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Abstract
Optimal Transport (OT) has fueled machine learn-
ing (ML) across many domains. When paired data
measurements (µ,ν) are coupled to covariates, a
challenging conditional distribution learning set-
ting arises. Existing approaches for learning a
global transport map parameterized through a po-
tentially unseen context utilize Neural OT and
largely rely on Brenier’s theorem. Here, we pro-
pose a first-of-its-kind quantum computing formu-
lation for amortized optimization of contextual-
ized transportation plans. We exploit a direct link
between doubly stochastic matrices and unitary
operators thus unravelling a natural connection
between OT and quantum computation. We ver-
ify our method (QontOT) on synthetic and real
data by predicting variations in cell type distri-
butions conditioned on drug dosage. Importantly
we conduct a 24-qubit hardware experiment on a
task challenging for classical computers and re-
port a performance that cannot be matched with
our classical neural OT approach. In sum, this is a
first step toward learning to predict contextualized
transportation plans through quantum computing.

1. Introduction
Optimal transport (OT) (Villani, 2008) provides a math-
ematical framework for finding transportation plans that
minimize the cost of moving resources from a source to a
target distribution. The cost is defined as a distance or a
dissimilarity measure between the source and target points,
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and the OT plan aims to minimize this cost while satisfy-
ing certain constraints. OT theory has found applications
across several fields, including biology where it gained pop-
ularity in single-cell analysis, an area of research rich in
problems of mapping cellular distributions across distinct
states, timepoints, or spatial contexts (Klein et al., 2023).
Notable biological tasks are reconstructing cell evolution
trajectories (Schiebinger et al., 2019), predicting responses
to therapeutic interventions (Bunne et al., 2023; 2022) and
aligning datasets across different omic modalities (Cao et al.,
2022). From the OT perspective, source and target distribu-
tions are measurements of biomolecules of single cells.

In many OT applications, data measurements µi (initial
state) and νi (final state) are coupled to a context pi that
induces µi to develop into νi. One thus might aspire to learn
a global transport map T parameterized through pi and thus
facilitate the prediction of target states ν̂j from source states
µj , even for an unseen context pj (cf. Figure 1A). This
work is largely based on Brenier’s theorem (1987) which
postulates the existence of an unique OT map T given by the
gradient of a convex function, i.e., T = ∇fθ. Makkuva et al.
(2020) showed that OT maps between two distributions can
be learned through neural OT solvers by using a minimax
optimization where fθ is an input convex neural network
(ICNN, Amos et al. (2017)). A notable example of such a
neural OT approach is CondOT (Bunne et al., 2022) which
estimates transport maps conditioned on a context variable
and learned from quasi-probability distributions (µi,νi),
each linked to a context variable pj

1. Limitations of such
approaches include the dependence on squared Euclidean
cost induced by Brenier’s theorem (Peyré et al., 2019) or the
unstable training due to the min-max formulation in the dual
objective as well as the architectural constraints induced
by the partial ICNN. The Monge Gap (Uscidda & Cuturi,
2023), an architecturally agnostic regularizer to estimate OT
maps with any costC, overcomes these challenges; however,
unlike CondOT it cannot generalize to new context. This is
resolved in our concurrent work on the Conditional Monge
Gap (Harsanyi et al., 2024).

1We use "contextual" rather than "conditional" to differentiate from
OT on conditional probabilities (Tabak et al., 2021)
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Figure 1: A) Contextual OT is a conditional distribution learning problem. B) Our proposed ansatz receives the context (pk) and the
initial distribution µi and produces a DSM that can be rescaled to a transport plan T with marginal distributions µi and ν̂i,k.

On a separate realm, quantum computing (QC) offers a
new paradigm with the potential to become practically use-
ful in ML (Havlíček et al., 2019; Liu et al., 2021a; Har-
row et al., 2009; Huang et al., 2021) and fuel applications
in, e.g., life sciences (Basu et al., 2023) or high-energy
physics (Di Meglio et al., 2023). A general hope of quan-
tum ML lies in the identification of structures that can be
produced more easily with quantum operators rather than
classical principles. Here, we propose a quantum contex-
tual OT approach inspired by a natural link between OT
and unitary operators, a fundamental concept in QC. This
link is formed thanks to doubly stochastic matrices (DSMs).
DSMs are real, nonnegative square matrices with row and
column sums of 1. They are a core structure behind the rise
of OT in ML, for details we refer the reader to Appendix A.
While ensuring the row or column constraint is trivial (left-
or right-stochastic matrices can be obtained with a simple
softmax), producing DSMs parametrically is challenging
with classical ML, typically iterative, non-parametric ap-
proximations like the Sinkhorn algorithm (1967) are used.
Thanks to the link of DSMs and unitary operators, we can
turn the analytical problem of computing OT plans into a
parameterizable approach to estimate them. In contrast to
existing neural OT methods like CellOT (Bunne et al., 2023),
our quantum formulation does not depend on Brenier’s the-
orem (i.e., it is cost-agnostic) and unlike CellOT and the
Monge Gap it estimates transportation plans explictly which
is more interpretable, e.g. the map topoloy can be studied.

Our key contributions can be summarized as follows:

1. We are first to bridge QC with OT and ML. As shown
in Figure 1B, we devise an ansatz that performs amor-
tized optimization of contextual OT plans (or contextual
DSMs) Q ∈ Ωd given a context pnew (Section 3.1).
Given an unseen distribution µnew, we extract a struc-
ture that can be rescaled to a transport map with a desired
initial marginal distribution (Section 3.2).

2. We identify and leverage a previously unreported alge-
braic link between unitary operators and DSMs which
connects OT and QC. We prove that the constraints for a

DSM can be obtained with quantum, yielding a "quantum
inductive bias for DSMs". This is notable because it is
currently unknown whether a similarly natural classical
approach to parametrically produce DSMs exists.

3. We report a promising result on the relaxed assignment
problem (i.e., contextual prediction of DSMs) obtained
with 24-qubits on real hardware (IBM Quantum Plat-
form) that outperforms a classical neural OT approach.

The remaining paper begins with the contextual OT problem
and proceeds with the quantum theory and the details of the
ansatz (i.e., a parametric quantum circuit to approximate a
quantum state) for encoding DSMs and transport plans. As
a proof-of-concept, we first verify our method on synthetic
and real drug perturbation data (with drug dosage as context).
We then turn to a more constrained task, the contextual
relaxed assignment problem which emphasizes better the
strengths of our approach compared to classical neural OT.

2. Preliminaries
2.1. Notation

The sets of non-negative and positive reals are defined re-
spectively as R+ and R++. The n-dimensional vector of
ones is denoted by 1n, the n× n identity matrix as In and
the n× n matrix of all ones as Jn := 1n1

⊤
n . The set (with

group structure) of unitary matrices of order n is denoted
U(n). Given a setX we denote by conv(X) the convex hull
of X , that is the minimal and unique convex set containing
X . We define the linear operator diag(·) as the mapping
from a vector v ∈ Cn to a diagonal matrix having as diag-
onal the same vector. The trace operator is denoted Tr(·).
The notation (·)† is used to denote the complex conjugate
transpose of the matrix or vector argument. Let A,B be
matrices of the same size, then we denote by A ⊙ B their
Hadamard product, which is defined as the entry-wise mul-
tiplication (A ⊙ B)i,j = Ai,jBi,j . We use the Bra–ket
notation to denote the quantum states and their dual. An
integer symbol i in the Ket |i⟩, refers to the i-th basis vec-
tor in the computational basis. Also, we make use of the
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following shortcut |ij⟩ := |i⟩ ⊗ |j⟩.

2.2. Linear Algebra of Doubly Stochastic Matrices

Let ∆n denote the probability simplex in n− 1 dimensions,

∆n =
{
v ∈ Rn

+

∣∣1⊤
nv = 1

}
. (1)

Fundamental to this work is the Birkhoff polytope Ωn :=
N (1n,1n) (Brualdi, 2006), defined as the (convex) set of
n× n doubly stochastic matrices (DSM). A DSM Q ∈ Ωn

is a real, non-negative matrix with row/column sums of 1

Q1n = 1n, Q⊤1n = 1n, Qi,j ≥ 0. (2)

Permutation matrices are special cases of DSMs where the
entries belong to {0, 1}. Moreover, permutations are the
only DSM that are unitary, so for any permutation P we
have that PP⊤ = P⊤P = In. A convex polytope is defined
as the convex hull of a finite set of objects called extremes,
in the case of the Birkhoff polytope, the extremes are the
permutation matrices, this result is known as the Birkhoff
theorem. Every DSM Q ∈ Ωn can be decomposed as a
convex combination of permutation matrices, that is

Q =

N∑
i=1

λiPi, (3)

for some probability vector λ ∈ ∆N , n × n permutation
matrices {Pi}, and the number of extreme points N ≤
n2. We note that the decomposition is not unique. Given a
positive integer n, the number of permutation matrices is
n!, which is the number of extreme points of Ωn. However,
the Birkhoff theorem bounds the number of permutations
N required to represent an arbitrary DSM by n · n.

Another fundamental structure is the set Sn (a subset of
the Birkhoff polytope Ωn) of n× n unistochastic matrices.
Given any n × n unitary matrix U , the matrix obtained
by substituting each element of U with its absolute value
squared, is unistochastic. In other words, let U ∈ U(n), then
U ⊙ U is doubly stochastic, where U =

(
U†)⊤. The latter

result is an implication of unitarity. The set of unistochastic
matrices is a non-convex proper subset of the Birkhoff poly-
tope, however the n×n permutations matrices2 all belong to
such set, hence its convex hull corresponds to the Birkhoff
polytope, that is conv (Sn) = Ωn. The constraints required
for an arbitrary DSM to be unistochastic are still unknown3.

Let |bn⟩ denote the quantum state acting on 2n qubits4,

2A permutation matrix P fulfills the unitarity constraints P⊤P =
PP⊤ = In, so P ∈ U(n) (unitary). Also P ⊙ P = P , then
P ∈ Sn (unistochastic).

3Unistochastic matrices of order 3 cover ≈ 75% of the Birkhoff
polytope (Dunkl & Życzkowski, 2009).

