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Abstract

Natural Language Generation (NLG) repre-001
sents a large collection of tasks in the field of002
NLP. While many of these tasks have been tack-003
led well by the cross-entropy (CE) loss, the task004
of dialog generation poses a few unique chal-005
lenges for this loss function. First, CE loss006
assumes that for any given input, the only pos-007
sible output is the one available as the ground008
truth in the training dataset. In general, this009
is not true for any task, as there can be mul-010
tiple semantically equivalent sentences, each011
with a different surface form. This problem012
gets exaggerated further for the dialog gener-013
ation task, as there can be multiple valid re-014
sponses (for a given context) that not only have015
different surface forms but are also not seman-016
tically equivalent. Second, CE loss does not017
take the context into consideration while pro-018
cessing the response and, hence, it grades the019
response irrespective of the context. To grade020
the generated response for qualities like rele-021
vance, coherence, etc., the loss function should022
depend on both the context and the generated023
response. To circumvent these shortcomings of024
the CE loss, in this paper, we propose a novel025
loss function, CORAL, that directly optimizes026
recently proposed estimates of human prefer-027
ence for generated responses. Using CORAL,028
we can train dialog generation models with-029
out assuming non-existence of response other030
than the ground-truth. Also, the CORAL loss031
is computed based on both the context and the032
response. Extensive comparisons on two bench-033
mark datasets show that CORAL based mod-034
els outperform strong state-of-the-art baseline035
models of different sizes.036

1 Introduction037

Choosing the right loss function is crucial for get-038

ting the expected behavior from deep learning039

based models trained for any task. While the token-040

level cross-entropy (CE) loss continues to excel in041

training natural language generation (NLG) models042

for various tasks, including dialog-response gener- 043

ation (Roller et al., 2021; Zhang et al., 2020), it is 044

well accepted that CE is not the most appropriate 045

loss function to use for training dialog generation 046

models, and finding the right loss function for train- 047

ing dialog generation is still an open problem and 048

an active area of research (Shen et al., 2017; Zhao 049

et al., 2017; Saleh et al., 2020; Li et al., 2021). 050

The CE loss is computed by comparing the pre- 051

dicted token probabilities to the ground truth target 052

sequence from the dataset. Thus, computation of 053

CE loss is unconditional or context-free as it does 054

not depend on the input prompt/context in the case 055

of conditional NLG tasks like dialog generation. 056

To be able to generate responses for qualities like 057

relevance, coherence, etc., the loss function should 058

ideally consider both the context and the generated 059

response. While training any NLG model using 060

the CE loss, the probability of the ground truth re- 061

sponse is maximized. Here, we make an implicit 062

assumption that the ground truth is the only re- 063

sponse possible for the given context. This is a 064

major concern as this property does not hold for 065

most dialogs where each context may have a large 066

number of possible responses (Dou et al., 2021)1. 067

Previous attempts in training Seq2Seq dialog 068

generation models using the CE loss have led to 069

various complications. Mode collapse is one of 070

the most common issues when training a Seq2Seq 071

model with the CE loss, mainly at smaller scales 072

(Li et al., 2016, 2021). Here, the model will just 073

assign a high probability to one or more generic 074

and bland responses e.g. “I don’t know", “I have 075

a problem", “Yes", etc., irrespective of the context. 076

Previous research works have also explored various 077

augmentations to the model architecture (Serban 078

et al., 2016; Zhao et al., 2019) and/or the loss func- 079

tion (Serban et al., 2017; Shen et al., 2017; Zhao 080

et al., 2017; Li et al., 2021) to resolve the common 081

1These problems are specific to dialog systems only and
may or may not apply to other NLG tasks.
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problems with CE, as mentioned above.082

