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Abstract

Large language models have shown impressive results for
multi-hop mathematical reasoning when the input question is
only textual. Many mathematical reasoning problems, how-
ever, contain both text and image. With the ever-increasing
adoption of vision language models (VLMs), understanding
their reasoning abilities for such problems is crucial. In
this paper, we evaluate the reasoning capabilities of VLMs
along various axes through the lens of geometry problems.
We procedurally create a synthetic dataset of geometry ques-
tions with controllable difficulty levels along multiple axes,
thus enabling a systematic evaluation. The empirical results
obtained using our benchmark for state-of-the-art VLMs in-
dicate that these models are not as capable in subjects like
geometry (and, by generalization, other topics requiring sim-
ilar reasoning) as suggested by previous benchmarks. This is
made especially clear by the construction of our benchmark
at various depth levels, since solving higher-depth problems
requires long chains of reasoning rather than additional
memorized knowledge.

1. Introduction

Multi-hop reasoning is a fundamental element in intelligence:
it allows us to combine multiple pieces of information to
answer questions or solve problems. While formal reasoning
such as automated theorem proving [27, 40, 42] has been a
key focus in the AI literature, recent years have witnessed
a great amount of progress in multi-hop reasoning with nat-
ural language thanks to the advances in pre-trained large
language models (LLMs) [23, 37, 39, 41, 51, 52]. Among
various types of multi-hop reasoning, mathematical reason-
ing has turned into a key focus domain for AI researchers
[28, 33] with many recent works targeting to solve open
problems in mathematics [15, 17]. It is an appealing do-
main for AI research due to various reasons: it is a primitive
skill that is essential for many tasks, it has an open-ended

Figure 1. Sample GeomVerse problem. Question: If the ABEF
shape is a rectangle where a semi-circle has been removed from one
side of it, the perimeter of the ABEF shape is 34 [...] compute the
degree of the DAB angle. Assume π = 3.14. Round computations
to 2 decimal places. Solution: The diameter of the semi-circle in
the ABEF shape is equal to the side of the rectangle with length
7 so the shape has two sides with equal but unknown lengths, one
side with length 7, and one semi-circle arc with diameter 7. So the
perimeter is 2 ∗ UnknownSide + 7 + 7π

2
[...] the length of the

AB side is 16.01
2

= 8. [...] the final answer is 28.69.

nature, and due to various challenges such as limited data
it still remains a challenge for LLMs and modern AI sys-
tems. Recently, the International Math Olympiad (IMO)
grand challenge [43] was announced where the goal is to
build an AI system that can win a gold medal in IMO, one
of the most prestigious competitions. Not only research,
with advancements in LLMs, many new applications and
products are leveraging AI research for education to build
personalized tutors [1, 24]. One of the key challenges so
far has been to improve the performance of these systems in
STEM subjects.

Due to the vast popularity of mathematical problem solv-
ing both from research and product perspectives, several



datasets have been developed for measuring and improv-
ing the mathematical reasoning of LLMs [12, 20, 31] and
are widely adopted by the research community. While ex-
isting datasets mostly focus on textual problems, there are
several bodies of mathematical problems that require both
textual and visual understanding of the problem. Being one
of the main school curriculum and having a high presence
in many math competitions including IMO, geometry is a
key domain in this space. With the fast pace in adoption
of the vision-language models (VLMs) [9, 38] in various
aforementioned applications, it is crucial to measure and
improve their performance on such problems. Previous work
has created a number of datasets with geometry questions
based on high-school, college, or SAT exams, and developed
specific models for this task. While evaluating VLMs on
such datasets may provide a holistic understanding of the
general capability of the models, such evaluation may pro-
vide little information about the specific areas of strengths
and weaknesses of VLMs and hence provide little guidance
on where research should focus. Recent years have wit-
nessed a surge of interest in synthetic datasets that allow
for a systematic evaluation of the boundaries of capabilities
and the limitations of the state-of-the-art models (see, e.g.,
[6, 16, 19, 22, 30, 49]).

In this paper we create GeomVerse, a dataset of syntheti-
cally generated geometry questions that require multi-hop
mathematical reasoning over text and image. We bridge
reasoning about geometry problems and logical reasoning,
allowing us to measure model performances on reasoning
factors that may go beyond geometry and may be present
in many (mathematical) reasoning problems on text and im-
age. In other words, GeomVerse allows for unveiling the
reasoning ability of VLMs across several axes, by using ge-
ometry as a lens. We also measure model performances on
geometry-specific axes of difficulty. This enables a system-
atic evaluation of VLMs on this task. A sample generated
problem and solution can be viewed in Figure 1.

Some of the main findings from our systematic evaluation
on GeomVerse are summarized below. Firstly, through the
unique property of GeomVerse that allows for constructing
benchmarks at various depths, we find that current VLMs are
not as capable in subjects like geometry as suggested by pre-
vious benchmarks, showing that they may still be immature
for product applications such as AI tutoring. Importantly,
since several of the difficulty axes we study are not specific
to geometry, our results reveal a number of important failure
modes as well as a significant gap in the reasoning capac-
ity of state-of-the-art VLM that may go beyond geometry.
Secondly, finetuning VLMs to produce the entire solution
substantially improves their performance for in-distribution
problems but that does not generalize to out-of-distribution
problems. Thirdly, VLMs struggle more with increasing in
depth rather than width of reasoning. And fourthly, VLMs

are rather robust to the question and image representation.

2. Related Work
Our work is related to several research directions in the
literature as summarized below.

Vision-Language Models (VLMs): Recent VLMs [2, 3,
9, 10, 29, 50] have demonstrated promising performance on
a wide range of image and video tasks including captioning,
question answering and visual reasoning. However, the capa-
bilities of performing multi-modal multi-hop (mathematical)
reasoning are less investigated. Because these VLMs are
generative black-boxes, understanding how well they can
comprehend and answer the multi-hop questions is a critical
topic.