4We consider Bell’s states (Nielsen & Chuang, 2011) which are
defined on a bipartite system and maximize the Von Neumann
entanglement entropy.

consisting of n maximally entagled states on 2 qubits, so

|bn⟩ =
1√
2n

1∑
i1,...,in=0

(|i1⟩ |i2⟩ · · · |in⟩)⊗ (|i1⟩ |i2⟩ · · · )

=
1√
2n

2n−1∑
i=0

|i⟩ ⊗ |i⟩ . (4)

We denote with vecr the row-major vectorization operator.
Given a n× n matrix M in C, the latter operator is defined
by the rule

vecr(M) :=

n−1∑
i=0

M |i⟩ ⊗ |i⟩ . (5)

Moreover, we will be using the well-known identities link-
ing vectorization to the Kronecker product 5

vecr(M) =(M ⊗ In) vecr (In) (6a)

vecr
(
M⊤) =(In ⊗M) vecr (In) . (6b)

We note that the state |bn⟩ in Eq. (4), corresponds to the
vectorization of the identity operator up to a scalar multi-
ple, that is 1√

2n
vecr

(
I⊗n
2

)
= |bn⟩. The following lemma

establishes a relation between unitary operators and their
vectorization.

Lemma 2.1. Let {Ui} be a set of unitary operators Ui ∈
U(n) such that Tr

(
UiU

†
j

)
= nδij , that is the unitaries are

orthogonal w.r.t. the Frobenius inner product. Then the set
{vecr(Ui)} ⊂ Cn2

consists of orthogonal vectors, that is

vecr(Uj)
† vecr(Ui) =Tr

(
UiU

†
j

)
= nδij . (7)

Proof in Appendix C.3.

2.3. The Canonical OT Problem

In the Kantorovich relaxation of the Monge problem (Peyré
et al., 2019), C ∈ Rn×m is a non-negative matrix represent-
ing the cost of mass displacement from entity i to j (so C
is called cost matrix hereafter). Let µ,ν be strictly positive
real vectors (i.e., µ ∈ Rn

++ and ν ∈ Rm
++), representing

the quasi-probability discrete distributions6 (also referred as
states) for the source and destination entities. The discrete
(regularized) Kantorovich’s OT problem is defined as

min
Q∈N (µ,ν)

Tr
(
QC⊤)+ γh(Q), (8a)

N (µ,ν) =
{
Q ∈ Rn×m

+

∣∣Q1m = µ, Q⊤1n = ν
}

(8b)

5In the context of quantum information theory the identity in
Eq. (6a) is known as the Choi-Jamiołkowski correspondence.

6We say that a d-dimensional vector v is a quasi-probability dis-
crete distribution when it is non-negative and non-zero. Then
v/

(
1⊤
d v

)
is a probability distribution.
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where h is a regularization function (Cuturi, 2013) with
trade-off γ ≥ 0. The set N (µ,ν) is the transportation
polytope (Brualdi, 2006) whose elements are transportation
maps. Given a map T ∈ N (µ,ν), Ti,j represents the mass
moved from source i to destination j (cf. Figure A1). As
noted, the elements of the Birkhoff polytope, a special case
of the transportation polytope, are the DSMs which are
the solutions to the (relaxed) assignment problem, where
quasi-probability distributions are uniform µ = ν = 1n.

2.4. The Contextual OT Problem

Neural OT is concerned with learning the optimal transport
between distributions from samples (Makkuva et al., 2020;
Korotin et al., 2023), s.t. ν̂i can be estimated from unseen
µi. Contextual OT generalizes this scenario: if (νi,µi)
are not observed in isolation but linked to a context pi, a
conditional distribution learning task arises (Bunne et al.,
2022; Nguyen et al., 2024; Harsanyi et al., 2024).

Formally, let Kd := ∆d ∩ Rd
++ denote the subset of the

probability simplex with vectors presenting non-zero com-
ponents7. We consider a dataset of contextualised measures
each represented by a tuple (pi, (µi,νi)) ∈ X ×K2

d, where
the vector pi ∈ X ⊆ Rs defines the context. The initial and
final states µi and νi are from the same set Kd. The cost ma-
trix C is not required to be constant across all samples, and
can be interpreted as a materialization of the perturbation.
At inference time, we are given an unseen perturbation pnew

and initial state µnew, and aim to predict a transportation
map T ⋆ ∈ N (µnew,ν

⋆), s.t. marginalization yields the
final states ν⋆. At training time, we use classical OT solvers
to obtain a map for each sample, providing a list of tuples
(pi, Ti) where Ti ∈ N (µi,νi) solves the i-th OT problem.

3. Quantum Formulation
Our quantum formulation leverages the following funda-
mental concept. Let (·) denote the complex conjugate of the
argument (i.e. in the case of a matrix argument, the trans-
pose of the adjoint), and ⊙ the Hadamard product between
matrices. If U is a unitary matrix, then U ⊙ U ∈ Ωn is a
DSM. Hence we can represent (with some approximation)
the solution of the assignment problem using unitary oper-
ators. This principle produces DSM independently of the
construction of the unitary U , which offers great freedom in
the choice of the ansatz for U supporting both variational
and possibly kernel-based learning. Furthermore, such natu-
ral link between transportation maps and unitary operators
may lead to quantum models enjoying better expressivity
compared to classical counterparts (Bowles et al., 2023; Ab-
bas et al., 2021; Liu et al., 2021b; Anschuetz & Gao, 2024).
For example, the multitask model by Bowles et al. (2023)

7To avoid degeneracy, Remark 2.1 (Peyré et al., 2019).

corresponds to our DSM prediction which intrinsically pos-
sesses the required linear bias (i.e., all row and column sums
equal 1).

3.1. Quantum Circuit for the Birkhoff Polytope

In this section, we assume that the part of the circuit acting
on the first n qubits has a dimension comparable to the
input d = 2n, where d is the number of entities for the
discrete distributions considered in Section 2.4. Let Up be a
parametric unitary operator acting on the bipartite Hilbert
space

(
C2

)⊗m⊗
(
C2

)⊗n
, andm ∈ N such that the classical

simulation of a circuit on m+ n qubits is intractable (with
m ≥ n) in general8. The operator Up depends on the input
vector p ∈ X (perturbation) as well as on the learning
parameters θ. To prove the construction, we consider the
Operator-Schmidt decomposition (Appendix B) of Up (on
m+ n qubits) determined by the quantum-mechanical sub-
systems A1, B1, consisting of respectively m and n qubits.

Up(p,θ) =

d2∑
i=1

λiVi(p,θ)⊗Wi(p,θ) (9)

with {Vi} and {Wi} being sets of unitary operators orthogo-
nal w.r.t. the Frobenius inner product Tr

(
ViV

†
j

)
= 2mδij .

The same follows similarly for the set {Wi}. As a conse-
quence of the SVD9, we have λi ≥ 0, with unitarity of Up

implying
∑

i λ
2
i = 1. Notably, the matrix Up depends on

the input and the parameters vectors, then the components
of the Operator-Schmidt decomposition, namely λi, Vi and
Wi, are functions of (p,θ). Moreover, to assure the consis-
tency of the formulation we impose the Schmidt rank of Up

(i.e. the number of strictly positive λi) to be greater than
one10. Using the unitary Up (omitting the dependency from
p and θ for clarity) and the states |bn⟩ and |bm⟩ (defined in
Eq. (4)) we obtain the following state (on 2m+ 2n qubits)

|φ⟩ =
(
I⊗m
2 ⊗ Up ⊗ I⊗n

2

)
· (|bm⟩ ⊗ |bn⟩)

=
(9)

∑
k

λk
(
I⊗m
2 ⊗ Vk

)
|bm⟩ ⊗

(
Wk ⊗ I⊗n

2

)
|bn⟩

=
(6a)

∑
k

λk
vecr

(
V ⊤
k

)
√
2m

⊗ vecr (Wk)√
2n

, (10)

where vecr(·) is the vectorization operator defined in Sec-
tion 2.2. We note that the last equality is obtained using the

8We note that DSMs reside in a classical memory so they have
a reduced space resources complexity. If we were not using m
auxiliary qubits for producing the DSM, then the circuit would
require a logarithmic number of qubits w.r.t. the data size, so the
unitary would have a reduced space complexity. Consequently,
the resulting circuit would be tractable to classical simulation.

9The Operator-Schmidt decomposition is obtained through SVD.
10We impose the Schmidt rank for Up w.r.t. the split on m + n

qubits, to be > 1. Otherwise the partial trace, introduced on the
m qubits, makes the part of the unitary on m qubits uninfluential.
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identities in Eq. (6a) and Eq. (6b). Now, we partition the
Hilbert space on which |φ⟩ lays into two subsystems. The
first, A2, consists of the first 2m qubits (auxiliary qubits).
The second, B2, takes the last 2n qubits (data qubits)11. We
obtain the mixed state ρ by applying the partial trace over
the system A2, to the pure state |φ⟩ ⟨φ|, that is

ρ =TrA2 (|φ⟩ ⟨φ|) (11a)

=
1

2m+n

∑
i,j

λiλj Tr
(
ViV

†
j

)
vecr (Wi) vecr (Wj)

†

=
(7)

1

2n

∑
i

λ2i vecr (Wi) vecr (Wi)
†
. (11b)

Recall that by the Operator-Schmidt decomposition and
unitarity of Up we have that

∑
i λ

2
i = 1. Given that the

action of the unitary Up(p,θ) is generally not classically
efficiently simulable, the state ρ has the potential to rep-
resent correlations that cannot be captured with classical
models. Moreover, here we can appreciate the role of the
auxiliary m qubits, that is enlarging the function space as
a result of the convex combination of density matrices in
Eq. (11b). Indeed we note that ifm = 0, then the number of
terms in Eq. (11b) reduces to 1. The recovery of the DSM
is completed with the projective measurements explained in
the lemma that follows (see resulting circuit in Figure 2a).

Lemma 3.1. Let

p(i, j) :=2n Tr(ρ |ij⟩ ⟨ij|) (12a)

for i, j ∈ [0 . . d− 1] and ρ as defined in Eq. (11a). Let {ei}
be the set of canonical basis vectors (with index i starting
from 0) for the vector space R2n . Then the matrix

Q =

2n−1∑
i,j=0

p(i, j) eie
⊤
j (12b)

is doubly stochastic.

