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Abstract

Optimal Transport (OT) has fueled machine learn-
ing (ML) across many domains. When paired data
measurements (u, ) are coupled to covariates, a
challenging conditional distribution learning set-
ting arises. Existing approaches for learning a
global transport map parameterized through a po-
tentially unseen context utilize Neural OT and
largely rely on Brenier’s theorem. Here, we pro-
pose a first-of-its-kind quantum computing formu-
lation for amortized optimization of contextual-
ized transportation plans. We exploit a direct link
between doubly stochastic matrices and unitary
operators thus unravelling a natural connection
between OT and quantum computation. We ver-
ify our method (QontOT) on synthetic and real
data by predicting variations in cell type distri-
butions conditioned on drug dosage. Importantly
we conduct a 24-qubit hardware experiment on a
task challenging for classical computers and re-
port a performance that cannot be matched with
our classical neural OT approach. In sum, this is a
first step toward learning to predict contextualized
transportation plans through quantum computing.

1. Introduction

Optimal transport (OT) (Villani, 2008) provides a math-
ematical framework for finding transportation plans that
minimize the cost of moving resources from a source to a
target distribution. The cost is defined as a distance or a
dissimilarity measure between the source and target points,
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and the OT plan aims to minimize this cost while satisfy-
ing certain constraints. OT theory has found applications
across several fields, including biology where it gained pop-
ularity in single-cell analysis, an area of research rich in
problems of mapping cellular distributions across distinct
states, timepoints, or spatial contexts (Klein et al., 2023).
Notable biological tasks are reconstructing cell evolution
trajectories (Schiebinger et al., 2019), predicting responses
to therapeutic interventions (Bunne et al., 2023; 2022) and
aligning datasets across different omic modalities (Cao et al.,
2022). From the OT perspective, source and target distribu-
tions are measurements of biomolecules of single cells.

In many OT applications, data measurements p; (initial
state) and v; (final state) are coupled to a context p; that
induces p; to develop into v;. One thus might aspire to learn
a global transport map 1" parameterized through p; and thus
facilitate the prediction of target states ©; from source states
pj, even for an unseen context p; (cf. Figure 1A). This
work is largely based on Brenier’s theorem (1987) which
postulates the existence of an unique OT map 7’ given by the
gradient of a convex function, i.e., 7" = V fy. Makkuva et al.
(2020) showed that OT maps between two distributions can
be learned through neural OT solvers by using a minimax
optimization where fy is an input convex neural network
(ICNN, Amos et al. (2017)). A notable example of such a
neural OT approach is CondOT (Bunne et al., 2022) which
estimates transport maps conditioned on a context variable
and learned from quasi-probability distributions (u;, v;),
each linked to a context variable p; ! Limitations of such
approaches include the dependence on squared Euclidean
cost induced by Brenier’s theorem (Peyré et al., 2019) or the
unstable training due to the min-max formulation in the dual
objective as well as the architectural constraints induced
by the partial ICNN. The Monge Gap (Uscidda & Cuturi,
2023), an architecturally agnostic regularizer to estimate OT
maps with any cost C', overcomes these challenges; however,
unlike CondOT it cannot generalize to new context. This is
resolved in our concurrent work on the Conditional Monge
Gap (Harsanyi et al., 2024).

'We use "contextual" rather than "conditional” to differentiate from
OT on conditional probabilities (Tabak et al., 2021)
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Figure 1: A) Contextual OT is a conditional distribution learning problem. B) Our proposed ansatz receives the context (py) and the

initial distribution

On a separate realm, quantum computing (QC) offers a
new paradigm with the potential to become practically use-
ful in ML (Havlicek et al., 2019; Liu et al., 2021a; Har-
row et al., 2009; Huang et al., 2021) and fuel applications
in, e.g., life sciences (Basu et al., 2023) or high-energy
physics (Di Meglio et al., 2023). A general hope of quan-
tum ML lies in the identification of structures that can be
produced more easily with quantum operators rather than
classical principles. Here, we propose a quantum contex-
tual OT approach inspired by a natural link between OT
and unitary operators, a fundamental concept in QC. This
link is formed thanks to doubly stochastic matrices (DSMs).
DSMs are real, nonnegative square matrices with row and
column sums of 1. They are a core structure behind the rise
of OT in ML, for details we refer the reader to Appendix A.
While ensuring the row or column constraint is trivial (left-
or right-stochastic matrices can be obtained with a simple
softmax), producing DSMs parametrically is challenging
with classical ML, typically iterative, non-parametric ap-
proximations like the Sinkhorn algorithm (1967) are used.
Thanks to the link of DSMs and unitary operators, we can
turn the analytical problem of computing OT plans into a
parameterizable approach to estimate them. In contrast to
existing neural OT methods like CellOT (Bunne et al., 2023),
our quantum formulation does not depend on Brenier’s the-
orem (i.e., it is cost-agnostic) and unlike CellOT and the
Monge Gap it estimates transportation plans explictly which
is more interpretable, e.g. the map topoloy can be studied.

Our key contributions can be summarized as follows:

1. We are first to bridge QC with OT and ML. As shown
in Figure 1B, we devise an ansatz that performs amor-
tized optimization of contextual OT plans (or contextual
DSMs) @@ € €y given a context ppew (Section 3.1).
Given an unseen distribution ptnew, We extract a struc-
ture that can be rescaled to a transport map with a desired
initial marginal distribution (Section 3.2).

2. We identify and leverage a previously unreported alge-
braic link between unitary operators and DSMs which
connects OT and QC. We prove that the constraints for a

i and produces a DSM that can be rescaled to a transport plan T with marginal distributions

i and A»;,k.

DSM can be obtained with quantum, yielding a "quantum
inductive bias for DSMs". This is notable because it is
currently unknown whether a similarly natural classical
approach to parametrically produce DSMs exists.

3. We report a promising result on the relaxed assignment
problem (i.e., contextual prediction of DSMs) obtained
with 24-qubits on real hardware (IBM Quantum Plat-
form) that outperforms a classical neural OT approach.

The remaining paper begins with the contextual OT problem
and proceeds with the quantum theory and the details of the
ansatz (i.e., a parametric quantum circuit to approximate a
quantum state) for encoding DSMs and transport plans. As
a proof-of-concept, we first verify our method on synthetic
and real drug perturbation data (with drug dosage as context).
We then turn to a more constrained task, the contextual
relaxed assignment problem which emphasizes better the
strengths of our approach compared to classical neural OT.

2. Preliminaries
2.1. Notation

The sets of non-negative and positive reals are defined re-
spectively as R+ and R4 .. The n-dimensional vector of
ones is denoted by 1,,, the n x n identity matrix as I,, and
the n x n matrix of all ones as J,, :== 1,,1.. The set (with
group structure) of unitary matrices of order n is denoted
U(n). Given a set X we denote by conv(X) the convex hull
of X, that is the minimal and unique convex set containing
X. We define the linear operator diag(-) as the mapping
from a vector v € C™ to a diagonal matrix having as diag-
onal the same vector. The trace operator is denoted Tr(-).
The notation (-)¥ is used to denote the complex conjugate
transpose of the matrix or vector argument. Let A, B be
matrices of the same size, then we denote by A ® B their
Hadamard product, which is defined as the entry-wise mul-
tiplication (A ® B); ; = A;;B;j. We use the Bra—ket
notation to denote the quantum states and their dual. An
integer symbol 7 in the Ket |i), refers to the i-th basis vec-
tor in the computational basis. Also, we make use of the
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following shortcufjij i = jii j ji. consisting oin maximally entagled states @qubits, so
2.2. Linear Algebra of Doubly Stochastic Matrices i = 327 Gizijizi  jini) (iaijizi )
Let , denote theprobability simplexn n 1 dimensions, P1;:51 0 =0
_ S X1
n = VZRE 1nV—1 . (l) :p% J” J i : (4)
Fundamental to this work is tHairkhoff polytope , = i=0

N (1n;1n) (Brualdi, 2006), de ned as the (convex) set of we denote withveg therow-major vectorization operator

n  ndoubly stochastic matricg®SM). ADSMQ 2 »  Givenan n matrixM in C, the latter operator is de ned
is a real, non-negative matrix with row/column sums of 1 py the rule

Q1, = 1,; Q> 1y = 1p; Qi;j 0: 2 K 1
veg(M) = M jii j ii: (5)

Permutation matrices are special cases of DSMs where the o
1=

entries belong td 0; 1g. Moreover, permutations are the
only DSM that are unitary, so for any permutatiBrwe  Moreover, we will be using the well-known identities link-
havethaPP> = P> P = |,. A convex polytope is de ned ing vectorization to the Kronecker produict

as the convex hull of a nite set of objects called extremes,

in the case of the Birkhoff polytope, the extremes are the veG(M)=(M In)vec (In) (6a)
permutation matrices, this result is known as Bikkhoff veg M> =(1, M)vec (I,): (6b)
theorem Every DSMQ 2 | can be decomposed as a

convex combination of permutation matrices, that is We note that the stajé,i in Eq. (4), corresponds to the
@ vectorization of the identity operator up to a scalar multi-

Q= P 3) ple, thatisp2-veg 1," = jbyi. The following lemma
- e establishes a relation between unitary operators and their

for some probability vector 2 n n permutation vectorization.

matricesf F;i g, and zhe number gf’extremg poiris Lemma 2.1. Letf U;g be a set of unitary operatold; 2

n2. We note that the decompositionrist unique Givena ~ U(n) such thaffr  UiU? = n j , that is the unitaries are
positive integemn, the number of permutation matrices is orthogonal w.r.t. the Frobenius inner product. Then the set
n!, which is the number of extreme points of . However, fveg(U;)g C"* consists of orthogonal vectors, that is
the Birkhoff theorem bounds the number of permutations

N required to represent an arbitrary DSMibyn. veG (V) veg(U) =Tr U ij =nj: (7

Another fundamental structure is the $t (a subset of

the Birkhoff polytope ,)ofn n unistochastic matrices Proof in Appendix C.3.