Multi-Hop Reasoning Datasets: There are a number of
datasets available in the literature that require multi-hop
logical [22, 46, 55] and mathematical [12, 20, 31] reasoning
over text. Previous work has also developed a number of
geometric reasoning datasets [7, 8, 32, 44, 54] that require
reasoning over both text and image. Table 1 provides an
overview of the existing datasets and compares them along
four axes: 1- requiring textual understanding, 2- requiring
visual understanding, 3- involving mathematical reasoning,
and 4- automatic control of the difficulty level (thus allowing
for a systematic evaluation).

Multi-Hop Reasoning Approaches: Some of the ap-
proaches for improving the multi-hop reasoning of LLMs
and VLMs range from pre-training on relevant data [20, 28],
finetuning with [14, 22, 37, 53] and without [5, 11] explicitly
generating the solution, in-context learning with solutions
[51], decomposing the problem into smaller pieces and solv-
ing them separately [25, 56] and using LLMs/VLMs as tools
within classical algorithms [13, 23]. In the realm of rea-
soning about geometry problems, existing work typically
develops specialized models or tools (e.g, [48]) or resorts to
distillation strategies (e.g., [18]); measuring the reasoning
ability of general-purpose VLMs is less studied.

3. The GeomVerse Dataset
We start with some preliminaries and terminologies. Then,
we explain how GeomVerse is created. The dataset will be
publicly available upon the acceptance of the paper.

3.1. Multi-Hop Logical Reasoning

A logical theory consists of facts and rules. Consider the
following theory as a running example:

Facts : {a, b}
Rules : {a⇒ c, a ∧ b⇒ d, d⇒ e}
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Visual
Understanding

7 7 7 7 7 3 3 3 3 3 3 3 3

Mathematical
Reasoning

7 ∼ 7 3 3 ∼ ∼ 3 3 3 3 3 3

Automatic
Difficulty
Control

3 3 7 7 7 ∼ ∼ 7 7 7 7 7 3

Table 1. A comparison of GeomVerse with some of the recent and/or widely-used multi-hop (logical or mathematical) reasoning datasets.
We use ∼ when a dataset contains a property to a limited extent.

The theory contains two facts specifying a and b are true,
and three rules specifying a implies c, a and b imply d and d
implies e. Starting from the facts, one can apply deduction on
the set of facts and the rules to derive new facts and answer
queries (e.g., we can query whether e holds). We define the
depth of a query as the number of hops of reasoning required
to prove it, and the width of a query as the maximum number
of branches in the proof of the query. For a given query,
any fact or rule not necessarily in the proof of the query is
referred to as a distractor. For example, if we query a both
the depth and width are 0, if we query c the depth is 1 and the
width is also 1, if we query d the depth is 1 and the width is 2,
and if we query e both the depth and the width are 2. When
we query e, the rule a⇒ c is a distractor. Note that queries
with width 1 correspond to a chain of reasoning, whereas
higher width queries correspond to a tree of reasoning.

3.2. From Logical to Geometric Reasoning

Geometry problems often provide values for certain elements
(e.g., sides, angles, areas). Using geometric rules and formu-
las, we can deduce the values of the remaining elements one
by one. The elements whose values are given to us can be
thought of as facts in logical theories, the geometry rules and
formulas can be considered as the rules in logical theories,
and the process of deriving the hidden values can be thought
of as the deduction.

As an example, the solution to the problem in Figure 1
can be formulated in logical form as:

Facts : {AAHID, AABCD, PABEF , LBE}
Rules : {AAHID =⇒ AD,PABEF , LBE =⇒ LAB ,

AABCD, LAD, LAB =⇒ DDAB}

where Ax, Px, Lx and Dx represent the area of a shape,
perimeter of a shape, length of a side, and degree of an an-
gle respectively. We note two key differences with logical
reasoning: 1- unlike in deductive logical reasoning, the rules
are not given to the model and the model has to use its own

geometry knowledge (learned from pre-training or finetun-
ing) to apply the right geometry formulae and derive new
values, 2- in the case of geometry, applying rules involves
computations.

Generating Examples with Depth 1: To generate an
example with depth 1, we can simply sample a shape s ∈ S
and formula f ∈ Fs. Then, we let facts = f (in), query =
f (out), and with the only required rule in the solution being
rules = {f}.

Increasing the Depth: Let f1 be the formula we sampled
for the depth 1 example and f (in)1 and f (out)1 be the inputs
and output of f1. To increase the depth to 2, we select one
of the elements e in f (in)1 and do not provide it in the facts.
Instead, we sample a new shape s2 and formula f2 such
that f (out)2 has the same type as e and we tie the values of
e and f (out)2

1. For example, if e is one of the sides of a
triangle, then s2 can be a square and f2 can be the formula
of deriving the side of a square from its area, where the
square and the triangle share the same side. Then facts =
(f

(in)
1 − e) ∪ f (in)2 , query = f

(out)
1 , and the required rules

are rules = {f1, f2} with f2 providing the value for e and
then f1 using this value to answer the query. The depth can
be further increased in a similar way by appending a new
shape and formula to one of the elements in f (in)2 .

Increasing the Width: Let s and f be the shape and
formula we sampled at some depth for the construction of
an example and e1 and e2 be two connectable elements (side
or angle) in f (in). We can include only f (in) − {e1, e2} in
the facts, and append new shapes and formulas as explained
above so that the values for e1 and e2 can be derived.

Distractors: Distractors can be added in a post process-
ing step. Consider a Depth 2 (Width 1) example and suppose
e is the element that has to be computed in the first hop and
be used in the second hop. If we provide the value of e as
input, then the model turns into a Depth 1 problem with

1Note: e should have a type that allows it to be connected to another
shape (e.g., side or angle).