Proof in Appendix C.3. In the latter result, the rank 1 matrix
eie

⊤
j corresponds to the 2n × 2n matrix with 1 in position

i, j and zeros elsewhere (i.e. the canonical basis for 2n×2n

matrices in R). In other words, given the density matrix ρ
prepared as in Eq. (11a), the expectations w.r.t. the observ-
ables |ij⟩ ⟨ij| provide the corresponding (i, j) entry of the
resulting matrix. In practice, fixed an observable for entry
(i, j), we obtain a single bit of information for each execu-
tion of the circuit, so the resulting matrix is guaranteed to
fulfil the constraints of doubly stochasticity when the num-
ber of shots approaches infinity. However, the convexity
of the Birkhoff polytope offers great advantage in terms of
restoring the DSM on a circuit, more details are given in
Appendix C.1. Our circuit is shown in Figure 2a.

11We note that the systems A2 and B2 contain respectively the
systems A1 and B1, defined for the unitary in Eq. (9).

a1 : |0⟩
a2 : |0⟩
a3 : |0⟩ H •

Up(p;θ)
a4 : |0⟩ H •
j1 : |0⟩ H • j1

j2 : |0⟩ H • j2

i1 : |0⟩ i1

i2 : |0⟩ i2

(a) Section 3.1: DSM-encoding circuit

a1 : |0⟩
a2 : |0⟩
a3 : |0⟩ H •

Up(p;θ)
a4 : |0⟩ H •
i1 : |i1⟩ j1

i2 : |0⟩ j2

(b) Section 3.2: Embedded transport map

Figure 2: Circuit structures for the transportation map predic-
tion. The registers {ik} ∪ {jk} represent the bits for the index
(i, j) related to the entry Qi,j of the resulting DSM. The registry
{ak} refers to the 2m auxiliary qubits as per Section 3.1. Regard-
ing Figure 2a, we remark that the registry i has been added for
construction reasons, however in practice it can be removed and
substituted with a classical uniform sampling (using the computa-
tional basis states on n qubits) over the registry j. Consequently,
the number of required qubits for DSM-encoding can be reduced
to 2m + n. In Figure 2b, we have applied that trick to embed
transportation maps, with |i1⟩ ∈ {|0⟩ , |1⟩}, as per Section 3.2.

3.2. Embedding of Transportation Maps

Since in our applications, the initial distribution µ is user-
provided at inference time, the problem is twofold; (1) em-
bedding the transport map into a DSM to fit the representa-
tion presented in Section 3.1, and (2) predicting maps which
can be rescaled to an arbitrary initial distribution. Given
a data set {(pi, Ti)} (i.e., tuples of contexts and transport
maps), we assume Ti ∈ N (µi,νi)µi,νi ∈ Rd

++, i.e., the
margins of the transport maps are strictly positive12. Let
v ∈ Rd, and Dv = diag(v) the d × d diagonal matrix
having the elements of the vector v as diagonal elements.
Now, given Ti as defined above, we define T̂i := D−1

µi
Ti,

and observe that T̂i1d = D−1
µi
Ti1d = D−1

µi
µi = 1d,

that is T̂i ∈ N (1d,ν
′
i) is a right stochastic matrix13, with

ν′
i = T̂⊤

i 1d. At inference, when given a perturbation pi,
the model predicts a right stochastic matrix T̂ ∈ N (1d,ν

′)
for some ν′ ∈ Rd

++. The latter, alongside the user-provided
initial distribution µ, determines the final predicted map
T = DµT̂ , s.t. T1d = DµT̂1d = Dµ1d = µ. In
other words, we learn the transportation pattern in a margin-
independent fashion and rescale to the required margin at
inference time. Note that, when the context is 0 (null pertur-
bation) then T̂i = Id. Given some µ we have DµT̂i = Dµ,
hence Dµ1d = D⊤

µ1d = µ = ν, ergo the initial and fi-
nal distributions agree (consistent with the notion of null
perturbation), inducing a stationarity inductive bias.

To confirm generality: any transport map T ∈ N (µ,ν)
with µ,ν ∈ Rd

++, can be decomposed as T = DR where
R = diag(µ)−1T is right stochastic and D = diag(µ) a

12Justification on strict positivity of margins in Section 2.4.
13Q ∈ Rn×n

+ is right stochastic iff Q1n = 1n. All DSMs are
right stochastic but the converse is not true.
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positive diagonal14. Conversely, the product DR of a right
stochastic R and a positive diagonal D (both of order d) is
a transport map with µ = D1d and ν = (DR)⊤1d.

Aggregation scheme. To complete the structure, we now
expand on the link between the d× d right stochastic matrix
T̂ and a 2d × 2d DSM Q. This step is necessary since
the formulation in Section 3.1 produces only a DSM. First,
consider the DSM block decomposition

Q =

(
Q1 Q2

Q3 Q4

)
∈ Ω2d, (13)

with Qi ∈ Rd×d
+ . Now, note that

(
Q1 Q2

)
12d = 1d im-

plies (Q1 +Q2)1d = 1d. We embed the right stochastic
matrix T̂i into the sum Q1 + Q2 of the top quadrants of
a DSM Q ∈ Ω2d. Since this structure does not consider
the submatrices Q3 and Q4, in Appendix C.2 we describe
a custom designed ansatz that takes into account such in-
variant. Moreover, as depicted in Figure 2b, we can obtain
the sum Q1 + Q2 directly from the state preparation and
measurements. Specifically, by initialising the registry j2
to |0⟩ we obtain the top half of the matrix (w.r.t. rows) and
by tracing out the same registry we mimic the sum of the
top two quadrants15. We call this "atop" aggregation. To
obtain the number of required qubits, let m be the number
of qubits (as per Section 3.1) that makes the function space
achievable by the ansatz hard to be computed classically.
Also, let d = 2n and consider d × d transportation maps,
then using the reduction introduced in Figure 2b, the cir-
cuit requires 2(n+m+ 1) qubits16 where m ≥ n+ 1. In
practice, we set m := n+ 1 unless indicated otherwise.

3.3. Training Objective

Let f : X → Ω
(r)
d be a function from the set of perturba-

tions X to the set of d× d row-stochastic matrices, and let
F be the function space of such functions related to our
model. Then, given the training set {(pi, Ti)} we define our
learning problem via the loss

LT =min
f∈F

∑
i

∥Dµi
f(pi)− Ti∥2F , (14)

where µi = Ti1d is the initial distribution for the i-th train-
ing sample and ∥ · ∥F is the Frobenius matrix norm. An
optimal function in F that minimizes the loss LT is denoted
f⋆. At inference time, given the initial (quasi-)distribution
µ ∈ Rd

++ and the perturbation p ∈ X , the predicted trans-
portation map is obtained as T = Dµf

⋆(p). Alternatively,

14Indeed R1d = diag(µ)−1T1d = diag(µ)−1µ = 1d (right
stochastic), so DR = diag(µ) diag(µ)−1T = T .

15see principle of implicit measurement (Nielsen & Chuang, 2011).
16note that removing registry i and using classical sampling of

matrix rows could reduce to (n+ 1) + 2m qubits

the predicted target distribution ν = (Dµf
⋆(p))

⊤
1d can

be directly optimized via:

LM = min
f∈F

∑
i

∥∥∥(Dµif(pi))
⊤
1d − νi

∥∥∥2
2
. (15)

This can be interpreted as a weakly-supervised learning
of transportation maps and is considered for comparison
purposes. The ansatz parameters are obtained via gradient-
free optimization with COBYLA (Powell, 1994).

Evaluation. Accuracy of transportation plan prediction is
measured twofold. First, the relative Frobenius norm

F (T̄i, Ti) =
∥T̄i − Ti∥F

∥T̄i∥F
(16)

where T̄i = Dµif
⋆(pi) Secondly, we report the sum of the

absolute errors (SAE). Accuracy of the predicted marginals
ν̄ is measured through L2 norm and R2.

3.4. Multidimensional OT

This subsection shows how to estimate the bare minimum
of necessary quantum resources, including even the case
of discrete multidimensional OT (Solomon, 2018), reflect-
ing that many OT applications utilize multivariate rather
than univariate measures (as assumed above). Let the
source data have K covariates, i.e. xi = (x1i , . . . , x

K
i ).

Assume that each covariate is defined on a discrete sam-
ple space Xk with cardinality dµk and dνk (k ∈ [1,K]) for
source and target data, and define the probability space
Pk = (Xk,Fk,µk), where F = σ(Xk) is the σ-algebra
generated by Xk, and µk a measure on (Xk,Fk). Then, the
multi-dimensional source measure space is written as P =(⊗K

k=1 Xk,
⊗K

k=1 Fk,
⊗K

k=1 µk

)
. Analogously, the tar-

get measure space is P̃ =
(⊗L

l=1 Yl,
⊗L

l=1 Gl,
⊗L

l=1 νl

)
.

WithK = L = 1, dµ = P, dν = R, we recover the case dis-
cussed in Section 2.3, i.e., µ and ν are vectors, and the trans-
portation plan T ∈ RP×R. In general, µ ∈

⊗K
k=1 R

dµ
k

++ and
ν ∈

⊗L
l=1 R

dν
l

++, i.e., the size is governed by the state space
cardinality. Since the source and target distributions are
represented by K and L rank tensors, the cost function will
be a (K + L)-tensor. Assuming identical source and target
spaces with K covariates, and d states per covariate (i.e.,
K = L and dµk = dνk = d ∀k ∈ [0,K]) the OT plan spans
O(dK) rows/columns. Notably, the discrete N-dimensional
OT problem is #P -hard (Taşkesen et al., 2023). Computing
explicit OT plans thus quickly becomes demanding.

Now consider the application by Bunne et al. (2022) on
predicting single-cell perturbation responses among 200
cells with 50 gene-based features. In that case, K = L = 1
and dµ = dν = 50 · 200, hence our ansatz would require
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at least 56 qubits (cf. Section 3.2 bottom). We prove in
Appendix C.1 that the minimal number of required shots
N0 in the right stochastic matrix scales in O(n log n) with
the number of rows/columns in the OT plan (see Eq. (25)).
In this case N0 > 161k. With less shots the likelihood of
empty rows in the matrix is high. Furthermore to obtain a
satisfactory sampling error for each entry we need O(d2/ε2)
shots; for a precision ε = 0.01 this is more than a trillion
shots. Even abandoning single cell resolution and setting
dµ = dν = 50 still requires 28 qubits, N0 > 541 and
> 25M shots to obtain low error.

