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Abstract

The diversity of time series applications and scarcity of domain-specific data high-
light the need for time-series models with strong few-shot learning capabilities. In
this work, we propose a novel training scheme and a transformer-based architecture,
collectively referred to as TimePFN, for multivariate time-series (MTS) forecasting.
TimePFN is based on the concept of Prior-data Fitted Networks (PFN), which
aims to approximate Bayesian inference. Our approach consists of (1) generating
synthetic MTS data through diverse Gaussian process kernels and the linear core-
gionalization method, and (2) a novel MTS architecture capable of utilizing both
temporal and cross-channel dependencies across all input patches. We evaluate
TimePFN on several benchmark datasets and demonstrate that it outperforms the
existing state-of-the-art models for MTS forecasting in both zero-shot and few-shot
settings. Notably, fine-tuning TimePFN with as few as 500 data points nearly
matches full dataset training error, and even 50 data points yield competitive results.
We also find that TimePFN exhibits strong univariate forecasting performance,
attesting to its generalization ability. Overall, this work unlocks the power of
synthetic data priors for MTS forecasting and facilitates strong zero- and few-shot
forecasting performance.

1 Introduction

Natural language processing has achieved significant success due to advances in neural architectures
and data pipelines, leading to models with strong zero-shot and few-shot learning abilities. Inspired
by this, researchers are exploring these methods for time series forecasting, focusing on transformer
architectures [28, 25, 29, 27]. However, simple linear models often outperform transformers in
time-series tasks due to data heterogeneity and naive tokenization methods [26]. As improvements,
PatchTST does forecasting by patching the data [19], while iTransformer represents each channel as
a single token for multivariate forecasting [16].

In this work, we take a data-centric approach to multivariate time series (MTS) forecasting, addressing
the limitations of current models that struggle with small or perhaps out-of-distribution datasets. Our
method, TimePFN, introduces two novelties: generating diverse, large-scale synthetic MTS data with
inter- and intra-channel dependencies, and creating an architecture that extracts time series features
from this data, enabling transfer learning to tasks with varying channel numbers. Our model achieves
state-of-the-art zero-shot and few-shot accuracy on benchmarks, outperforming alternatives when
fine-tuned on small datasets.

Key contributions include: (i) a new method for generating synthetic MTS data using Gaussian
processes, (ii) an architecture that includes channel mixing and a convolutional embedding module,
building upon PatchTST, (iii) the first multivariate time-series PFN model, and (iv) strong univariate
forecasting performance, highlighting the flexibility and generalization of our approach.
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2 Related Work
Transformers [23] have revolutionized NLP, boosting zero-shot and few-shot capabilities in language
and vision models. This success has inspired the application of transformers to time-series forecasting,
with significant contributions from [28, 25, 29, 14, 19, 15, 27]. Informer [16] introduces ProbSparse
attention, reducing complexity for long sequence forecasting, while [29] leverages Fourier domain
sparsity. PatchTST [19] uses patch-based tokens for interpretable time-series tokenization, while
iTransformer [16] emphasizes inter-channel relationships by treating each variate as a single token. In
zero-shot forecasting, studies like [21, 20, 9, 5, 2] have advanced the field. Chronos [2] utilizes novel
tokenization, quantization, and synthetic data generation to adapt LLMs for univariate forecasting,
while ForecastPFN [5] relies entirely on synthetic datasets, building on Prior-data Fitted Networks
(PFNs) [18]. Our work, introducing the first multivariate Prior-data Fitted Network, builds on these
advances to deliver strong zero-shot and few-shot performance in MTS forecasting.

3 Proposed Method
This work relies on two key aspects: a multivariate synthetic time series data generation mechanism
that encapsulates inter- and intra-channel dependencies common across real time series data, and
an architecture capable of generalization to real datasets when trained on such a dataset. Our
methodology relies heavily on prior-data-fitted networks (PFNs). However, due to space constraints,
the PFN formalization and background are provided in Appendix A. The overview of architecture
and algorithm are in Figure 1. For the ablations, please refer to Appendix D.3 and G.

3.1 Synthetic MTS Data Generation
In synthetic multivariate time series (MTS) data generation, we aim to create variates that are both
realistic (with periodic patterns and trends) and correlated, reflecting real-world MTS characteristics.
The first goal is addressed by KernelSynth, as used in Chronos [2], which generates diverse univariate
synthetic time-series data by composing kernels with binary operators (e.g., addition, multiplication).
Unlike the kernel composition method used for structure discovery in nonparametric regression
[6], KernelSynth generates realizations from these kernels. For instance, a linear kernel combined
with a periodic kernel results in a time series with both trends and seasonality, while multiplying
a squared-exponential kernel with a periodic one creates locally periodic patterns [6]. Chronos
assembles various kernels (Linear, Periodic, Squared-Exponential, etc.) with different parameters
(e.g., daily, weekly periodicities) to define Gaussian processes.
To address the second goal—generating correlated variates—we use a generative Gaussian model
called the linear model of coregionalization (LMC) [10]. LMC produces outputs as linear combi-
nations of independent latent random functions: Ci(t) =

∑L
j=1 αi,j lj(t), resulting in a positive

semi-definite covariance matrix [1]. In our algorithm, LMC-Synth (see Algorithm 1), we restrict
to convex combinations to avoid scaling issues. Latent functions are generated using KernelSynth,
allowing for cases of small or nonexistent correlations, with independent variates modeled as L = N
and Ci(t) = li(t). This flexibility is essential for MTS problems with varying degrees of correlation.
LMC-Synth samples the number of latent functions from a Weibull distribution and α values from a
Dirichlet distribution, with bounds to avoid skewed results. A more detailed take of data generation
is provided in Appendix B.

3.2 Architecture for TimePFN
Our goal was to design an architecture that effectively extracts time-series features for MTS fore-
casting while generalizing to real-world datasets. The PFN framework, leveraging LMC-Synth for
large-scale MTS data synthesis, overcomes data scarcity limitations. Unlike prior MTS models
constrained by limited data and forced to simplify to avoid overfitting, we can now expand the
architecture and incorporate components that improve forecasting on new datasets. TimePFN shares
similarities with PatchTST [19], but it diverges in two key aspects: convolutional filtering before
patching and channel-mixing. A more detailed take of the architecture is provided in Appendix C.
Convolutional Filtering. Given an MTS dataset X = [x1 . . . xN ] in RL×N , where L is the sequence
length and N the number of variates, we apply 1D convolutions with shared weights across all variates.
This is followed by magnitude max pooling. In TimePFN, each xi ∈ RL becomes x̄i ∈ R(C+1)×L,
with C rows from convolutions and one row retaining the original xi, similar to skip connections in
NLP [7]. We used C = 9. This approach helps capture common time-series features across datasets,
improving generalization.
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Table 1: MTS forecasting results of TimePFN and comparable architectures with best results in bold. Input and
prediction lengths are set to be 96. TimePFN demonstrates remarkable performance in budget-limited settings,
as well as with the full dataset, particularly in scenarios involving a large number of variates.

Dataset ECL Weather Traffic Solar-Ener. ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

z.
s.

TimePFN 0.315 0.383 0.209 0.255 1.108 0.613 0.941 0.730 0.453 0.439 0.328 0.362 0.637 0.512 0.212 0.291
Naive 1.587 0.945 0.259 0.254 2.714 1.077 1.539 0.815 1.294 0.713 0.431 0.421 1.213 0.664 0.266 0.327
SeasonlN 1.618 0.964 0.268 0.263 2.774 1.097 1.599 0.844 1.325 0.727 0.445 0.431 1.227 0.673 0.274 0.334
Mean 0.845 0.761 0.215 0.271 1.410 0.804 0.910 0.734 0.700 0.558 0.352 0.387 0.693 0.547 0.229 0.307

B
ud

ge
t=

50

TimePFN 0.235 0.322 0.190 0.235 0.746 0.468 0.429 0.450 0.438 0.429 0.324 0.359 0.419 0.418 0.195 0.276
iTransf. 0.278 0.360 0.237 0.278 0.801 0.499 0.513 0.479 0.838 0.617 0.410 0.422 0.884 0.608 0.268 0.337
PatchTST 0.667 0.646 0.221 0.269 1.295 0.746 0.810 0.669 0.778 0.587 0.372 0.401 0.656 0.528 0.231 0.310
DLinear 0.406 0.463 0.742 0.612 1.888 0.937 0.956 0.813 1.404 0.881 3.928 1.383 1.332 0.846 3.484 1.290
FEDForm 0.908 0.758 0.306 0.381 1.587 0.874 0.972 0.757 0.676 0.570 0.424 0.468 0.745 0.589 0.291 0.387
Informer 1.226 0.896 0.464 0.511 1.714 0.901 0.887 0.783 1.172 0.819 2.045 1.093 1.003 0.745 1.590 0.995
Autoform 0.729 0.675 0.322 0.401 1.600 0.883 1.065 0.808 0.607 0.560 0.492 0.506 0.763 0.592 0.316 0.407

