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Abstract

Precise, generalizable subject-agnostic seizure prediction (SASP) remains a funda-
mental challenge due to the intrinsic complexity and significant spectral variability
of electrophysiologial signals across individuals and recording modalities. We
propose FAPEX, a novel architecture that introduces a learnable fractional neural
frame operator (FrNFO) for adaptive time–frequency decomposition. Unlike con-
ventional models that exhibit spectral bias toward low frequencies, our FrNFO
employs fractional-order convolutions to capture both high and low-frequency
dynamics, achieving approximately 10% improvement in F1-score and sensitivity
over state-of-the-art baselines. The FrNFO enables the extraction of instantaneous
phase and amplitude representations that are particularly informative for preictal
biomarker discovery and enhance out-of-distribution generalization. FAPEX further
integrates structural state-space modeling and channelwise attention, allowing it
to handle heterogeneous electrode montages. Evaluated across 12 benchmarks
spanning species (human, rat, dog, macaque) and modalities (Scalp-EEG, SEEG,

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



ECoG, LFP), FAPEX consistently outperforms 23 supervised and 10 self-supervised
baselines under nested cross-validation, with gains of up to 15% in sensitivity on
complex cross-domain scenarios. It further demonstrates superior performance in
several external validation cohorts. To our knowledge, these establish FAPEX as the
first epilepsy model to show consistent superiority in SASP, offering a promising
solution for discovering epileptic biomarker evidence supporting the existence of a
distinct and identifiable preictal state for and clinical translation.

1 Introduction
Epilepsy is a common, heterogeneous set of neurological disorders characterized by recurrent,
hypersynchronous discharges that disrupt normal cognition and behavior. Affecting over 50 million
people worldwide [61], its diagnosis and monitoring rely fundamentally on electrophysiological
recordings—whether invasive (e.g., electrocorticography (ECoG), stereo-electroencephalography
(SEEG), local field potential (LFP)) or non-invasive (scalp EEG) [41, 20]. Although seizures have
long been viewed as abrupt and unpredictable events, a growing body of work demonstrates the
existence of a preictal stage marked by subtle neural and behavioral changes, offering an actionable
window for intervention.
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Figure 1: Summary of our work. (a) Definition of the different brain activity stages for the predictive analysis of epileptic seizure (a
scalp-EEG record is shown for the purpose of illustration). (b) Overview of the FAPEX development and validation pipeline. (c) Comparative
evaluation results demonstrate that FAPEX consistently outperforms state-of-the-art (SOTA) supervised and self-supervised approaches across 12
diverse benchmarks in terms of F1 and sensitivity, demonstrating superior performance and generalization.

Seizure prediction systems seek to detect these preictal alterations and raise alarms sufficiently
in advance. As shown in Fig. 1 (a), within the established framework of ictogenesis - which
delineates interictal, ictal, and postictal phases - the preictal interval offers a crucial target for clinical
interventions ranging from simple alerts aimed at mitigating injury risk to sophisticated closed-loop
neuromodulation devices. To formalize practical deployment, seizure prediction systems are typically
evaluated with respect to two time parameters: the Seizure Prediction Horizon (SPH), which defines
the minimum interval between a raised alarm and seizure onset to allow meaningful intervention,
and the Seizure Occurrence Period (SOP), a predefined window during which a seizure is expected
following an alarm.
Why subject-agnostic seizure prediction (SASP)? Despite remarkable advances in seizure predic-
tion achieved by pioneering studies [65, 43, 78, 10, 16, 79, 53], the field remains constrained by two
fundamental limitations: the reliance on subject-specific modeling paradigms and limited scalability.
Subject-specific approaches, while often achieving impressive performance on individual patients,
require extensive labeled data collection for each new patient and cannot leverage knowledge across
diverse patient populations. This impedes large-scale clinical adoption and negates the potential
advantages of aggregating data to identify generalizable seizure biomarkers.
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Beyond subject specificity, additional obstacles include narrow EEG modality ranges [74, 43, 77],
inconsistent preprocessing pipelines [9, 26], and dependence on rigid electrode configurations.
Together, these factors highlight the urgent need for truly subject-agnostic predictive algorithms
capable of operating robustly across various patient and recording configurations. Specific challenges
include:

(1) Capturing refined high- and low-frequency biomarkers. Clinical evidence [50, 15, 30, 54, 51]
shows pathological high-frequency oscillations and low-frequency fluctuations serve as crucial
epileptogenesis biomarkers. These subtle, non-stationary features are easily obscured by artifacts.
Conventional CNNs [4] and Transformers [39, 57] exhibit spectral biases toward low frequencies,
struggling to preserve transient HFO signatures [67, 44].