Algorithm 1 BackwardGenerate
Input: Shared element e, Shared element type τ Depth d

if d == 0 then
do

s = RandomSelect(S)
f = RandomSelect(Fs)

while f (out).type != τ
Append s to other shapes on e.
Randomly assign values to f (in).
Provide f (in) values as facts.

else
do

s = RandomSelect(S)
f = RandomSelect(Fs)
E = ConnectableElements(f (in))

while f (out).type != τ OR |E| = 0
Append s to other shapes on e.
Randomly assign values to f (in) − E .
Provide f (in) − E values as facts.
e1, . . . , em = SampleElems(E , pbranch)
for e ∈ {e1, . . . , em} do

BackwardGenerate(e, e.type, d-1)

a distracting shape and corresponding values. In Figure 1,
for example, if we provide the value of the AD side as in-
put, then the square and its corresponding values can be
considered as distractors.

The Generation Algorithm: Algorithm 1 adopts the
high-level idea of the GenerateTheory algorithm from
Kazemi et al. [22] for recursively generating geometry prob-
lems (as opposed to logical theory problems) in a backward
fashion. Initially, we select one element type τ to be asked
for in the question (e.g., side, angle, area, perimeter, etc.),
and a desired depth d. Then we call the BackwardGenerate
function. If d = 0, we sample a shape s ∈ S and formula
f ∈ Fs such that the type of the element in f (out) is τ ,
append the shape s to the previous shapes on the shared
element, assign random values to the elements in f (in) and
provide them as facts2. Otherwise, we sample a shape s ∈ S
and formula f ∈ Fs such that 1) the type of the element
in f (out) is τ and 2) there is at least one connectable (side
or angle) element in f (in). Then, we select a subset E of
the elements in f (in) for expanding the number of hops. If
pbranch = 0, we only select one of the elements from f (in)

which introduces no branching and so no increase in width.
Otherwise, with probability pbranch we select a second ele-

2During random value assignment, we test multiple factors to ensure
the assigned values are sensible (e.g., the sides of a right triangle are
smaller than its hypotenuse) and re-assign values until these criteria are met.
Sometimes, this becomes impossible due to some values that are derived
from other hops; in these cases, we simply discard the example and generate
another example from scratch.

ment as well, which leads to a branching and so increases
the width. We append the shape s to the previous shapes on
the shared element, assign random values to the elements in
f (in) − E and provide them as facts. Then, for each element
in E , we recursively call the BackwardGenerate function to
append new shapes such that these values can be derived. A
visual example of the procedure is provided in Appendix 9.

Automatic Question and Solution Generation: We au-
tomatically produce a question that provides the facts as
input and asks for f (out) where f is the first formula used.
We also keep track of the required rules (including shapes,
formulas, and the shared elements) during the generation
process (excluded from Algorithm 1 for brevity) and au-
tomatically produce a solution by applying deduction and
computations on the rules and facts.

Text-Only vs. Text-Image: We create two versions of
our problems. In one version, all the required information
is given in the question and the image is not needed for
answering the question (although the presence of the image
can make it easier to understand the problem), and in the
other version some information is given in the image and
some in the question text so both the image and text of the
question are required. We use the former to experiment with
text-based LLMs and the latter to experiment with VLMs.

Coverage: The connection between Algorithm 1 and
logical reasoning helps specify what classes of geometry
problems are covered by Algorithm 1. Specifically, Algo-
rithm 1 can generate any geometry problem P containing a
tree of shapes where each shape is connected to its parent
shape via a single side or a single (vertical) angle, and where
the solution can be found by finding the values of the shared
elements bottom-up on the tree.

Further Considerations: While Algorithm 1 can gener-
ate problems with overlapping shapes, to ensure the quality
of the generated examples remains high without any human
involvement in the generation process, we only accept the
generated examples where the shapes are non-overlapping.

3.3. Quality Check

To ensure high quality for the questions, the solutions, the
images, and the labels, we did two quality checks. Firstly,
we generated all possible Depth 1 problems and manually
verified their quality and correctness. Secondly, we asked 10
well-educated people to verify a total of 100 problems (from
various depths and with various properties) and identify as
many issues as possible with the questions, solutions, labels,
or images. A list of the issues identified in this round are
provided in Appendix 11. All the raised issues were then
fixed, and the process was repeated with 100 new examples
to ensure no issues remained. Additionally, to get human
performance on these problems, a separate set of four people
solved 60 sampled problems (20 from each depth) and raised
no issues, indicating another level of quality check for the



Figure 2. The standard shapes (top row) and non-standard shapes (bottom row) used in our dataset.
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Figure 3. Model performances as a function of the depth of reasoning. Note: near-zero accuracies are not visible in the plot. ∗GPT4V
results were obtained on a subset of randomly selected 10 examples per depth, and the correctness was determined manually.

generated dataset.

4. Experiments

We experiment with two state-of-the-art VLMs: PaLI [9]
and GPT4V [38], and a state-of-the-art LLM: PaLM 2 Large
[4], in four settings: 1- zero-shot, 2- few-shot with chain-
of-thought (CoT) prompting [51] (hereafter referred to as
FS-CoT), where the CoT corresponds to the solution, 3-
finetuning to directly predict the label (hereafter referred
to as FT), and 4- finetuning to predict the solution/CoT
(hereafter referred to as FT-CoT). We do the first experiment
with GPT4V3, the second with PaLM 2 Large and PaLI 55B
(the largest PaLI model), and the last two experiments with
PaLI 5B to keep the required computations manageable.

Following Methani et al. [36] and Masry et al. [35], we
measure performance in terms of relaxed accuracy, where a
prediction is considered correct if it is within δ percent of the
golden label. We do this to accommodate for the slight varia-
tion in computations introduced due to the rounding strategy
(e.g., due to the order of the computations). We empirically
found δ = 3 to be appropriate so we consider a prediction
p correct if 0.97 ∗ label ≤ p ≤ 1.03 ∗ label. We remove
from our dataset any example where the difference between
the label computed with and without rounding intermediate
steps is more than 3%.