To train dialog generation models that maximize083

some user-expected qualities, we propose to di-084

rectly optimize an estimate of human perceived085

quality of a context-response pair. Sinha et al.086

(2020); Yeh et al. (2021) have shown that the output087

score of retrieval models correlates strongly with088

human perception of dialog response quality (given089

that it was trained on a dataset of domain similar to090

the target domain of application). Further, Santra091

et al. (2021) showed that representations learned092

by a response retrieval (using binary cross-entropy093

or a contrastive loss) capture important dialog un-094

derstanding features even better than large-scale095

dialog generation models trained using CE. But096

that is not applicable for a generative setting.097

These observations triggered us to propose a098

novel Contextual Response Retrievability loss099

function or CORAL that circumvents issues with100

CE loss and relies on a response retrieval model.101

Further, we leverage CORAL to design a learn-102

ing framework for dialog generation models that103

treats score calculated by retrieval models as a re-104

ward function, referred to as Response Retriev-105

ability Reward (R3). We then use reinforce-106

ment learning (RL) to train dialog models that107

maximize above reward between context and gen-108

erations from the optimized network. To test109

the proposed loss function, we train transformer-110

based Seq2Seq models (Vaswani et al., 2017) us-111

ing CORAL for open-domain dialog generation112

using DailyDialog dataset (Li et al., 2017) and for113

domain-specific dialog generation using DSTC7-114

Ubuntu dataset (Yoshino et al., 2019). We compare115

the performance against state-of-the-art CE-based116

Seq2Seq models and various other baselines using117

both automatic metrics and through human eval-118

uation. To summarize, our contributions are as119

follows. (1) We propose CORAL loss function for120

training dialog generation models by directly op-121

timizing for an estimate of human preference of a122

⟨context, response⟩ pair. To the best of our knowl-123

edge, we are the first to propose a loss function124

for dialog generation model that also relies upon125

the context. (2) Further, we propose a recipe to126

train improved seq2seq dialog models which uses127

the CORAL loss in a reinforcement learning setup.128

(3) We experimentally prove the effectiveness of129

CORAL against strong baseline models using CE130

or its variants. We make the code publicly avail-131

able2 132

2 Literature Review 133

The use of the Seq2Seq model for training chitchat 134

(now known as open-domain) dialog generation 135

model was first proposed by Ritter et al. (2011). 136

It was realized very soon that, unlike other NLG 137

problems such as NMT, it is almost impossible to 138

train dialog generation models using the CE loss, at 139

small scales (Serban et al., 2016, 2017; Zhao et al., 140

2017; Li et al., 2016). Serban et al. (2016) argued 141

that standard RNNs fail to encode the context prop- 142

erly and proposed a hierarchical encoder-based ar- 143

chitecture, HRED, that captures utterance-level and 144

context-level information using separate RNNs. To 145

capture the notion of multiple possible responses 146

per context, Serban et al. (2017) further augmented 147

their HRED model with a VAE. Several prior works 148

have also tried to formulate reward functions for 149

training dialog generation models using Reinforce- 150

ment Learning Li et al. (2016); Sankar and Ravi 151

(2019); Saleh et al. (2020); Zhao et al. (2019). 152

Although at small scales CE-based training leads 153

to degenerate dialog generation models, at (ex- 154

tremely) large scales of training data and model 155

size, models can generate diverse, coherent and in- 156

teresting responses. DialoGPT (Zhang et al., 2020) 157

is based on the GPT-2 (Radford et al., 2019) lan- 158

guage model (LM) further finetuned on a large con- 159

versational corpus crawled from Reddit. Blender- 160

bot (Roller et al., 2021) focuses on generating high- 161

quality responses and is based on a Transformer- 162

based Seq2Seq architecture. To improve the qual- 163

ity of responses, Blenderbot is finetuned on the 164

Blended-Skill-Talk dataset (combination of multi- 165

ple datasets, Smith et al., 2020) after pretraining on 166

Reddit. DialogRPT (Gao et al., 2020) proposes a 167

sample-and-rank method for candidates generated 168

from DialoGPT. The ranker was trained using a 169

dataset of upvotes/downvotes and the number of 170

replies on Reddit comments. Another family of 171

recently proposed dialog generation models (Wu 172

et al., 2019; Komeili et al., 2021) does retrieve-and- 173

refine for efficiently training large models. 174

In this paper, we focus on testing the proposed 175

CORAL loss mainly at small scale because 1) the 176

changes are more apparent for smaller scale mod- 177

els, and 2) it becomes more difficult to judge the 178

efficiency and robustness of the approach at larger 179

2https://anonymous.4open.science/r/
2022-CORAL-Anonymous/
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Figure 1: Schematics of Cross-Entropy (CE) and CORAL Losses at train time. The main idea of CORAL loss is to
optimize a measure of the compatibility between the context and a candidate response (using a response retrieval
model). Compared to CORAL, CE is more strict and trains the model only based on true response targets. CORAL
also utilizes randomly sampled response targets and increases/decreases its probability of decoding based on R3.

scales where all loss functions seem to work upto180

the same extent. Although we train small-scale181

models only, our small models outperform several182

large-sized models across multiple metrics.183

3 Methods184

First, using a response retrieval model, we de-185

sign a reward function suitable for training dia-186

log generation models (Section 3.1). Next, we ap-187

ply reinforcement learning for training a Seq2Seq188

context-to-response generation model that maxi-189

mizes the chosen reward function. We apply REIN-190

FORCE (Williams, 1992) to obtain the final differ-191

entiable objective function (Section 3.2), and use it192

to design our algorithm (Section 3.3) for training a193

Seq2Seq dialog generation model.194

3.1 The R3 Reward Function195

Instead of optimizing perplexity or other heuris-196

tic based rewards with weak correlation to human197

feedback, we choose a reward function that directly198

optimizes an estimate of human preferences. Thus,199

we design reward functions based on response re-200

trieval models. We avoid supervised model based201

estimates of human preferences (Lowe et al., 2017)202

for their known shortcomings (Sai et al., 2019).203

Motivated by prior work of Sinha et al. (2020),204

we propose a reward function based on a (self-205

supervised) response retrieval model, ESIM (Chen206

and Wang, 2019), which has been shown to cor-207

relate strongly with human ratings of model gen-208

erated responses (Yeh et al., 2021). Similarly,209

Santra et al. (2021) recently showed that response210

retrieval models actually optimize an estimate of211

the mutual information between context and re- 212

sponse. Their experiments also prove that these 213

representations are more feature-rich than large- 214

scale pretrained generative dialog models (based 215

on CE loss). Hence, we also experiment with their 216

model, DMI, to design a reward function. 217

Contextual Response Retrievability Reward 218

(R3) We define the output score of an already 219

trained response retrieval model for a context- 220

response pair as the Contextual Response Retriev- 221

ability Reward. This score is usually normalized 222

between 0 and 1 and indicates the probability that 223

the response is a valid (coherent and on-topic) con- 224

tinuation to the context. As the reward function 225

would not be differentiable with respect to the tar- 226

get Seq2Seq-model parameters, we first formulate 227

response generation as an RL task. Then, we apply 228

REINFORCE (Williams, 1992) to obtain a differ- 229

entiable objective function, as described next. 230

3.2 Final Objective Function (CORAL) 231

We pose the response generation problem as a rein- 232

forcement learning (RL) task. Each instance of the 233

context-to-response generation task is considered 234

as an episode in the RL formulation. The episode 235

consists of several actions taken by the agent, in 236

our case the decoder. Each action corresponds to 237

generation of an output token. When the agent 238

generates an EOS (end-of-sequence) token or has 239

produced a max number of allowed tokens (T ), the 240

episode ends and the environment (the response 241

retrieval model) generates the R3 reward, for the 242

⟨context c, generated response r⟩ pair. 243

The updates to the Seq2Seq model weights are 244
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then determined by the Episodic REINFORCE al-245

gorithmas follows.246

∆WCORAL = ηR3(c, r)