B
ud

ge
t=

50
0

TimePFN 0.190 0.283 0.178 0.222 0.487 0.335 0.269 0.305 0.401 0.412 0.311 0.352 0.360 0.386 0.185 0.268
iTransf. 0.200 0.284 0.211 0.248 0.514 0.354 0.307 0.334 0.489 0.470 0.361 0.394 0.569 0.494 0.231 0.310
PatchTST 0.236 0.320 0.210 0.246 0.740 0.455 0.321 0.353 0.596 0.515 0.358 0.392 0.369 0.386 0.190 0.275
DLinear 0.235 0.328 0.335 0.394 1.312 0.727 0.622 0.656 0.749 0.609 1.098 0.712 0.817 0.621 0.870 0.626
FEDForm 0.317 0.407 0.265 0.341 0.888 0.548 0.821 0.706 0.444 0.452 0.358 0.401 0.674 0.542 0.238 0.322
Informer 0.869 0.760 0.320 0.393 1.411 0.774 0.318 0.385 0.913 0.713 1.311 0.940 0.704 0.595 1.121 0.803
Autoform 0.303 0.396 0.237 0.312 0.896 0.549 0.950 0.787 0.456 0.456 0.339 0.384 0.672 0.534 0.223 0.308

B
ud

ge
t=

A
ll

TimePFN 0.138 0.137 0.166 0.208 0.392 0.260 0.203 0.219 0.402 0.417 0.293 0.343 0.392 0.402 0.180 0.262
iTransf. 0.147 0.239 0.175 0.215 0.393 0.268 0.201 0.233 0.387 0.405 0.300 0.349 0.342 0.376 0.185 0.272
PatchTST 0.185 0.267 0.177 0.218 0.517 0.334 0.222 0.267 0.392 0.404 0.293 0.343 0.318 0.357 0.177 0.260
DLinear 0.195 0.278 0.341 0.412 0.690 0.432 0.286 0.375 0.400 0.412 0.357 0.406 0.344 0.371 0.195 0.293
FEDForm 0.196 0.310 0.227 0.313 0.573 0.357 0.242 0.342 0.380 0.417 0.340 0.386 0.363 0.408 0.191 0.286
Informer 0.327 0.413 0.455 0.481 0.735 0.409 0.190 0.216 0.930 0.763 2.928 1.349 0.623 0.559 0.396 0.474
Autoform 0.214 0.327 0.273 0.344 0.605 0.376 0.455 0.480 0.440 0.446 0.364 0.408 0.520 0.490 0.233 0.311

#ofVariates 321 21 862 137 7 7 7 7

Patch Embeddings. From x̄i ∈ R(C+1)×L, overlapping patches of size P and stride S are extracted
as in [19]. Each patch, sized R(C+1)×P , is flattened and passed through a 2-layer feedforward
network, with positional encodings [24] added to embed channel-wise and temporal information. We
used (P = 16, S = 8).
Channel-mixing. Unlike PatchTST [19], where channels are processed independently, we feed all
tokens into the transformer encoder, allowing inter-variate attention.
Transformer Encoder. A multihead transformer encoder with layer normalization [3] and skip
connections [7] is used for stability. After encoding, tokens are rearranged by channel and passed
through a two-layer feedforward network with shared weights across variates.

Architectural Details. We normalize each variate xi to zero mean and unit variance, following
[11], to address distribution shifts between synthetic and test datasets [16, 19]. De-normalization is
applied before forecasting. TimePFN has fixed input sequence and forecasting lengths but can handle
arbitrary numbers of variates. Although trained with a fixed channel size (N = 160), TimePFN can
forecast with both fewer and more channels. For test cases with more channels, data is split into
segments of size at most N , processed separately, and stacked afterwards.

4 Experiments
In MTS evaluations, we focused on forecasting 96 future time steps using a 96-step MTS input. We
trained a single TimePFN model on a large synthetic dataset generated by LMC-Synth, consisting of
15,000 datasets (length 1024, 160 channels), being augmented with independent variates (≈ 25%).
Using a sliding window of 192 (96 input, 96 output), we extracted 1.5 million data points, training
the model with MSE loss. In few-shot evaluations, we fine-tuned TimePFN with a specified data
budget, using the same hyperparameters for all settings. The details of experiments (see Appendix D)
and ablations (see Appendix D.3 and G) are provided in the appendix.
Baselines. We tested TimePFN on nine widely-used MTS forecasting datasets: ETTh1, ETTh2,
ETTm1, ETTm2, Weather, Solar Energy [13], ECL, and Traffic [25] (details in the appendix). With
no MTS PFN available, we compared TimePFN with state-of-the-art models: FEDformer [29],
Autoformer [25], Informer [28], PatchTST [19], iTransformer [16], and DLinear [26]. We evaluated
them across different data budgets (50, 100, 500, 1000 points). For zero-shot evaluations, we
included Naive (repeating the last element), and Seasonal Naive (repeat with seasonality 7) baselines
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Table 2: Zero-shot results of TimePFN on univariate time-series forecasting with input length = 36. TimePFN-96
has input length of 96. The errors are averaged over forecasting lengths of {6, 8, 14, 18, 24, 36, 48}. We do
not report the MAE for Meta-N-Beats, as these results, sourced from [5], did not include that metric. The best
results are in bold (excluding TimePFN-96). Weather results are multiplied by ×102.
Dataset TimePFN-36 TimePFN-96 ForecastPFN Chronos-smll. Meta-N-Beats SeasonalNaive Naive
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ECL 0.752 0.703 0.509 0.549 1.416 0.958 1.152 0.792 0.909 1.559 0.995 1.211 0.829
Weather 0.042 1.381 0.046 1.477 0.084 1.999 0.036 1.136 1.400 0.045 1.352 0.035 1.123
Traffic 1.503 1.032 0.414 0.503 4.521 1.742 3.103 1.364 2.913 4.301 1.771 3.330 1.463
ETTh1 0.029 0.130 0.030 0.133 0.102 0.237 0.061 0.155 0.177 0.039 0.151 0.031 0.128
ETTh2 0.126 0.273 0.086 0.224 0.434 0.517 0.207 0.321 0.480 0.279 0.408 0.215 0.336

[5, 2]. Although trained for multivariate forecasting, we tested TimePFN on univariate tasks (C=1),
comparing it with ForecastPFN [5] and Chronos [2]. We padded TimePFN ’s input with the mean of
36-length MTS to match ForecastPFN’s 36-length sequence, and evaluated over forecast lengths of 6
to 48 time-steps, reporting averaged MSE and MAE values (details in the appendix). We also ran
tests with a non-padded 96-step sequence. Lastly, we used Meta-N-Beats [20] results from [5] for
baseline comparison, while evaluating all other results independently.

4.1 Main Results
In MTS forecasting, we compared TimePFN with various baselines in zero-shot settings, different
data budgets, and the full dataset. Table 1 shows results for zero-shot, data budgets of 50 and 500, and
full dataset usage. Extended results, including budgets of 100 and 1000, are in the Appendix under
Extended Results. With a data budget of 50 and 500, TimePFN outperforms all transformer-based
models and DLinear. Using the full dataset, TimePFN achieves the best results in four datasets,
outperforming PatchTST’s performance. Given the fixed hyperparameters for TimePFN across all
datasets and our use of the best baseline results among our runs and the reportings of [16], TimePFN
’s performance is notable. TimePFN excels in datasets with more variates, while PatchTST performs
best in ETT datasets, as expected due to their respective designs for channel mixing and independence.
PatchTST’s weaker performance on Traffic also supports this hypothesis.

In zero-shot settings, TimePFN outperforms all baselines except in the Solar-Energy. Solar-Energy’s
sudden spikes, due to factors like sunrise and sunset, are not well predicted by TimePFN trained on
LMC-Synth data. However, these patterns are within the scope of changepoint kernels in Gaussian
processes, suggesting future improvements.

4.2 Univariate Time-Series Forecasting

Though TimePFN was trained for MTS forecasting on a synthetic dataset with a channel size of
160, we tested it in a zero-shot scenario for univariate time-series forecasting (C = 1). We used a
sequence length of 36, as in ForecastPFN [5], padding the remaining 60 sequence lengths with the
mean of the input to prevent scaling issues. This model is TimePFN-36. We also tested TimePFN
without padding, using a sequence length of 96 (TimePFN-96), as shown in Table 2. Table 2 shows
TimePFN surpassing models trained specifically for univariate time series forecasting, demonstrating
its robust generalization and zero-shot performance. Further evaluations, including error breakdowns
for different sequence lengths, are in the Appendix E under Extended Results.