We provide results on subsets of our dataset with different

3Based on the GPT4 responses, we notice that it uses zero-shot CoT
[26] under the hood.

properties. In each case, we generate 1000 examples ran-
domly given the described parameters and report the results
on those examples. We also generate a separate pool of train,
validation, and fewshot examples for our experiments. The
implementation details are presented in Appendix 8.

4.1. Performance as a Function of Depth

Figure 3 represents the model results on examples with vary-
ing depths. Without finetuning, GPT4V can only solve Depth
1 examples, and the accuracy of the FS-CoT PaLI model is
almost zero on all depths. In contrast, the text-only model
can solve a portion of the Depth 2 and 3 problems as well.
While the presence of the image should make the problem
easier to understand and solve, this results hints that LLMs
may be stronger in mathematical and multi-hop reasoning
compared to their counterpart VLMs. Moreover, while fine-
tuning helps VLMs learn to do some reasoning, as the depth
of reasoning increases the performance drops monotonically
and quite significantly.

Notice that FT-CoT outperforms FT substantially for all
depths. While such improvements have been previously
observed for reasoning with textual inputs [45], this result
shows the importance of showing CoT to VLMs as well.
This result also hints at the quality of the automatic solutions
in GeomVerse.

We also measured human performance on our dataset
by having 4 well-educated (but not necessarily expert in
geometry) people solve a total of 20 problems per depth.
The results show a stark gap between the best model perfor-
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Figure 4. Measuring the generalization ability with in-distribution
and out-of-distribution problems.

Table 2. Top-5 failure modes in the order of frequency.

Few-Shot Text-Only Model FT-CoT VLM Model (OOD)
Wrong proof planning Wrong calculations

Wrong formula Misunderstanding shapes
Wrong calculations Wrong formula

Wrong assignment of values Wrong proof planning
Hallucinating values Wrong value assignment

mances and the human performance; we also observe that
our problems can be challenging to solve even for humans.
The mistakes made by humans where due to various issues
including wrong/forgotten degree to radians conversion, us-
ing wrong formulas, and making wrong assumptions.

Generalization: We next measure how much the FT-CoT
model (the best performing one across depths) can generalize
to variations in the shapes. To this end, we finetune a model
only on the following shapes: square, right triangle, trape-
zoid, semi-circle, rectangle plus equilateral triangle, rectan-
gle minus semi-circle, and square minus circle. We then
report the results separately for the test examples containing
only these shapes (in-distribution) vs examples containing
at least one new shape (out-of-distribution). Notice that all
the left-out shapes have a similar (but not exact) counterpart
shape in the training. The results are reported in Figure 4.
As it can be observed, the performance goes significantly
down for the out-of-distribution case.

Our depth and generalization results combined show that
VLMs struggle with solving multi-hop geometry questions
and reveals a crucial gap in their reasoning capabilities.

Failure Analysis: To understand the main failure modes
of the models, we manually verified 5 examples per depth for
the FS-CoT text-only model and the FT-CoT model when
tested on a combination of seen and unseen shapes. The
main failure modes are presented in Table 2. Besides compu-
tation errors which have been previously observed as well for
mathematical reasoning problems [28], we observe several
other failure modes: 1- wrong proof planning (either wrong
step order or disconnected steps), 2- wrong formulas (show-
ing a gap in model knowledge), 3- misundestanding shapes
in the case of VLMs (e.g., confusing sector with triangle), 4-
wrong value assignment (e.g., assigning the value of a side
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Figure 5. Model performances as a function of width. Models
seem to be less affected by increasing the width of the reasoning.

to another side), and 5- hallucination (mostly hallucinating
non-existent value). While proof planning is the most fre-
quent failure mode of the text-only model, we notice that the
FT-CoT model makes fewer planning errors.

Correct Label = Correct Reasoning? We next verify if
the model produces a correct reasoning chain in the cases
where it produces a correct final answer. Since re-using the
reasoning chains produced by a model to further finetune
it is becoming more prevalent [21, 34, 53], producing cor-
rect reasoning in the case of correct label is an important
property of a model. To measure the reasoning accuracy, for
the FS-CoT text-only and the FT-CoT models, we randomly
selected up to 20 examples (upper-bounded by the number
of correctly solved problems) from each of the depths where
the model produced the exact label and verified manually if
the produced reasoning chain is also correct. We also veri-
fied the examples for which the zero-shot model predicted
the label correctly. For Depth 1 examples, we observe that
the reasoning chain is correct for the three models in all
cases; for Depth 2, 20/20 have correct reasoning chains for
the FS-CoT model and 19/20 have correct reasoning chains
for the FT-CoT model, and for Depth 3 examples, 8/9 ex-
amples have correct reasoning chains for the FS-CoT model
and 16/20 for the FT-CoT model, with the errors mostly
being on missed intermediate computations that were then
replaced with correct numbers in later steps. This shows that
the reasoning is mostly correct when the label is predicted
correctly.

Due to the low performance of the zero-shot and FS-CoT
PaLI models, hereafter we only experiment with the FS-CoT
Text-Only and finetuned PaLI models.

4.2. Performance as a Function of Width

We generate Depth 2 examples (medium difficulty in terms
of depth) with pbranch=0, 0.5, and 1.0, and report the per-
formances in Figure 5. We observe that while increasing
the width negatively affects the performance in several cases
(especially for the FS-CoT model) the amount of decrease
is substantially lower compared to the depth experiments4.

4Part of the reason for this observation could be because we have only
30/68 formulas that have more than 1 connectable elements in their inputs
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Figure 7. Measuring model sensitivity to low-level features of the
images.

The results hint at the ability of the models at learning to
deal with higher width examples. This could be because the
main added difficulty from higher width problems is that
the model needs to solve more independent Depth 1 prob-
lems, on which they showed good performance according to
Figure 3.