(2) Modeling phase–amplitude interactions. Epilepsy exhibits abnormal phase-amplitude coupling
and (de)synchronization [1, 38, 29, 2, 81, 68] during seizure initiation and propagation across
frequency bands. These interactions provide critical clues for distinguishing ictal from interictal
states. Current clinical models typically utilize amplitude information in time or frequency domains
separately, rarely integrating both. Our architecture captures these fundamental aspects of neural
oscillations, leveraging their complementary insights into seizure evolution.

(3) Handling heterogeneous channel layouts. Seizure onset zones and preictal activity distribution
vary significantly across individuals, with predictive features appearing on different electrodes from
patient to patient. Implantation strategies, montage configurations, and regional coverage introduce
further variability in channel characteristics. Naively pooling signals across channels obscures
patient-specific biomarkers and amplifies noise, compromising generalization in subject-agnostic
contexts.

Present work. To overcome these challenges, we propose FAPEX, a unified model for effective
generalization across heterogeneous EEG settings, electrode configurations, and clinical subtypes.
Our approach integrates three key innovations: (1) fractional neural frame operator (FrNFO): a learn-
able bank of Weyl-Heisenberg filters for adaptive time-frequency decomposition. FrNFO extracts
high-fidelity features through fractional-order convolutions with minimal spectral leakage, capturing
both high and low-frequency components of epileptic signals. (2) amplitude-phase cross-encoding
(APCE): A bidirectional state-space architecture processing phase and amplitude representations,
learning time-varying relationships to extract seizure evolution patterns. (3) Spatial correlation
aggregation (SCA): Channel-wise attention mechanisms modeling inter-electrode dependencies to
identify predictive spatial patterns. Together, these components enable FAPEX to learn multi-scale
representations that capture phase-amplitude coupling while handling non-stationarity and channel
heterogeneity. Together, these components enable FAPEX to learn rich, multi-scale representations
that capture subtle changes in phase-amplitude coupling across frequencies while adaptively handling
non-stationarity and channel heterogeneity. As illustrated in Fig. 2, FrNFO serves as the founda-
tional component, addressing low-frequency bias by preserving fragile yet critical high-frequency
oscillations while providing fine-grained decomposition of amplitude and phase features for a more
comprehensive picture of neural activity in seizure prediction.

Our main innovations are: (1) FAPEX, a subject-agnostic framework integrating our novel Fractional
Neural Frame Operator (FrNFO), amplitude-phase cross-encoding, and spatial correlation aggregation
to anticipate seizures across diverse modalities. (2) FrNFO, a learnable bank of Weyl–Heisenberg
filters that performs fractional-order time-frequency decomposition, mitigates low-frequency bias
and preserves high-frequency oscillations with provable robustness. (3) Extensive validation on
12 benchmarks across species and recording modalities shows FAPEX consistently outperforms
32 baselines, establishing a new standard for seizure prediction and revealing meaningful preictal
biomarkers.

2 Method
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Figure 2: Interpretability of FAPEX. (a) Kernel density estimates of power
spectral density (PSD) responses for FrNFO filters across layers and brain
frequency subbands. As depth increases, the operator progressively refines its
discrimination among subbands, maintaining the natural low-frequency, high-
energy and high-frequency, low-energy distribution, with energy gradually
stabilizing after intermediate layers. (b) Layer-wise frequency-specific gain
relative to the initial layer. Unlike non-fractional operators, FrNFO consistently
amplifies both low- and high-frequency components, achieving balanced cross-
frequency representations, indicating its ability to capture both fast and slow
neural dynamics essential for seizure prediction.