As a mitigation strategy, we cluster cells in our experiments
into d clusters and compute µ,ν ∈ Rd, i.e., we set K =
L = 1 and d to 8 (or 16) which requires 16 (or 20) qubits
and 640k (2.56M) shots. Note that prior art on neural OT
for single-cell data (Bunne et al., 2022; 2023) optimizes
over the push-forwarded measure so the OT plans can not
be directly accessed, unlike in our quantum method.

4. Experimental Setup

X

μi

νi

Contextual optimal transport Cell clustering

 p
1

 pn

Dosage perturbation data

.  .  .

Yn

Cluster 1

Cluster 2

Cluster 3

genes genes

ce
lls

.  .  .

 p
i

Train Test

Figure 3: Application overview. A population of cells treated
with varying drug dosages, resulting in (Xi, Yi,pi) where Xi (Yi)
represent scRNA-seq measurements before (after) a drug admin-
istered with dosage pi ∈ [0, 1]. We cluster the measurements to
identify cell types and compute for each batch the distribution of
cell types before and after perturbation, i.e., µ and ν. A classical
OT solver computes the ground truth OT plan Ti based on µi, νi

(not shown). Given our initial cluster distribution before perturba-
tion µi and the dosage pi our ansatz predicts a transport plan T̄i.

We applied our method on predicting changes in the com-
position of a cell population due to drug perturbations and
tested it on synthetic and real data as shown in Figure 3.
Starting from a population of heterogeneous cells, each
living in a high-dimensional state space we know that ad-
ministering a drug has a direct effect on the composition
of the cell population, by eliminating certain cell types or
pushing some other cell types to proliferate. We denote as
µ, νi the cell type distribution of a cell population before
and after the drug perturbation with a context variable pi,
i.e., the drug dosage ∈ [0, 1]. We measure performance on
unseen dosages for different data splitting strategies.

4.1. Cell Type Assignment via Clustering

We represent each cell through a single label, obtained by
clustering from the original Rl space into d clusters (i.e., cell

types). We compute µ,ν ∈ Rd as distributions over clusters
for the population of cells before and after perturbation. We
cluster with k-Means and k = d = 8 or 16 to adhere with
the circuit requirements, i.e., d must be a power of 2 (in
general, if log2 (k) ̸∈ N, we pad and set d := 2⌈log2 (k)⌉ and
fix the transport plan to be diagonal for the padded entries).
We then solve Eq. (8) and compute the OT map between µ
and ν with the Sinkhorn solver (Cuturi, 2013), which may
be sped up through approximate solvers (Haviv et al., 2024).
Repeating this procedure for all dosages yields a dataset
{Ti,pi}Ni=1 of transport plan-perturbation tuples, processed
as described in Section 3.3. The cost C ∈ Rd×d is the
Euclidean or cosine distance between centroids.

5. Experimental Results
This section verifies that QontOT (Quantum Contextual
Optimal Transport) can learn to predict transportation maps
contextualized through a perturbation variable.

5.1. Synthetic Data

Leveraging the established sc-RNA-seq genera-
tor Splatter (Zappia et al., 2017), we devised a
perturbation data generator that allows to control the
number of generated cells, genes, cell types, perturbation
functions and more. We experiment with different perturba-
tion functions to up-/down-regulate gene expression linearly
or nonlinearly, different distance metrics, number of clusters
and data splits. Even though the perturbation functions are
simple and only affect expression of a subset of cells and
genes, the induced changes in cell type distribution are
significant, locally continuous and nonlinear (cf. Figure A3).
Details on the synthetic data generator and the used datasets
are in Appendix D.1 and D.2.

We compare QontOT to two baselines, Average and Identity.
Average always predicts the same transportation plan, ob-
tained by solving the regularized OT problem (Eq. (8)) on all
training samples at once, disregarding the context. Identity
always predicts the identity OT plan, s.t., ν = µ. The results
in Table 1 show that QontOT outperforms both baselines in
all cases by a wide margin. The two flavors of QontOT, LT

and LM both have respective advantages; LT models are ex-
plicitly trained on the transport plan. They provide solutions
with lower cost but instead the LM models only optimize
the marginal distribution and give typically better results in
L2 and R2. Unlike related work (Bunne et al., 2022), our
method supports various costs like Euclidean or cosine dis-
tances of centroids, not just squared Euclidean. The exem-
plary real and predicted transportation plans in Figure A4A
show that QontOT learns context-dependent shifts in cell
type frequencies, by capturing the change in the distribution
of cluster labels induced by the perturbation. Predicting the
effect of stronger perturbations (higher dosages) is more

7



Quantum Theory and Application of Contextual Optimal Transport

OT Plan Marginals
Dist. Method L SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
L2 Identity – 1.50 1.41 0.69 0.28
L2 Average – 1.07 0.79 0.52 0.27
L2 QontOT LT 0.97 0.70 0.45 0.56
L2 QontOT LM 0.97 0.79 0.41 0.55

Cos. Identity – 1.67 1.50 0.69 0.29
Cos. Average – 1.11 0.82 0.52 0.27
Cos. QontOT LT 0.97 0.71 0.44 0.59
Cos. QontOT LM 1.10 0.86 0.40 0.59

(a) Recovering effect of linear perturbation for different distances.

Dist. Method L SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
L2 Identity – 1.22 1.19 0.50 0.45
L2 Average – 0.97 0.72 0.41 0.42
L2 QontOT LT 0.86 0.62 0.34 0.47
L2 QontOT LM 0.97 0.77 0.32 0.48

(b) More realistic and challenging scenario of nonlinear perturbations.

Table 1: Transportation plan prediction. Performance in pre-
dicting transportation plans for unseen dosages and linear (a) and
nonlinear (b) perturbations; comparing QontOT to two baselines.
Different distance metrics were used to derive the cost matrix from
the k-means centroids and both linear and non-linear perturba-
tion effects were recovered. SAE denotes sum of absolute errors
and Frobenius is the relative Frobenius norm. Means across three
simulations are shown, full results in Table A2.

challenging (cf. Figure A4B). This is expected because in
the control condition (pi = 0), the cell type distribution
remains identical, subject only to stochastic effects in data
generation and batch assembly.

Circuit ablations. Next we sought to assess the robustness
of QontOT to different configurations: the choice of ansatz,
the optimizer, the number of layers and auxilliary qubits
and the aggregation scheme to obtain a right stochastic
matrix. This time we used synthetic data with four cell
groups (rather than one) which simulates more complex
tissue and yields richer OT plans. Overall, QontOT is robust
to small alterations in circuit structure (cf. Table A4). Even
though many settings use a slightly larger computational
budget, none of them improve consistently across metrics
over the base configuration, validating the imposed inductive
biases, e.g., our ansatz type and the "atop" aggregation. For
example, replacing our gradient-free optimizer (COBYLA)
with another one (Nevergrad (Bennet et al., 2021)) yields
identical results. Extending the number of layers in the
ansatz or adding more auxilliar qubits was generally found
beneficial but also does not always improve performance
(more results in Table A3). Moreover, we find that in an
OOD (out-of-distribution) setting where we kept the 10%
highest dosages out, the test error increases only mildly
compared to the training error (cf. Figure A5).

Note that the embedding for transport maps with given ini-
tial distribution µ proposed in Section 3.2 can be adapted to
classical neural networks. The resulting quantum-inspired

algorithm, which we call NeuCOT, is described in Ap-
pendix E and performs explicit optimization of transport
plans without relying on Brenier. Unlike QontOT it cannot
be applied to the contextual (relaxed) assignment problem
of predicting DSMs. While QontOT uses gradient-free op-
timization, the quantum-inspired approach can be trained
conventionally with backpropagation and thus outperforms
QontOT on the aforementioned datasets. Gradient-based,
quasi-Newton optimization through BFGS substantially im-
proved QontOT’s performance in simulation but it is cur-
rently not amenable to quantum hardware. Encouragingly
even with gradient-free optimization there are cases where
QontOT yields identical or slightly better performance e.g.,
if the Hamiltonian of the system is known (cf. Table A1).

5.2. SciPlex Data

To facilitate comparison with prior art, we compared Qon-
tOT to CellOT (Bunne et al., 2023) and CondOT (Bunne
et al., 2022) on two drugs from the SciPlex dataset (Srivat-
san et al., 2020) each administered in four dosages. For
each of the dosages and the control condition, 20% of cells
were randomly held out for validation. Table 2 indicates that

Method SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
Identity 1.10 1.04 0.18 0.47

QontOT-LT 0.78 0.61 0.17 0.49
QontOT-LM 0.92 0.68 0.16 0.57

CellOT 0.46 0.41 0.17 0.52
CellOT-homo 0.68 0.60 0.29 0.37

CondOT 0.45 0.40 0.18 0.56

(a) Mocetinostat

Method SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
Identity 1.10 1.01 0.28 0.43

QontOT-LT 0.82 0.60 0.17 0.49
QontOT-LM 0.97 0.82 0.24 0.47

CellOT 0.44 0.40 0.18 0.56
CellOT-homo 0.93 0.80 0.45 0.27

CondOT 0.70 0.55 0.32 0.49

(b) Pracinostat

Table 2: SciPlex comparison. Means across three runs are shown.

CellOT largely yields the best results, note however, that
it is an unconditional model and five models were trained
(one per condition) inducing an unfair comparison. When
aggregating data across conditions (CellOT-homo), perfor-
mance drops below the level of QontOT-LT . CondOT is an
evolution of CellOT that leverages partial ICNNs (PICNNs)
and can be parameterized by dosage. This yielded overall
the best results on transportation plan metrics but on the
marginal metrics L2 andR2, QontOT is on par or even supe-
rior. Notably, in many applications, such marginal metrics
are of higher importance. They can be directly optimized
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in QontOT’s LM optimization mode which depicts a form
of weakly supervised amortized optimization of transport
plans that also overcomes the dependence on conventional
OT solvers to compute training samples (cf. Section 2.4).
The duality of QontOT’s optimization mode is visualized
and explained further in Figure A6.

5.3. Contextual Relaxed Assignment Problem

Since our ansatz naturally emits a DSM, it can be applied to
the contextual relaxed assignment problem directly. In this
task we predict DSMs rather than generic transport plans.
In this case, initial and final distributions are fixed, thus
we do not need the structures described in Section 3.2. We
hypothesized that this task lies closer to the heart of our
ansatz (e.g. it does not ignore Q3 and Q4) and thus decided
to challenge QontOT in a stress test on quantum hardware.