4.3. Distractors

We next measure how well models can deal with distracting
information, a phenomenon which is common in real prob-
lems. We create a version of the Depth 2 problems where we
provide the hidden value as input. This effectively turns the
Depth 2 problem into a Depth 1 problem with some extra
(distracting) shapes and values. The model performance is
reported in Figure 6. Comparing Depth 1 results with and
without distractors, the performance drops significantly for
all models in presence of a distractor. Comparing Depth
1 with distractor and Depth 2 without distractor, while the
text-only model has taken advantage of the value for the hid-
den element in some cases, for the finetuned VLM models
the performance degrades to as low as that of the Depth 2
dataset.

4.4. Sensitivity to low-level visual features

To measure how sensitive the VLM models are to the low-
level visual features, we create separate test sets each varying
in one low-level feature and measure the performance of the

and so even in the case where pbranch = 1.0, we still generate a number
of examples that correspond to chains as opposed to trees.

trained models on these new sets. Specifically, we exper-
iment with changing the opacity of the shape colors, the
line width of shape boundaries, and the font size of the texts
on the images. In figure 7, we observe that the models are
robust against opacity and line width, but not against font
size changes.

4.5. Other Variations

Our experiments so far focus on general factors that may be
present in many problems requiring reasoning on text and
image. In Appendix 7, we experiment with various other
axes of difficulty that are more specific to geometry problems
(including shapes, source of information, image annotation,
adding variablized inputs, and decomposing performance
based on question type).

5. Conclusion
In this work, we procedurally generated a synthetic dataset
of geometry reasoning questions that require multi-hop rea-
soning over both text and image. Through the lens of the
geometry problems, we conducted a systematic analysis of
various general and geometry-specific reasoning abilities of
VLMs and found the gaps and strengths in their reasoning
capabilities. Future work can verify the merit of finetuning
models on synthetic geometry problems for improving their
performance on real datasets. In an initial experiment, we
measured the performance of the PaLI 5B model on Ge-
ometry3k with and without finetuning on GeomVerse and
observed modest improvements (from almost 0 to almost 2
percent accuracy). We believe this is due to the difference in
the visual and textual features of the Geomety3k and Geom-
Verse, as well as the poor generalization of PaLI to geometry
problems beyond its training distribution. Better aligning the
textual and visual features and using more powerful models
can yield more gains.

Limitations & Risks
• While GeomVerse covers a wide range of geometry ques-

tions, there are problems that cannot be produced using
Algorithm 1 with our current set of shapes and formulas.
The connection between Algorithm 1 and logical reason-
ing makes evident the class of problems that cannot be
represented by the algorithm. In particular, let P be the
class of geometry problems containing a tree of shapes
where each shape is connected to its parent shape via a sin-
gle side or a single (vertical) angle, and where the solution
can be found by finding the values of the shared elements
bottom-up on the tree. Algorithm 1 cannot generate any
geometry problem that is not in P . For example, let ABC
be a triangle, D be a point on the AC side dividing ABC
into two triangles ABD and ACD, where some property
of ABC should be computed based on the properties of



ABD and ACD. This problem cannot be produced by
Algorithm 1 as it does not correspond to a tree of con-
nected shapes as described above. However, note that one
can add such cases to our set of non-standard shapes in a
similar way we added the other non-standard shapes.

• The problems in GeomVerse can be solved with a logical
deduction procedure and may not require much creativity.
For this reason, our evaluation should not be considered
as measuring the creativity of the models in solving prob-
lems, but rather their ability in following a deduction
procedure.

• For our finetuning experiments, to make computations
manageable, we used the small PaLI 5B model. Fine-
tuning larger and more capable models such as Gemini
[47] or GPT4V [38] can provide more insight into the
performance of the finetuned VLMs.
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Figure 8. Comparing model performance when using only standard
shapes vs when using all shapes. Overall, we do not see a big drop
in the performance.

6. Appendix

7. More Results: Other Axes of Difficulty

Besides the experiments in the main text, we also consider a
number of other axes of difficulty for a systematic evaluation.
In what follows, we describe these axes and present the
experimental results. In Section 10, we provide samples
corresponding to each of the axes of difficulty.

7.1. Standard vs Non-Standard Shapes

In Figure 2, we outlined the standard and non-standard
shapes used in GeomVerse. Conceptually, it should be more
difficult to solve problems involving non-standard shapes
as they require more computations. We compare the per-
formance of various models on problems that contain all
shapes vs those that involve only standard shapes. To fix
other axis of difficulty, we only consider depth 2 examples
for this experiment where the problems are at a medium
level of difficulty. The finetuned models are finetuned on all
images in both cases. The results are in Figure 8. According
to the results, we observe that while the FS-CoT model per-
forms better on the standard shapes, this is not the case after
finetuning. This shows that finetuning can teach the models
to effectively deal with non-standard (but in-distribution)
shapes.

7.2. More Info in Text or on Image

Some of the information can be provided either in the text of
the question or on the image. For example, the degree of an
angle can be provided in the image, or can be provided in the
text. We generate examples where the information is given
mostly in text and examples where it is given mostly on
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Figure 9. Model performances as a function of providing more
information in the text or on the image.
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Figure 10. Model performances as a function of image annotation.

the image, and report model performances in Figure 9. For
the FT model, we see that the former case results in lower
accuracy which could be because in this case the model
needs to first map those information to the elements in the
image and then reason with them. FT-CoT almost closes
the gap; this could be because the provided CoTs teach the
model how to map information from text to image.

7.3. Image Annotation

We consider two types of image annotation: 1- individual
annotation: we refer to each side with a single lower-case
letter, each angle with a Greek letter, and each shape with
its (distinct) color, and 2- coordinate annotation: we assign
upper-case letters to the coordinates on the image and refer
to sides with the letters on the two coordinates, to angles
with the three coordinates, and to shapes with all their coor-
dinates. We generate a test set with coordinate annotation
and another with individual annotation and report model
performances on these two sets in Figure 10. The two mod-
els show different behaviour with the FT model performing
slightly better on the individual annotation case, but the
FT-CoT model slightly performing better on the coordinate
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Figure 11. Model performances as a function of including vari-
ablized inputs in the question. The performance degrades as we
include variables in the questions.

annotation case.