Problem formulation.
Epileptologists classify
seizure dynamics into three
phases: interictal, preictal,
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Figure 3: Datasets and network architecture summarization. (a) We used LFP, ECoG, SEEG and Scalp EEG data
across species (humans, dogs, rats, and macaques), to validate our model. (b) The network structure and training
pipeline of our FAPEX framework. The input signals will be encoded by the backbone encoder that is consisted
of our FrNFO, naturally separated into phase and amplitude sections, then go through a Amplitude-Phase
information mixing procedure which deals with the two sections interactively using 2 biderectional Cross-SSM
modules, and use a linear attention module for spatial correlation aggregation.

and ictal. Interictal Phase:
Periods between seizures
(typically > 30 minutes)
with generally normal brain
activity, though occasional
interictal epileptiform
discharges may occur.
Preictal Phase: The period
preceding a seizure, marked
by subtle brain activity
changes that may predict
an impending seizure. Ictal
Phase: The seizure event
itself, characterized by ictal
epileptiform discharges.
Formally, a neuroelectrical
segment is a set of time
series {x(i)}Ci=1, where C
is the number of channels,
and each x(i) ∈ RT represents a channel with T timestamps. A seizure predictor constructs a
function fmodel that maps {x(i)}Ci=1 to a binary label ŷi, distinguishing interictal from preictal states.
The model is trained to align predictions with clinical annotations yi, enabling prediction in unseen
subjects.

Input patchifying. Given a multichannel neural signal segment X ∈ RC×T , where C represents
the number of electrode channels and T is the total number of time samples, we aim to establish
a preprocessing pipeline that is robust to variations in electrode count and placement. To this end,
the continuous data is first partitioned into fixed-duration, non-overlapping patches. Specifically,
each channel signal xc ∈ RT is segmented using a window of length τ , resulting in N =

⌊
T
τ

⌋
patches per channel. Each patch is then projected into a common feature space using a channel-shared
linear embedding W ∈ Rdmodel×τ and bias vector b ∈ Rdmodel , resulting in the embedded tensor
X̃ ∈ RC×N×dmodel (dmodel is dimension of the model). This process ensures that the subsequent layers
can operate independently of electrode count and spatial arrangement.
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2.1 Fractional neural frame operator (FrNFO)

Motivation. Nonstationary signals, such as those encountered in neuroelectrical recordings in
epilepsy patients, present significant challenges due to their highly variable time-frequency content
and variability in both amplitude and phase. The Fractional Fourier Transform (FrFT) has emerged
as a powerful tool for analyzing such signals, providing a flexible, continuous interpolation between
the time domain (θ = 0) and the frequency domain (θ = π

2 ) via a fractional order parameter θ.
Formally, FrFT generalizes the Fourier transform with a fractional order θ ∈ (0, π), defined for a
signal f ∈ L2(R) as:

Fθ(f)(x) =
1√

| sin θ|

∫
R
f(t) exp

[
πi
(
(t2 + x2) cot θ − 2xt csc θ

)]
dt. (1)

This transform supports operators like θ-shift, T θ
s f(t) = exp (2πis(t− s) cot θ) f(t − s), and θ-

modulation, Mθ
s f(t) = exp

(
πi
(
s2 cot θ + 2st csc θ

))
f(t), enabling θ-fractional convolution [3,

76]:

(f ⋆θ g)(x) =
1√

| sin θ|

∫
R
f(s)(T θ

s g)(x)ds, (2)

which offers an alternative to traditional Fourier transform-based convolutions. While the fractional
Fourier transform (FrFT) provides a flexible framework for interpolating between time and frequency
domains, its practical implementations face two critical challenges that limit their effectiveness
for neuroelectrical signals: (1) Chirp response constraint: traditional FrFT relies on a fixed
chirp function, imposing a globally isotropic structure that poorly adapts to the diverse, localized
frequency characteristics of real-world data [25]. This restricts FrFT’s expressiveness essential for
nuanced phase-amplitude representation. While recent methods have introduced trainable fractional
orders [72, 28], they inherit this fundamental limitation, lacking the flexibility to accommodate
rapid spectral transitions and localized nonstationarities.(2) Deformation Sensitivity: Despite its
adaptability in fractional order, FrFT remains sensitive to small deformations, including time shifts,
scaling variations, and localized perturbations, which are especially prevalent in neural signals [46, 32].
These limitations underscore the need for more expressive, adaptive frameworks that can capture the
intricate amplitude-phase representation.