We applied QontOT on synthetic data to contextually predict
DSMs and compared it to the classical NeuCOT approach.
We used 24 qubits (6 data, 18 auxiliary), a circuit with depth
50 and ∼ 70 ECR gates and a dataset of fourty 8× 8 DSMs
(randomly split into train and test with 20% test data) ob-
tained by sampling from our circuit with random parameters
∈ U(−0.8π, 0.8π). For efficiency, the circuit was split (cf.
Appendix G.1) and the smallest physical circuit layout was
picked after 50, 000 transpilations with the standard Qiskit
transpiler. Parameters were optimized for 235 steps over
13 days on a 127-qubit device (IBM Sherbrooke) available
through the IBM Quantum Platform. Since the algorithm
requires state sampling, no error mitigation was performed
and we collected only 8192 shots per iteration. Further
details about the setup can be found in Appendix G.
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Figure 4: In a 24-qubit hardware experiment, the performance
of QontOT surpasses a 18-qubit simulation and various classical
neural OT models trained with different hyperparameter settings
(cf. Appendix E). The NeuCOT models of size XS, S, M and L
optimize respectively 3k, 8k, 81k and 5M parameters with ADAM
compared to 124 gradient-free optimized parameters in our ansatz.

The result shows that the objective function was converged
well (cf. Figure A8). A few sudden spikes were observed
during optimization; those are due to the device recalibration

which was beyond our control. The final result in Figure 4
demonstrates that QontOT achieves a better Frobenius Dis-
tance than any of the 15 tested NeuCOT configuration, each
with different hyperparameters. Interestingly, despite the
device noise, the lack of error mitigation and the limited
number of collected shots, the hardware run with a larger
qubit budget (24) yielded better results than the 18 qubit
simulation. Further performance metrics confirm this result.

6. Discussion
Here, we introduced QontOT, a principled approach to rep-
resent transportation maps on quantum computers. We pro-
posed an ansatz for learning to predict OT maps conditioned
on a context variable, without requiring access to the cost.
Our empirical results on synthetic and real data show that
our method learns to predict contextualized transport maps
which represent distributional shifts in cell type assignments.
While our method does not always match performance of
the best classical models on this task, it constitutes, to the
best of our knowledge, the first approach to bridge QC,
OT and ML. Notably, our approach does not impose con-
straints on the dimensionality of the context variable(s), thus
more complex perturbations such as continuous drug rep-
resentations, combinatorial genetic perturbations or other
covariates could be employed. However, given that the
dosage-induced shifts in cluster assignments are also driven
by the initial cell states (not only the dosage), future work
could devise an ansatz fully parametric for µi, potentially
through (unbalanced) co-optimal transport (Titouan et al.,
2020; Tran et al., 2023). Concurrently, we introduced a new
classical neural OT baseline (NeuCOT) which may be fur-
ther improved through a combination of neural and tensor
networks (Wang et al., 2023) or a hybrid quantum-classical
tensor network (Schuhmacher et al., 2024).

On the more constrained task of contextual prediction of
DSMs we report a compelling finding from a noisy quan-
tum computer, obtained without error mitigation and with
gradient-free optimization whereas our classical competi-
tor (NeuCOT) performs worse despite using backpropaga-
tion and orders of magnitudes more parameters. Since we
only used 24 qubits, the physical circuit of that particular
DSM prediction experiment may be reproduced by classi-
cal calculations. In that sense, our method may be seen as
a novel classical algorithm formulated in the language of
quantum, however by applying it to larger sizes it could
eventually lead to quantum advantage, assuming that the
observed benefits are robust to scaling to more qubits. Over-
all, our experiments suggest that predicting DSMs rather
than generic transport maps is the more promising future
endeavour. A natural next step is to apply QontOT in scenar-
ios where DSMs have to be estimated, one potential avenue
could be Transformers where DSMs were found to emerge
naturally (Sander et al., 2022).
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Impact Statement
This paper presents work with the goal to advance the field
of quantum machine learning (QML). There are many po-
tential societal consequences of advances in quantum com-
puting, first and foremost in cryptanalysis (see Scholten
et al. (2024) for a broad overview). Next, advances in QML
will have more specific implications, e.g., they could widen
disparities between organizations, countries or researchers
that have access to, or can afford, leveraging quantum com-
puting and those that cannot. More specific to our work,
the promising result on contextual prediction of DSMs has
to be seen in light of the limitations of current quantum
hardware, e.g., we can only approximate specific states and
structures (such as a DSM) since we have constraints in
terms of circuit depth, the number of measurements and
have to mitigate the device noise.
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Taşkesen, B., Shafieezadeh-Abadeh, S., Kuhn, D., and
Natarajan, K. Discrete optimal transport with indepen-
dent marginals is #p-hard. SIAM Journal on Optimization,
33(2):589–614, 2023. doi: 10.1137/22M1482044. URL
https://doi.org/10.1137/22M1482044.

Titouan, V., Redko, I., Flamary, R., and Courty, N. Co-
optimal transport. Advances in neural information pro-
cessing systems, 33:17559–17570, 2020.

Tran, Q. H., Janati, H., Courty, N., Flamary, R., Redko, I.,
Demetci, P., and Singh, R. Unbalanced co-optimal trans-
port. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 10006–10016, 2023.

Uscidda, T. and Cuturi, M. The monge gap: A regularizer
to learn all transport maps. In International Conference
on Machine Learning, volume 202, pp. 34709–34733.
PMLR, 23–29 Jul 2023.

Villani, C. Optimal Transport: Old and New. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Hei-
delberg, 2008. ISBN 9783540710509. URL https://
books.google.ie/books?id=hV8o5R7_5tkC.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic
measures for clusterings comparison: is a correction for
chance necessary? In International conference on ma-
chine learning, pp. 1073–1080, 2009.

Wang, M., Pan, Y., Xu, Z., Yang, X., Li, G., and Cichocki,
A. Tensor networks meet neural networks: A survey and
future perspectives. arXiv preprint arXiv:2302.09019,
2023.

Zappia, L., Phipson, B., and Oshlack, A. Splatter: simula-
tion of single-cell rna sequencing data. Genome biology,
18(1):174, 2017.

12

https://doi.org/10.1137/22M1482044
https://books.google.ie/books?id=hV8o5R7_5tkC
https://books.google.ie/books?id=hV8o5R7_5tkC


Quantum Theory and Application of Contextual Optimal Transport

Appendix
A. Relation of DSMs and OT
DSMs are a key structure within optimal transport because

• They are at the root of the Kantorovich relaxation of the assignment problem. In the original assignment problem n
entities from the source distribution are assigned bijectively to n entities from the target distribution through a mapping
represented by a permutation matrix which is indeed invertible and orthogonal. In the Kantorovich relaxation the
assignment takes a probabilistic form rather than a deterministic one (permutation matrices). This probabilistic form is
represented through DSMs which are convex combinations of permutation matrices. More details can be found in the
seminal textbook by Peyré et al. (2019) (see Section 3.1 and especially Section 3.2).

• They were fundamental to formulate the entropically regularized version of OT (Cuturi, 2013). Cuturi’s seminal work
kicked off the integration of OT into modern ML. The discovery of the Sinkhorn divergence has been enabled through
the Sinkhorn rescaling algorithm which converts nonnegative square matrices into DSMs by alternatively rescaling row
and column sums (Cuturi, 2013). In essence, the prohibitively slow computation of OT (or earth-mover) distances
— given by a linear program that requires super qubic runtime (O(n3 log n), see Genevay et al. (2019)) — can be
accelerated by an entropic regularisation term that converts the LP to Sinkhorn’s matrix rescaling algorithm.

• DSMs can be rescaled to arbitrary transport maps, as demonstrated in Section 3.2 of our paper. Thus they constitute a
fundamental building block and can be leveraged not only for constrained applications where transport maps are exactly
DSMs (e.g., in our experiment on quantum hardware on the ”contextual relaxed assignment problem”) but even for
cases where the transport maps do not follow a specific structure (as shown in the remaining experiments of our paper).

• DSMs can be linked to unitary operators thus connecting OT and quantum computing. This fundamental observation
constitutes the foundation of our paper and is critical to address our specific task with quantum.

µ

ν

µ

ν

Figure A1: Transportation maps. The left and top sequences of blobs represent the initial (µ) and final (ν) distributions. The grid blobs
denote the mass displaced from row i to column j. The principle of mass preservation manifests as maintaining the total area of initial and
final distribution blobs. The left quadrant shows a diagonal transportation (without displacement) so µ = ν.

B. The Operator-Schmidt decomposition
We start by defining the structure of the Schmidt decomposition (Bengtsson & Zyczkowski, 2006). Let |ψ⟩ denote a bipartite
quantum state on the Hilbert space H = H1 ⊗H2. We assume the dimensions of H, H1 and H2 are the positive integers n,
k1 and k2, respectively, with n = k1k2. Then the Schmidt decomposition of |ψ⟩ w.r.t. the split H1 ⊗H2 is defined as

|ψ⟩ :=
min{k1,k2}∑

i=1

λi |ai⟩ ⊗ |bi⟩ , (17)

where {|ai⟩} and {|bi⟩} are bases17 for respectively H1 and H2. The coefficients λi, called Schmidt coefficients, are real
non-negative with

∑
i λ

2
i = 1. The Schmidt decomposition can be obtained through the singular value decomposition

(SVD). However, in our formulation we never compute such decomposition explicitly, instead, its formulation is used for
proving the main results. When a state decomposition is characterized by a single non-zero coefficient λ1 = 1, we call it a
product state. This is linked to a fundamental concept in quantum mechanics called entanglement, and the product state
represents the absence of it.

17The bases have cardinality respectively k1 and k2, however we note that the decomposition considers subspaces of dimension up to
min{k1, k2}.
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We now extend the decomposition to unitary operators. Let U denote a unitary operator acting on Cn. Consider the following
decomposition

vecr(U) =

min{k2
1,k

2
2}∑

i=1

λi vecr(Vi)⊗ vecr(Wi) (18)

which can be interpreted as the Schmidt decomposition of the n2-dimensional vector vecr(U). Since the vectorization
operator is an isomorphism, by inverting it we obtain

U =

min{k2
1,k

2
2}∑

i=1

λiVi ⊗Wi (19)

which is the definition of Operator-Schmidt decomposition for U w.r.t. the split H1 ⊗H2. Finally, we note that Lemma 2.1
shows that the orthogonality of the vectors {vecr(Vi)} in (18), corresponds to the orthogonality (w.r.t. the Frobenius inner
product) of the operators {Vi} in (19). Similarly, the same argument follows for {vecr(Wi)} and {Wi}.