7.4. Variablized Inputs

Instead of providing the exact values of the input elements
(e.g., the α angle is 30 degrees), it is common in geometry
questions to provide a variablized version of them (e.g., the
α angle is 2x+ 1) in which case one needs to first infer the
value of the variable based on the given information and then
use that to infer the value of an element. As an example, we
can either directly provide two of the angles of a triangle as
input and ask for the third one, or we can provide variablized
values for the three angles and ask for one of them. To
generate variablized questions, when we use a formula f ,
instead of directly providing the values for f (in) as input
and expecting the model to apply the formula to derive the
value of f (out), we provide variablized values for (some of)
the elements in f (in) and f (out) and expect the model to use
the formula for deriving the value of the variable x and use
that to derive the numerical value of f (out). We selected
17/68 of our formulas for which a variablized version of the
problem only requires solving an extra 1-d linear equation.
We then conducted an experiment where, whenever one of
the 17 rules was selected during generation, we provide
a variablized version of it with probability ρ. Figure 11
demonstrates the results for ρ = 0, ρ = 0.5 (corresponding
to level = medium) and ρ = 1.0 (corresponding to level
= high). We observe that as we include variablized inputs,
the performance of the models degrade, especially for the
FT-CoT model. This shows VLMs (and also LLMs) struggle
to work with variables when solving geometry problems.

7.5. Decomposing by Question Type

Our questions involve asking about the length of a side,
the degree of an angle, or the area/perimeter of a shape.
In Figure 12, we report model performances for each of
these question types. We observe that the FS-CoT Text-
Only model performs almost equally across all three types,
with slight preference for angle and area/perimeter questions.
For the FT model, questions about angles are substantially
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Figure 12. Model performances broken down by the question type.

easier, followed by questions about side. We conjecture
that part of the reason for the high performance of the FT
model on angle questions might be because the degree of
an angle can be estimated from the figure without actually
solving the problem. This could be in part validated by the
results of the FT-CoT model, where the jump in accuracy is
substantially higher for side and area/perimeter questions. In
the case of FT-CoT, we see that side questions are easier than
the other two; this may in part be because these questions
involve easier arithmetic operations (e.g., some of the angle
questions require computing arcsin which might be difficult
for a pre-trained model).

8. Implementation Details
For our finetuning experiments, we first generated a training
set containing 10k examples and a validation set containing
2k examples. For each of the examples in these two sets, the
parameters corresponding to different axes of difficulty dis-
cussed in the paper were set randomly to allow for a diverse
set of examples in the train and validation sets. We then
removed the (few) examples whose solution was identical to
one of the solutions in one of the examples in our test sets.
The same train and validation sets were used for all of our
test sets.

We finetuned our model for 10k steps with a learning rate
of 0.0005 and a batch size of 128, measured the model per-
formance on the validation set every 2000 steps, and reported
the results on the test sets for the checkpoint achieving the
best performance on the validation set.

For our fewshot experiments, we manually selected 4
examples from the training set and used those examples
as fewshot demonstrations across all experiments. These
examples were selected to ensure many aspects of the test
set are covered (e.g., to ensure there are examples at various
depths, widths, with and without variables, with different
question types, etc.).

Rounding Errors: Note that depending on how we round
intermediate computations, the final answer can be slightly
different. For example, consider the expression 2.26∗3.14

4 .
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Figure 13. A visual demonstration of the process in Algorithm 1 for generating a example in Depth 3.

If we first multiply the numerator, round it and then divide
by 4 and round again, we will get 2.26∗3.14

4 = 7.1
4 = 1.78.

However, if we first do both computations and then round at
the end, we will get 2.26∗3.14

4 = 1.77. For this reason, we
reported relaxed accuracy in our experiments to account for
the differences in the way we computed the final results and
the way the model may compute it.

9. Sample Process for Algorithm 1
In Figure 13, we provide a visual demonstration of the pro-
cess in Algorithm 1 for generating an example with Depth
3. In Step 1, we select a shape from our set of shapes and
then select one of the formulas. The shape selected in this
example is a rectangle and let the selected formula be to com-
pute the area of a rectangle given its height and width; so
f
(in)
1 = {LAC , LCD} and f (out)1 = {AABCD} where LAC

and LCD represent the length of AC and CD and AABCD

represents the area of ABCD (note that we could also select
LBC and LAB instead). We then select which element(s)
from f

(in)
1 we will provide explicitly and which element(s)

should be derived. Assume we decide to provide LAC ex-
plicitly and append other shapes to derive the value of LCD.
In this case, we assign a random value to LAC and provide
it in the set of facts.

In Step 2, we need to select a shape where one of its
sides is CD, and select a formula from which the length of
this side can be derived. In the provided example, the se-
lected shape is a right triangle and let us assume the selected
formula is to compute a side of a right triangle given the hy-
potenuse and the opposite angle. So f (in)2 = {LCE , DCED}
and f (out)2 = {LCD}, where LCE and LCD represent the
lengths of the CE and CD sides and DCED represents the
degree of the CED angle. We then select which element(s)
from f

(in)
2 we will provide explicitly and which element(s)

should be derived. Assume both elements should be derived
(corresponding to increasing the width of reasoning). So
none of the elements will be added to the facts.

In Step 3, we need to select a shape where one of its
sides is CE, and select a formula from which the length of
this side can be derived. In the provided example, the se-
lected shape is a semi-circle. Assume the formula is to com-
pute the diameter of the semi-circle LCE given its perimeter
PSemiCircle. Since we want to generate Depth 3 examples,
we add PSemiCircle to the set of facts.