5 Conclusion
In this work, we show that with large-scale synthetic training and a suitable architecture for extracting
time-series features, fine-tuning with as few as 50–500 examples can achieve competitive multivariate
time series forecasting performance. We introduce LMC-Synth, a novel method for generating
large-scale synthetic MTS data with realistic intra- and inter-channel dependencies, using Gaussian
processes and a linear coregionalization model. Our architecture, TimePFN, uses 1D convolutions
and channel-mixed patching, exhibiting strong zero-shot performance in both MTS and univariate
forecasting. To our knowledge, TimePFN is the first multivariate time-series PFN. As a future work,
we will explore diversifying synthetic data generation to model sudden changes and multi-scale
issues, and expand our work into MTS foundation models.
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A Prior-data Fitted Networks for MTS Forecasting

Let D := {t,Xt}Tt=1 represent an N-channel multivariate time series data spanning a time horizon
T , where Xt := [xt,1, . . . , xt,N ]. Each xt,i is potentially causally dependent on previous time steps
and on one another. Given the data {t,Xt}T̃t=1 where T̃ < T , the task is to forecast XT̃+1, . . . , XT .
We tackle this problem using a Bayesian framework. Assuming a hypothesis space Ω with a prior
distribution p(ω), each hypothesis ω ∈ Ω models a multivariate time series (MTS) generating process,
i.e., Xt = ω(t). For example, Ω could represent the space of hypotheses for vector autoregression
(VAR) models, where a particular instance ω ∈ Ω corresponds to a specific VAR process, such as
VAR(2), and data D can be generated via this process. Now, given a data D := {t,Xt}T̃t=1 where
T̃ < T , the posterior predictive distribution (PPD) of x ∈ RN at time T is p(· | T,D). By Bayes’
theorem,

p(x | T,D) ∝
∫
Ω

p(x | T, ω)p(D | ω)p(ω)dω (1)

As shown by [18, 8, 5], the posterior predictive distribution (PPD) is approximated using prior
fitting networks (PFNs) as follows: We iteratively sample a hypothesis ω from the hypothesis space
Ω according to the probability p(ω). Next, we generate a prior dataset D from this hypothesis,
denoted as D ∼ p(D | ω). We then optimize the parameters of the PFN on these generated datasets
using standard methods. The time series dataset is divided into input and output parts, where
Dinput := {t,Xt}T̃t=1 and Doutput := {t,Xt}Tt=T̃+1

. Subsequently, we train the PFN to forecast
Doutput from Dinput using standard time-series transformer training techniques, aiming to minimize
the mean-squared error loss as our optimization objective, following the setting of [5].

In our work, we define the hypothesis space Ω as consisting of single-input, multi-output Gaussian
processes represented by the linear model of coregionalization (LMC) [10]. Our choice is driven by
the representational power of Gaussian processes and their ability to generate a diverse range of time
series through the LMC framework.

B Synthetic MTS Data Generation

In synthetic MTS (multivariate time series) data generation, our goal is twofold. First, we strive
to create variates that are realistic, exhibiting periodic patterns, trends, and other common features
found in real-world data. Second, we aim for these variates to be correlated with one another, which
better represents MTS data characteristics. Fortunately, our first goal is addressed by a method called
KernelSynth. Chronos [2] uses KernelSynth to enrich its training corpus by randomly composing
kernels using binary operators (such as addition and multiplication) to generate diverse, univariate
synthetic time-series data. This method is essentially the inverse of the kernel composition approach
described in [6], where kernel compositions are used for structure discovery in nonparametric
regression. In contrast, KernelSynth focuses on generating realizations from these kernels. For
example, combining a linear kernel with a periodic kernel results in a pattern that exhibits both a linear
trend and sinusoidal seasonality. Similarly, multiplying a squared-exponential kernel with a periodic
kernel creates locally periodic patterns [6]. Chronos aggregates kernels of various types—such as
Linear, Periodic, Squared-Exponential, Rational, and Quadratic—and with different parameters (such
as daily, weekly, and monthly periodic kernels) in a kernel bank, composing them as described above
to define the Gaussian processes.

However, generating a MTS time-series data is yet to be addressed. To address the second goal,
generating variates that are correlated in a realistic manner, we use a generative Gaussian modelling,
called linear model of coregionalization (LMC), which is developed initially in the field of geostatistics
[10]. For ease of understanding, we adopt the time-series notation we used above. In LMC, the
outputs are obtained as linear combinations of independent latent random functions. In other words,
given t ∈ RT , the outputs in each channel {Ci(t)}Ni=1 is the linear combination of L latent functions

Ci(t) =

L∑
j=1

αi,j lj(t). (2)
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Figure 1: Illustration of the architecture of
TimePFN. Variates are filtered with 1D convo-
lutions, to be patched with overlapping strides,
following [19]. They are then fed into trans-
former encoder with channel mixing, with the
final forecast coming from the final feedfor-
ward network.

Algorithm 1 LMC-Synth
Input: Number of variates N , time-series length T ,
Weibull shape parameter β, Weibull scale parameter
λ, (min, max) value of dirichlet concentration parame-
ter (dmin, dmax), minimum number of latent functions
m, maximum number of kernel composition in Kernel-
Synth J
Output: Synthetic MTS C with N variates and length
T

1: L ∼ max(min(Weibull(β, α), N),m)
2: d ∼ U(dmin, dmax)
3: for j ∈ {1 . . . L} do
4: lj(t)← KernelSynth(J, T )
5: end for
6: for i ∈ {1 . . . N} do
7: [αi,1 . . . αi,L] ∼ Dir(d)
8: Ci(t)←

∑L
j=1 αi,j lj(t)

9: end for
10: return {Ci(t)}Ni=1

Observe that, since latent functions are independent with zero-mean the resulting output covariance
is a well-defined PSD function with zero-mean [1]. In our synthetic data generation algorithm,
to avoid scaling issues, we restrict ourselves to convex combinations. Thus, for each i, we have
αi,1 + . . . αi,L = 1 with αi,j ≥ 0, meaning that the outputs lie in the convex hull of latent functions
lj’s. We generate the latent functions based on KernelSynth’s algorithm due to it’s extensive
descriptive value. Note that the LMC formulation encapsulates the cases where the correlations
between different variates are small or nonexistent. Specifically, the case where each variate is
independent from the rest corresponds to L = N with Ci(t) = li(t). Such a modelling is important,
as some MTS data have strong correlation between different variates, whereas others have small or
non-existent correlation.

In our algorithm, LMC-Synth, we sample the number of latent functions from a Weibull distribution
and [αi,1 . . . αi,L] from a Dirichlet distribution. To avoid highly skewed cases, we impose upper and
lower bounds on the possible number of latent functions. Since the uncorrelated setting of L = N
with Ci(t) = li(t) is crucial for modeling MTS problems with low correlation among variates, we
also generate data under this setting. Incorporating this extra setting is shown to yield the strongest
performance in zero-shot settings.

C Architecture

In designing the architecture, our main principle was to create a system capable of extracting
time-series features useful for MTS forecasting. Through this, we aimed for the architecture to
achieve better generalization when applied to real-world datasets. The primary advantage of the PFN
framework in our case is that, since synthesizing large-scale synthetic MTS data is feasible with
LMC-Synth, we are no longer constrained by data scarcity. Previous MTS models were compelled to
balance model complexity with their datasets due to limited data, often restricting the use of certain
components or their quantity (such as the number of transformer layers) to avoid overfitting. However,
with access to large-scale MTS data, we can expand our architecture and freely incorporate additional
components that we believe will improve forecasting performance on new datasets. In light of this,
we proceed to explain our architecture and design choices.

The TimePFN model resembles PatchTST [19] in several aspects when processing MTS data, but
it differs significantly in two areas: our convolutional filtering of the variates prior to patching and
channel-mixing.

Convolutional Filtering. Before patching, consider an MTS dataset X = [x1 . . . xN ] in RL×N ,
where L is the length and N is the number of variates. We apply learnable 1D convolution operations
to each variate, with convolutional weights shared across all variates. After convolutions, we apply 1D
magnitude max pooling to each newly generated variate, followed by a new set of 1D convolutions.
In TimePFN, each xi ∈ RL is transformed into x̄i ∈ R(C+1)×L, where C rows come from 1D
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convolutional operations and magnitude max pooling, whereas one row is the original xi. We keep
the original xi to not loose any information, analogous to skip connections used in NLP [7]. In
practice, we used C = 9. Filtering with convolutions is a valuable tool in time-series analysis. Many
operations, such as differencing to de-trend data, can be effectively represented by convolutions.
We utilized this approach to extract common time-series features across various datasets, thereby
improving the generalization capability of our model.

Patch Embeddings. Given x̄i ∈ R(C+1)×L, we extract overlapping patches of size P with a stride
of S, following the settings described in [19]. Each patch thus has dimensions R(C+1)×P , and a
total of

⌊
L−P
S + 2

⌋
patches are extracted from a single variate. In total, we get N ×

⌊
L−P
S + 2

⌋
patches. Each patch is then flattened and fed into a 2-layer feedforward neural network to be mapped
to embedding dimension D. We add 2D sinusoidal positional encodings [24] to the embeddings to
correctly capture channel-wise and temporal information. In practice, we used (P = 16, S = 8),
similar to [19].

Channel-mixing. Unlike PatchTST [19], where the tokens from each channel are fed independently
into a transformer encoder, we input all tokens into the transformer encoder after applying the
positional encodings described above. Consequently, tokens from different variates can attend to
each other.

Transformer Encoder. We employ a naive multihead transformer encoder, incorporating layer
normalizations [3] and skip connections [7] to improve training stability. After feeding the tokens into
the multilayer encoder, we rearrange them into their respective channels and apply a channel-wise
flattening operation. This is followed by a two-layer feedforward network that processes the flattened
variate representations using shared weights (single FFN is applied to all variates).

Normalization. We normalize each variate xi to have zero mean and unit standard deviation prior to
any other process described above, as recommended by [11], to alleviate the impact of distribution
shifts between our synthetic dataset and test examples [16, 19]. Before forecasting, we revert the
time series to its original scale by de-normalizing.