T∑
t=1

∂ logP (r|c)
∂WCORAL

(1)247

Loss function to be minimized (for an autore-248

gressive decoder) can then be written as follows.249

LCORAL = −ηR3(c, r)
T∑
t=1

logP (rt|r<t, c) (2)250

Algorithm 1 Training Algorithm for Seq2Seq Mod-
els using CORAL Loss (On-policy + Off-policy)
D = {(c, r+)i}ni=1 ▷ n Positive pairs from training dataset
θ(0) ← Initialize Seq2Seq network weights
for (c, r+) ∈ D do ▷ Actual implementation uses batch gradient descent

if rand() > p+ then
#Nucleus Sampling
r ← Sample r− ∼ Nucleus(c|θ(k)

S2S)
# [or] RandomNegative Sampling
r ← Sample r− ∼ Uniform(Training Utterance Pool)

else
r ← r+ ▷ Use Positive Response

R3(c, r) = fR(c, r)−m ▷ fR: Response Retrieval Model Score
#Compute Decoder output token distribution
PS2S(rt|r<t, c)∀t ∈ [1, T ]

LCORAL = −R3(c, r)
∑T

t=1 PS2S(rt|r<t, c)
#Update parameters of PS2S using gradient descent on LCORAL

θ
(k+1)
S2S ← θ

(k)
S2S − α∇

θ
(k)
S2S

LCORAL

3.3 Training Algorithm251

On-policy and Off-policy Training Using252

CORAL Loss RL training can be either on-253

policy or off-policy, depending on whether sam-254

ples are generated from the parameterized policy255

network (the decoder in the Seq2Seq model in our256

case) or obtained from a dataset of human gener-257

ated examples. For pure on-policy training, we258

will have to rely on response sequences randomly259

sampled from the decoder. But, because of the com-260

binatorial complexity of the response space, it is261

highly unlikely that we would obtain any valid utter-262

ances/response candidates during on-policy train-263

ing. Thus, to direct the model towards generating264

grammatically and semantically valid utterances,265

we mix on-policy and off-policy modes of train-266

ing and refer to this method of sample generation267

as mix-policy. To control the amount of mixing,268

we introduce a hyperparameter called p+ (detailed269

below). Since random sampling based decoding270

can sometimes generate very low probability to-271

kens while generating a sequence, we use nucleus272

sampling instead of random sampling for generat-273

ing on-policy samples. We also tried a method to274
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Figure 2: This figure shows the model architecture used
for training the Seq2Seq dialog model using the CORAL
loss. The context input to the Transformer-encoder is de-
noted by a token sequence [c1, c2, ..., cL]. The response
input sequence r = [r1, r2, ..., rT ] denotes the positive
or a randomly sampled negative response candidate.

exclusively utilize more off-policy samples, called 275

RandomNegative sampling (or RNS), for generat- 276

ing more diverse off-policy samples during train- 277

ing. In RNS, we randomly sample utterances from 278

the pool of all utterances from the training set and 279

use it as a response candidate in the training pro- 280

cess. In Algorithm 1, we show the exact steps used 281

for training a Seq2Seq model using the CORAL 282

loss and an existing dialog dataset D. Fig. 1 il- 283

lustrates how the standard cross-entropy loss and 284

the proposed CORAL loss differ from each other. 285

Fig. 2 shows the architecture of our Seq2Seq model, 286

which generates a response given the context us- 287

ing a Transformer encoder-decoder model trained 288

under CORAL loss. 289

Hyperparameters of CORAL 290

(1) Probability of positive samples (p+) denotes 291

the probability with which we use the ground truth 292

response for off-policy training. 293

(2) Margin (m) denotes the minimum reward that 294

we expect from model generations. We use a fixed 295

margin3 value as the baseline reward for the RL 296

training. 297

(3) Retrieval model: For implementing R3, we ex- 298

perimented with these retrieval model architectures: 299

ESIM (Chen and Wang, 2019), BERT (Devlin et al., 300

2019) and DMI (Santra et al., 2021). 301

Although CORAL is derived from quite a dif- 302

ferent viewpoint, under certain hyperparameter set- 303

3More flexible versions of margin are possible based on a
learned value function (baseline function) or a critic function
(in Actor-Critic formulations). We leave integration of such
more advanced RL algorithms with the proposed CORAL-
based learning framework as a future research direction.
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tings (m = 0, p+ = 1, R3 ∈ (0, 1)) CORAL ap-304