Given anyn n unitary matrixU, the matrix obtained

by substituting each element bf with its absolute value 2.3. The Canonical OT Problem
squared, is unistochastic. In other wordsUe2 U(n), then

U U is doubly stochastic, whetd = UY . The latter
result is an implication of unitarity. The set of unistochastic
matrices is a non-convex proper subset of the Birkhoff poly;g cajiedcost matrixhereafter). Let :  be strictly positive
tope, howevertha n permutations matricésll belong to real vectors (i.e., 2 R?, and 2’ R™ ), representing
such set, hence its convex hull corresponds to the BIrI(hO‘The quasi-probability discrete distributién@Iso referred as

fpolytope[,)_that izonv (S ”b) = n Trr:e Cantra'n_t”S reﬂuged states) for the source and destination entities. The discrete
or an arbitrary DSM to be unistochastic are still unknewn (regularized) Kantorovich's OT problem is de ned as

In the Kantorovich relaxation of the Monge problem (Peyré
etal.,, 2019)C 2 R" ™M is a non-negative matrix represent-
ing the cost of mass displacement from entitg ] (soC

Let jb,i denote the quantum state acting 2m qubits, min  Tr QC> + h(Q): (8a)
2A permutation matrix® ful lls the unitarity constraintsP” P = Q2N ()

PP”> = I,, soP 2 U(n) (unitary). AlsoP P = P, then N(; )= Q2R! "Qln= ;Q71,= (8b)

P 2 S, (unistochastic).
SUnistochastic matrices of order 3 cover75% of the Birkhoff 5In the context of quantum information theory the identity in
polytope (Dunkl &Zyczkowski, 2009). Eq. (6a) is known as the Choi-Jamio kowski correspondence.
“We consider Bell's states (Nielsen & Chuang, 2011) which are®We say that @-dimensional vectov is a quasi-probability dis-
de ned on a bipartite system and maximize the Von Neumann crete distribution when it is non-negative and non-zero. Then
entanglement entropy. v= 17 v is a probability distribution.
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whereh is a regularization function (Cuturi, 2013) with corresponds to our DSM prediction which intrinsically pos-
trade-off 0. The setN ( ; ) is thetransportation sesses the required linear bias (i.e., all row and column sums
polytope(Brualdi, 2006) whose elements aransportation  equal 1).

maps Givenamapl 2N ( ; ), T;; represents the mass

moved from source to destinatiorj (cf. Figure A1). As  3.1. Quantum Circuit for the Birkhoff Polytope

noted, the elements of tiirkhoff polytopea special case
of the transportation polytope, are the DSMs which ar
the solutions to the (relaxedssignment problepwhere
guasi-probability distributions are uniform= = 1,.

dn this section, we assume that the part of the circuit acting
on the rst n qubits has a dimension comparable to the
inputd = 2", whered is the number of entities for the
discrete distributions considered in Section 2.4. Ugbe a
parametric unitary operator acting on the bipartite Hilbert
spaceC2 ™ €2 " andm 2 N suchthatthe classical
Neural OT is concerned witlearningthe optimal transport  simulation of a circuit onm + n qubits is intractable (with
between distributions from samples (Makkuva et al., 2020in  n) in generdl. The operatolJ, depends on the input
Korotin et al., 2023), s.t can be estimated from unseen vectorp 2 X (perturbation) as well as on the learning
i. Contextual OT generalizes this scenario( if; i)  parameters. To prove the construction, we consider the
are not observed in isolation but linked to a contexta  Operator-Schmidt decompositi¢gAppendix B) ofU, (on
conditional distribution learning task arises (Bunne et al.m + n qubits) determined by the quantum-mechanical sub-

2.4. The Contextual OT Problem

2022; Nguyen et al., 2024; Harsanyi et al., 2024). systemsAq; B4, consisting of respectivelyn andn qubits.
Formally, letky = 4\ RY, denote the subset of the ¥?
probability simplex with vectors presenting non-zero com- Up(p; )= iVilp; ) Wi(p; ) 9)
ponents$. We consider a dataset of contextualised measures i=1

each represented by atugile;( i; i) 2X K § where ¢y g andf W; g being sets of unitary operators orthogo-
the vectop; 2 X RS de nes the context. The initial and o Y —om
nal states ; and ; are from the same skty. The cost ma- N@l W.I.t. the Frobenius inner produit ViVy» =27 .
trix C is not required to be constant across all samples, andihe same follows similarly for the séw;g. As a conse-
can be interpreted as a materialization of the perturbatiogiuence gsthe SVB we have ; 0, with unitarity of U,
Atinference time, we are given an unseen perturbatigp, ~ implying  ; # = 1. Notably, the matrixJ, depends on
and initial state ey, and aim to predict a transportation the input and the parameters vectors, then the components
mapT? 2 N ( new; 7), S.t. marginalization yields the of the Operator-Schmidt decomposition, namelyV; and
nal states ?. At training time, we use classical OT solvers Wi, are functions ofp; ). Moreover, to assure the consis-
to obtain a map for each sample, providing a list of tuplegency of the formulation we impose ti&ehmidt rantof U,
(pi;Ti) whereT; 2N ( i; ;) solves thé-th OT problem. (i-e. the number of strictly positive;) to be greater than
on€'. Using the unitaryJ, (omitting the dependency from

p and for clarity) and the stated, i andjby,i (de nedin
Eq. (4)) we obtain the following state (@m + 2n qubits)

Xlzm Up 1" (jbmi j byi)
C L™ Vil Wi L7 b

3. Quantum Formulation

Our quantum formulation leverages the following funda-
mental concept. Ldt) denote the complex conjugate of the
argument (i.e. in the case of a matrix argument, the trans-

J

©

pose of the adjoint), and the Hadamard product between k

matrices. IfU is a unitary matrix, thetd U 2 ,isa X veg Vie veg (W) .

DSM. Hence we can represent (with some approximation) (6a) k—F >m Pon (10)
k

the solution of the assignment problem using unitary oper-
ators. This principle produces DSM independently of thewherevec () is the vectorization operator de ned in Sec-
construction of the unitary, which offers great freedom in tion 2.2. We note that the last equality is obtained using the

the choice of the ansatz far supporting both variational g—————— o )
We note that DSMs reside in a classical memory so they have

and possibly kernel-based learning. Furthermore, such natu;’ - quced space resources complexity. If we were not using

ral link between transportation maps and unitary operators,yiliary qubits for producing the DSM, then the circuit would
may lead to quantum models enjoying better expressivityrequire a logarithmic number of qubits w.r.t. the data size, so the
compared to classical counterparts (Bowles et al., 2023; Abunitary would have a reduced space complexity. Consequently,

bas et al., 2021; Liu et al., 2021b; Anschuetz & Gao, 2024) the resulting circuit would be tractable to classical simulation.