Architectural Details. Due to our architectural specifications, TimePFN has fixed input sequence and
forecasting lengths. However, it can accept an arbitrary number of variates. Thus, although we trained
TimePFN with a synthetic dataset of a fixed channel size (C = 160), it can forecast with both fewer
and more channels than those used in its training data. When forecasting with a number of channels
C̄ ≤ C, we directly input the data to TimePFN. To mitigate the effects of distribution shifts when
forecasting with more channels at test time, we process the data by splitting it into non-overlapping
channels of size at most C. If the test data has C̄ channels, we divide it into

⌊
C̄
C

⌋
+1 segments, input

them separately, and then stack them afterwards.

D Experiments

In all MTS evaluations, our primary objective is to forecast a horizon of 96 time steps using an MTS
input of 96 time steps. We trained a single TimePFN model on a large-scale, multivariate synthetic
dataset generated by LMC-Synth and conducted all experiments using this model. We generated
15,000 synthetic datasets with a length of 1024 and a channel size of 160 from LMC-Synth, further
augmenting with datasets having independent variates as in the case Ci(t) = li(t). The independent
data comprises approximately 25% of the purely correlated data. During training, we extracted
time-series input and output pairs using a sliding window of size 192 (96 for input, 96 for output),
resulting in approximately 1.5 million synthetic data points. We trained the model to forecast the
MTS output based on the given input using MSE loss with our 160 channel synthetic dataset. Training
a single TimePFN of 8 transformer layers takes around 10 hours on L40S GPU.

In the few-shot evaluations, we fine-tuned TimePFN using the specified data budget. We did not
perform any hyperparameter tuning on TimePFN, and the same set of hyperparameters was used in
all few-shot settings. Details about the model hyperparameters are provided in the appendix.

Benchmark Datasets. We evaluated TimePFN on nine widely-used, real-world benchmark datasets
for MTS forecasting. These datasets include ETTh1, ETTh2, ETTm1, ETTm2 (collectively referred to
as ETT, representing Electricity Transformer Temperature), Weather, Solar Energy, ECL (Electricity
Consuming Load), Exchange, and Traffic. The Solar Energy dataset was introduced by [13], while
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the others were introduced by [25]. We provide the specifications of these datasets in the appendix
section Datasets.

Baselines. Since no MTS PFN is available, we compared TimePFN with state-of-the-art transformer-
based MTS forecasting models, including FEDformer [29], Autoformer [25], Informer [28], PatchTST
[19], and iTransformer [16]. We evaluated these models across the entire dataset and at various data
budgets, including 50, 100, 500, and 1000 data points. For instance, at a data budget of 500, the
model is trained using 500 MTS input and output pairs. Additionally, we included DLinear [26], a
linear model, as part of our baseline. Given its lower complexity, we consider it a strong baseline for
smaller data budgets.

For smaller data budgets and our zero-shot evaluations, we incorporated three algorithmic baselines as
suggested by [5] and [2]: Mean, Naive, and Seasonal Naive. These baselines are applied independently
to each variate. The Mean baseline forecasts by repeating the mean value of the input variate. The
Naive approach forecasts by repeating the last value of the input variate. In the Seasonal Naive
method, we assume a periodicity of seven.

Although TimePFN is specifically trained for multivariate time-series forecasting, we also evaluated
its performance on univariate forecasting (C=1) to demonstrate its robust generalization capabilities.
In this context, we compared it with ForecastPFN [5] and Chronos [2], two state-of-the-art univariate
zero-shot forecasters. ForecastPFN utilizes an input sequence length of 36, while TimePFN operates
with a sequence length of 96. To accommodate this discrepancy, we padded the additional 60 time
steps with the mean value of the input sequence when running TimePFN. These models are evaluated
over forecast lengths of 6, 8, 14, 18, 24, 36, and 48. We used the smaller version of Chronos. The full
results are detailed in the appendix, while in the main text, we report the averaged MSE and MAE
values across these forecast lengths. Furthermore, to showcase the complete forecasting performance
of TimePFN, we also conducted runs with a non-padded sequence length of 96.

Additionally, we used the forecasting results of Meta-N-Beats [20], from the reporting of [5] as
baseline comparisons, while we evaluated all other results ourselves independently.

Experimental Setting. When comparing TimePFN with the aforementioned baselines, we use the
hyperparameters reported in their official codebases. We re-run the experiments with limited budgets
and by utilizing the entire training dataset. [16] presents the forecasting results for the mentioned
transformer-based MTS architectures using the full training dataset. We re-run all the experiments
and selected the best results from both our run and their report to ensure that the performance of
other architectures is not underreported when we use the entire training set. Our unaltered results are
included in the appendix.

In TimePFN, we use a single model with fixed hyperparameters that is trained only once on our
large-scale multivariate synthetic dataset. In few-shot evaluations, we fine-tune TimePFN with a given
data budget, maintaining the same hyperparameters across different datasets. In all evaluations except
for univariate cases, we report the forecasting errors for the next 96 time steps, given a multivariate
time series (MTS) of sequence length 96. Our implementation details and further experimental
settings such as hyperparemeters are reported in the Appendix: Implementation Details.

D.1 Main Results

In MTS forecasting, we compared TimePFN with various baselines in zero-shot settings, as well as
with different data budgets, and by utilizing the entire dataset. Table 1 presents our results for zero-
shot settings, data budgets of 50 and 500, and scenarios using the entire dataset. Our comprehensive
results, which also include data budgets of 100 and 1000, can be found in the Appendix under the
section Extended Results. With a data budget of 50, TimePFN outperforms all transformer-based
architectures and DLinear. With a data budget of 500, it surpasses all baselines. When utilizing
the entire dataset, TimePFN achieves the best results in four datasets, equaling the performance of
PatchTST. Given that we fine-tuned TimePFN with fixed hyperparameters across all datasets, and
selected the best results from the baselines and the findings reported in [16], the performance of
TimePFN is noteworthy. We observe that TimePFN excels in datasets with a greater number of
variates and a more multivariate nature, while PatchTST primarily excels in ETT datasets. This
outcome is anticipated, as TimePFN is designed to incorporate channel mixing, whereas PatchTST is
designed with channel independence. Indeed, the lower forecasting performance of PatchTST on
Traffic dataset supports this hypothesis.
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Dataset ECL Weather Traffic Solar-Ener ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

z.
s.

T.PFN 0.315 0.383 0.209 0.255 1.108 0.613 0.941 0.730 0.453 0.439 0.328 0.362 0.637 0.512 0.212 0.291
T.PFNw/oC 0.653 0.637 0.221 0.271 1.287 0.757 1.197 0.829 0.608 0.517 0.338 0.374 0.771 0.565 0.224 0.307
P.TST-PFN 0.470 0.522 0.212 0.262 1.172 0.702 1.014 0.787 0.554 0.501 0.322 0.366 0.746 0.560 0.215 0.301

Table 3: In T.PFNw/oC (TimePFN-w/o-Convolution), we eliminate the convolutional operator that is
normally applied to the initial input variates. In P.TST-PFN (PatchTST-PFN), we train a PatchTST
model to evaluate the significance of channel-mixing and the appropriateness of our architecture for
PFNs. Both the sequence length and the forecasting length are set to 96. T.PFN stands for TimePFN.

Dataset ECL Weather Traffic Solar-Ener ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

z.
s. T.PFN 0.315 0.383 0.209 0.255 1.108 0.613 0.941 0.730 0.453 0.439 0.328 0.362 0.637 0.512 0.212 0.291

T.PFN-I. 0.350 0.416 0.214 0.260 1.180 0.651 1.197 0.829 0.468 0.447 0.326 0.363 0.761 0.542 0.215 0.295

Table 4: T.PFN-I. (TimePFN-ind) is the model trained using only independent variates, while the
other model is our standard one, which we used throughout the experiments. Both models have a
sequence and forecasting length of 96. T.PFN stands for TimePFN.

In zero-shot settings, TimePFN outperforms all zero-shot baselines except on the Solar-Energy
dataset, with Solar-Energy being in close proximity. We observed that the Solar-Energy data exhibits
sudden spikes e.g. as a function of sun rising or going down. Our model, based on its training data
from the LMC-Synth prior, fails to anticipate such sudden spikes. However, these spiky behavior is
well within the capabilities of changepoint kernels in Gaussian processes, suggesting a clear path for
future improvements.

D.2 Univariate Time-Series Forecasting

Although TimePFN was specifically trained for MTS forecasting using a synthetic dataset with a
channel size of 160, we also tested it in a zero-shot scenario for univariate time-series forecasting
where C = 1. Moreover, we used the sequence length of 36 that ForecastPFN [5] was specifically
trained on. To accommodate this sequence length, we padded the remaining 96− 36 = 60 sequence
lengths with the mean value of the input time-series to mitigate any scaling issues, and named this
model configuration TimePFN-36. To demonstrate the full performance of our model, we included
results for TimePFN without padding using a sequence length of 96, referred to as TimePFN-96 in
Table 2. All other results were reported with a sequence length of 36.

As demonstrated in Table 2, TimePFN outperforms models that were specifically trained for univariate
time series forecasting, which attests to its robust generalization and zero-shot performance. Our
extensive evaluations, which detail the errors for different sequence lengths, can be found in the
appendix under the section Extended Results.

D.3 Ablation Study

Training a single TimePFN model requires approximately 10 hours on a single L40S GPU, which
limited our capacity for ablation studies. Nevertheless, we conducted two types of key ablations: the
first type focused on the architecture, while the second type focused on the synthetic data generation.