proximates a sample-weighted version of the CE305

loss. Also, training of a dialog generation model306

using CE may over-weigh generic responses more307

than the informative ones. A more detailed account308

of the similarities/differences between CORAL and309

CE are in the appendix. CORAL loss incorporates310

quality of the response as measured by a response311

retrieval model as a factor in computing the loss.312

4 Experimental Setup313

4.1 Model Setup314

We use a standard transformer-based Seq2Seq315

(S2S) architecture for training a dialog generation316

model using the CORAL loss as shown in Fig. 2.317

We used the Word-piece tokenizer4 from BERT318

(Devlin et al., 2019). We train our models using319

early-stopping, upto a maximum 50 epochs, based320

on validation-R3 (average R3 score of generated321

responses on the validation set). We use Adam322

optimizer with a peak learning rate of 1e−4 that is323

warmed up (first 1000 steps) and decayed linearly.324

We use a single NVIDIA V100-16GB GPU-based325

system for training all our models.326

For the retrieval models, ESIM has two LSTM327

encoding layers (Encoding and Composition Lay-328

ers) for individually encoding the context and a329

candidate response, interleaved by a cross-attention330

layer. The sigmoid output from the ESIM model is331

used as the score for a context-response pair. Since332

both BERT and DMI are pretrained models, we333

add an MLP, with two hidden layers and sigmoid334

activation at the output, on top of the [CLS] token335

embedding. These models are finetuned on Daily-336

Dialog or DSTC7-Ubuntu for the response retrieval337

tasks. We obtain the reward (R3) by subtracting338

the margin (m) (also between 0 and 1) from the339

output score (sigmoid output).340

ESIM For faster learning, we also initialize the341

ESIM model’s token embeddings with Blenderbot342

embeddings, which has a size of 2,560. The en-343

coding and composition layers both used 1 layer344

LSTMs.345

BERT and DMI We use the “bert-base-uncased”346

and the “DMI_Medium” checkpoints, respectively.347

CORAL Our proposed CORAL model has 6 self-348

attention layers for both the encoder and the de-349

coder. We use 8 self-attention heads and 1,024 as350

the size of hidden representations.351

4We used the implementation by huggingface (Wolf et al.,
2019) library (bert-base-uncased).

4.2 Data 352

We used the DailyDialog (DD) (Li et al., 2017) and 353

DSTC7-Ubuntu5 (Yoshino et al., 2019) datasets 354

for all our experiments. DD is an open-domain 355

dialog dataset in English. For training the retrieval 356

model, we used randomly sampled utterances as 357

negative samples. DSTC7-Ubuntu is a domain- 358

specific dataset based on conversations from the 359

Ubuntu IRC channel. DSTC7-Ubuntu contains ma- 360

jorly English conversations, with a small percent- 361

age instances from other languages. This is avail- 362

able directly as a dataset for training retrieval mod- 363

els with single positive and multiple negative re- 364

sponses per context. DD contains 76052, 7069 and 365

5740 context-response pairs for train, validation 366

and test, resp. DTSC7-Ubuntu contains 470860, 367

23478 and 3247 resp. We make the code publicly 368

available6 and will release trained model check- 369

points publicly upon publication of the paper. 370

4.3 Baselines 371

Small Scale Baselines: 372

(1) Mirror (Li et al., 2021): Seq2Seq model that ex- 373

tends CVAE (Shen et al., 2017), and is trained with 374

a backward-reasoning loss function. It optimizes 375

for generating both final and pre-final utterances 376

in a bidirectional fashion. This is state-of-the-art 377

loss function for training small-scale dialog gen- 378

eration models outperforming Shen et al. (2017); 379

Zhao et al. (2017); Saleh et al. (2020). 380

(2) AdaLabel (Wang et al., 2021): Uses an adaptive 381

label smoothing to prevent the model from being 382

overconfident over a single choice. It also uses a 383

soft-target distribution depending on the context, 384

instead of usual one-hot distribution. 385

Large Scale Baselines: 386

(1) Blenderbot (Roller et al., 2021): Transformer- 387

based S2S model pretrained on a large dialog cor- 388

pus based on Reddit and finetuned on Blended- 389

Skill-Talk dataset (Smith et al., 2020). 390

(2) DialoGPT (Zhang et al., 2020): GPT-2 (Rad- 391

ford et al., 2019) based language model further 392

finetuned on dialogs from Reddit. 393

(3) DialogRPT (Gao et al., 2020): A response rank- 394

ing model trained on a dataset of upvote/downvote 395

and number of replies on Reddit comments. For 396

generation purposes it reranks sampled responses 397

from DialoGPT and returns the one with highest 398

5https://github.com/IBM/dstc-noesis
6https://anonymous.4open.science/r/

2022-CORAL-Anonymous/

5

https://github.com/IBM/dstc-noesis
https://anonymous.4open.science/r/2022-CORAL-Anonymous/
https://anonymous.4open.science/r/2022-CORAL-Anonymous/


Table 1: Results for DailyDialog and DSTC7-Ubuntu datasets: From the results, we can see that by optimizing
the contextual R3 score directly, using REINFORCE, the CORAL model is able to produce coherent and diverse
responses at the same time. The average length is reported to make sure that the model is not resorting to short
utterances, such as “I don’t think I know about [topic_word]”, just to be coherent. CORALx denotes a Seq2Seq
model trained with CORAL loss. ‘x’ identifies the retrieval model used for the R3 reward. Note that we used the
DialoGPT-medium, DialogRPT-medium, Blenderbot checkpoints. We have kept these large-scale baselines as a
separate group, in the table. Each value reported for CORAL models is computed as average of 5 runs.