For example, the multitask model by Bowles et al. (2023)1The Qperator-Schmldt.decomposmon is obtameq through SVD.
%e impose the Schmidt rank fak, w.r.t. the split onm + n

To avoid degeneracy, Remark 2.1 (Peyré et al., 2019). qubits, to be> 1. Otherwise the partial trace, introduced on the
m qubits, makes the part of the unitary enqubits unin uential.
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identities in Eq(6a)and Eq.(6b). Now, we partition the
Hilbert space on whicfi i lays into two subsystems. The 4.6 — g

rst, A,, consists of the rs2m qubits (auxiliary qubits). a :joi
The secondB ,, takes the las?n qubits (data qubitd}. We 3 :jOi ** — a0
in the mix lying the partial tr ver &0 HE—— oo % -0 ‘
:Jhbta tt ?n-\ ;adtrs]tateby Ef[p?- yi hgt tipta'ta trace ove oo Un(P; ) o + -
e systemA,, to the pure statg ih' j, thatis 25500 {R-— L 7 i m:jOifu(,)—
: o iy 000 T4 i i o(P: i
=Tr a, (JXIh ) (11a) iz : O i iz:j0i iz
1
= . \/.Y . \Y
2m+n ' v VJ veG (WI ) vea (WJ ) (a) Section 3.1: DSM-encoding circuitb) Section 3.2: Embedded transport map
1)
5 y Figure 2: Circuit structures for the transportation map predic-
(:7)27 i veg (Wi)vec, (W) : (11b)  tion. The register§ixg [f jkg represent the bits for the index

(i;j ) related to the entr®;; of the resulting DSM. The registry

. . f ay g refers to the2m auxiliary qubits as per Section 3.1. Regard-
Recall that by the Operatog-Schmidt decomposition angGng Figure 2a, we remark that the registritas been added for
unitarity of U, we have that ; ,2 = 1. Given that the construction reasons, however in practice it can be removed and
action of the unitaryJy(p; ) is generally not classically substituted with a classical uniform sampling (using the computa-
ef ciently simulable, the state has the potential to rep- tional basis states anqubits) over the registry. Consequently,

. - . _the number of required qubits for DSM-encoding can be reduced
resent correlations that cannot be captgred with classicgl 5 + n. In Figure 2b, we have applied that trick to embed
models. Moreover, here we can appreciate the role of thgansportation maps, witf,i 2 fj 0i :jlig, as per Section 3.2.
auxiliary m qubits, that is enlarging the function space as
a result of the convex combination of density matrices in3.2. Embedding of Transportation Maps

Eqg.(11b) Indeed we note that ih = 0, then the number of

Ferms in Eq(ll_b) reduce_s to,l' The recovery of the DSM. rovided at inference time, the problem is twofold; (1) em-
is completed with the projective measurements explained '@edding the transport map into a DSM to t the representa-

the lemma that follows (see resulting circuit in Figure 2a). tion presented in Section 3.1, and (2) predicting maps which

Since in our applications, the initial distributionis user-

Lemma 3.1. Let can be rescaled to an arbitrary initial distribution. Given
o on T a data set(p;; Ti)g (i.e., tuples of contexts and transport
p(ij) =27 Tr( jij ihij j) (128)  haps), weassuni® 2N (i 1) i i 2 RS, ie. the

fori:j 2[0::d 1]and asde nedinEq(lla) Letfeg marginds of the transport maps are stric_tly posi‘ﬁvel_e_t
be the set of canonical basis vectors (with indstarting v 2 R°, andDy = diag(v) thed d diagonal matrix

from 0) for the vector spadg?”’ . Then the matrix having the elements of the vectoras diagonal elements.
Now, givenT; as de ned above, we de n® = D IT;;
x and observe thaB1y = D 1Tilg = D ! = 1
Q= p(ij)ee (12b) i Ld 7 Tilg L d

thatis® 2 N (14; 9 is a right stochastic matr%, with
0= P> 14. Atinference, when given a perturbatipn,
the model predicts a right stochastic matf2 N (14: 9

09 Rd ; I
Proof in Appendix C.3. In the latter result, the rank 1 matrixfor some "2 Ry, . The latter, alongside the user-provided

ee; corresponds to th” 2" matrix with 1in position [Ir_“t'f“ ?)'St_gbuufn_ri de_terE)nlrjbels th_e Ballpreijlcted Imap
i;j and zeros elsewhere (i.e. the canonical basigTor 2" - » ST la = d ~ d = .M
other words, we learn the transportation pattern in a margin-

matrices inR). In other words, given the density matrix . d dent fashi d le to th ired in at
prepared as in Eql1a) the expectations w.r.t. the observ- independent fashion and rescale to the required margin a
inference time. Note that, when the contexdigull pertur-

ablesjij i hij j provide the correspondin@ j ) entry of the . )
. : . bation) therif} = I4. Given some wehaveD ® =D ,
resulting matrix. In practice, xed an observable for entry henceD 14 = D14 = = , ergo the initial and -

(i;j ), we obtain a single bit of information for each execu- | distributi istent with th " £ null
tion of the circuit, so the resulting matrix is guaranteed to"'&! distributions agree (cons_ls ent wi € hotion of nu
perturbation), inducing a stationarity inductive bias.

ful I the constraints of doubly stochasticity when the num-
ber of shots approaches in nity. However, the convexityTo con rm generality: any transport map 2 N ( ; )
of the Birkhoff polytope offers great advantage in terms ofwith ; 2 RY, , can be decomposed s= DR where
restoring the DSM on a circuit, more details are given inR = diag( ) T is right stochastic an® = diag( ) a
Appendix C.1. Our circuit is shown in Figure 2a.

ij =0

is doubly stochastic.

- 2justi cation on strict positivity of margins in Section 2.4.
We note that the syster#s, andB, contain respectively the *Q 2 R " is right stochastic ifiQ1, = 1,. All DSMs are
systemsA; andB 1, de ned for the unitary in Eq. (9). right stochastic but the converse is not true.
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positive diagondf'. Conversely, the produ@R of aright  the predicted target distribution= (D f?(p))” 14 can

stochastidR and a positive diagon& (both of orderd) is be directly optimized via:

atransport map with = D14 and = (DR)” 1g4. X )
. Lm =min O f(E) . i : (@15

Aggregation scheme. To complete the structure, we now for 2

expand on the link between tide d right stochastic matrix

P and a2d 2d DSM Q. This step is necessary since This can be interpreted as a weakly-supervised learning

the formulation in Section 3.1 produces only a DSM. First,0f transportation maps and is considered for comparison
consider the DSM block decomposition purposes. The ansatz parameters are obtained via gradient-

free optimization with COBYLA (Powell, 1994).
Q1 Q2

Q= Qs Q4 2 o (13) Evaluation. Accuracy of transportation plan prediction is
measured twofold. First, the relative Frobenius norm
with Qi 2 RY 9. Now, note that Q1 Q. 1,4 = 14 im-
plies(Q1 + Q,) 14 = 14. We embed the right stochastic KTi  Tike

F(Ti;Ti) = (16)

matrix'b. into the sumQ; + Q. of the top quadrants of KTike
a DSMQ 2 ,4. Since this structure does not consider

the submatrice®s andQa, in Appendix C.2 we describe WhereT; = D ,f ?(p;) Secondly, we report the sum of the
a custom designed ansatz that takes into account such @Psolute errors (SAE). Accuracy of the predicted marginals
variant. Moreover, as depicted in Figure 2b, we can obtain i measured through, norm andR?.

the sumQ; + Q; directly from the state preparation and

measurements. Speci cally, by initialising the registsy ~ 3.4. Multidimensional OT

tojOi we obtain the top half of the matrix (w.r.t. rows) and _, . . . -
: . S This subsection shows how to estimate the bare minimum
by tracing out the same registry we mimic the sum of the

top two quadranté. We call this "atop” aggregation. To of necessary quantum resources, including even the case

obtain the number of required qubits, fatbe the number of discrete multidimensional OT (Solomon, 2018), re ect-

. . ! : ing that many OT applications utilize multivariate rather
of qubits (as per Section 3.1) that makes the function SPaCk -\ univariate measures (as assumed above). Let the
achievable by the ansatz hard to be computed classicallgt.Jurce data havi covariates, i.e.x; = (xii:::: ;(.K)
Also, letd = 2" and consided d transportation maps N e

then using the reduction introduced in Figure 2b, the CirAssume that each covariate is de ned on a discrete sam-

cuit require2(n + m +1) qubits®wherem n+1. In ple spaceX with cardinalityd, andd, (k 2 [1; K.]_) for

) __ - : source and target data, and de ne the probability space
practice, we semn := n + 1 unless indicated otherwise. Pe = (Xi:Fi: ), whereF = (Xy) is the -algebra
generated by, and  a measure ofiXg; Fx). Then, the
multi-dimensional source measure space is writteR as

Letf : X I () be afunction from the set of perturba- = Xk; k=1 Fk; k=1 k - Analogously, the tar-
tionsX tothe setofl d row-stochastic matrices, and let N N N

F be the function space of such functions related to owg(:ft measure spaceRs= ERLENERIINEN _
model. Then, given the training st ; T)gwe de neour WithK =L =1,d = P;d = R, werecoverthe case dis-