Architectural Ablation. In the first part, we first aim to understand the impact of our 1D convolutional
operation applied to time-series variates before any patching. To do this, we remove the operation and
train a TimePFN-convolutionless model, then report the zero-shot results in Table 3. We observe that
without the convolutional operation, the zero-shot performance significantly decreases. Additionally,
since our architecture differs from that of [19] particularly in terms of channel mixing, we trained the
PatchTST architecture to assess the impact of channel mixing on zero-shot forecasting performance.
As seen in Table 3, both of our ablation experiments supports our model design principles and
underscores the usefulness of TimePFN’s architecture for synthetic learning.

Synthetic Dataset Ablation. To understand whether the synthetic data generation algorithm LMC-
Synth gives any benefits over just using the variates generated by KernelSynth [2] independently
in each channel, we trained TimePFN with using data where each channel is generated indepen-
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Dataset ECL Weather Traffic Solar Exchange ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

z.
s.

TimePFN 0.315 0.383 0.209 0.255 1.108 0.613 0.941 0.730 0.105 0.229 0.453 0.439 0.328 0.362 0.637 0.512 0.212 0.291
Naive 1.587 0.945 0.259 0.254 2.714 1.077 1.539 0.815 0.081 0.196 1.294 0.713 0.431 0.421 1.213 0.664 0.266 0.327
SeasonalN. 1.618 0.964 0.268 0.263 2.774 1.097 1.599 0.844 0.086 0.204 1.325 0.727 0.445 0.431 1.227 0.673 0.274 0.334
Mean 0.845 0.761 0.215 0.271 1.410 0.804 0.910 0.734 0.139 0.269 0.700 0.558 0.352 0.387 0.693 0.547 0.229 0.307

B
ud

ge
t=

50
TimePFN 0.235 0.322 0.190 0.235 0.746 0.468 0.429 0.450 0.096 0.218 0.438 0.429 0.324 0.359 0.419 0.418 0.195 0.276
iTransf. 0.278 0.360 0.237 0.278 0.801 0.499 0.513 0.479 0.145 0.275 0.838 0.617 0.410 0.422 0.884 0.608 0.268 0.337
PatchTST 0.667 0.646 0.221 0.269 1.295 0.746 0.810 0.669 0.127 0.255 0.778 0.587 0.372 0.401 0.656 0.528 0.231 0.310
DLinear 0.406 0.463 0.742 0.612 1.888 0.937 0.956 0.813 3.432 1.349 1.404 0.881 3.928 1.383 1.332 0.846 3.484 1.290
FEDFormer 0.908 0.758 0.306 0.381 1.587 0.874 0.972 0.757 0.165 0.300 0.676 0.570 0.424 0.468 0.745 0.589 0.291 0.387
Informer 1.226 0.896 0.464 0.511 1.714 0.901 0.887 0.783 1.470 1.007 1.172 0.819 2.045 1.093 1.003 0.745 1.590 0.995
Autoformer 0.729 0.675 0.322 0.401 1.600 0.883 1.065 0.808 0.213 0.351 0.607 0.560 0.492 0.506 0.763 0.592 0.316 0.407

B
ud

ge
t=

10
0

TimePFN 0.221 0.309 0.187 0.232 0.644 0.424 0.351 0.383 0.083 0.205 0.441 0.429 0.322 0.356 0.412 0.411 0.196 0.273
iTransf. 0.253 0.337 0.220 0.263 0.740 0.468 0.369 0.387 0.138 0.268 0.728 0.574 0.401 0.418 0.816 0.586 0.260 0.331
PatchTST 0.361 0.432 0.216 0.256 0.982 0.592 0.575 0.524 0.102 0.227 0.757 0.579 0.371 0.400 0.502 0.461 0.215 0.298
DLinear 0.332 0.409 0.636 0.562 1.770 0.897 0.887 0.784 2.712 1.172 1.256 0.826 3.237 1.246 1.214 0.799 2.810 1.140
FEDformer 0.597 0.598 0.264 0.344 1.350 0.775 0.951 0.752 0.158 0.291 0.562 0.513 0.362 0.407 0.724 0.572 0.290 0.387
Informer 1.056 0.837 0.369 0.432 1.609 0.860 0.731 0.702 0.883 0.774 1.038 0.757 1.279 0.916 0.883 0.664 1.040 0.802
Autoformer 0.468 0.519 0.251 0.330 1.344 0.773 0.960 0.762 0.187 0.321 0.550 0.524 0.379 0.422 0.704 0.554 0.258 0.351

B
ud

ge
t=

50
0

TimePFN 0.190 0.283 0.178 0.222 0.487 0.335 0.269 0.305 0.083 0.203 0.401 0.412 0.311 0.352 0.360 0.386 0.185 0.268
iTransf. 0.200 0.284 0.211 0.248 0.514 0.354 0.307 0.334 0.113 0.239 0.489 0.470 0.361 0.394 0.569 0.494 0.231 0.310
PatchTST 0.236 0.320 0.210 0.246 0.740 0.455 0.321 0.353 0.081 0.198 0.596 0.515 0.358 0.392 0.369 0.386 0.190 0.275
DLinear 0.235 0.328 0.335 0.394 1.312 0.727 0.622 0.656 0.655 0.551 0.749 0.609 1.098 0.712 0.817 0.621 0.870 0.626
FEDformer 0.317 0.407 0.265 0.341 0.888 0.548 0.821 0.706 0.157 0.288 0.444 0.452 0.358 0.401 0.674 0.542 0.238 0.322
Informer 0.869 0.760 0.320 0.393 1.411 0.774 0.318 0.385 0.699 0.694 0.913 0.713 1.311 0.940 0.704 0.595 1.121 0.803
Autoformer 0.303 0.396 0.237 0.312 0.896 0.549 0.950 0.787 0.158 0.290 0.456 0.456 0.339 0.384 0.672 0.534 0.223 0.308

B
ud

ge
t=

10
00

TimePFN 0.173 0.268 0.175 0.219 0.452 0.310 0.243 0.288 0.084 0.204 0.405 0.415 0.304 0.351 0.344 0.378 0.180 0.262
iTransf. 0.184 0.271 0.206 0.242 0.469 0.324 0.276 0.309 0.100 0.223 0.433 0.436 0.336 0.379 0.464 0.444 0.211 0.294
PatchTST 0.219 0.304 0.198 0.237 0.683 0.420 0.280 0.324 0.082 0.200 0.490 0.467 0.337 0.378 0.353 0.375 0.187 0.272
DLinear 0.218 0.310 0.254 0.331 1.076 0.627 0.488 0.569 0.193 0.330 0.562 0.513 0.528 0.507 0.629 0.528 0.380 0.437
FEDformer 0.284 0.379 0.269 0.341 0.806 0.486 0.545 0.546 0.157 0.287 0.402 0.435 0.341 0.383 0.436 0.456 0.228 0.312
Informer 0.693 0.647 0.341 0.413 1.231 0.678 0.229 0.294 0.689 0.666 0.887 0.710 1.357 0.939 0.682 0.596 0.615 0.596
Autoformer 0.270 0.367 0.239 0.314 0.787 0.492 0.926 0.742 0.156 0.285 0.427 0.442 0.341 0.383 0.617 0.521 0.218 0.301

B
ud

ge
t=

A
ll

TimePFN 0.138 0.137 0.166 0.208 0.392 0.260 0.203 0.219 0.100 0.223 0.402 0.417 0.293 0.343 0.392 0.402 0.180 0.262
iTransf. 0.147 0.239 0.175 0.215 0.393 0.268 0.201 0.233 0.086 0.206 0.387 0.405 0.300 0.349 0.342 0.376 0.185 0.272
PatchTST 0.185 0.267 0.177 0.218 0.517 0.334 0.222 0.267 0.080 0.196 0.392 0.404 0.293 0.343 0.318 0.357 0.177 0.260
DLinear 0.195 0.278 0.341 0.412 0.690 0.432 0.286 0.375 0.101 0.237 0.400 0.412 0.357 0.406 0.344 0.371 0.195 0.293
FEDformer 0.196 0.310 0.227 0.313 0.573 0.357 0.242 0.342 0.148 0.280 0.380 0.417 0.340 0.386 0.363 0.408 0.191 0.286
Informer 0.327 0.413 0.455 0.481 0.735 0.409 0.190 0.216 0.921 0.774 0.930 0.763 2.928 1.349 0.623 0.559 0.396 0.474
Autoformer 0.214 0.327 0.273 0.344 0.605 0.376 0.455 0.480 0.141 0.271 0.440 0.446 0.364 0.408 0.520 0.490 0.233 0.311

A
vg

A
cc

.B
ud

ge
ts TimePFN 0.191 0.264 0.179 0.223 0.544 0.359 0.299 0.329 0.089 0.211 0.417 0.420 0.311 0.352 0.385 0.399 0.187 0.268

iTransf. 0.212 0.298 0.210 0.249 0.583 0.383 0.333 0.348 0.116 0.242 0.575 0.500 0.362 0.392 0.615 0.502 0.231 0.309
PatchTST 0.334 0.394 0.204 0.245 0.843 0.509 0.442 0.427 0.094 0.215 0.603 0.510 0.346 0.383 0.440 0.421 0.200 0.283
DLinear 0.277 0.358 0.462 0.462 1.347 0.724 0.648 0.639 1.419 0.728 0.874 0.648 1.830 0.851 0.867 0.633 1.548 0.757
FEDformer 0.460 0.490 0.266 0.344 1.041 0.608 0.706 0.621 0.157 0.289 0.493 0.477 0.365 0.409 0.588 0.513 0.248 0.339
Informer 0.834 0.711 0.390 0.446 1.340 0.724 0.471 0.476 0.932 0.783 0.988 0.752 1.784 1.047 0.779 0.632 0.952 0.734
Autoformer 0.397 0.457 0.264 0.340 1.046 0.615 0.871 0.716 0.171 0.304 0.496 0.486 0.383 0.421 0.655 0.538 0.250 0.336

# of Variates 321 21 862 137 8 7 7 7 7

Table 5: Results of TimePFN on various benchmarks, compared to baseline models. TimePFN has
been fine-tuned using specified data budgets, with MSE and MAE scores reported. The best results
are highlighted in bold, and both input and prediction lengths are set at 96. TimePFN demonstrates
remarkable performance in budget-limited settings, as well as with the full dataset, particularly in
scenarios involving a large number of variates.

dently. This case, as we described previously, corresponds to the case where Ci(t) = li(t) with
number of channels equaling to number of latent functions. We see in Table 4 that using generative
coregionalization provides clear benefits.