DSTC7-Ubuntu

Model Avg. Len BLEU METEOR Dist-1 Dist-2 MAUDE-ESIM MAUDE-BERT

Ground Truth 13.73 NA NA 0.0922 0.5231 0.8583 0.7363

L
ar

ge
M

od
el

s

Z
er

o-
sh

ot

DialogRPT (ZS) 14.17 0.0714 0.0424 0.0351 0.1333 0.7328 0.6813
DialoGPT (ZS) 8.59 0.0565 0.0369 0.0504 0.1723 0.7058 0.6557
Blenderbot (ZS) 17.78 0.0869 0.0571 0.0266 0.0893 0.5683 0.5294

Fi
ne

tu
ne

d DialoGPT (FT) 6.22 0.0527 0.0459 0.1101 0.4017 0.8210 0.6610
DialogRPT (FT) 13.63 0.0902 0.0628 0.0710 0.3219 0.8731 0.7485
Blenderbot (FT) 16.98 0.1210 0.0905 0.0788 0.3821 0.8237 0.7800

Sm
al

l
M

od
el

s Mirror 6.19 0.0299 0.0387 0.0068 0.0145 0.5121 0.4926
AdaLabel 15.70 0.2022 0.1824 0.0539 0.3099 0.7929 0.7046
CORALBERT (off-policy) 10.53 0.0949 0.0724 0.0694 0.4093 0.8534 0.8108
CORALBERT (mix-policy) 12.42 0.0970 0.0676 0.0630 0.3616 0.8787 0.8477

DailyDialog

Model Avg. Len BLEU METEOR Dist-1 Dist-2 MAUDE-ESIM MAUDE-BERT

Ground Truth 11.97 NA NA 0.0681 0.4061 0.8180 0.8603

L
ar

ge
M

od
el

s

Z
er

o-
sh

ot

DialoGPT (ZS) 8.89 0.0667 0.0445 0.0415 0.1682 0.6327 0.6016
DialoRPT (ZS) 15.94 0.0809 0.0530 0.0273 0.1192 0.6523 0.6055
Blenderbot (ZS) 17.27 0.1049 0.0771 0.0223 0.0977 0.6363 0.6322

Fi
ne

tu
ne

d DialoGPT (FT) 6.15 0.0752 0.0678 0.0673 0.2957 0.7878 0.7831
DialogRPT (FT) 16.55 0.1073 0.0978 0.0353 0.1791 0.8086 0.8317
Blenderbot (FT) 30.70 0.1139 0.1081 0.0355 0.1984 0.8222 0.8249

Sm
al

l
M

od
el

s Mirror 7.93 0.0618 0.0538 0.0371 0.1485 0.6223 0.4995
AdaLabel 11.59 0.1208 0.0881 0.0381 0.2292 0.5814 0.4890
CORALBERT (off-policy) 9.68 0.1838 0.1656 0.0462 0.2902 0.7279 0.6526
CORALBERT (mix-policy) 10.50 0.2241 0.2079 0.0428 0.2760 0.7418 0.6692