C. Quantum formulation
C.1. Recovery of finitely-sampled matrices

In Section 3.1 we obtained a DSM from a quantum circuit by considering the measurements asymptotically. The objective
of the present section is that of obtaining a method for estimating the DSM from finite measurements. We define a multiset
as the tuple ⟨X, cX⟩, where X denotes the underlying set of elements and cX a function mapping each element x ∈ X to its
cardinality. Given the density matrix ρ prepared as in Eq. (11a), we run a sampling process which produces a (nonempty)
multiset S = ⟨{(i, j)}, c⟩ of pairs {(i, j)|i, j ∈ [0 . . d− 1]}, where i and j correspond respectively to the row and column
indices of the DSM being sampled. The pairs (i, j) are counted using a (non-negative) d× d matrix F whose entries Fi,j

correspond to the relative frequency of each pair, that is

Fi,j =
c( (i, j) )∑

i′,j′ c( (i
′, j′) )

. (20)

By previous the definition we note that 1⊤
d F1d = 1 (i.e. F has total mass 1), and asymptotically the matrix dF (i.e. rescaled

to have total mass d) approaches the DSM in Eq. (12b). Assuming the matrix F is non-zero (that is we acquired at least one
sample), we define the projector onto the Birkhoff polytope as

Q⋆ =argmin
Q∈Ωd

∥Q− dF∥2F . (21)

Then, by the closedness and convexity of Ωd the solution Q⋆ always exists and is unique. We note that when dF ∈ Ωd,
that is the input matrix is already DSM, then the minimizer becomes Q⋆ = dF . In other words, the projection acts as the
identity operator when the input matrix belongs to the Birkhoff polytope.

The remaining part of this section is going to focus on estimating the sampling error for the case of right stochastic matrices
(see Section 3.2) obtained from the matrix of relative frequencies F . To solve the problem, we employ the Kullback-Leibler
(KL) divergence to quantify the informational difference between probability distributions. We minimize the KL divergence,
so

min
Q∈Rd×d

+

n∑
i,j=1

Qi,j ln

(
Qi,j

dFi,j

)
, (22a)

s.t.Q1d = 1d. (22b)

Leveraging Lagrange multipliers, denoted as ai, the objective function becomes

L(Q) =

d∑
i,j=1

(
Qi,j ln

(
Qi,j

dFi,j

)
+ ai(Qi,j − 1)

)
,

∂L
∂Qi,j

= lnQi,j − ln(dFi,j) + 1 + ai = 0 =⇒ Q = d · diag(ã)F,

(23)
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with ã ∈ Rd
++. By imposing the constraint Q1d = 1d and assuming that F1d ∈ Rd

++, it follows that diag(ã) =
1
ddiag(F1)

−1, hence we obtain the minimizer

Q⋆ = d · diag(ã)F = diag(F1)−1F. (24)

To obtain the latter we have assumed that F1d ∈ Rd
++, that is the row vectors of F are non-zero. To prevent this scenario, it

is essential to determine the minimum number of shots required. This count can be derived from the "Coupon Collector’s
Problem." (Blom et al., 1993). It indicates that to achieve a satisfactory probability (of obtaining F with nonzero rows) p,
we need at least

N0 = d ln

(
d

1− p

)
(25)

samples, and 1− p≪ 1.

We remark that the minimum number of samples N0, relates to the requirement regarding the non-zero rows in the matrix F .
However, the latter does not cover the minimum number of shots to obtain a given precision ε for each entry of the resulting
matrix. Indeed, for each entry of the matrix Q⋆ we need O(1/ε2) measurements to obtain precision ε, consequently we
require O(d2/ε2) measurements for the entire matrix.

C.2. The checkerboard ansatz

We propose an ansatz construction which is convenient with respect to the structure of the embedding of transportation
maps expanded in Section 3.2. Specifically, since in the partitioning of the DSM in Eq. (13), only the top two quadrants
contribute to the resulting right stochastic matrix, we aim at devising an ansatz that does not carry additional information in
the discarded quadrants. The latter could also be interpreted as making the parametrisation for the ansatz more efficient.

Let σi with i = [1 . . 3] be the Pauli operators commonly denoted with σx, σy and σz , respectively. Also we define σ0 = I2.
The subscript of the σ to determine the Pauli will be indicated interchangeably as symbol or integer index.

For some positive integer k, we define the subset Gk of unitary operators as

Gk := {U ∈ U(2k) |U = I2 ⊗A+ σx ⊗B} , (26)

where A,B are k × k matrices, not necessarily unitary. In other words, the operators in U ∈ Gk have the following block
matrix form

U =

(
A B
B A

)
, (27)

which is clearly inherited by the corresponding unistochastic

U ⊙ U =

(
A⊙A B ⊙B
B ⊙B A⊙A

)
=

(
Q1 Q2

Q2 Q1

)
. (28)

We now proceed with revealing the group-theoretical structure of the set Gk and also its relation with the tensor product,
hence we obtain the construction of the ansatz implementing the unitary in Eq. (27).

The next lemma shows that the set Gk is a subgroup of even degree of the unitary group.

Lemma C.1. The set Gk is non-empty and endowed with a group structure under operator composition, for all positive
integers k.

Proof. It is immediately verifiable that I2k ∈ Gk, that is the set Gk is non-empty and it contains the identity element w.r.t.
matrix multiplication. Also the composition of operators carries the associativity as required. Finally we verify the closure.
Let U1, U2 ∈ Gk such that Ui = I2 ⊗Ai + σx ⊗Bi for i = 1, 2, then

U1U2 =(I2 ⊗A1 + σx ⊗B1) (I2 ⊗A2 + σx ⊗B2) (29a)
=I2 ⊗ (A1A2 +B1B2) + σx ⊗ (A1B2 +B1A2) , (29b)

which corresponds to the pattern in (27). Hence U1U2 ∈ Gk.
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The result that follows shows that the structure is preserved under the tensor product.

Lemma C.2. Let U1 ∈ Gk1
and U2 ∈ Gk2

, for some positive integers k1 and k2. Then U1 ⊗ U2 ∈ G2k1k2
.

Proof. Let U1 ∈ Gk1 and U2 ∈ Gk2 such that Ui = I2 ⊗Ai + σx ⊗Bi for i = 1, 2, then

U1 ⊗ U2 =(I2 ⊗A1 + σx ⊗B1)⊗ (I2 ⊗A2 + σx ⊗B2) (30a)
=I2 ⊗A+ σx ⊗B, (30b)

with A = A1 ⊗ (I2 ⊗A2 + σx ⊗B2) and B = B1 ⊗ (I2 ⊗A2 + σx ⊗B2). Hence it follows that U1 ⊗ U2 fulfils the
pattern in (27) and since A,B are linear maps in C2k1k2 , then U1 ⊗ U2 ∈ G2k1k2 .

C.2.1. ANSATZ’S TWO-QUBIT GENERATOR

We obtain a two-qubit circuit Ug ∈ G2, that by Lemma C.1 and C.2 can be used as a generator for the more general G2k

with k ≥ 1. From the definition in Eq. (26) we obtain the symmetry U ∈ G2 =⇒ (σx ⊗ I2)U(σx ⊗ I2) = U . Using
the latter and the general unitary circuit with 2 CNOTs (highlighted) (Barenco et al., 1995), we solve the following circuit
equation

q0 C Rz(α) A A† Rz(−α) C†

q1 D • Ry(β) • B X B† • Ry(−β) • D† X
= I⊗2

2 , (31)

where A,B,C,D are arbitrary single qubit (special) unitaries and α, β ∈ R. We obtain a solution to the equation. Since the
operator σz ⊗ I2 commutes with the CNOT gate (with the Pauli σz acting on CNOT’s controlling qubit), we impose on
Eq. (31) the conditions

B†σxB =σz, (32a)
Ry(−β)σzRy(β) =σz, (32b)

D†σzD =σx. (32c)

Then a solution is B = D = H and β = 0, where H is the Hadamard operator on a single qubit. Hence the generator
circuit takes the following form

q0 C Rz(α) A

q1 H • • H

(33)

where A,C ∈ SU(2) and α ∈ R.

Finally, by using Lemma C.1 and C.2, and the generator block in Eq. (33), we construct the ansatz as exemplified in Figure A2.

q1 :
K(θ1)q2 :

K(θ3)q3 :
K(θ2)q4 :

K(θ4)q5 :

Figure A2: An example of depth and connectivity efficient (single) layer for the Checkerboard ansatz. Here the blocks K correspond to
the 2-qubits circuit in Eq. (33) and the vectors θi are seven dimensional vectors parameterizing gates A,C and Rz of Eq. (33).
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C.3. Proofs

Proof of Lemma 2.1. Considering the constraint Tr
(
UiU

†
j

)
= nδij we obtain

vecr(Uj)
† vecr(Ui) =

∑
k

(
⟨k|U†

j ⊗ ⟨k|
)∑

t

(Ui |t⟩ ⊗ |t⟩) (34a)

=
∑
k,t

(
⟨k|U†

jUi |t⟩ ⊗ ⟨k|t⟩
)

(34b)

=
∑
k

(
⟨k|U†

jUi |k⟩
)
= Tr

(
UiU

†
j

)
= nδij . (34c)

Proof of Lemma 3.1. We expand the function p : [0 . . d− 1]× [0 . . d− 1] → [0, 1] defined in (12a), so

p(i, j) :=2n Tr(ρ |ij⟩ ⟨ij|) (35a)

=
∑
k

λ2k ⟨ij| vecr (Wk) vecr (Wk)
† |ij⟩ (35b)

=
∑
k

λ2k ⟨i|
(
Wk ⊙Wk

)
|j⟩ . (35c)

The positivity of the entries of the DSM is clear from the definition of p(i, j). We prove the rows sum constraint for
Q =

∑
i,j p(i, j) |i⟩ ⟨j|, that is

Q1d =
∑
i,j

p(i, j) |i⟩ (36a)

=
∑
i

|i⟩ ·

∑
k

λ2k ⟨i|
∑
j

(
Wk ⊙Wk

)
|j⟩

 , (36b)

where the rightmost sum equals the vector 1m since Wk ⊙Wk is unistochastic, also
∑

k λ
2
k = 1 (following from (9)), hence

Q1d = 1d. Similarly the same holds for the columns sum constraint, hence the claim follows.