E Extended Results

In addition to the budget scenarios presented in the main body, we also conducted experiments with
data budgets of 100 and 1,000 to fully characterize our experimental results. Furthermore, the average
accuracy across these data budgets is provided for reference. Table 5 showcases all these evaluations.
In Table 6, we present the raw results of the univariate forecasting task for zero-shot forecasting.
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Prediction Length 6 8 14 18 24 36 48 Average
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ti
m

eP
FN

-9
6

Exchange 0.015 0.094 0.017 0.102 0.026 0.124 0.030 0.136 0.037 0.149 0.052 0.174 0.065 0.195 0.034 0.139
Weather 0.020 1.006 0.023 1.068 0.034 1.280 0.041 1.411 0.051 1.582 0.072 1.885 0.087 2.108 0.046 1.477
Traffic 0.388 0.489 0.397 0.496 0.409 0.506 0.408 0.499 0.413 0.499 0.436 0.516 0.449 0.520 0.414 0.503
ECL 0.368 0.471 0.410 0.497 0.497 0.550 0.518 0.560 0.539 0.571 0.602 0.600 0.629 0.600 0.509 0.549
ETTh1 0.017 0.101 0.020 0.109 0.026 0.126 0.030 0.134 0.034 0.143 0.041 0.156 0.045 0.163 0.030 0.133
ETTh2 0.059 0.185 0.067 0.198 0.082 0.220 0.087 0.227 0.091 0.234 0.104 0.249 0.112 0.260 0.086 0.224

Ti
m

eP
FN

-3
6

Exchange 0.012 0.087 0.014 0.094 0.020 0.112 0.024 0.122 0.030 0.134 0.041 0.155 0.052 0.174 0.027 0.125
Weather ×102 0.017 0.932 0.020 0.991 0.029 1.174 0.036 1.301 0.046 1.470 0.065 1.775 0.081 2.024 0.042 1.381
Traffic 1.393 1.008 1.528 1.051 1.644 1.084 1.520 1.031 1.403 0.988 1.538 1.039 1.495 1.027 1.503 1.032
ECL 0.585 0.621 0.640 0.649 0.745 0.701 0.747 0.702 0.760 0.712 0.878 0.764 0.909 0.772 0.752 0.703
ETTh1 0.018 0.100 0.020 0.107 0.025 0.121 0.028 0.128 0.032 0.137 0.040 0.153 0.045 0.164 0.029 0.130
ETTh2 0.100 0.241 0.110 0.253 0.126 0.274 0.125 0.274 0.126 0.275 0.145 0.295 0.152 0.302 0.126 0.273

Fo
re

ca
st

PF
N

Exchange 0.041 0.154 0.042 0.158 0.049 0.169 0.054 0.177 0.061 0.187 0.072 0.201 0.084 0.215 0.057 0.180
Weather ×102 0.062 1.668 0.065 1.719 0.074 1.865 0.080 1.952 0.089 2.073 0.103 2.278 0.115 2.443 0.084 1.999
Traffic 4.690 1.779 4.712 1.790 4.572 1.765 4.428 1.724 4.348 1.698 4.504 1.735 4.394 1.703 4.521 1.742
ECL 1.430 0.962 1.444 0.969 1.406 0.955 1.360 0.935 1.356 0.935 1.453 0.973 1.467 0.977 1.416 0.958
ETTh1 0.085 0.216 0.087 0.220 0.093 0.228 0.097 0.232 0.104 0.239 0.119 0.256 0.131 0.270 0.102 0.237
ETTh2 0.409 0.504 0.418 0.510 0.424 0.513 0.421 0.509 0.426 0.511 0.462 0.532 0.481 0.540 0.434 0.517

C
hr

on
os

-S
m

al
l Exchange 0.026 0.072 0.048 0.081 0.079 0.104 0.020 0.107 0.059 0.124 0.034 0.141 0.075 0.165 0.049 0.113

Weather ×102 0.013 0.623 0.014 0.703 0.023 0.920 0.030 1.055 0.041 1.244 0.058 1.568 0.078 1.842 0.036 1.136
Traffic 1.298 0.819 1.997 1.056 3.738 1.530 4.063 1.642 3.545 1.502 3.434 1.482 3.646 1.519 3.103 1.364
ECL 0.473 0.488 0.698 0.601 1.313 0.856 1.443 0.914 1.310 0.865 1.371 0.893 1.458 0.931 1.152 0.792
ETTh1 0.045 0.114 0.044 0.121 0.062 0.151 0.065 0.159 0.065 0.168 0.073 0.184 0.076 0.194 0.061 0.155
ETTh2 0.089 0.188 0.134 0.238 0.227 0.337 0.251 0.365 0.235 0.358 0.250 0.374 0.266 0.393 0.207 0.321

Se
as

on
al

N
ai

ve

Exchange 0.015 0.096 0.016 0.100 0.021 0.114 0.025 0.124 0.030 0.135 0.039 0.154 0.050 0.172 0.028 0.128
Weather ×102 0.021 0.907 0.023 0.965 0.031 1.137 0.039 1.278 0.048 1.445 0.067 1.740 0.084 1.989 0.045 1.352
Traffic 4.354 1.850 4.581 1.891 5.263 2.016 4.416 1.784 3.756 1.614 4.104 1.691 3.631 1.548 4.301 1.771
ECL 1.427 0.962 1.523 0.994 1.810 1.092 1.590 1.004 1.427 0.942 1.600 1.001 1.533 0.973 1.559 0.995
ETTh1 0.027 0.126 0.029 0.131 0.035 0.145 0.037 0.149 0.040 0.156 0.049 0.171 0.055 0.181 0.039 0.151
ETTh2 0.272 0.394 0.283 0.405 0.313 0.437 0.278 0.409 0.254 0.390 0.279 0.413 0.273 0.406 0.279 0.408

N
ai

ve

Exchange 0.008 0.064 0.010 0.073 0.015 0.093 0.019 0.104 0.024 0.118 0.034 0.140 0.045 0.160 0.022 0.107
Weather ×102 0.011 0.598 0.014 0.685 0.023 0.910 0.029 1.044 0.038 1.232 0.058 1.561 0.075 1.834 0.035 1.123
Traffic 1.759 1.041 2.495 1.263 4.090 1.661 4.245 1.716 3.524 1.504 3.622 1.536 3.574 1.517 3.330 1.463
ECL 0.586 0.560 0.827 0.672 1.400 0.904 1.479 0.941 1.309 0.874 1.406 0.914 1.471 0.938 1.211 0.829
ETTh1 0.014 0.084 0.018 0.095 0.027 0.120 0.031 0.131 0.034 0.139 0.043 0.157 0.050 0.171 0.031 0.128
ETTh2 0.114 0.226 0.157 0.272 0.240 0.357 0.256 0.376 0.229 0.357 0.248 0.377 0.259 0.390 0.215 0.336

M
ea

n

Exchange 0.027 0.131 0.028 0.135 0.033 0.146 0.037 0.152 0.042 0.161 0.052 0.177 0.062 0.192 0.040 0.156
Weather ×102 0.047 1.546 0.050 1.599 0.059 1.775 0.064 1.840 0.074 1.966 0.089 2.178 0.101 2.345 0.069 1.893
Traffic 2.293 1.332 2.350 1.343 2.233 1.287 2.049 1.221 1.920 1.183 2.078 1.234 1.955 1.192 2.125 1.256
ECL 0.923 0.793 0.955 0.805 0.960 0.805 0.929 0.790 0.923 0.788 1.025 0.828 1.029 0.827 0.963 0.805
ETTh1 0.031 0.135 0.033 0.138 0.036 0.146 0.038 0.151 0.041 0.157 0.048 0.170 0.052 0.178 0.040 0.154
ETTh2 0.161 0.314 0.166 0.320 0.167 0.321 0.162 0.315 0.162 0.314 0.179 0.330 0.182 0.333 0.168 0.321

Table 6: Zero-shot results of TimePFN on univariate time-series forecasting with input length = 36.
TimePFN-96 has input length of 96. All other baselines have input length 36. Meta-N-Beats is not
included as it is not our implementation.