3.3. Training Objective

learning problem via the loss cussed in Section 2.3, i.e.,and are vectlc\)lrs, and the trans-
X portation plaiT 2 RP R.Ingeneral, 2 = <, th, and
Ly =min kD f(pi) Ti KE ; (14) 2 L, RY, ie. the size is governed by the state space

i cardinality. Since the source and target distributions are
represented biK andL rank tensors, the cost function will
be a(K + L)-tensor. Assuming identical source and target
spaces withK covariates, and states per covariate (i.e.,
K = L andd, = d, = d8k 2 [0;K]) the OT plan spans
O(dX) rows/columns. Notably, the discrete N-dimensional
OT problem is# P-hard (Taskesen et al., 2023). Computing
explicit OT plans thus quickly becomes demanding.

where ; = T,14 is the initial distribution for the-th train-

ing sample andk kg is the Frobenius matrix norm. An

optimal function inF that minimizes the losks 1 is denoted

f ?. Atinference time, given the initial (quasi-)distribution
2 RY, and the perturbatiop 2 X , the predicted trans-

portation map is obtained ds= D f ?(p). Alternatively,

YIndeedR1y4 = dia T14 = dia b= 14 (right . I
stochasticsi, SOR i(di&)lg( )gliag( )g(l-l—): T ¢ (g Now consider the application by Bunne et al. (2022) on

L5seeprinciple of implicit measuremefiielsen & Chuang, 2011).  Predicting single-cell perturbation responses ama6g
16note that removing registryand using classical sampling of Cells with50 gene-based features. In that cases L =1
matrix rows could reduce t + 1) + 2 m qubits andd = d =50 200, hence our ansatz would require
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at least56 qubits (cf. Section 3.2 bottom). We prove in types). We compute; 2 RY as distributions over clusters
Appendix C.1 that the minimal number of required shotsfor the population of cells before and after perturbation. We
Ny in the right stochastic matrix scales@{n logn) with cluster withk-Means ank = d = 8 or 16to adhere with
the number of rows/columns in the OT plan (see %)). the circuit requirements, i.ed must be a power o2 (in
In this caseNg > 161k. With less shots the likelihood of general, iflog, (k) 62N, we pad and set := 29092 (k)¢ gng
empty rows in the matrix is high. Furthermore to obtain a x the transport plan to be diagonal for the padded entries).
satisfactory sampling error for each entry we n€gd?="2)  We then solve Eq8) and compute the OT map between
shots; for a precisioh = 0:01 this is more than a trillion and with the Sinkhorn solver (Cuturi, 2013), which may
shots. Even abandoning single cell resolution and settinge sped up through approximate solvers (Haviv et al., 2024).
d = d = 50 still requires28 qubits,Ng > 541and Repeating this procedure for all dosages yields a dataset
> 25M shots to obtain low error. fTi;pig\; of transport plan-perturbation tuples, processed
as described in Section 3.3. The c@st2 RY ¢ is the

As a mitigation strategy, we cluster cells in our eXperimentSEuclidean or cosine distance between centroids

into d clusters and compute; 2 RY, i.e., we seK =
L =1 andd to 8 (or 16) which requiresl6 (or 20) qubits .
and64 (2:56M) shots. Note that prior art on neural OT 5. Experimental Results

for single-cell data (Bunne et al., 2022; 2023) optimizesThis section veri es that QontOTQuantum ®@ntextual
over the push-forwarded measure so the OT plans can ngptimal Transport) can learn to predict transportation maps
be directly accessed, unlike in our quantum method. contextualizedhrough a perturbation variable.

4. Experimental Setup 5.1. Synthetic Data

Leveraging the established sc-RNA-seq genera-
tor Splatter (Zappia et al., 2017), we devised a
perturbation data generator that allows to control the
number of generated cells, genes, cell types, perturbation
functions and more. We experiment with different perturba-
tion functions to up-/down-regulate gene expression linearly
or nonlinearly, different distance metrics, number of clusters
and data splits. Even though the perturbation functions are
Figure 3: Application overview. A population of cells treated Simple and only affect expression of a subset of cells and
with varying drug dosages, resulting X (; Yi; pi) whereX; (Y;) genes, the induced changes in cell type distribution are
represent SCRNA-seq measurements before (after) a drug admigigni cant, locally continuous and nonlinear (cf. Figure A3).

istered with dosagp; 2 [0; 1]. We cluster the measurements to : :
identify cell types and compute for each batch the distribution ofDeu’?IIIS on the _synthetlc data generator and the used datasets
are in Appendix D.1 and D.2.

cell types before and after perturbation, i.eand . A classical
OT solver computes the ground truth OT plBnbased on i,

(not shown). Given our initial cluster distribution before perturba-
tion ; and the dosage; our ansatz predicts a transport plan

We compare QontQOT to two baselindsierageandldentity.
Averagealways predicts the same transportation plan, ob-
tained by solving the regularized OT problem (E&)) onall
We applied our method on predicting changes in the comyaining samples at once, disregarding the contebentity
position of a cell population due to drug perturbations andy\ways predicts the identity OT plan, s.t.z . The results
tested it on synthetic and real data as shown in Figure $; Taple 1 show that QontOT outperforms both baselines in
Starting from a population of heterogeneous cells, each| cases by a wide margin. The two avors of QontQ@F;
living in a high-dimensional state space we know that adandLM both have respective advantages; models are ex-
ministering a drug has a direct effect on the compositiory|icitly trained on the transport plan. They provide solutions
of the cell population, by eliminating certain cell types or with lower cost but instead they, models only optimize
pushing some other cell types to proliferate. We denote agye marginal distribution and give typically better results in

» i the cell type distribution of a cell populatidrefore | , andR2. Unlike related work (Bunne et al., 2022), our
andafter the drug perturbation with a context varialple  method supports various costs like Euclidean or cosine dis-
i.e., the drug dosage [0; 1]. We measure performance on tances of centroids, not just squared Euclidean. The exem-

unseen dosages for different data splitting strategies.  pjary real and predicted transportation plans in Figure A4A
_ _ _ show that QontOT learns context-dependent shifts in cell
4.1. Cell Type Assignment via Clustering type frequencies, by capturing the change in the distribution

f cluster labels induced by the perturbation. Predicting the

We represent each cell through a single label, obtained b flect of stronger perturbations (higher dosages) is more

clustering from the originaR' space intal clusters (i.e., cell
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_ OT Plan Margi”ags algorithm, which we call NeuCOT, is described in Ap-
Dist_ Method L | SAE() Frob. () | L2() R°(") pendix E and performs explicit optimization of transport
tZ Xf;';g;ye - 11-5007 10'4719 %6592 %2287 plans without relying on Brenier. Unlike QontOT it cannot
Lz QontoT L+ 0.97 0.70 045 056 be applied to the contextual (relaxed) assignment problem
L, QontOT Ly 0.97 0.79 041 055 of predicting DSMs. While QontOT uses gradidree op-
Cos. Identity — 1.67 1.50 0.69 0.29 timization, the quantum-inspired approach can be trained
Cos. Average - 111 0.82 052 027 conventionally with backpropagation and thus outperforms
Cos. QontOT Ly | 097 071 | 044 059 QontOT on the aforementioned datasets. Gradient-based,
Cos. QontOT Lw | 110 086 | 040 059  guasi-Newton optimization through BFGS substantially im-
(a) Recovering effect of linear perturbation for different distances. pI’OVGd QontOT's performance in simulation but it is cur-
Dist. Method L | SAE@® Frob.(# |L>(# R*(") rently not amenable to quantum hardware. Encouragingly
Lz Identity - 1.22 1.19 0.50  0.45 even with gradient-free optimization there are cases where
I|:2 g‘ge;gTe . 00é967 006722 ooé.il 00:;2 QontOT yields identical or slightly better performance e.g.,
Li QontoT L; 0.97 077 032 048 if the Hamiltonian of the system is known (cf. Table Al).

(b) More realistic and challenging scenario of nonlinear perturbations.