A neural approach for fine-grained amplitude-phase representation. To overcome these lim-
itations, we propose the fractional neural frame operator, which integrates neural implicit repre-
sentations to learn a parameterization of θ-fractional version of nonstationary Weyl-Heisenberg
frame [23, 49, 21], defined as:

Ψθ =
{
Mθ

lp
(j)
0

T θ

sq
(j)
0

IΦj : s ∈ R, l ∈ Z, j ∈ {1, . . . , N}
}
, (3)

where pj0, q
j
0 are positive constants adjusting the scale. It involves θ-modulation Mθ

lp
(j)
0

(t) =

eπi((lp
(j)
0 )2 cot θ+2lp

(j)
0 t csc θ) and θ-shift T θ

sq
(j)
0

(t) = e2πisq
(j)
0 (t−sq

(j)
0 ) cot θΦj(t− sq

(j)
0 ). Ψθ presents

a redundant set of basis functions that can be used to represent or analyze a signal on the fractional
domain. Unlike FrFT, it is equipped with adaptive windows Ψj over each scale j to capture a wide
range of signal behaviors. Building upon this, we propose fractional neural frame operator.

The core of the FrNFO is an implicit multilayer perceptron (MLP) [37, 66] designed to generate
adaptive window function for the frame filters. Given temporal samples N and feature channels dmodel,
the implicit MLP defines the window kernel Φ ∈ CN×dmodel for j = 1, . . . , N, k = 1, . . . , dmodel as

Φj,k(tj) =

(
M∑
i=1

wi,k exp(−j(bi,ktj + ci,k))

)
·

(
K∑

n=0

an,kHn(tj)

)
, (4)

where wi,k, bi,k, ci,k, an,k are trainable parameters optimized through gradient descent. The basis
functions Hn(t) = (−1)net

2 dn

dtn e
−t2 are Hermite polynomials, embedding prior knowledge of

localized oscillatory behavior, while the sine activation functions promote smooth and periodic kernel
characteristics essential for identifying quasiperiodic activities in brain.

FrNFO further introduces a learnable fractional order θ = [θ1, . . . , θdmodel ] ∈ (0, π)dmodel , which
governs the time-frequency representation for each feature channel independently. Given an input
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neural embedding X ∈ CN×dmodel , employing the fractional convolution theorem [3, 76], the output
feature for channel k is defined as:

X̂ :,k = exp(−πiω2 cot θk)⊙Fθk(X :,k)⊙Fθk(Ψ:,k), k = 1, . . . , dmodel, (5)

where Ψ:,k is the frame filter kernel equipped with learnable window kernel, ⊙ denotes the Hadamard
product, and ω represents the frequency grid. The phase adjustment factor exp(πiω2 cot θk) ensures
proper alignment and interpretation of fractional frequency components. This adaptive formulation
allows FrNFO to dynamically adjust frequency resolution.

FrNFO is a provably robust amplitude representator. As previously formulated, as a neural
fractional-order filterbank, FrNFO naturally yields complex-valued signal representation that can
be easily formulated into phases and amplitudes across different scales and fractional orders. We
further highlight that it also provides a provably robust amplitude representation, which is the main
information source in many applications, from the perspective of scattering transform. Refer to
further discussion and proof in App. A.