rank predicted by DialogRPT.399

4.4 Evaluation Metrics400

We use a standard set of referenced evaluation met-401

rics and a recently proposed reference-free metric402

for automatic evaluation.403

BLEU (Papineni et al., 2002) and METEOR404

(Banerjee and Lavie, 2005) measure lexical match405

upto n = 4-grams between the predicted and406

ground truth response. Since a valid response407

generated by the model can be different from the408

ground truth, these two metrics cannot always cap-409

ture the validity of a generation.410

MAUDE (Sinha et al., 2020) is a recently pro-411

posed metric that can capture the suitability be-412

tween a context and any response without a ground413

truth reference. MAUDE is also a metric based on a414

response retrieval model and thus our model effec-415

tively optimizes MAUDE through the CORAL loss416

function. (Yeh et al., 2021) observed that MAUDE417

performs particularly well when the model has been418

trained on a dataset from a similar domain to its419

target application domain. Hence, we report results 420

for two MAUDE variants based on ESIM (Chen 421

et al., 2017; Chen and Wang, 2019) and BERT (De- 422

vlin et al., 2019) finetuned on the target dataset 423

(DSTC7-Ubuntu or DD). 424

The Distinct-n (Liu et al., 2016) metric measures 425

the diversity of n-grams in the overall set of gener- 426

ated responses. This number should not be too low, 427

and an ideal target for this is the Distinct-n of the 428

ground truth responses. 429

5 Results and Discussions 430

5.1 Automatic Evaluation (Small Scale 431

Models) 432

In Table 1, we present the results of automatic 433

evaluation metrics for response generation. Results 434

for small scale and large scale models are shown 435

separately. For our proposed CORAL models, we 436

used BERT-R3 reward function with m = 0.4 and 437

p+ = 0.8 for DSTC7-Ubuntu and m = 0 and 438

p+ = 0.8 for DD dataset. Fig. 4 in Appendix 439

6



shows sensitivity analysis for hyperparameters p+440

and m.441

The diversity of the generated responses, in442

terms of number of unique unigrams and bigrams,443

is indicated by the dist-1 and dist-2 metrics. All444

baselines, except AdaLabel, have very low diver-445

sity for the generated responses. The RNN-based446

Mirror model mostly generates the same bland re-447

sponse (e.g., “I don’t know how to do that”, “I448

don’t know what to suggest”) for most contexts449

leading to a low diversity score. Although Dialo-450

gRPT produces relevant responses (as indicated451

by a high MAUDE score), the response produced452

by these models sometimes does not change after453

the initial few turns, and the model repeatedly gen-454

erates the same utterance for all remaining turns455

which leads to a poor Dist-n score. The diversity456

of most baselines (except AdaLabel) is quite low457

compared to that of CORAL models. From Table458

1, it is quite clear that only the proposed CORAL-459

based models are able to produce responses which460

are both diverse (high Dist-n) and coherent to the461

context (high MAUDE), while most baselines have462

failed to maintain this consistently.463

BLEU and METEOR have been known to not464

correlate strongly with human judgments on the465

quality of generated responses, as shown by several466

prior works (Liu et al., 2016; Sinha et al., 2020; Yeh467

et al., 2021). Even in terms of these word overlap-468

based metrics, we outperform most of the baselines469

in DD. In case of DSTC7-Ubuntu, AdaLabel beats470

CORALESIM and CORALDMI.471

In terms of average length of the generated re-472

sponses, the pretrained models outperform other473

baselines and also the CORAL models. Though it474

should be noted that high generation length does475

not necessarily mean higher quality responses, as476

also indicated by the MAUDE scores.477

Finally, in terms of the MAUDE metric, our pro-478

posed method, CORAL, outperforms all baselines479

by a significant margin. The diverse and high qual-480

ity responses justify the choice and design of the481

CORAL loss function.482

5.2 Human Evaluation Study483

As automatic evaluation metrics cannot capture all484

the nuances of how humans assess a model gener-485

ated response, we also run a crowdsourced human486

evaluation study for various models. Three dif-487

ferent annotators rated a context-response pair in488

terms of engagement, fluency and relevance on a489

0-2 scale: No (0), Somewhat (1), Yes (2). Detailed 490

annotation questionnaire is in the appendix. This 491

evaluation process was run on a 100 randomly se- 492

lected contexts from DailyDialog test set. 493

Figure 3 shows that the CORAL-based models 494

outperform the baselines in all the three aspects. 495

CORAL-mixp (nucleus) outperforms CORAL-offp 496

in engagement and relevance, whereas CORAL- 497

offp is more fluent than CORAL-mixp. 498

0.6

0.8

1

1.2

1.4

Engagement Relevance Fluency

M
ea

n 
Ra

tin
g

Human Mirror
AdaLabel CORAL(BERT)-offp
CORAL(BERT)-mixp

Figure 3: Human Evaluation Results - Mean ratings for
Engagement, Relevance, and Fluency.

5.3 Ablation Studies 499

To better understand the effects of various hyper- 500

parameters (see Section 3.3) on the final trained 501

model, we ran ablation studies on both the datasets. 502

The complete set of results is displayed in Figure 503

4 and Table 3 in the appendix. All the compar- 504

isons are done based on the best average reward 505

obtained by the model on validation set. In general, 506

the mix-policy setup outperforms off-policy train- 507

ing routines. For the DailyDialog dataset, lower 508

margin values tend to have higher R3 scores. But, 509

for DSTC7-Ubuntu, in case of mix-policy training, 510

the R3 score increases with the margin value. Off- 511

policy training worked better with positive ground 512

truth responses only, with RandomNegatives gener- 513

ally having a detrimental effect on the final reward 514

achieved by the model. 515

5.4 Comparison with Large-Scale Models 516

Large-scale (in terms of data or model parameter 517

size) pretrained language models have become a 518

very prominent candidate for open-domain dialog 519

generation models with the development of mod- 520

els like DialoGPT, Blender etc. Thus, we also 521

compare our CORAL models with two variants of 522

these large-scale models: zero-shot and finetuned 523

versions. Because of the extensive pretraining done 524

for training these large-scale models, we do not 525

expect CORAL models to fully outperform these 526

large-scale models. We observe that CORAL is 527

able to beat all the zero-shot models for both the 528
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Table 2: This table shows sample generations from different baseline models and our CORALBERT model. Compared
to Mirror, responses from our model feels like a more natural continuation to the context. The AdaLabel baseline
also has a higher tendency to generate a generic/dull response to the context. A common issue that we notice in all
small-scale models is their random behavior when they encounter a new concept unseen during training.

Context: I really need to start eating healthier. EOU I have to start eating better too. EOU What kind of food do you usually eat? EOU I try my best to eat only fruits,
vegetables, and chicken. EOU

Mirror: What kind of food do you
want ?

Blenderbot: I try to eat a lot of
veggies and lean meats.

AdaLabel i have no idea what i’m
supposed to eat .

CORALBERT: I usually eat a bowl
of dumplings.

Context: Room service, is there anything I can do for you? EOU Yes, I am afraid there are not enough outlets. EOU

Mirror: Have you got any wine ?
Blenderbot: I’m not sure what you
mean by that, but I’m sure there’s
something you can do.

AdaLabel: ok. thank you .
CORALBERT: OK, sir. Can I take
your room key to the Room 20
minutes?

Context: Good evening, madam. Can I help you? EOU Yes. I bought this sheet here yesterday. EOU

Mirror: Did it happen ? Blenderbot: How much did you
pay for it?? I’m a madam

AdaLabel: ok. when will you come
back ?

CORALBERT: I’d like to buy a new
dress.

Context: Could I have my bill, please? EOU Certainly, sir. EOU I’m afraid there’s been a mistake. EOU I’m sorry, sir. What seems to be the trouble? EOU

Mirror: Yes, I have been looking
forward to it .

Blenderbot: I don’t know what to
do with my life. I feel like I have no
purpose.

AdaLabel oh, i see. then, let me
see. ... oh, this switch down to the
shop tonight. i’ ve got a lot

CORALBERT I’m sorry, sir. I’ve
got you a wrong case. I’ve been
waiting for the wrong medicine. I’m
sorry.

