for all items z ∈ I based on the current value of θ. We use this to obtain a set of K documents Z(xi) with the
highest (stale) scores, i.e. TK(pθ(·|xi)) and evaluate the sum on this.

LCE+TOPK
I,n (θ; ξ, I) = − 1

n

∑
i∈[n]

∑
z∈Z(xi)

pθ,I(z|xi) · log pξ(yi|xi, z) (39)

This methodology is akin to those adopted by EMDR2 and PDist, with the set being refreshed every 500 training steps and
the selection of K = 64.

Policy gradient Based on connection to RLHF/RLAIF, we propose to use policy gradient method (Sutton & Barto, 2018)
to obtain an unbaised estimate of gradient with respect to θ efficiently. However, as policy gradients suffer from high
variance (Burda et al., 2015; Grathwohl et al., 2021) we use a constant baseline (Williams, 1992) for variance reduction, i.e.
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Method
small base large

small base large small base large small base large

EMDR2 46.6 54.7 62.4 46.1 55.7 61.6 46.0 53.9 59.5
PDist 59.6 68.6 72.8 59.1 61.9 72.2 56.4 59.3 69.3
Cross-Entropy + PG 58.1 60.7 70.7 56.9 66.1 64.2 54.2 61.4 61.3
Cross-Entropy + TopK 57.1 64.5 69.1 55.9 63.5 68.1 54.2 61.2 65.8

Table 5. Recall on TriviaQA. We measure the recall of answer string being present in the retrieved passage performance of RAMs across
various training objectives and model sizes. Top row specifies the predictor size and the second row specifies the retriever size.

small base large

small base large small base large small base large

96.4M 170.9M 396.4M 258.8M 333.3M 558.9M 773.6M 848.1M 1073.7M

Table 6. Parameters. We report the model parameters in various configuration by RAMs across various model sizes. Top row specifies
the predictor size and the second row specifies the retriever size.

our objective becomes

LCE+PG
I,n (θ; ξ, I) = − 1

n

∑
i∈[n]

∑
j∈[K]

pθ,I(zj(xi)|xi) ·
[

log pξ(yi|xi, zj(xi))− b
]

∇θLCE+PG
I,n (θ; ξ, I) = − 1

n

∑
i∈[n]

∑
j∈[K]

∇θ log pθ,I(zj(xi)|xi) ·
[

log pξ(yi|xi, zj(xi))− b
]
,

(40)

where zj(xi) ∼ pθ(·|xi) are K i.i.d. samples from the retriever distribution. We use K = 64 and b = 5.

C.2. Training details
Dataset The versions of the open-domain QA datasets, we use are:

• TriviaQA: https://www.tensorflow.org/datasets/catalog/trivia_qa#trivia_
qaunfilterednocontext

• NQOpen https://www.tensorflow.org/datasets/catalog/natural_questions_open

Optimization. For all of our experiments, we use ADAM weight decay optimizer with a short warm up period (2000 steps)
and a linear decay schedule. We use the peak learning rate of 1× 10−4. The weight decay factor is 0.1. We chose batch
sizes to be 64. The number of total training steps is as follows:

• No retriever, train predictor ξ: 40,000

• Fixed retriever θ0, train predictor ξ: 20,000

• Fixed predictor ξ?(θ0), train retriever θ: 20,000

• Jointly train predictor ξ and retriever θ: 40,000

Initializations We initialize models for different configurations as follows:

• No retriever, train predictor ξ: We initialize the predictor from public pretrained T5 checkpoint.

• Fixed retriever θ0, train predictor ξ: We initialize the fixed retriever from public pretrained GTR checkpoint and
predictor from public pretrained T5 checkpoint.

• Fixed predictor ξ?(θ0), train retriever θ: We initialize the fixed predictor from the final checkpoint of previous run, i.e.
“Fixed retriever θ0, train predictor ξ”. The retriever is initialized from public pretrained GTR checkpoint.

• Jointly train predictor ξ and retriever θ: We initialize the fixed retriever from public pretrained GTR checkpoint and
predictor from public pretrained T5 checkpoint.
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