D. Experimental details
D.1. Synthetic dosage perturbation data generator

We leverage the established single-cell RNA sequencing generator Splatter (Zappia et al., 2017) to form a three-stage
generator for drug dosage perturbation datasets:

1. First, Splatter samples raw expression counts (X ∈ Rn1×l, with n1 cells and l genes) from zero-inflated negative
binomial distributions (one per gene). Sufficient statistics of all underlying distributions (Poisson, Gamma, Chi-Square)
can be controlled.

2. We aim to produce a tuple of (Xi, Yi,pi) where Xi holds unperturbed base states of n1 cells and Yi ∈ Rn2×l holds
perturbed states of n2 cells, resulting from a drug perturbation administered with dosage pi ∈ [0, 1]. To derive the
perturbed states Yi, new base states Ȳi are sampled with the same configuration used to generate Xi, mimicking that
cells are being destroyed during measurement. Subsequently Yi = g(Ȳi,pi) where g is the total effect on the cells,
governed by a combination of noise terms and the immediate effect gp(·) of the perturbation. We assume that only
15% of the genes alter their expression upon perturbation. In this case, we apply gp to the raw cell states, scaled by a
response amplitude ∼ U(0.3, 1). Moreover, 10% of the cells are generally unresponsive to the perturbation (gp = 0). We
investigate linear and non-linear perturbations, i.e., gp1(x) = ax+ b and a reciprocal root function gp2(x) = ax−b with
a, b > 0, respectively. The hyperparameters of the experiments can be found in Appendix D.2.

3. We repeat stage 2 for each dosage by varying smoothly the immediate effect gp(·) based on pi, resulting in a dataset
{Xi, Yi,pi}Ni=1 of N tuples. Responsive genes are fixed across samples. The base states Xi are identical across all
samples of the dataset, mimicking the common experimental setting where only one control population was measured (Sri-
vatsan et al., 2020).
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Figure A3: Exemplary cell type distributions for source and target cell populations. The distribution of cell types in the unperturbed
tissue is either entirely static (see left) or varies mildly based on the user-defined noise level (not shown). Instead, the perturbed cells
produce highly dissimilar distributions that, however, exhibit some local continuity for similar dosages. The plot was generated with data
from linear perturbations and euclidean cost.

D.2. Datasets and hyperparameters

D.2.1. SYNTHETIC DRUG DOSAGE PERTURBATION DATA

Initial experiments For the results shown in Table 1 and Figure A4, we simulate 300 genes and 1000 cells across 50
unique dosages, equidistantly spaced in [0, 1]. 15% of the genes respond to the perturbation gp(·) but 10% of the cells are set
as unresponsive. The sinkhorn regularization γ = 0.001. For the linear case, fp1

(x) = 3x+ 1 and for the non-linear case
fp2

(x) = 100x−0.2. For each dosage, four batches of 500 cells each were created, summing to 200 samples which were
split randomly with 20% held out dosages for testing. In almost all experiments we set the number of clusters to k = d = 8;
only in Figure A4 it was set to 16.

Four cell groups. For the ablation studies on circuit structure (cf. Table A4), we simulate populations of 100 genes and
2000 cells, each belonging now to one out of four groups to simulate more complex tissue. We perturb the populations with
the function fp2 (as above) and 100 dosages, equidistantly spaced in [0, 1]. The initial cell states Xi are resampled for every
dosage and only 2% of cells are set as unresponsive. The 100 dosages are split randomly with 20% test data.

D.2.2. SCIPLEX DATA

Selected models were trained on two of the nine compounds from the SciPlex dataset (Srivatsan et al., 2020). High
Throughput Screens on three cell lines were conducted with four varying concentrations (10, 100, 1000, and 10000 nM)
for each drug. We inherit preprocessing from Bunne et al. (2023) and Lotfollahi et al. (2019) which includes library size
normalization, filtering at the cell and gene levels, and log1p transformation. For mocetinostat and pracinostat we obtained
respectively 22,154 and 21,926 cells from which 17,565 and 15,137 were control cells. Data was split per condition (control
+ four dosages) in a roughly 80/20 ratio. Preprocessing identified 1,000 highly-variable genes, which were compressed with
PCA to obtain 50-dimensional latent codes which are clustered with K-Means into 8 clusters.

CellOT & CondOT. CellOT and CondOT are trained with the ott-jax package (Cuturi et al., 2022) for 1000 iterations
and batches of size 50 on µi, i.e., the same 8-dimensional feature vectors (denoting a distribution of cell types over 50
cells) used to train QontOT. We use a cosine decay learning rate scheduler with an initial value of 0.001 and an alpha of
0.01, optimized with ADAM (Kingma & Ba, 2014). CondOT uses the gaussian map initialization proposed in (Bunne
et al., 2022). As CellOT and CondOT learn directly a map f : R8 → R8 such that f(µi) = ν̄i, we use the entropically
regularized sinkhorn solver (Cuturi, 2013) on (µi,νi) to obtain the transport maps and compute performance metrics on
SAE and relative Frobenius norm.

D.3. Implementation

As mentioned in Section 3, the fact that U ⊙U ∈ Ωn is a DSM offers great flexibility in the choice of the ansatz. In practice,
we implemented two ansätze, centrosymmetric and simple. Both of them have been trained in Qiskit 0.43.0 (Qiskit
contributors, 2023) and all experiments were performed with Qiskit’s sampler class and, unless indicated otherwise
(cf. Section 5.3), in statevector simulation.
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Centrosymmetric The centrosymmetric ansatz is our default implementation which induces a bias toward properties
of centrosymmetric matrices. Specifically, the matrix being modelled can be divided into four quadrants such that the
respective diagonals are equal and the respective off-diagonals are also equal.

Simple Instead, the simple ansatz instead is symmetric by construction and has less bias toward a specific class of
unitary operators than the centrosymmetric ansatz. This ansatz was first formulated in Khatri et al. (2019) and later refined
in Madden & Simonetto (2022). Note that this ansatz implements the identity operator when all parameters are zero.

E. Neural contextual OT (NeuCOT)
E.1. Methodology

In Section 3.2 we have shown that, if we produce a right stochastic matrix T̂ ∈ N (1d,ν
′), the latter can be rescaled to

a transportation map with the required initial distribution µ. We recall that, at inference time, the right stochastic T̂ is
predicted by a circuit depending on the perturbation, thus the predicted transportation map results from the rescaling of the
rows of T̂ , using the elements of the initial distribution µ as coefficients. A complementary case is that of the contextual
(relaxed) assignment problem, whose origin is presented in Section 2.3. The latter requires the prediction of a DSM, and
we believe that this task is hard for classical machine learning. The former case instead, that is the one requiring a right
stochastic matrix, can be shown to be practical for classical ML. Let M ∈ Rd×d and

[
eMi,j

]
the Hadamard exponential

matrix (Horn & Johnson, 2012) ofM , that is the matrix resulting from the entry-wise application of the exponential mapping.
We extend the notation to a row-rescaled form, so

M 7→
[

eMi,j∑
k e

Mi,k

]
, (37)

then [
eMi,j∑
k e

Mi,k

]
1d =

(∑
k eM1,k∑
k eM1,k

· · ·
∑

k eMd,k∑
k eMd,k

)⊤
= 1d, (38)

that is (37) maps any M ∈ Rd×d to a right stochastic matrix. Let the matrix-valued function fθ : X → Rd×d represent a
neural network parametrised by the vector θ, mapping the space of perturbations X to a d× d real matrix. We obtain a right
stochastic matrix as a function of the perturbation p ∈ X , so

T̂ =

[
e(fθ(p))i,j∑
k e

(fθ(p))i,k

]
∈ N (1d,ν

′) . (39)

Hence, the right stochastic matrix can be obtained through a neural network with a softmax activation in the ultimate
layer. Finally the procedure continues as outlined in Section 3.2, that is the prediction for the transportation map is given
by T̄ = DµT̂ , so T̄1d = µ as required. Optionally, one can make the prediction depending non-linearly on the initial
distribution µ by re-defining fθ as a function of both the perturbation and the distribution µ.

This is a novel, quantum-inspired approach that combines neural and contextual OT through amortized optimization. It
can be trained in a fully or weakly supervised setting, either optimizing OT plans directly (i.e., L(T̄ , T )) or only the
push-forwarded distribution (i.e., L(T̂ ♯µ,ν)). We dub this approach NeuCOT for Neural Contextual Optimal Transport.
Previous approaches either leverage Brenier’s theorem (1987) to recast the problem to convex regression (e.g., CellOT and
CondOT (Bunne et al., 2022; 2023)) or use regularization (Uscidda & Cuturi, 2023). In the implementation the optimization
occurs over the push-forwarded measure in both cases, so unlike in our method, the OT plans can not be directly accessed.

E.2. Implementation and Result

In practice, we implement this approach with a shallow, dense neural network of two layers (64 and 128 units unless
indicated otherwise), a ReLU activation, a dropout (40%, unless indicated otherwise) and use a MSE loss between real and
predicted OT plans. We apply an optional residual connection of the context to the last layer of the network. Moreover, we
also apply an optional "DSM loss" to penalize deviations of the marginals from uniform ones (1n). The models have ∼ 25k
trainable parameters that are optimized with ADAM for 500 epochs with a learning rate of 5e−4.

The results in Table A1 compare NeuCOT to QontOT and the average baseline for different datasets and splitting strategies.
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Dataset Data split Method SAE (↓) Frob. (↓) L2 (↓) R2 (↑)

Four cell types Random
Average 1.23 0.83 0.15 0.56
QontOT 0.41 0.30 0.13 0.54
NeuCOT 0.22 0.20 0.10 0.73

Four cell types Extrapolation
Average 1.21 0.84 0.24 0.09
QontOT 0.53 0.78 0.20 0.21
NeuCOT 0.32 0.30 0.17 0.39

Known Hamiltonian
8× 8 plans Random

Average 2.332 0.883 0.538 0.880
QontOT-LT 0.571 0.208 0.085 0.892

NeuCOT 0.581 0.215 0.089 0.894

Known Hamiltonian
16× 16 plans Random

Average 1.317 0.879 0.055 0.671
Identity 0.878 1.042 0.078 0.640

QontOT-LT 0.421 0.833 0.028 0.710
QontOT-LM 0.479 0.845 0.029 0.699

NeuCOT 0.400 0.356 0.028 0.708

Table A1: Comparison of QontOT to NeuCOT. Means across three different runs are shown. All datasets use actual distributions, so
µ1n = 1 = ν1n.