2.2 Amplitude-phase encoding

Amplitude-phase cross encoding (APCE). We introduce APCE to capture heterogeneous, cross-
frequency dependencies between amplitude and phase embeddings produced by FrNFO. Inspired by
recent advances in selective state space model, proposed first in Mamba [17, 19, 42, 8], we adopt
a bidirectional state-space mechanism building on Mamba blocks with cross-attention-like mecha-
nism [63], as shown in Fig. 3. Formally, given amplitude embeddings Amp and phase embeddings
Pha, we normalize them as: Amp = RMSNorm(Amp), Pha = RMSNorm(Pha). These
normalized embeddings are then processed by the dual cross-Mamba module, which operates in a
channel-independent manner to capture amplitude-phase interactions using a bidirectional state-space
model (BSSM), comprising two sequential blocks: phase BSSM and amplitude BSSM. In the phase
BSSM block, the normalized phase embeddings Pha ∈ RB×M×D are projected into a latent space
via two shared linear mappings:

XP = W xPha, ZP = W zPha, (6)

where W x,W z ∈ RD×E are learnable projection matrices, and E denotes the number of latent
SSM states. The projected embeddings undergo causal and anti-causal convolutions followed by a
SiLU activation:

Xo = SiLU
(
Conv1do(X

P )
)
, o ∈ {forward, backward}. (7)

Using the normalized amplitude embeddings Amp, we compute state-space parameters:

Bo = WBAmp, Co = WCAmp, ∆o = Softplus
(
W∆Xo + b∆

)
, (8)

where WB ,WC ∈ RD×N are shared across directions, and W∆ ∈ RE×E , b∆ ∈ RE are shared
scaling parameters. The time-varying transition parameters are then defined as:

Ao = ∆o ⊗A, Bo = ∆o ⊗Bo, (9)

where A ∈ RE×N is a shared, direction-agnostic transition matrix, and ⊗ denotes element-wise
multiplication. The output sequence is computed using the SSM kernel:

Y o = SSM(Ao,Bo,Co)(Xo). (10)

The final phase-to-amplitude representation, which captures phase-informative patterns, is gated as:

Y P = (Y forward + Y backward)⊙ SiLU(ZP ). (11)

In the amplitude BSSM, the roles are swapped: the phase-informative Y P provides the context, and
the amplitude Amp serves as queries. A residual connection combines the block output Y A with
the original amplitude embeddings Amp to produce the final APCE encoding:

X̃ = Y A +Amp, X̃ ∈ RB×M×D. (12)
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Spatial correlation aggregation (SCA). During the preictal interval, epilepsy is marked by dynamic
shifts in inter-electrode interdependencies that reflect the spread of pathological activity across brain
regions. Accurate seizure forecasting from multichannel recordings therefore hinges on modeling
these spatial dependencies. To this end, given neuroelectrical embeddings X ∈ RC×N×d, SCA
models global cross-spatial dependencies of different electrodes while integrating local spatiotemporal
patterns. Formally, linear attention aims to use ϕ (qi)ϕ (kj)

⊤ to approximate softmax attention
kernel at linear complexity, where the feature map ϕ(·) : Rd 7→ Rd is applied row-wise to the query
and key matrices. As a result, the c-th row of attention output at ∈ Rd can be rewritten as

oc = ac ⊙ Sigmoid(gc), ac =

∑C
i=1 ϕ (qc)ϕ (ki)

⊤
vi∑C

j=1 ϕ (qc)ϕ (kj)
⊤ =

ϕ (qc)
∑C

i=1 ϕ (ki)
⊤
vi

ϕ (qc)
∑C

j=1 ϕ (kj)
⊤ , (13)

where gc is the c-th row of G := RMSNorm[DepthwiseConv2d (X)] implemented with a 3 × 3
depthwise convolutional kernel to aggregate neighborhood spatiotemporal information with RM-
SNorm to improve stability. The feature map ϕ is made as a one-layer MLP as ϕMLP(x) :=

exp(W⊤
1 x), where the matrix W 1,W 2 ∈ Rd×d.

3 Experiments
We conducted empirical investigations to address the following Research Questions: RQ1: How
does FAPEX perform in SASP relative to supervised baselines? RQ2: Does self-supervised pretraining
improve performance of FAPEX in SASP relative to self-supervised baselines? RQ3: How well does
FAPEX generalize to different cohorts (e.g., species, institution)? RQ4: What is the contribution of
each design choice within FAPEX?