In Step 4, we need to select a shape that can be connected
to the CED angle, such that DCED can be derived from
that new shape. In the provided example, the selected shape
is a supplementary angle, and the formula is that the sum of
two supplementary angles is 180. We provide DDEF in the
facts so DCED can be derived based on that.

Putting it all together, we get the rightmost shape in Fig-
ure 13. The facts include {LAC , PSemiCircle, DDEF } and
the query is AABCD. Based on the rules we used, we can
apply deduction to produce a solution as follows:

DDEF =⇒ DDEC

PSemiCircle =⇒ LCE

DDEC , LCE =⇒ LCD

LCD, LAC =⇒ AABCD

To generate the question, we turn the facts (and the extra
information needed to know such as the shapes, whether
some angles are vertical or complementary, etc.) into a
question using a template. We also provide the shape names
when necessary. For Figure 13, for example, the elements
whose values have to be provided as input are recorded
during the generation process; this includes the length of
AC, the measure of the DEF angle, and the perimeter of the
semi-circle. We also take note of the other information that
must be provided; this includes the fact that CDE is a right
triangle and that DEF and DEC are complementary. We then
use templates to turn each of these pieces of information
into a textual format and concatenate them; we also textify
the question using templates and append at the end. The
final question will look like: If the length of the AC side
of the ABDC rectangle is 10, CDE is a right triangle, the



DEF angle is 120 degrees, the DEF and the DEC angles are
complementary, and the perimeter of the semi-circle is 20,
compute the area of the ABDC rectangle.

10. Samples from GeomVerse
In this work, we experimented with several variations of
GeomVerse. Here, we provide samples from these different
variations to better illustrate how each test set looks like. The
questions and solutions are provided in Tables 3 and 4 and
the corresponding images are provided in Figure 14.

11. Issues Found During Quality Check
As mentioned in the main text, the dataset went through mul-
tiple rounds of quality check. In what follows, we provide
some of the examples of the issues found during the quality
check by non-authors.
• Text repetition: In two cases, the quality checkers found

the text of the question to be repetitive. This happened
in the cases where, e.g., the question was ”the length of
the AB side of the ABC triangle is 10, the length of the
BC side of the ABC triangle is 6, the length of the AC side
of the ABC triangle is 8”. We updated our templates to
remove repetitions.

• Unnecessary information in the question: An issue
raised by multiple quality checkers was that we provided
the value of π = 3.14 even when it was not used in the
solution. We made sure we only provide it when needed.
Misprinting a formula in the solution: In one case, a
formula was misprinted in the solution where a squaring
operation was missing (this did not affect the final result
though because it was a misprint). This was fixed.

• Unsolvable Variablized Inputs: The quality checkers
identified that when we provided variablized inputs, some-
times the problem became unsolvable. This happened,
e.g., in the case where we provided an input such as ”the
length of the three angles of a triangle are x+30,−2x+60
and x+ 45” where after summing the three values, x dis-
appeared.

• Missing Coordinates: In one case, one of the characters
corresponding to an image in the coordinate was missing.
We identified the root cause and fixed this.
• Spacing issues: Since the solutions were generated auto-

matically, there were a number of cases where a space was
either missing between two words or there were multiple
spaces.



Table 3. Questions and solutions corresponding to the images in Figure 14.

Image index Question Solution
(a) Compute the perimeter of the ABCD parallelogram. The lengths of the AD and the AB sides of the ABCD parallelogram

are 10 and 12, so the perimeter of the ABCD parallelogram is 2 *
(10 + 12) = 2 * 22 = 44. Therefore the final answer is 44.

(b) If the degree of the BAC angle is 2x + 50, the degree of the BCA
angle is 2x + 35 and the degree of the CBA angle is 5x + 50,
compute the degree of the CBA angle.

The three degrees of the ABC triangle are 2x+ 50, 2x+ 35 and
5x+ 50. Therefore, 2x+ 50 + 2x+ 35 + 5x+ 50 = 180, so
9x+135 = 180, so 9x = 45, so x = 45

9
= 5. The degree of the

CBA angle = 5 ∗ 5 + 50 = 75. Therefore the final answer is 75.
(c) If the BCDE shape is a combination of a rectangle and a semi-circle

and the area of the BCDE shape is 102, compute the degree of the
BCA angle. Assume π = 3.14. Round computations to 2 decimal
places.

The area of the BCDE shape is 102 and the length of the CD
side is 6, so (other side) ∗6 + 3.14∗62

8
= 102, so (other side)

* 6 = 102 − 3.14∗62
8

= 102 − 3.14∗36
8

= 102 − 113.04
8

=
102 − 14.13 = 87.87. Therefore, the length of the BC side is
87.87

6
= 14.65. The length of the hypotenuse of the ABC triangle

is 14.65 and the length of the side opposite to the BCA angle is 7,
so the BCA angle equals asin( 7

14.65
) = asin(0.48) = 28.69.

Therefore the final answer is 28.69.
(d) If the length of the height of the ABCD trapezoid is 8, the area of

the blue semi-circle is 189.97, the BCFGH shape is a combination
of a rectangle and an equilateral triangle and the perimeter of the
BCFGH shape is 42, compute the area of the ABCD trapezoid.
Assume π = 3.14. Round computations to 2 decimal places.

The area of the blue semi-circle is 189.97 so the length of the

AD diameter can be computed as
√

8 ∗ 189.97
π

) =
√

1519.76
π

=
√
484.0 = 22. The side of the equilateral triangle in the BCFGH

shape is equal to the side of the rectangle with length 8 so the shape
has two sides with equal but unknown lengths, one with length 8,
and two triangle sides with length 8. The perimeter of the BCFGH
shape is 42 so 2 * (unknown side) + 3 * 8 = 42. So 2 * (unknown
side) = 42 - 24 = 18, and the length of the BC side is 18

2
= 9. The

lengths of the AD and the BC bases of the ABCD trapezoid are
22 and 9 and the height of the trapezoid is 8, so the area of the
trapezoid is 1

2
∗ (22 + 9) ∗ 8 = 1

2
∗ 31 ∗ 8 = 124. Therefore the

final answer is 124.
(e) If the perimeter of the ABE triangle is 42, the BEFG shape is a

rectangle where a semi-circle has been removed from one side of it
and the perimeter of the BEFG shape is 62, compute the perimeter
of the ABCD rectangle. Assume π = 3.14. Round computations
to 2 decimal places.