Context: Are you busy tomorrow morning? EOU I’m free. What’s up? EOU Someone has to pick up the boss at the airport. EOU

Mirror: Oh, I see. Thank you .
Blenderbot: Yes, I have to get up
early to go to work. How about
you?

AdaLabel: i’ m sorry to hear that.
do you want to go to the hospital ?

CORALBERT: Yes. I’d like to.
What time do you want to

datasets. Even though DailyDialog and Reddit-529

based pretraining datasets both comprises open-530

domain English conversations, CORALBERT out-531

performs the zero-shot variants on DailyDialog and532

DSTC7-Ubuntu. CORALBERT is even able to beat533

the finetuned version of DialoGPT and Blender-534

bot on the DSTC7-Ubuntu dataset. This proves535

the strength of the loss function and RL training536

paradigm proposed in this paper for dialog genera-537

tion models.538

5.5 Case Study: Generation Quality539

We provide samples generated from CORALBERT540

and some baseline models in Table 2. Since541

Blenderbot (Roller et al., 2021) model was trained542

with a much larger dialog corpus, it is able to gen-543

erate good responses in many cases where small-544

scale models failed to understand the context lead-545

ing to random utterances. Among the small scale546

models, CORALBERT generally replies with more547

engaging and specific responses, whereas Mirror548

tends to produce generic responses most of the time.549

Blenderbot, however, fails to realize the switch550

in the turns sometimes and generates the same551

response repeatedly, only based on the context552

topic. This is the reason for low diversity scores of553

Blenderbot. For all small-scale models, because of554

limited training data, they lack knowledge of many555

entities that only appears in test set but not during556

training. In such cases, the small scale models just557

produce some unrelated utterance. 558

6 Conclusion 559

In this paper, we proposed CORAL, a novel loss 560

function to circumvent these shortcomings of CE 561

loss. Specifically, using CORAL, we can train di- 562

alog generation models without assuming a fixed 563

ground-truth response and the value of the loss 564

function is based on both the context and response. 565

The CORAL loss is based on pretrained response 566

retrieval models that, in prior literature, have been 567

shown to correlate with human preferences. Exper- 568

iments over two diverse benchmarks have shown 569

that it comprehensively outperforms other small 570

scale models and is even comparable to the large 571

scale models. The proposed loss function will 572

make it possible to train future models focused 573

on maximizing human preference. We also hope 574

that our work will motivate the NLP community to 575

look for more suitable loss functions for training 576

dialog generation models and to rely less on the 577

cross-entropy loss. 578

We plan to extend this framework for training 579

larger scale models that can capture more patterns 580

from larger training data. We are also looking into 581

the possibility of designing a learning curriculum 582

for RL-based training using the mix-policy method. 583

This will help make the training of the dialog gen- 584

eration model more efficient. 585
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7 Ethical Considerations586

Like many other pretrained language representa-587

tion models, the proposed model may also have588

learned patterns associated with exposure bias. In-589

terpretability associated with the output is rather590

limited, hence users should use the outputs care-591

fully. The proposed model generates possible re-592

sponse candidates, and does not filter out any “prob-593

lematic” candidates. Thus, for applications, where594

candidate responses could be problematic, (e.g.,595

offensive, hateful, abusive, etc.), users should care-596

fully filter them out before using the output from597

our model.598

All the datasets used in this work are publicly599

available. We did not collect any new dataset as600

part of this work.601

DailyDialog: The dataset was downloaded from602

http://yanran.li/dailydialog. Daily-603

Dialog dataset is licensed under CC BY-NC-SA604

4.0.605

DSTC7-Ubuntu: The dataset was down-606

loaded from https://ibm.github.607

io/dstc-noesis/public/data_608

description.html#ubuntu. The dataset is609

available under MIT license.610
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A Similarities and Differences between844