E.1 Multivariate Forecasting

As shown in Table 5, TimePFN consistently achieves the best results with a data budget of 100 and
significantly outperforms all other models with a budget of 1,000, leading in 7 out of 9 datasets.
TimePFN excels particularly in datasets with a multivariate nature. Consider that PatchTST [19]
assumes channel independence, whereas iTransformer [16] treats each variate as a token, demonstrat-
ing extreme channel dependence. In the full budget scenario, where the entire dataset is utilized, the
difference in forecasting performance between iTransformer and PatchTST is revealing, particularly
in detecting datasets with high inter-channel dependencies. For instance, in the ECL and Traffic
datasets, which have a large number of variates (which does not mean high channel dependence by
itself), iTransformer shows superior forecasting performance compared to PatchTST. Conversely, in
the ETT datasets, PatchTST performs comparatively better. Extrapolating from there, we realize that
TimePFN excels in datasets with a high multivariate nature, even in full budget scenarios, and also
yields good and competitive performance in datasets with comparatively low multivariate characteris-
tic in full budget scenarios. With limited budgets, we see that TimePFN is the leading model among
the baselines.

E.2 Univariate Forecasting

Although TimePFN is specifically designed for multivariate time series forecasting, we also assessed
its performance in zero-shot univariate forecasting, compared to similar models. See Table 6 for
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more details. On average, TimePFN-36 is the most successful model among other models, and
uniformly better than all other deep-learning based baselines in our setting. Generally, Chronos-small
[2] outperforms TimePFN-36 with shorter prediction lengths, while TimePFN-36 excels at longer
prediction lengths, outperforming the other models. This outcome is expected, as TimePFN is
specifically trained to handle an input length of 96 and predict the same distance ahead. For these
comparisons, we trimmed TimePFN’s predictions to match the given prediction lengths. Given
TimePFN’s focus on longer prediction horizons, it’s no surprise that Chronos-small performs better
at shorter lengths. For TimePFN-36, we padded the first 60 sequences of the 96-sequence input
with the average of a 36-sequence input to minimize distribution shift. We also included results for
TimePFN-96, which uses the full 96-sequence input length without padding, to demonstrate our
model’s complete performance.

F Datasets

As datasets, we used 9 benchmark datasets which are commonly used in multivariate time-series
forecasting. These consist of four ETT datasets [28] (ETTh1, ETTh2, ETTm1, ETTm2), ECL
(Electricity Consuming Load), Exchange, Traffic, Weather and Solar Energy. Except for the Solar
Energy datasets, the others are benchmarked by [25], while the Solar is introduced by [13]. We
splitted the training, validation and test sets in a chronological way deterministically, following
[19, 16]. We will briefly explain the features of these datasets in this section.

ETT Datasets. The abbreviation ETT refers to Electricity Transformer Temperature [28]. All ETT
datasets consist of seven variates. The ETTh1 and ETTh2 datasets are sampled hourly, while the
ETTm1 and ETTm2 datasets are sampled every 15 minutes. Specifically, the ETTh datasets contain
8545, 2881, and 2881 data points in the training, validation, and test sets, respectively. In contrast,
the ETTm datasets comprise 34465, 11521, and 11521 data points in the training, validation, and test
sets, respectively [16].

ECL Dataset. The abbreviation ECL refers to the electricity consumption load of 321 users [25]. It
is recorded in hourly intervals, resulting in a dataset with 321 variates. The ECL dataset contains
18317, 2633, and 5261 data points in the training, validation, and test sets, respectively [16].

Exchange Dataset. This dataset provides daily exchange rates for eight countries [25], comprising
eight variates. The Exchange dataset includes 5120, 665, and 1422 data points in the training,
validation, and test sets, respectively [16]. Some works, such as PatchTST [19], avoid using this
dataset as a benchmark because simple naive predictions (using the last observed value) often
outperform more complex methods. However, for completeness, we have included it in our analysis.

Traffic Dataset. This dataset includes hourly road occupancy rates from 862 locations [25], resulting
in 862 variates. The traffic dataset contains 12185, 1757, and 3509 data points in the training,
validation, and test sets, respectively [16]. It is by far the most high-dimensional dataset in our
evaluation.

Weather Dataset. This dataset includes 21 meteorological factors collected every 10 minutes [25],
resulting in 21 variates. The weather dataset contains 36792, 5271, and 10540 data points in the
training, validation, and test sets, respectively [16].

Solar-Energy Dataset. This dataset includes power production values from 137 solar power plants,
sampled every 10 minutes [13], resulting in 137 variables. The solar energy dataset contains 36601,
5161, and 10417 data points in the training, validation, and test sets, respectively [16].

G Additional Ablations

In addition to the ablation studies we provided, we include three additional case studies, with one
focusing on the performance of the architecture of TimePFN when it is not pretrained synthetic
data, and the second one focuses on the performace of iTransformer [16] when it is used as the PFN
backbone in zero-shot setting. In the third case study, we evaluate this iTransformer-PFN compared
to iTransformer in various data budgets to demonstrate the generality of the framework of large-scale
synthetic training and to demonstrate the architectural novelties of TimePFN. Table 7, Table 8 and
Table 9 contain the results of those ablation studies, respectively.
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Dataset ECL Weather Traffic Solar-Energy Exchange ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

50

TimePFN 0.235 0.322 0.190 0.235 0.746 0.468 0.429 0.450 0.096 0.218 0.438 0.429 0.324 0.359 0.419 0.418 0.195 0.276
TimePFN-w/o-s 0.314 0.391 0.213 0.255 0.966 0.580 0.448 0.440 0.110 0.237 0.520 0.482 0.360 0.392 0.468 0.445 0.234 0.312

10
0 TimePFN 0.221 0.309 0.187 0.232 0.644 0.424 0.351 0.383 0.083 0.205 0.441 0.429 0.322 0.356 0.412 0.411 0.196 0.273

TimePFN-w/o-s 0.259 0.344 0.221 0.257 1.008 0.596 0.324 0.347 0.104 0.230 0.505 0.475 0.360 0.391 0.404 0.411 0.231 0.308
50

0 TimePFN 0.190 0.283 0.178 0.222 0.487 0.335 0.269 0.305 0.083 0.203 0.401 0.412 0.311 0.352 0.360 0.386 0.185 0.268
TimePFN-w/o-s 0.220 0.311 0.191 0.235 0.914 0.559 0.303 0.318 0.105 0.232 0.423 0.431 0.354 0.387 0.357 0.383 0.229 0.307

10
00 TimePFN 0.173 0.268 0.175 0.219 0.452 0.310 0.243 0.288 0.084 0.204 0.405 0.415 0.304 0.351 0.344 0.378 0.180 0.262

TimePFN-w/o-s 0.187 0.285 0.182 0.224 0.907 0.556 0.278 0.302 0.109 0.233 0.409 0.425 0.352 0.387 0.341 0.374 0.206 0.289

A
ll TimePFN 0.138 0.137 0.166 0.208 0.392 0.260 0.203 0.219 0.100 0.223 0.402 0.417 0.293 0.343 0.392 0.402 0.180 0.262

TimePFN-w/o-s 0.137 0.136 0.214 0.269 1.408 0.800 0.196 0.210 0.101 0.225 0.412 0.423 0.352 0.386 0.437 0.414 0.229 0.307

Table 7: In TimePFN-w/o-s, we do not pretrain the TimePFN architecture. Instead, we directly train
the architecture with given data budgets and compare it with the pretrained and fine-tuned TimePFN.
Both the sequence lengths and the forecasting length are set to 96.

Dataset ECL Weather Traffic Solar-Energy Exchange ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

z.
s.

TimePFN 0.315 0.383 0.209 0.255 1.108 0.613 0.941 0.730 0.105 0.229 0.453 0.439 0.328 0.362 0.637 0.512 0.212 0.291
TimePFN-w/o-C 0.653 0.637 0.221 0.271 1.287 0.757 1.197 0.829 0.111 0.237 0.608 0.517 0.338 0.374 0.771 0.565 0.224 0.307
PatchTST-PFN 0.470 0.522 0.212 0.262 1.172 0.702 1.014 0.787 0.108 0.231 0.554 0.501 0.322 0.366 0.746 0.560 0.215 0.301
iTrans.-PFN 0.609 0.605 0.213 0.261 1.321 0.761 1.075 0.791 0.111 0.235 0.522 0.481 0.327 0.367 0.765 0.563 0.220 0.305

Table 8: Extended ablation results involving iTransformer-PFN. In iTransformer-PFN, we pre-train
an iTransformer model to assess the suitability of our architecture for PFNs, using a sequence length
and forecasting length of 96. In TimePFN-w/o-Convolution, we remove the convolutional operator
typically applied to the initial input variables. In PatchTST-PFN, we train a PatchTST model to
evaluate the importance of channel mixing and the suitability of our architecture for PFNs, also using
a sequence length and forecasting length of 96. We evaluate the zero-shot performance.