The diameter of the semi-circle in the BEFG shape is equal to the
side of the rectangle with length 10 so the shape has two sides
with equal but unknown lengths, one side with length 10, and
one semi-circle arc with diameter 10. So the perimeter is 2 ∗
UnknownSide + 10 + 10∗π

2
. So 2 ∗ UnknownSide + 10 +

10∗3.14
2

= 62. So 2 ∗UnknownSide = 62− 10− 10∗3.14
2

=

62 − 10 − 31.4
2

= 62 − 10 − 15.7 = 36.3. Therefore, the
length of the BE side is 36.3

2
= 18.15. The lengths of the AE and

BE sides of the ABE triangle are 10 and 18.15 and the perimeter
is 42, so the lengths of the AB side equals 42 − 10 − 18.15 =
13.85. The lengths of the AD and the AB sides of the ABCD
rectangle are 15 and 13.85, so the perimeter of the ABCD rectangle
is 2 ∗ (15 + 13.85) = 2 ∗ 28.85 = 57.7. Therefore the final
answer is 57.7.



(a) Depth 1 (b) Depth 1 Variablized (c) Depth 2

(d) Depth 2 with Branch (e) Depth 3 (f) Depth 3 Branch

(g) Coordinate Annotation (h) Individual Annotation
(more info on image)

(i) More Info in Text

Figure 14. Samples from our test sets.



Table 4. Continuing Table 3.

Image index Question Solution
(f) If the ABCD shape is a square where a circle has been removed

from it, the AEFGH shape is a rectangle where an equilateral
triangle has been removed from one side of it, the perimeter of
the AEFGH shape is 48, the DEIJ shape is a rectangle where a
semi-circle has been removed from one side of it and the area of the
DEIJ shape is 78, compute the area of the ABCD shape. Assume
π = 3.14. Round computations to 2 decimal places.

The side of the equilateral triangle in the AEFGH shape is equal
to the side of the rectangle with length 9 and the shape has two
sides with equal but unknown lengths, one with length 9, and two
triangle sides with length 9. The perimeter of the shape is 48 so
2∗OtherSside+3∗9 = 48. So 2∗OtherSide = 48−27 = 21
and the length of the AE side is 21

2
= 10.5. The area of the DEIJ

shape is 78 and the length of the EI side is 6, so OtherSide ∗
6 − 3.14∗62

8
= 78, so OtherSide ∗ 6 = 78 + 3.14∗62

8
=

78+ 3.14∗36
8

= 78+ 113.04
8

= 78+14.13 = 92.13. Therefore,
the length of the DE side is 92.13/6 = 15.35. The lengths of the
AE and DE sides of the ADE triangle are 10.5 and 15.35, so the
length of the hypotenuse (the AD side) is

√
10.52 + 15.352 =√

110.25 + 235.62 =
√
345.87 = 18.6. The length of the AD

side of the ABCD shape is 18.6, so its area is 18.62 − (π
4
) ∗

(18.62) = 345.96−0.79∗345.96 = 345.96−273.31 = 72.65.
Therefore the final answer is 72.65.

(g) If the area of the ACD right triangle is 106, compute the area of the
ABC right triangle. Round computations to 2 decimal places.

The length of the AD side in the ACD triangle is 14 and the area is
106 so the length of the AC side = 106∗2

14
= 212

14
= 15.14. The

lengths of the AC and AB sides of the ABC triangle are 15.14 and
15, so the area of the triangle is (15.14 ∗ 15)/2 = 227.1/2 =
113.55. Therefore the final answer is 113.55.

(h) If the perimeter of the gray triangle is 44, the green shape is a
combination of a rectangle and an equilateral triangle and the area
of the green shape is 114, compute the length of the side of the
gray triangle marked with question mark. Round computations to
2 decimal places.

The area of the green shape is 114 and the length of one side of its
rectangle is 6, so (other side) ∗6+

√
3
4
∗ 62 = 114, so (other side)

∗6 = 114−
√

3
4
∗ 62 = 114− 1.73

4
∗ 36 = 114− 0.43 ∗ 36 =

114 − 15.48 = 98.52. Therefore, the length of the side marked
with letter ”a” is 98.52/6 = 16.42. The lengths of two sides of
the gray triangle are 21 and 16.42 and the perimeter is 44, so the
lengths of the side marked with ”?” equals 44−21−16.42 = 6.58.
Therefore the final answer is 6.58.

(i) If the perimeter of the ABC triangle is 33, the degree of the CAD
angle is 75, the area of the DAC sector is 157, the degree of the
EBC angle is 75 and the area of the EBC sector is 56.52, compute
the length of the AB side of the ABC triangle. Assume π = 3.14.
Round computations to 2 decimal places.

The CAD angle of the DAC sector is 75 and the area is 157 so
the AC radius can be computed as =

√
157/((75/360) ∗ π) =√

157/(0.21 ∗ π) =
√

157/0.66 =
√

(237.88) = 15.42. The
EBC angle of the EBC sector is 75 and the area is 56.52 so the
BC radius can be computed as =

√
56.52/((75/360) ∗ π) =√

56.52/(0.21 ∗ π) =
√

56.52/0.66 =
√
85.64 = 9.25. The

lengths of the AC and BC sides of the ABC triangle are 15.42 and
9.25 and the perimeter is 33, so the lengths of the AB side equals
33− 15.42− 9.25 = 8.33. Therefore the final answer is 8.33.
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