5.2. SciPlex Data
Table 1: Transportation plan prediction. Performance in pre- N ) ) _
dicting transportation plans for unseen dosages and limgan¢l  To facilitate comparison with prior art, we compared Qon-
nonlinear b) perturbations; comparing QontOT to two baselinestOT to CellOT (Bunne et al., 2023) and CondOT (Bunne
Different distance metrics were used to derive the cost matrix fromg¢ 1. 2022) on two drugs from the SciPlex dataset (Srivat-

the k-means centroids and both linear and non-linear perturba: L .
tion effects were recovered. SAE denotes sum of absolute errore" et al., 2020) each administered in four dosages. For

and Frobenius is the relative Frobenius norm. Means across thré@2ch of the dosages and the Qont_rol Conditﬁﬂ%qf cells
simulations are shown, full results in Table A2. were randomly held out for validation. Table 2 indicates that

Method | SAE(®#) Frob. (#) | Lo (#) R?(")

challenging (cf. Figure A4B). This is expected because ir

the control condition; = 0), the cell type distribution Identity 1j10 L04 018 Qaas
remains identical, subject only to stochastic effects in data QontOTL v 0:78 061 al7 49
generation and bi;.tCh assembly. QontOTL 0:92 068 016 Q57
' CellOT 0:46 041 017 052

CellOT-homo| 0:68 060 029 037

Circuit ablations. Nextwe soughtto assess the robustness CondOT 0:45 040 018 056

of QontOT to different con gurations: the choice of ansatz, (&) Mocetinostat
the optimizer, the number of layers and auxilliary qubits Method ‘ SAE (#) Frob. (#) ‘ L, (# R2(")
and the aggregation scheme to obtain a right stochastie -

matrix. This time we used synthetic data with four cell Identity 1:10 L01 028 Q43
groups (rather than one) which simulates more complex QontOTi. 1 0:82 060 017 049

tissue and yields richer OT plans. Overall, QontOT is robust Qogtﬁgl‘_"” 8?12 83(2) gig ggg
to small alterations in circuit structure (cf. Table A4). Even CellgT homo 0:93 d80 0‘45 427
though many settings use a slightly larger computational } '

gh many s=:ing gntly arg P CondOT | 0:70 055 | 032 049

budget, none of them improve consistently across metrics
over the base con guration, validating the imposed inductive (b) Pracinostat

biases, e.g., our-ansatz type-and the "ato-p". aggregation. I:%ble 2: SciPlex comparisonMeans across three runs are shown.
example, replacing our gradient-free optimizer (COBYLA)

\.N'th gnother one (Neverg_rad (Bennet et al., 2021)) .y'eIdSCeIIOT largely yields the best results, note however, that
identical results. Extending the number of layers in the

X 2 ; t is an unconditional model and ve models were trained
ansatz or adding more auxilliar qubits was generally foun

. ; one per condition) inducing an unfair comparison. When
bene cial but also does not always improve performancea regating data across conditions (Cell@n, perfor-
(more results in Table A3). Moreover, we nd that in an ggregating P

PV . mance drops below the level of QontQT-. CondOT is an
OOD (out-of-distribution) setting where we kept th@? evolution of CellOT that leverages partial ICNNs (PICNNSs)

:;gr:]]SZ:e%Ots(’) aﬁ]eestlg;rg}ntgZrt'?)srt((?frrlc:)irglgrceriisses only mIIdI%’md can be parameterized by d_osage. This yielded overall
’ ' the best results on transportation plan metrics but on the
Note that the embedding for transport maps with given inimarginal metricd., andR?, QontOT is on par or even supe-
tial distribution proposed in Section 3.2 can be adapted torior. Notably, in many applications, such marginal metrics
classical neural networks. The resulting quantum-inspiredre of higher importance. They can be directly optimized

8
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in QontOT'sL ), optimization mode which depicts a form which was beyond our control. The nal result in Figure 4

of weakly supervised amortized optimization of transportdemonstrates that QontOT achieves a better Frobenius Dis-
plans that also overcomes the dependence on conventionaince than any of th&5 tested NeuCOT con guration, each
OT solvers to compute training samples (cf. Section 2.4)with different hyperparameters. Interestingly, despite the
The duality of QontOT's optimization mode is visualized device noise, the lack of error mitigation and the limited

and explained further in Figure AG6. number of collected shots, the hardware run with a larger
qubit budget 24) yielded better results than ti$ qubit
5.3. Contextual Relaxed Assignment Problem simulation. Further performance metrics con rm this result.

Since our ansatz naturally emits a DSM, it can be applied t¢§_Discussion

the contextual relaxed assignment problem directly. In this

task we predict DSMs rather than generic transport plangiere, we introduced QontOT, a principled approach to rep-

In this case, initial and nal distributions are xed, thus resent transportation maps on quantum computers. We pro-
we do not need the structures described in Section 3.2. Weosed an ansatz for learning to predict OT maps conditioned

hypothesized that this task lies closer to the heart of oupn a context variable, without requiring access to the cost.

ansatz (e.g. it does not igno@ andQ,) and thus decided Our empirical results on synthetic and real data show that

to challenge QontOT in a stress test on quantum hardwar@ur method learns to predict contextualized transport maps

. . ._which represent distributional shifts in cell type assignments.
We applied QontOT on synthetic data to contextually pred'CWhile our method does not always match performance of

DSMs and compared itto the _c!assical NegCQT approacl?he best classical models on this task, it constitutes, to the
We used®4 qubits 6 data,18 auxiliary), a circuit with depth best of our knowledge, the rst approach to bridge QC,

50 agd I7O EICR gates .and e;jdatasef[&g(f;u&y SDSMSb OT and ML. Notably, our approach does not impose con-
(ra_m omly sp |t_|nto train an . tes_t Wi btest data) ob- straints on the dimensionality of the context variable(s), thus
tained by sampling from our circuit with random parametersmore complex perturbations such as continuous drug rep-

iu( 28 601:8 ).dFt(;r ef C|e"nc32, tEe (.)II’C|UIt- Wa.flsm't (th' resentations, combinatorial genetic perturbations or other
ppendix G.1) and the smallest physical circuit layou WaS ovariates could be employed. However, given that the

F'Cked.l"’lfte'go: OOOt:anspllatlonstmt_h tr;eﬁ;tgntdard Qiskit dosage-induced shifts in cluster assignments are also driven
1r§35p| er. ag? meb_eirj were |O|3p|\/l|rgﬁe b ks €ps leirl by the initial cell states (not only the dosage), future work
ays on -qubit device erbrooke) available could devise an ansatz fully parametric fqr, potentially

thrOL_Jgh the IBM ngntum Platforn.].. S'f‘ce the algorithm hrough (unbalanced) co-optimal transport (Titouan et al.,
requires state sampling, no error mitigation was performe 020; Tran et al., 2023). Concurrently, we introduced a new

and we collected onlB192 shots per |terat|on._ Further classical neural OT baseline (NeuCOT) which may be fur-

details about the setup can be found in Appendix G. ther improved through a combination of neural and tensor
networks (Wang et al., 2023) or a hybrid quantum-classical
tensor network (Schuhmacher et al., 2024).

On the more constrained task of contextual prediction of
DSMs we report a compelling nding from a noisy quan-
tum computer, obtained without error mitigation and with
gradient-free optimization whereas our classical competi-
tor (NeuCOT) performs worse despite using backpropaga-
tion and orders of magnitudes more parameters. Since we
only used24 qubits, the physical circuit of that particular
DSM prediction experiment may be reproduced by classi-
cal calculations. In that sense, our method may be seen as
a novel classical algorithm formulated in the language of
Figure 4: In a 24-qubit hardware experiment, the performance quantum, however by applying it to larger sizes it could
of QontOT surpasseskB-qubit simulation and various classical eventually lead to quantum advantage, assuming that the
neural OT models trained with different hyperparameter Semng%bserved bene ts are robust to scaling to more qubits. Over-

(cf. Appendix E). The NeuCOT models of size XS, S, M and L I . t t that dicting DSM th
optimize respectively 3k, 8k, 81k and 5M parameters with ADAM all, our EXPe“me” S sugges . at predicting = S rather
compared td 24 gradient-free optimized parameters in our ansatz.than generic transport maps is the more promising future
endeavour. A natural next step is to apply QontOT in scenar-
The result shows that the objective function was convergedPS Where DSMs have to be estimated, one potential avenue

well (cf. Figure A8). A few sudden spikes were observegcould be Transformers where DSMs were found to emerge
during optimization; those are due to the device recalibratioffaturally (Sander et al., 2022).
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Appendix
A. Relation of DSMs and OT

DSMs are a key structure within optimal transport because

« They are at the root of the Kantorovich relaxation of the assignment problem. In the original assignment problem
entities from the source distribution are assigned bijectively émtities from the target distribution through a mapping
represented by a permutation matrix which is indeed invertible and orthogonal. In the Kantorovich relaxation the
assignment takes a probabilistic form rather than a deterministic one (permutation matrices). This probabilistic form is
represented through DSMs which are convex combinations of permutation matrices. More details can be found in the
seminal textbook by Peyré et al. (2019) (see Section 3.1 and especially Section 3.2).

They were fundamental to formulate the entropically regularized version of OT (Cuturi, 2013). Cuturi's seminal work
kicked off the integration of OT into modern ML. The discovery of the Sinkhorn divergence has been enabled through
the Sinkhorn rescaling algorithm which converts nonnegative square matrices into DSMs by alternatively rescaling row
and column sums (Cuturi, 2013). In essence, the prohibitively slow computation of OT (or earth-mover) distances
— given by a linear program that requires super qubic runtid@f logn), see Genevay et al. (2019)) — can be
accelerated by an entropic regularisation term that converts the LP to Sinkhorn's matrix rescaling algorithm.