Pretraining TimePFN with LMC-Synth. To better understand the impact of synthetic training in
TimePFN, we removed the synthetic training component and directly trained the architecture, which
we referred to as TimePFN-w/o-synthetic. As shown in Table 7, the forecasting performance of
TimePFN is significantly better than that of TimePFN-w/o-synthetic, demonstrating its contribution
in both full budget and limited budget settings.

iTransformer as PFN. To evaluate the performance of other architectures with prior-data-fitting,
we trained an iTransformer architecture with LMC-Synth in addition to PatchTST-PFN. As shown
in Table 8, compared to other variations, TimePFN demonstrates significantly better zero-shot
forecasting capability, with uniformly better results than those of the competing architectures. This
supports our architectural design principles, involving 1D convolutions and channel-mixing.

iTransformer-PFN with Data Budgets. To demonstrate the behavior of another architecture with
synthetic training, we pre-trained the iTransformer [16] with data generated by LMC-Synth and
fine-tuned it using specified data budgets. As shown in Table 9, synthetic pre-training improves the
performance of the model in most cases, demonstrating the generality of the framework. However,
the contribution is limited when using the entire dataset, in contrast to those instances with TimePFN,
thereby highlighting TimePFN’s superior performance.

H Baseline Details

In addition to the main body, we would like to elaborate on how we aggregated the forecasting results
from Chronos-small [2] and ForecastPFN [5]. We chose Chronos-small because its parameter size is
somewhat closer to TimePFN’s compared to the larger variations of Chronos. We opted not to use
Chronos-Tiny to maintain a stronger baseline. TimePFN has approximately 8.5 million parameters,
whereas Chronos-small has 46 million parameters, significantly exceeding the parameter count of
TimePFN. As Chronos is a probabilistic model, we performed inference on each time-series data
point three times with Chronos and averaged the results to obtain the final point forecast, except for
the Exchange dataset. Our evaluation of Chronos on the Exchange dataset yielded unstable results
with three inference iterations; therefore, we conducted five runs for this dataset. We aggregated the
ForecastPFN results using their published model weights.
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Dataset ECL Weather Traffic Solar-Energy Exchange ETTh1 ETTh2 ETTm1 ETTm2
Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

50

iTrans.-PFN 0.255 0.344 0.215 0.250 1.292 0.725 0.392 0.412 0.102 0.230 0.491 0.465 0.370 0.393 0.466 0.440 0.217 0.301
iTransformer 0.278 0.360 0.237 0.278 0.801 0.499 0.513 0.479 0.145 0.275 0.838 0.617 0.410 0.422 0.884 0.608 0.268 0.337

10
0 iTrans.-PFN 0.227 0.318 0.213 0.249 1.216 0.702 0.336 0.355 0.101 0.226 0.478 0.455 0.370 0.393 0.430 0.424 0.204 0.287

iTransformer 0.253 0.337 0.220 0.263 0.740 0.468 0.369 0.387 0.138 0.268 0.728 0.574 0.401 0.418 0.816 0.586 0.260 0.331

50
0 iTrans.-PFN 0.184 0.276 0.200 0.241 1.201 0.698 0.309 0.333 0.096 0.223 0.452 0.444 0.319 0.362 0.375 0.394 0.199 0.284

iTransformer 0.200 0.284 0.211 0.248 0.514 0.354 0.307 0.334 0.113 0.239 0.489 0.470 0.361 0.394 0.569 0.494 0.231 0.310
10

00 iTrans.-PFN 0.170 0.263 0.195 0.238 1.239 0.696 0.288 0.308 0.097 0.223 0.431 0.432 0.304 0.352 0.365 0.391 0.196 0.279
iTransformer 0.184 0.271 0.206 0.242 0.469 0.324 0.276 0.309 0.100 0.223 0.433 0.436 0.336 0.379 0.464 0.444 0.211 0.294

A
ll iTrans.-PFN 0.147 0.240 0.209 0.259 1.408 0.800 0.231 0.262 0.104 0.233 0.424 0.428 0.350 0.385 0.666 0.533 0.223 0.302

iTrans. 0.147 0.239 0.175 0.215 0.393 0.268 0.201 0.233 0.086 0.206 0.387 0.405 0.300 0.349 0.342 0.376 0.185 0.272

Table 9: In the iTrans.-PFN, we pre-trained an iTransformer model on a large-scale synthetic
dataset. The data budget evaluations involve fine-tuning the model using these data budgets. For the
iTransformer evaluations, we utilized the official hyperparameters of the model. Both the sequence
lengths and the forecasting lengths are set to 96.

I Implementation Details

We implemented TimePFN entirely in PyTorch. We optimized the pretraining task using a synthetic
dataset generated with LMC-Synth, employing the Adam optimizer [12] and adhering to a one-cycle
learning rate policy with a maximum learning rate of lr = 0.0005 [22]. In the few-shot evaluations,
we fine-tuned the TimePFN with maximum lr = 0.0002 using AdamW optimizer [17] with one-
cycle learning rate policy. In training TimePFN with synthetic dataset, we observed that making
model see the independently generated channels first, corresponding to the case with Ci(t) = li(t),
then introducing the inter-channel dependent data, significanly improves the learning speed. The
explanation is simple, with the case with Ci(t) = li(t), the model sees much more time-series
patterns, as the time-series channels are all independently generated by Gaussian processes. Thus,
after the model learns to make channel-independent decisions, we introduced the channel-dependent
data, similar to curriculum learning scenario [4]. Moreover, while training on synthetic data, we added
a multiplicative Gaussian noise to each MTS data point as a regularization, with σ = 0.1,mean = 1.
In the end, TimePFN is trained on 1.5 million MTS data points with 160 channels.

In TimePFN, we used the token embedding dimension of 256, and the latent space dimension of 1024,
while the feed-forward network dimension is set to 512. We did not do any hyperparameter tuning
and chose those values from checking similar works such as [19, 16]. In fine-tuning, we always
used the same learning rate with the same number of epochs accross different datasets (0.0002 and 8
epochs). Thus, we run the evaluations once. While doing all those, we fixed the seed to a random
value of 2023.

Throughout the experiments, we used a single L40S GPU. In addition the GPU, we had access to
128 GB of RAM and a 32-core CPU, which facilitated the acceleration of synthetic time-series data
generation. Our codebase is developed based on [16]. Overall, we used approximately 300 GPU
hours, as we conducted benchmarks not only for our own model but also for many others. We are
providing the full source code for TimePFN, including the synthetic data generation, architecture, and
the training and evaluation scripts. Furthermore, we are providing the model weights of TimePFN.

J Visualizations

Visualizations for LMC-Synth. We provide visualizations for the multivariate synthetic data
generated by LMC-Synth. For clarity, we have limited the number of channels to 5 and the sequence
length to 96. Figures 3-6 showcase the MTS data generated using LMC-Synth.

The Forecasts of TimePFN. We provide forecasts from TimePFN under various data budgets and
datasets, including zero-shot and full-data scenarios. Figures 7-18 display the forecasts of TimePFN
in these settings. As shown, with an increasing data budget, TimePFN’s forecasts align more closely
with the ground truth.

Optionally include extra information (complete proofs, additional experiments and plots) in the
appendix.
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Figure 2: Examples of synthetic multivariate time time-series data generated by LMC-Synth. For the
ease of understanding, we took C=5 and sequence lenght = 96. Dirichlet concentration parameter
controls the diversity of variates from one another.
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Figure 3: Examples of synthetic multivariate time time-series data generated by LMC-Synth. For the
ease of understanding, we took C=5 and sequence lenght = 96. Dirichlet concentration parameter
controls the diversity of variates from one another.
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Figure 4: Examples of synthetic multivariate time time-series data generated by LMC-Synth. For the
ease of understanding, we took C=5 and sequence lenght = 96. Dirichlet concentration parameter
controls the diversity of variates from one another.
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Figure 5: Examples of synthetic multivariate time time-series data generated by LMC-Synth. For the
ease of understanding, we took C=5 and sequence lenght = 96. Dirichlet concentration parameter
controls the diversity of variates from one another.
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Figure 6: The forecasts of TimePFN with various data budgets on ECL dataset.
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Figure 7: The forecasts of TimePFN with various data budgets on ECL dataset.
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Figure 8: The forecasts of TimePFN with various data budgets on weather dataset.
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Figure 9: The forecasts of TimePFN with various data budgets on weather dataset.
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Figure 10: The forecasts of TimePFN with various data budgets on ETTh1 dataset.
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Figure 11: The forecasts of TimePFN with various data budgets on ETTh1 dataset.
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Figure 12: The forecasts of TimePFN with various data budgets on ETTh2 dataset.
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Figure 13: The forecasts of TimePFN with various data budgets on ETTh2 dataset.

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0
GroundTruth
Prediction

(a) Zero Shot

0 25 50 75 100 125 150 175 200

0.75

0.50

0.25

0.00

0.25

0.50

0.75

GroundTruth
Prediction

(b) Budget = 50

0 25 50 75 100 125 150 175 200

0.75

0.50

0.25

0.00

0.25

0.50

0.75

GroundTruth
Prediction

(c) Budget = 100

0 25 50 75 100 125 150 175 200
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

GroundTruth
Prediction

(d) Budget = 500

0 25 50 75 100 125 150 175 200
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

GroundTruth
Prediction

(e) Budget = 1000

0 25 50 75 100 125 150 175 200

0.5

0.0

0.5

1.0

1.5
GroundTruth
Prediction

(f) Budget = All

Figure 14: The forecasts of TimePFN with various data budgets on Solar dataset.
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Figure 15: The forecasts of TimePFN with various data budgets on Solar dataset.
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Figure 16: The forecasts of TimePFN with various data budgets on traffic dataset.
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Figure 17: The forecasts of TimePFN with various data budgets on traffic dataset.
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