3.1 Experimental settings
We evaluate FAPEX across diverse settings spanning supervised learning (RQ1), self-supervised
pretraining-finetuning (RQ2), and cross-cohort transfer (RQ3). This section outlines the baseline,
evaluation protocols, and other basic implementation setups common to all experiments. See details
of training protocols in App. G. Full implementation details are provided in App. H.

Datasets. We compile 12 benchmarking datasets spanning four species (human, rat, dog, macaque)
and multiple acquisition modalities (Scalp-EEG, ECoG, SEEG, LFP) for evaluation, as summarized
in Tab. 1. All recordings are resampled and segmented to standardized lengths, then harmonized
to 64 effective channels via channel rejection and duplication, enabling consistent input formatting
across all models. See detailed descriptions and preprocessing procedures in App. F. Note that we
apply channel alignment during preprocessing to facilitate consistent training across diverse datasets
for both our model and a broad range of baselines. In short, FAPEX itself is inherently agnostic to the
number and configuration of input channels.
Table 1: Summary of datasets. The datasets span several species (human, rat, dog, macaque) and acquisition
modalities (Scalp-EEG, ECoG, SEEG, LFP).

Dataset Confidentiality Species # Subj. Modality # Ch. # Samples Duration SOP SPH ID/IV OOD/EV
FMCE Public Human 65 ECoG/SEEG1 64 32,323 4 s 30 s 1 min ! ✗

HUP Public Human 73 ECoG/SEEG 64 53,323 4 s 30 s 5 min ! ✗

RESPECT Public Human 6 ECoG 64 17,214 4 s 30 s 5 min ! ✗

BEIRUT Public Human 6 Scalp-EEG 64 35,941 4 s 1 min 30 min ! !

CTLE-RATLFP Public Rat 7 LFP 64 11,732 2 s 30 s 5 min ! ✗

LPIRE Public Rat 15 LFP 64 159,715 2 s 30 s 5 min ! !

CANINE Public Dog 6 ECoG 64 382,278 4 s 5 min 4 hr ! !

ATLE Private Human 5 Scalp-EEG 64 11,536 4 s 5 min 30 min ! ✗

AGS Private Human 5 Scalp-EEG 64 32,323 4 s 5 min 30 min ! !

IESS Private Human 17 Scalp-EEG 64 48,986 4 s 5 min 30 min ! !

KAIME Private Macaque 3 Scalp-EEG & SEEG2 64 36,092 4 s 5 min 30 min ! !

PCS Private Human 5 Scalp-EEG 64 29,679 4 s 5 min 30 min ! ✗

TUEG Public Human 14,987 Scalp-EEG 64 1,030,090 32 s Used for Pretraining Only
CCEP Public Human 74 ECoG 64 52,337 32 s Used for Pretraining Only
PPE Public Human 30 Scalp-EEG 64 13,434 32 s Used for Pretraining Only

1 For “ECoG/SEEG” datasets each subject has either sub-dural ECoG grids/strips or SEEG depth electrodes, never both.
2 KAIME comprises simultaneous scalp-EEG and SEEG depth recordings from three adult rhesus macaques (Macaca mulatta).