DSMs can be rescaled to arbitrary transport maps, as demonstrated in Section 3.2 of our paper. Thus they constitute a
fundamental building block and can be leveraged not only for constrained applications where transport maps are exactly
DSMs (e.g., in our experiment on quantum hardware on the "contextual relaxed assignment problem”) but even for
cases where the transport maps do not follow a speci ¢ structure (as shown in the remaining experiments of our paper).
DSMs can be linked to unitary operators thus connecting OT and quantum computing. This fundamental observation
constitutes the foundation of our paper and is critical to address our speci c task with quantum.

(XY XY I} ~00..oo

L]

.

Figure Al: Transportation maps. The left and top sequences of blobs represent the initlph(id nal ( ) distributions. The grid blobs
denote the mass displaced from rbte columnj . The principle of mass preservation manifests as maintaining the total area of initial and
nal distribution blobs. The left quadrant shows a diagonal transportation (without displacement} so.

T Y ®

o o @ o oo
[ ) o [ )

? o ? o

B. The Operator-Schmidt decomposition

We start by de ning the structure of tigchmidt decompositigiBengtsson & Zyczkowski, 2006). Leti denote a bipartite
quantum state on the Hilbert spade= H; H ,. We assume the dimensionstéf H, andH, are the positive integers,
ky, andk,, respectively, witm = k;k,. Then the Schmidt decompositionjofi w.r.t. the splitH; H » is de ned as

min §k1 k29
ji= ijail j bi; 17)
i=1

wherefj aig andfjlgr,q ig are basée¥ for respectivelyH, andH . The coef cients ;, calledSchmidt coef cientsare real
non-negative with , 2 = 1. The Schmidt decomposition can be obtained through the singular value decomposition
(SVD). However, in our formulation we never compute such decomposition explicitly, instead, its formulation is used for
proving the main results. When a state decomposition is characterized by a single non-zero coef sidntwe call it a
product state This is linked to a fundamental concept in quantum mechanics catitschglemeniand the product state
represents the absence of it.

"The bases have cardinality respectivielyandk,, however we note that the decomposition considers subspaces of dimension up to
minfki;kzg.
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We now extend the decomposition to unitary operators\Ldenote a unitary operator acting 6fi. Consider the following
decomposition

min %f k20
veg (V) = ivea(Vi) veg(W) (18)
i=1
which can be interpreted as the Schmidt decomposition ofifhgimensional vectoveg (U). Since the vectorization
operator is an isomorphism, by inverting it we obtain

min %f:k%g
U= iVi W, (19)
i=1
which is the de nition of Operator-Schmidt decomposition Em.r.t. the splitH, H ,. Finally, we note that Lemma 2.1
shows that the orthogonality of the vectérgec (V;)g in (18), corresponds to the orthogonality (w.r.t. the Frobenius inner
product) of the operatofsv; g in (19). Similarly, the same argument follows florec (W;)g andf W;g.

C. Quantum formulation
C.1. Recovery of nitely-sampled matrices

In Section 3.1 we obtained a DSM from a quantum circuit by considering the measurements asymptotically. The objective
of the present section is that of obtaining a method for estimating the DSM from nite measurements. We de ne a multiset
as the tupldX; cx i, whereX denotes the underlying set of elements agxda function mapping each elemen® X toits
cardinality. Given the density matrixprepared as in Eq11a) we run a sampling process which produces a (nonempty)
multisetS = hf(i;j )g; ci of pairsf(i;j )ji;j 2 [0::d 1]g, wherei andj correspond respectively to the row and column
indices of the DSM being sampled. The p4irg ) are counted using a (non-negative) d matrixF whose entrie;;
correspond to the relative frequency of each pair, that is

Eo_p @)
i~ 070"
! iO;jOC((|OyJO))

By previous the de nition we note thdf; F14 = 1 (i.e. F has total mas$), and asymptotically the matrikF (i.e. rescaled

to have total masd) approaches the DSM in E(L2b). Assuming the matri¥ is non-zero (that is we acquired at least one
sample), we de ne the projector onto the Birkhoff polytope as

(20)

Q” =argmin kQ dFK? : (21)
Q2 ¢
Then, by the closedness and convexity gfthe solutionQ? always exists and is unique. We note that wdén2 4,
that is the input matrix is already DSM, then the minimizer beco®gs dF . In other words, the projection acts as the
identity operator when the input matrix belongs to the Birkhoff polytope.

The remaining part of this section is going to focus on estimating the sampling error for the case of right stochastic matrices
(see Section 3.2) obtained from the matrix of relative frequeri€ie®o solve the problem, we employ the Kullback-Leibler

(KL) divergence to quantify the informational difference between probability distributions. We minimize the KL divergence,
S0

min a Qi In Qi (22a)
Qr! ¢y o dRy
S.t.Q1ly = 14: (22b)
Leveraging Lagrange multipliers, denotedaasthe objective function becomes
_» -~ Qij ey
L(Q) = Qij In dE.. + al(Ql;J 1

ij =1 g (23)

@% =InQy In(dFij)+1+ =0 =) Q=d diag(@F;
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with @ 2 RY, . By imposing the constrairly = 14 and assuming tha& 14 2 RY, , it follows thatdiag(a) =
%diag(F 1) 1, hence we obtain the minimizer

Q’ = d diag(a)F =diag(F1) lF: (24)

To obtain the latter we have assumed tRay 2 RY, |, that is the row vectors d¥ are non-zero. To prevent this scenario, it
is essential to determine the minimum number of shots required. This count can be derived from the "Coupon Collector's
Problem." (Blom et al., 1993). It indicates that to achieve a satisfactory probability (of obt&iniith nonzero rowsp,

we need at least

d

samples,and p 1

We remark that the minimum number of sampias relates to the requirement regarding the non-zero rows in the nkatrix
However, the latter does not cover the minimum number of shots to obtain a given prédisiaach entry of the resulting
matrix. Indeed, for each entry of the mat@¥ we needD(1="?) measurements to obtain precisigrconsequently we
requireO(d?="?) measurements for the entire matrix.

C.2. The checkerboard ansatz

We propose an ansatz construction which is convenient with respect to the structure of the embedding of transportation
maps expanded in Section 3.2. Speci cally, since in the partitioning of the DSM i(1BY.only the top two quadrants
contribute to the resulting right stochastic matrix, we aim at devising an ansatz that does not carry additional information in
the discarded quadrants. The latter could also be interpreted as making the parametrisation for the ansatz more ef cient.

Let ; withi =[1 ::3] be the Pauli operators commonly denoted with , and , respectively. Also we de neg = I».
The subscript of the to determine the Pauli will be indicated interchangeably as symbol or integer index.

For some positive integédt, we de ne the subseby of unitary operators as
Gk =fu2U2k)ju=1, A+ 4 Bg; (26)

whereA; B arek k matrices, not necessarily unitary. In other words, the operatddsdnGy have the following block
matrix form

_ A B |
U= g A (27)

which is clearly inherited by the corresponding unistochastic

A AB B _ Q Q. 28)

UV s B8A2a” Q Q

We now proceed with revealing the group-theoretical structure of th8,sahd also its relation with the tensor product,
hence we obtain the construction of the ansatz implementing the unitary in Eq. (27).

The next lemma shows that the €&t is a subgroup of even degree of the unitary group.

Lemma C.1. The seGy is non-empty and endowed with a group structure under operator composition, for all positive
integersk.

Proof. Itis immediately veri able that,, 2 Gy, that is the seGy is non-empty and it contains the identity element w.r.t.
matrix multiplication. Also the composition of operators carries the associativity as required. Finally we verify the closure.
LetU;; U, 2 Gy suchthat)j =1, A+ 4 B;fori=1;2 then

UiU2 =(l2 A1+ x Bi)(l2 A+ x By) (29a)
=l (A1A2+ B1B2)+ « (A1B2+ BiAz); (29b)
which corresponds to the pattern in (27). Heh&), 2 Gy. O
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The result that follows shows that the structure is preserved under the tensor product.