CORAL and CE Loss Functions845

In this section, we explore the similarities and dif-846

ferences between the proposed CORAL loss and847

the CE loss function. Although CORAL is de-848

rived from quite a different viewpoint, under cer-849

tain hyperparameter settings CORAL approximates850

a weighted version of the CE loss.851

1. If we only consider positive samples as can-852

didate responses and set the score range853

(score ∈ [0, 1]) and margin m (m = 0) such854

that R3 is always greater than zero, CORAL855

is equivalent to a weighted version of CE.856

2. Cross-entropy loss has always relied strictly857

on the positive responses in the dataset.858

CORAL utilizes both positive and negative859

response candidates.860

3. Training of a dialog generation model us- 861

ing CE may over-weigh generic responses 862

more than more informative ones as there 863

is no mechanism for automatically assigning 864

weight to different ⟨context,response⟩ pairs. 865

CORAL has provision for assigning differ- 866

ent weight for different ⟨context, candidate 867

response⟩ pairs. 868

4. CORAL uses randomly sampled response can- 869

didates for training which allows us to utilize 870

more samples of ⟨context,response⟩ pairs dur- 871

ing training. This provides a richer training 872

signal from the same dataset. 873

5. CE loss decomposes to a token level compari- 874

son between the predicted and the target token. 875

Its main goal is to increase the probability of 876

the tokens in ground truth response strictly in 877

the given form and order. CORAL loss works 878

quite differently as it treats responses as whole 879

units. It will either increase or decrease prob- 880

ability of responses as a whole, based on their 881

semantics and compatibility to the context. 882

B Limitations 883

We have trained a small version of the proposed 884

CORAL model. It will be great to see if the gains 885

due to CORAL loss lead to similar improvements 886

for large scale models as well. 887

We experimented with English datasets only. 888

While we hope that these results will generalize 889

to models trained on multi-lingual datasets; empiri- 890

cal validation needs to be done. 891

C Human Annotation Guidelines 892

For each of the eighteen dialog qualities, the de- 893

tailed instructions and examples are shown below. 894

These instructions were available for the worker to 895

expand for each question. 896

C.1 Engaging 897

A response is considered engaging if it can engage 898

the user. This might be an inquisitive question or 899

an interesting response that can be followed-up on. 900

• No: the response is boring and does little to 901

engage the user. 902

– Hi there. 903

– Oh wow! That’s cool! 904
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Figure 4: Hyperparameter Sensitivity Analysis/Ablation Studies: These plots showcase the effect of p+ and margin
on the final validation-R3 score obtained by the corresponding CORAL model. Each lineplot corresponds to a
single p+ value as indicated by the legend. Note: The R3 values are not comparable across any two plots.
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• Somewhat: the response is not particularly905

engaging but still leaves room for follow-up.906

– My favourite colour is blue.907

– Nope. I’m not very good with cooking.908

• Yes: the response is actively engaging the user909

and trying to move forward the conversation.910

– I have a feeling that if you can dodge a911

wrench you can dodge a ball.912

– What kind of shows do you like?913

C.2 Relevant914

A response is considered relevant if it is on topic915

and a valid/reasonable continuation of the conver-916

sation. An irrelevant response is one that is com-917

pletely off topic, or abruptly tries to change the918

topic of conversation.919

• No: the response is irrelevant. It is completely920

off topic or abruptly tries to change the topic921

of conversation.922

– User: I think I’m starting to feel sick923

actually System: My favorite movie is924

Parasite925

– User: Can you play dodge ball? System:926

What kind of shows do you like?927

• Somewhat: the response is a valid continu-928

ation of the conversation, but is somewhat929

generic or tangential to the main topic. For930

example, it begins with a generic acknowl-931

edgement of the topic then changes topics.932

– User: Have you tried seafood pancake?933

System: It’s okay. I like beef bulgogi,934

but I’m not a huge fan of kimchi.935

– User: It’s going great, I just finished read-936

ing ’1001 inventions that changed the937

world’ System: That sounds interesting.938

My favorite movie is Parasite.939

• Yes: the response is relevant, on topic and a940

valid continuation of the conversation.941

– User: lol... wanna join us for dodge ball?942

System: Sounds like fun! I’m in!943

– User: I think I like most foods. I really944

like steak System: Steak is good. I espe-945

cially love it when it’s well done.946

C.3 Fluent 947

A response is considered fluently written if it fol- 948

lows all the rules of English grammar and is coher- 949

ent. 950

• No: the response is not fluently written. 951

– System: Therefore you are. Still how 952

long? I don’t know if I can. 953

– System: OK let’s do it. Pardon me? Why 954

it shouldn’t be? 955

• Somewhat: the response is somewhat fluent, 956

but makes a minor mistake or is confusing. 957

– System: I am 18 of your Earth years. 958

– System: Glad to hear it. What’s new? 959

Oh. Maybe you should get some rest? 960

• Yes: the response is written fluently. 961

– System: I have a feeling that if you can 962

dodge a wrench you can dodge a ball. 963

– System: The Last Airbender, and Ar- 964

rested Development are my favorites. 965
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Table 3: Automatic evaluation results on reward-type (ESIM, BERT, DMI) based ablations for CORAL-based
models. For each reward-type, we report the best results here among all the possible configuration of p+ and m.
This selection was done based on validation set.

DSTC7-Ubuntu

Model Avg. Len BLEU METEOR Dist-1 Dist-2 MAUDE-ESIM MAUDE-BERT

Ground Truth 13.73 NA NA 0.0922 0.5231 0.8583 0.7363

Sm
al

lM
od

el
s CORALESIM (off-policy) 10.28 0.1729 0.1581 0.0744 0.4242 0.8590 0.7600

CORALBERT (off-policy) 10.53 0.0949 0.0724 0.0694 0.4093 0.8534 0.8108
CORALDMI (off-policy) 10.39 0.2194 0.2111 0.0707 0.4151 0.8274 0.7309
CORALESIM (mix-policy) 8.54 0.1342 0.1219 0.0716 0.4038 0.8691 0.7534
CORALBERT (mix-policy) 12.42 0.0970 0.0676 0.0630 0.3616 0.8787 0.8477
CORALDMI (mix-policy) 6.93 0.0904 0.0779 0.0729 0.3848 0.8628 0.7913

DailyDialog

Model Avg. Len BLEU METEOR Dist-1 Dist-2 MAUDE-ESIM MAUDE-BERT

Ground Truth 11.97 NA NA 0.0681 0.4061 0.8180 0.8603

Sm
al

lM
od

el
s CORALESIM (off-policy) 10.00 0.1910 0.1727 0.0459 0.2840 0.7402 0.6474

CORALBERT (off-policy) 9.68 0.1838 0.1656 0.0462 0.2902 0.7279 0.6526
CORALDMI (off-policy) 9.44 0.1727 0.1567 0.0461 0.2844 0.7229 0.6234
CORALESIM (mix-policy) 11.01 0.2118 0.1970 0.0397 0.2541 0.7577 0.6588
CORALBERT (mix-policy) 10.50 0.2241 0.2079 0.0428 0.2760 0.7418 0.6692
CORALDMI (mix-policy) 10.91 0.2327 0.2190 0.0433 0.2635 0.7410 0.6680
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