F. Extended Results

Transportation plan Marginals
Perturb. Dist. Layers L SAE (↓) Frob. (↓) L2 (↓) R2 (↑)

Lin. L2 Ident. – 1.50±0.14 1.41±0.12 0.69±0.07 0.28±0.07

Lin. L2 Avg. – 1.07±0.04 0.79±0.01 0.52±0.04 0.27±0.06

Lin. L2 QontOT LT 0.97±0.08 0.70±0.06 0.45±0.04 0.56±0.03

Lin. L2 QontOT LM 0.97±0.12 0.79±0.15 0.41±0.05 0.55±0.10

Lin. Cos. Ident. – 1.67±0.16 1.50±0.13 0.69±0.07 0.29±0.07

Lin. Cos. Avg. – 1.11±0.05 0.82±0.02 0.52±0.05 0.27±0.06

Lin. Cos. QontOT LT 0.97±0.09 0.71±0.07 0.44±0.05 0.59±0.02

Lin. Cos. QontOT LM 1.10±0.14 0.86±0.10 0.40±0.06 0.59±0.10

NonLin. L2 Ident. – 1.22±0.05 1.19±0.05 0.50±0.02 0.45±0.02

NonLin. L2 Avg. – 0.97±0.02 0.72±0.01 0.41±0.01 0.42±0.04

NonLin. L2 QontOT LT 0.86±0.03 0.62±0.02 0.34±0.01 0.47±0.05

NonLin. L2 QontOT LM 0.97±0.06 0.77±0.05 0.32±0.01 0.48±0.01

Table A2: Transportation plan prediction. Extended results for Table 1, ± denotes standard deviation across three runs.

Dist. Layers L SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
L2 6 LT 0.97±0.08 0.70±0.06 0.45±0.04 0.56±0.03

L2 12 LT 0.98±0.11 0.72±0.08 0.45±0.05 0.53±0.10

L2 6 LM 0.97±0.12 0.79±0.15 0.41±0.05 0.55±0.10

L2 12 LM 1.02±0.09 0.81±0.13 0.42±0.04 0.54±0.08

Cos. 6 LT 0.97±0.09 0.71±0.07 0.44±0.05 0.59±0.02

Cos. 12 LT 0.99±0.10 0.71±0.06 0.45±0.05 0.59±0.17

Cos. 6 LM 1.10±0.14 0.86±0.10 0.40±0.06 0.59±0.10

Cos. 12 LM 1.06±0.05 0.83±0.12 0.42±0.05 0.60±0.12

Table A3: Ablation study on number of layers in ansatz. Adding more layers in the ansatz and thus more parameters in the circuit does
not improve performance. Experiment performed on linear perturbation function (cf. Table 1). For 6 respectively 12 layers in the ansatz,
there are 234 respectively 456 circuit parameters to optimize.
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Figure A4: Capturing variation in cell type distributions. a) Three predicted transportation plans from the nonlinear perturbation
dataset are shown next to their unseen ground truth. b) Frobenius distance of real and predicted transportation across unseen dosages are
shown for QontOT and the baseline.
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Figure A5: Out-of-distribution scenario. When QontOT is evaluated on dosages outside the training data scenario (redly shaded
background), the performance decreases but still remains well above the baseline.
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Method SAE (↓) Frob. (↓) L2 (↓) R2 (↑)
Identity 0.65 0.60 0.18 0.46
Average 1.23 0.83 0.15 0.56
LM 0.59 0.43 0.13 0.58

LT -Nevergrad 0.41 0.30 0.14 0.54
LT 0.41 0.30 0.13 0.54

LT -AsIs 0.45 0.34 0.14 0.54
LT -Simple 0.46 0.32 0.13 0.57

LT -Simple-12 0.55 0.40 0.13 0.58
LT -Simple-12-Shared 0.41 0.30 0.14 0.57
LT -Simple-16-Shared 0.41 0.30 0.14 0.58

Table A4: Ablation studies on circuit structure. LT is the base configuration. Simple is an circuit constructions alternative to the
base type "centrosymmetric" (cf. Appendix D.3 for details). "12" or "16" refers to the number of layers (base is 6) and "Shared" defines
whether the ansatz parameters are identical across layers (this is faster to optimize thus allowing deeper circuits). "AsIs" denotes an
alternative to the "atop" aggregation to produce a DSM (cf. Section 3.2). Means across three random splits are shown.

Ground
Truth

LTransport

AMI = 0.84
rel. SS = 0.45 

LMarginal

AMI = 0.86
rel. SS = 0.53 

B
8

LMarginal cost = 0.31    r = 0.55 A LTransport     cost = 0.26    r = 0.24 

Figure A6: Comparison of QontOT optimization modes. A) Sankey plots of LMarginal and LTransport for a validation sample of
pracinostat reveal that LM learns transport maps with higher transport cost and unnecessary move of mass (see bucket 4 and 8). B) In
contrast, the marginal performance of LM is typically better, evidenced by the more discriminative cell type identification for the UMaps.
The higher AMI (adjusted mutual information (Vinh et al., 2009)) shows that the predicted clusters are more similar to the real ones and
the relative silhouette score (Rousseeuw, 1987) shows that the clusters are more consistent for LM than for LT .
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G. Hardware Simulation
G.1. Adhoc circuit depth optimization

The structure of the circuit in Figure 2a can be optimised in terms of circuit depth when the unitary Up can be factorized
as the product of two unitaries. In our case, the latter condition is always possible since the unitary is constructed from
elementary gates. We sketch the mechanism and its proof. Assume Up = U

(2)
p U

(1)
p (where the circuit depths of the two

factors are assumed equal), and assume the state in (10) is generated by U (1)
p , so∣∣∣φ(1)

〉
=
(
I⊗m
2 ⊗ U (1)

p ⊗ I⊗n
2

)
· (|bm⟩ ⊗ |bn⟩)

=
(9)

∑
k

λk
(
I⊗m
2 ⊗ Vk

)
|bm⟩ ⊗

(
Wk ⊗ I⊗n

2

)
|bn⟩

=
(6a)

∑
k

λk
vecr

(
V ⊤
k

)
√
2m

⊗ vecr (Wk)√
2n

. (40)

Note that the operators Vk and Wk here are not the same as those in (10), however we keep the same symbols for simplicity.
Using the identities for vectorization (6a) and (6b), we rewrite the middle expression as∣∣∣φ(1)

〉
=
∑
k

λk
(
V ⊤
k ⊗ I⊗m

2

)
|bm⟩ ⊗

(
I⊗n
2 ⊗W⊤

k

)
|bn⟩ , (41)

Which corresponds to transposing18 U
(1)
p and changing the subsystems on which it acts. We call the new operator K.

Subsequently, the operator U (2)
p , which now commutes with K, is applied to the state

∣∣φ(1)
〉

with the resulting halving of
the circuit depth (under the assumption stated above). The final state is equivalent to the original one, that is

|φ⟩ =
(
I⊗m
2 ⊗ U (2)

p ⊗ I⊗n
2

) ∣∣∣φ(1)
〉
. (42)

We illustrate the decomposition and the resulting circuit in Figure A7.

a1 : |0⟩
a2 : |0⟩
a3 : |0⟩ H •

U
(1)
p U

(2)
p

a4 : |0⟩ H •
j1 : |0⟩ H • j1

j2 : |0⟩ H • j2

i1 : |0⟩ i1

i2 : |0⟩ i2

(a) The decomposition of the circuit for Up(p; θ) = U(2)
p U(1)

p , where on the
right-hand side we omit the parameters for clarity.

a1 : |0⟩
K(1)

a2 : |0⟩
a3 : |0⟩ H •

U
(2)
p

a4 : |0⟩ H •
j1 : |0⟩ H • j1

j2 : |0⟩ H • j2

i1 : |0⟩
K(2)

i1

i2 : |0⟩ i2

(b) The equivalent formulation of Up(p; θ) where U(1)
p is substituted by the

operator K which commutes with U(2)
p . Consequently, the circuit depth of the

overall gate Up is halved, while the total number of qubits remains the same.

Figure A7: Illustration of the adhoc compilation trick that halves the circuit depth for the unitary Up. On the LHS we have the
decomposition on the unitary Up into two factors, whereas on the RHS we represent pictorially the effect of the commutativity of the
factors K and U

(2)
p .

G.2. Experimental details

During the simulation, ansatz parameters had been optimized for 235 iterations on a 127-qubit device (IBM Sherbrooke)
available through the IBM Quantum Platform. In principle, on modern hardware every iteration can be accomplished in
seconds. However, due to a very high demand on (shared) quantum computers, the actual execution time can take days.

18By transposition of a unitary operator we mean the complex conjugate of its adjoint, that is U
†
.
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Result of a quantum computation is not directly observable because unlike classical bits that always take 0 or 1, qubits can
exist in a superposition of states. To extract a result, one needs to measure the qubits, and this single act of measurement is
called a “shot”. Upon measurement, the superposition state collapses to one of the basis states (vectors of 0s and 1s) with a
certain probability.

We did 8192 shots per iteration and every obtained state of 0s and 1s was used to increment a counter of occurrences of
a corresponding entry in measured DSM, just as described in the main body of this paper. A typical picture of objective
function convergence profile is shown on Figure A8.

One can notice sudden spikes as the curve approaches a plateau. This happens primarily because a quantum hardware
should be recalibrated from time to time. To cope with this behaviour we track the best solution (with the smallest objective
function value) and report the best one rather than the last solution obtained by an optimizer. In our simulation, the best
parameters had been obtained on iteration 193.

No error mitigation was performed. It is still an open problem in quantum computing community how to suppress noise
while doing state sampling. There are a number of established techniques for error mitigation when the output is a single
scalar value measured on some observable. However, in this study we are interested in measuring probabilities of individual
states.

Figure A8: Convergence profile of the objective function while running on IBM Sherbrooke quantum device.
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