Lemma C.2. LetU; 2 Gy, andU, 2 Gy,, for some positive integeks andky. ThenU; Uz 2 Gay,k, -

Proof. LetU; 2 Gi, andU, 2 Gy, suchthat); = 1, A+ x Bjfori=1;2 then

U Ux=(l2 A+ x Bi1) (I Ax+ By (30a)
=, A+ , B; (30b)

withA = A; (I A+ 4 Bz)andB = B; (I Ax+ 4 Bjy). Hence it follows that); U, fulls the
pattern in (27) and sincé; B are linear maps i€?<:kz, thenU; U, 2 Gk, - O

C.2.1. ANSATZ'S TWO-QUBIT GENERATOR

We obtain a two-qubit circuitly 2 G,, that by Lemma C.1 and C.2 can be used as a generator for the more general
with k 1. From the de nition in Eq(26) we obtain the symmetry 2 G, =) ( x [2)U( x 1) = U. Using

the latter and the general unitary circuit with 2 CNOTs (highlighted) (Barenco et al., 1995), we solve the following circuit
equation

= |22; (31)

whereA; B; C; D are arbitrary single qubit (special) unitaries and 2 R. We obtain a solution to the equation. Since the
operator ; |, commutes with the CNOT gate (with the Pauliacting on CNOT's controlling qubit), we impose on
Eg. (31) the conditions

BY xB = g, (32a)
Ry( ) Ry( )= 2 (32b)
DY ;D= x: (32¢)

Then a solutioni® = D = H and = 0, whereH is the Hadamard operator on a single qubit. Hence the generator
circuit takes the following form

% = B (33)

@ H-———-H}

Finally, by using Lemma C.1 and C.2, and the generator block i§3j,. we construct the ansatz as exempli ed in Figure A2.

whereA;C 2 SU(2) and 2 R.

:K( 1)

K( 3):

1 KC 2)

RELELL
1

K( ) [

Figure A2: An example of depth and connectivity ef cient (single) layer for the Checkerboard ansatz. Here thekblacksespond to
the 2-qubits circuit in Eq. (33) and the vectorsare seven dimensional vectors parameterizing gat€s andR; of Eqg. (33).
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C.3. Proofs
Proof of Lemma 2.1Considering the constraiiit U; ij = n j we obtain
X X
veg (Uj)Y veg (U;) = k| ij h Kkj (Ui jti j ti) (34a)
Xk t
= k| ijUi jti h Kjti (34b)
k;t
X
= hkj U]-injki =Tr U, ij =nj: (34¢)
k
O

Proof of Lemma 3.1We expand the functiop: [0::d 1] [0::d 1]! [0;1]de nedin (12a), so

p(i:j ) =27 Tr( i ihij ) (35a)
= Zhjjveq (W) vec (W) jij i (35b)
= Phj W W jji (35¢)

k
The 5ositivity of the entries of the DSM is clear from the de nitiontf;j ). We prove the rows sum constraint for
Q= p(i;j)jiihjj, thatis
X

Qly = p(i;j)jii (36a)
Y 0 1
X X X o
= jii @ © hij Wi Wy jjiA; (36b)

— P
where the rightmost sum equals the vedtgrsinceW, Wy is unistochastic, also , 2 =1 (following from (9)), hence

Q14 = 14. Similarly the same holds for the columns sum constraint, hence the claim follows. O

D. Experimental details
D.1. Synthetic dosage perturbation data generator

We leverage the established single-cell RNA sequencing gen&platter  (Zappia et al., 2017) to form a three-stage
generator for drug dosage perturbation datasets:

1. First,Splatter ~ samples raw expression counxs 2 R"t ! with n; cells and genes) from zero-in ated negative
binomial distributions (one per gene). Suf cient statistics of all underlying distributions (Poisson, Gamma, Chi-Square)
can be controlled.

2. We aim to produce a tuple oK(; Y;; pi) whereX; holds unperturbed base statesgfcells andY; 2 R"2 ! holds
perturbed states of, cells, resulting from a drug perturbation administered with dogage [0; 1]. To derive the
perturbed state¥;, new base stateég are sampled with the same con guration used to genefatenimicking that
cells are being destroyed during measurement. Subsequérntlyg(Y;; pi) whereg is the total effect on the cells,
governed by a combination of noise terms and the immediate gff¢gtof the perturbation. We assume that only
15%of the genes alter their expression upon perturbation. In this case, weggpplyhe raw cell states, scaled by a
response amplitudeU (0:3; 1). Moreover,10%of the cells are generally unresponsive to the perturbatiprr (). We
investigate linear and non-linear perturbations, gg.(x) = ax + band a reciprocal root functiogy, (x) = ax P with
a; b > 0, respectively. The hyperparameters of the experiments can be found in Appendix D.2.

3. We repeat stage 2 for each dosage by varying smoothly the immediategg{f¢diased orp;, resulting in a dataset
fXi;Yi;pig; of N tuples. Responsive genes are xed across samples. The basexstatesdentical across all
samples of the dataset, mimicking the common experimental setting where only one control population was measured (Sti-
vatsan et al., 2020).
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Figure A3: Exemplary cell type distributions for source and target cell populations. The distribution of cell types in the unperturbed
tissue is either entirely static (see left) or varies mildly based on the user-de ned noise level (not shown). Instead, the perturbed cells
produce highly dissimilar distributions that, however, exhibit some local continuity for similar dosages. The plot was generated with data
from linear perturbations and euclidean cost.

D.2. Datasets and hyperparameters
D.2.1. SINTHETIC DRUG DOSAGE PERTURBATION DATA

Initial experiments  For the results shown in Table 1 and Figure A4, we simulate 300 genes and 1000 cells across 50
unique dosages, equidistantly spacefDirl]. 15% of the genes respond to the perturbagjpf) but 10%of the cells are set

as unresponsive. The sinkhorn regularization 0:001 For the linear casé,, (x) = 3x + 1 and for the non-linear case
fp,(x) =100x %2, For each dosage, four batchess0Dcells each were created, summing to 200 samples which were
split randomly with20%held out dosages for testing. In almost all experiments we set the number of clu#tersde 8;

only in Figure A4 it was set ta6.

Four cell groups. For the ablation studies on circuit structure (cf. Table A4), we simulate populatidi¥gfenes and
2000cells, each belonging now to one out of four groups to simulate more complex tissue. We perturb the populations with
the functionf 5, (as above) and00dosages, equidistantly spaced@nl1]. The initial cell stateX; are resampled for every
dosage and onl2% of cells are set as unresponsive. Tl dosages are split randomly wiBd%test data.

D.2.2. SIPLEX DATA

Selected models were trained on two of the nine compounds from the SciPlex dataset (Srivatsan et al., 2020). High
Throughput Screens on three cell lines were conducted with four varying concentrations (10, 100, 1000, and 10000 nM)
for each drug. We inherit preprocessing from Bunne et al. (2023) and Lotfollahi et al. (2019) which includes library size
normalization, Itering at the cell and gene levels, and log1lp transformation. For mocetinostat and pracinostat we obtained
respectively 22,154 and 21,926 cells from which 17,565 and 15,137 were control cells. Data was split per condition (control
+ four dosages) in a roughly 80/20 ratio. Preprocessing identi ed 1,000 highly-variable genes, which were compressed with
PCA to obtain 50-dimensional latent codes which are clusterediviieans intd3 clusters.

CellOT & CondOT. CellOT and CondOT are trained with to&t-jax ~ package (Cuturi et al., 2022) fa000iterations

and batches of siz@€0on j, i.e., the sam&-dimensional feature vectors (denoting a distribution of cell types B0er
cells) used to train QontOT. We use a cosine decay learning rate scheduler with an initial vaa@laihd an alpha of

0:01, optimized with ADAM (Kingma & Ba, 2014). CondOT uses the gaussian map initialization proposed in (Bunne
et al., 2022). As CellOT and CondOT learn directly a nhapR® ! R8 such thaf ( ;) = ;, we use the entropically
regularized sinkhorn solver (Cuturi, 2013) fry; ;) to obtain the transport maps and compute performance metrics on
SAE and relative Frobenius norm.

D.3. Implementation

As mentioned in Section 3, the factthat U 2 , is a DSM offers great exibility in the choice of the ansatz. In practice,

we implemented two ansatzeentrosymmetriandsimple Both of them have been trained @iskit  0.43.0 (Qiskit
contributors, 2023) and all experiments were performed with Qiskit's sampler class and, unless indicated otherwise
(cf. Section 5.3), in statevector simulation.
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Centrosymmetric The centrosymmetric ansatz is our default implementation which induces a bias toward properties
of centrosymmetric matrices. Speci cally, the matrix being modelled can be divided into four quadrants such that the
respective diagonals are equal and the respective off-diagonals are also equal.

Simple Instead, the simple ansatz instead is symmetric by construction and has less bias toward a speci c class of
unitary operators than the centrosymmetric ansatz. This ansatz was rst formulated in Khatri et al. (2019) and later re ned
in Madden & Simonetto (2022). Note that this ansatz implements the identity operator when all parameters are zero.

E. Neural contextual OT (NeuCQOT)
E.1. Methodology

In Section 3.2 we have shown that, if we produce a right stochastic nfagin (14; 9, the latter can be rescaled to

a transportation map with the required initial distribution We recall that, at inference time, the right stochaftis

predicted by a circuit depending on the perturbation, thus the predicted transportation map results from the rescaling of the
rows of P, using the elements of the initial distributionas coef cients. A complementary case is that of the contextual
(relaxed) assignment problem, whose origin is presented in Section 2.3. The latter requires the prediction of a DSM, and
we believe that this task is hard for classical machine learning. The former case instead, that is the one requiring a right
stochastic matrix, can be shown to be practical for classical MLM.& RY 9 and Vi theHadamard exponential

matrix (Horn & Johnson, 2012) d¥1 , that is the matrix resulting from the entry-wise application of the exponential mapping.

We extend the notation to a row-rescaled form, so

eM i
then
eMij LV P Mg >
Prgr L= P e = Lo (38)
K . k k

that is(37) maps anyM 2 RY ¢ to a right stochastic matrix. Let the matrix-valued function X ! RY 9 represent a
neural network parametrised by the vectomapping the space of perturbatiokgo ad  d real matrix. We obtain a right
stochastic matrix as a function of the pertur'pa@oﬂ X, so

(f ()
b= p° ‘

o 2N (1g; 9: (39)

Hence, the right stochastic matrix can be obtained through a neural network with a softmax activation in the ultimate
layer. Finally the procedure continues as outlined in Section 3.2, that is the prediction for the transportation map is given
byT =D P, soTly = as required. Optionally, one can make the prediction depending non-linearly on the initial
distribution by re-de ningf as a function of both the perturbation and the distribution

This is a novel, quantum-inspired approach that combines neural and contextual OT through amortized optimization. It
can be trained in a fully or weakly supervised setting, either optimizing OT plans directiyL({’E;,T)) or only the
push-forwarded distribution (i.eL,(T] ; )). We dub this approacNeuCOTfor Neural ContextualOptimal Transport.

Previous approaches either leverage Brenier's theorem (1987) to recast the problem to convex regression (e.g., CellOT and
CondOT (Bunne et al., 2022; 2023)) or use regularization (Uscidda & Cuturi, 2023). In the implementation the optimization
occurs over the push-forwarded measure in both cases, so unlike in our method, the OT plans can not be directly accessed.

E.2. Implementation and Result

In practice, we implement this approach with a shallow, dense neural network of two l&gersd 128 units unless
indicated otherwise), a ReLU activation, a dropal@%s unless indicated otherwise) and use a MSE loss between real and
predicted OT plans. We apply an optional residual connection of the context to the last layer of the network. Moreover, we
also apply an optional "DSM loss" to penalize deviations of the marginals from uniform bnesThe models have 25k
trainable parameters that are optimized with ADAM 5@0epochs with a learning rate 6& 4.

The results in Table A1 compare NeuCOT to QontOT and the average baseline for different datasets and splitting strategies.
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Dataset Data split Method | SAE#) Frob.(#) | Lo (#) R*(")
Average 1.23 083 015 056

Four cell types Random QontOT 0:41 030 013 054
NeuCOT 0:22 G20 G10 073

Average 1.21 084 024 009

Four cell types Extrapolation QontOT 0:53 078 020 021
NeuCOT 0:32 030 017 039

Average 2:332 0883 0538 0880

Random QontOTL 7 0.571 0.208 0.085 0:892
NeuCOT 0:581 Q215 Q089 0.894

Average 1:317 Q879 Q055 0671

Identity 0:878 1042 Q078 Q640

Random QontOTL 1 0:421 0833 Q028 0.710
QontOTL 0:479 Q845 Q029 0699

NeuCOT 0.400 0.356 | 0:028 Q708

Known Hamiltonian
8 8plans

Known Hamiltonian
16 16plans

Table A1: Comparison of QontOT to NeuCOT. Means across three different runs are shown. All datasets use actual distributions, so
1, =1= 1,.

F. Extended Results

Transportation plan Marginals
Perturb. Dist. Layers L | SAE®#) Frob.(#) | La(# R2 (")
Lin. Lo Ident. — | 1:50 914 141 g1 | 0:69 07 0:28 (.07
Lin. L, AVg. - 1:.07 004 079 001 | 0:52 904 0:27 0.0
Lin. L, QontOT Lt | 0:97 908 0:70 .06 | 0:45 0.04 0:56 003
Lin. Lo QOﬂtOT Lwm 0:97 0112 079 .15 | 0:41 .05 0:55 .10
Lin. Cos. Ident. — | 1.:67 916 1:50 g:13 | 0:69 .07 0:29 .07
Lin. Cos. AVg. - 1:11 905 0:82 902 | 0:52 g.05 0:27 0.06

Lin. Cos. QOHtOT Lt 0:97 009 071 907 | 0:44 o.05 0:59 .02
Lin. Cos. QOﬂtOT Lm 1:10 .14 0:86 g:10 | 0:40 g0 0:59 ¢:10
NonLin. Lo Ident. — | 1:22 905 119 g5 | 0:50 g2 0:45 g.02
NonLin. L, AVg - 0:.97 0:02 0:72 0:01 0:41 0:01 0:42 0:04
NonLin. Lo QOI’]tOT Lt 0:86 .03 062 gi02 | 0:34 01 0:47 o.05
NonLin. L, QontOT Lwm 0:97 006 077 005 | 0:32 901 0:48 (.01

Table A2: Transportation plan prediction. Extended results for Table 1, denotes standard deviation across three runs.

Dist. Layers L SAE (#) Frob. (%) Lo (®) R2 (")

L, 6 Lt 0:97 008 0:70 906 | 0:45 g.04 0:56 .03
L, 12 Lt 0:98 o117 0:72 g0 | 0:45 g.05 0:53 .10
L, 6 Lwm 0:97 o9:12 079 .15 | 0:41 g.05 0:55 ¢:10
L, 12 Lwm 1:02 909 0:81 .13 | 0:42 904 054 .08
Cos. 6 Lt 0:97 o000 0:71 07 | 0:44 .05 0:59 (.02
Cos. 12 Lt 0:99 910 0:71 006 | 0:45 .05 0:59 (.17
Cos. 6 Lwm 1:10 914 0:86 .10 | 0:40 906 0:59 ¢:10
Cos. 12 Lwm 1:06 0:05 0:83 0:12 0:42 0:05 0:60 0:12

Table A3: Ablation study on number of layers in ansatz.Adding more layers in the ansatz and thus more parameters in the circuit does
not improve performance. Experiment performed on linear perturbation function (cf. Table B)rdspectivelyl2 layers in the ansatz,
there are234 respectivelyd56 circuit parameters to optimize.
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Figure A4: Capturing variation in cell type distributions. a) Three predicted transportation plans from the nonlinear perturbation
dataset are shown next to their unseen ground th)tRrobenius distance of real and predicted transportation across unseen dosages are
shown for QontOT and the baseline.

Figure A5: Out-of-distribution scenario. When QontOT is evaluated on dosages outside the training data scenario (redly shaded
background), the performance decreases but still remains well above the baseline.
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Method \ SAE () Frob. () \ Ly(l) R?>®
Identity 0.65 0.60 0.18 0.46
Average 1.23 0.83 0.15 0.56

L 0.59 0.43 0.13 0.58
Lp-Nevergrad 0.41 0.30 0.14 0.54
L 0.41 0.30 0.13 0.54
Lp-Asls 0.45 0.34 0.14 0.54
Lp-Simple 0.46 0.32 0.13 0.57
Lp-Simple-12 0.55 0.40 0.13 0.58
Lr-Simple-12-Shared 0.41 0.30 0.14 0.57
Lp-Simple-16-Shared 0.41 0.30 0.14 0.58

Table A4: Ablation studies on circuit structure. L7 is the base configuration. Simple is an circuit constructions alternative to the
base type "centrosymmetric” (cf. Appendix D.3 for details). "12" or "16" refers to the number of layers (base is 6) and "Shared" defines
whether the ansatz parameters are identical across layers (this is faster to optimize thus allowing deeper circuits). "AsIs" denotes an
alternative to the "atop" aggregation to produce a DSM (cf. Section 3.2). Means across three random splits are shown.

Marginal

Transport

e g l.g¥ AMI=0386 S AMI=0.84
- * rel. $$=0.53 ' rel. $5=0.45

Figure A6: Comparison of QontOT optimization modes. A) Sankey plots of L ysarginai and Lransport for a validation sample of
pracinostat reveal that L s learns transport maps with higher transport cost and unnecessary move of mass (see bucket 4 and 8). B) In
contrast, the marginal performance of L ;s is typically better, evidenced by the more discriminative cell type identification for the UMaps.
The higher AMI (adjusted mutual information (Vinh et al., 2009)) shows that the predicted clusters are more similar to the real ones and
the relative silhouette score (Rousseeuw, 1987) shows that the clusters are more consistent for L j; than for L.
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