Baselines. We compare our method against the following baselines, including 22 supervised base-
lines for RQ1 and 10 self-supervised ones for RQ2. The supervised baselines include (1) Convo-
lutional models (5 baselines): ModernTCN [11], MRConv [7], MultiresNet [47], Omni-Scale [52],
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and SPaRCNet [24]; (2) Token mixers (6 baselines): EEGConformer [48], iTransformer [35],
Nonformer [34], PatchTST [40], Pathformer [6], and SeizureFormer [14]; (3) Time-frequency
mixers (4 baselines): ATFNet [70], FreTS [71], NFM [27], and TSLANet [13]; (4) Multiscale token mix-
ers (7 baselines): AdaWaveNet [73], Medformer [59], MTST [80], Pyraformer [33], SimpleTM [5],
TimesNet [64], and TimeMixer [58]. Self-supervised baselines include 6 non-contrastive models:
Brant [77], CBraMod [56], EEGPT [55], LaBraM [22], Neuro-BERT [62], VQ_MTM [18]; 4 contrastive
models: BIOT [69], COMETS [60], MF-CLR [12], and TS2Vec [75]. See details in App. E.
Evaluation protocols. All experiments follow a consistent subject-agnostic nested cross-validation
(SANCV) scheme. For each dataset, subjects are split into non-overlapping train, validation, and
test folds. These folds are randomly permuted to yield multiple experimental runs for RQ1-3. For
RQ1, we evaluate in-domain performance with full supervision. For RQ2, we evaluate in-domain
performance by supervised finetuning. for RQ3, we evaluate out-of-domain performance on several
regimes for our approach and two best-performing self-supervised baselines. We report median
and interquartile range (IQR) across runs for: Balanced Accuracy (BA), Sensitivity (SEN), F1,
AUROC, AUPRC. We also report Stratified Brier Score to indicate both discriminative and calibration
quality.We calculate F1 as the monitoring score as it captures the trade-off between reducing false
alarms and maintaining high sensitivity. We adopt the Friedman test as a nonparametric omnibus for
statistical significance with Bayesian post hoc comparison. Refer to App. H for details.

Table 2: Median performance across publicly available datasets. Top-1, Top-2, and Top-3 results are
highlighted in red, blue, and green, respectively, within both supervised (SL) and self-supervised (SSL) groups.
FAPEX demonstrates consistently strong performance, achieving top-1 TO 3 rankings on the majority of datasets
and metrics, reflecting its generalization and adaptability. For detailed results and statistical analysis, refer to
App. C.

Model BEIRUT CANINE FMCE CTLE-RATLFP LPIRE HUP RESPECT
SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC

ModernTCN 83.4 83.1 85.0 84.8 84.0 73.4 79.6 89.3 88.7 69.2 74.0 89.5 68.7 72.6 80.3 71.3 70.3 67.3 70.0 75.0 80.0
MRConv 78.6 78.2 83.5 83.7 83.8 72.6 78.8 89.9 88.2 73.0 76.4 73.0 60.5 68.4 68.7 69.1 67.8 66.1 71.1 72.7 73.8
MultiresNet 73.3 72.8 74.7 64.8 72.0 70.8 75.8 82.5 83.3 63.0 68.8 87.1 67.1 71.7 80.1 65.3 63.8 65.5 62.4 75.2 61.7
Omni-Scale 72.6 71.5 83.1 65.3 71.9 73.2 79.1 84.1 83.7 75.8 78.3 72.5 51.9 65.1 75.7 70.7 68.7 67.1 69.2 73.3 75.7
SPaRCNet 71.1 71.6 79.1 85.9 84.7 74.0 60.4 67.7 65.9 72.2 75.5 67.5 43.6 48.2 50.8 61.6 60.2 62.8 73.7 81.3 63.0
EEGConformer 68.4 66.5 82.5 79.3 81.4 52.9 73.0 85.0 81.4 73.5 76.8 72.3 58.5 65.8 70.2 64.6 63.3 64.6 82.5 84.6 86.5
EEGMamba 70.0 68.5 82.6 79.6 81.2 53.2 68.9 95.5 85.7 62.0 68.0 89.5 63.7 70.7 80.7 63.2 61.3 62.8 79.6 80.0 73.0
iTransformer 70.6 69.2 82.8 64.2 70.4 71.2 68.4 80.0 78.3 56.2 62.6 75.6 40.9 46.0 49.4 58.3 57.7 57.4 80.5 84.7 87.9
Nonformer 68.6 63.4 75.2 60.7 64.9 70.3 74.9 82.6 86.5 72.6 76.3 80.9 64.2 74.4 76.1 62.1 61.9 62.4 74.1 78.7 81.6
PatchTST 71.9 72.5 79.3 77.6 80.6 72.8 74.2 91.8 86.6 73.3 76.5 72.0 50.2 50.4 52.6 70.8 69.3 67.5 86.5 86.9 82.2
Pathformer 67.6 64.1 81.7 65.9 72.3 71.8 77.9 91.2 88.9 80.4 81.3 82.8 68.7 73.0 80.1 65.7 65.2 66.3 76.9 79.9 82.7
SeizureFormer 67.0 60.2 79.8 78.8 81.8 53.5 73.6 78.8 79.3 56.6 63.0 84.5 65.6 73.2 68.2 59.7 59.4 61.0 83.1 85.0 74.3
ATFNet 76.0 74.6 79.4 62.8 70.9 71.3 73.4 81.3 82.7 54.1 60.7 78.2 40.0 44.9 50.0 64.5 60.4 63.6 78.4 82.9 85.7
FreTS 64.7 58.6 81.8 46.8 54.3 69.5 62.0 68.3 61.4 49.2 56.5 68.5 34.9 38.6 49.4 62.6 50.1 57.2 64.0 72.5 78.4
NFM 77.3 75.7 79.7 71.5 76.9 72.0 74.4 91.8 86.4 46.5 52.5 74.0 37.3 43.0 48.8 62.7 63.4 64.4 75.0 77.0 80.8
TSLANet 83.4 83.1 85.0 85.7 84.4 73.0 74.2 91.8 86.6 65.3 70.7 88.9 68.6 72.2 79.9 67.9 66.5 67.5 74.3 78.7 76.2
AdaWaveNet 68.0 66.1 82.7 79.8 81.3 52.9 76.6 82.6 87.3 55.2 61.4 83.6 54.1 66.2 76.2 64.0 63.2 64.4 78.2 84.1 66.6
Medformer 83.8 83.1 84.4 85.9 84.5 74.1 77.8 83.6 88.6 70.0 74.3 86.7 66.7 72.3 80.6 64.8 64.3 65.0 59.7 68.0 70.5
MTST 80.3 78.4 84.1 68.0 74.5 72.5 75.5 89.3 87.7 70.8 74.7 69.5 45.3 49.6 50.4 65.9 64.4 66.2 79.4 82.9 82.2
Pyraformer 82.8 81.7 85.4 80.8 82.3 72.7 67.0 96.3 79.8 60.9 66.9 86.5 60.2 72.1 76.2 60.5 58.2 58.9 64.0 72.5 78.4
SimpleTM 82.6 82.0 83.4 82.8 83.3 72.5 74.4 80.5 80.6 72.5 76.0 70.9 47.5 52.0 51.1 67.8 65.2 68.5 74.5 77.7 70.0
TimesNet 70.3 70.6 78.4 67.3 74.1 72.3 67.0 74.6 73.4 63.4 69.0 74.2 47.1 49.4 51.5 65.9 61.7 65.4 64.2 63.4 76.9
TimeMixer 71.8 72.3 79.0 76.6 80.0 73.0 78.8 82.9 84.5 69.0 73.8 87.9 66.2 72.0 80.6 67.1 66.2 67.3 72.1 76.5 81.9
FAPEX-Small (SL) 83.9 83.8 85.2 85.8 84.7 74.2 87.4 90.6 97.0 76.9 80.2 89.9 69.3 73.4 81.2 72.6 72.0 78.3 86.2 87.1 89.3
FAPEX-Base (SL) 84.7 84.3 85.8 86.0 84.7 74.5 88.8 90.7 97.2 81.8 83.2 91.2 71.7 76.1 81.0 73.7 72.5 79.3 92.3 92.3 91.6
Brant 71.0 71.7 78.9 93.2 92.7 96.6 75.2 74.7 86.8 72.1 76.3 83.6 56.8 68.6 75.8 64.0 63.2 63.9 70.6 70.4 76.0
CBraMod 83.9 83.5 85.5 90.8 90.6 98.7 79.2 79.9 88.8 82.0 81.9 82.8 69.3 74.9 68.4 56.5 54.4 79.6 62.1 69.5 67.6
EEGPT 63.9 73.3 71.9 93.4 92.9 98.5 68.8 68.9 74.7 58.7 64.6 86.2 65.1 71.5 80.5 61.3 58.8 58.8 76.8 82.2 60.4
Neuro-BERT 85.4 85.2 86.9 93.7 93.2 96.8 77.9 78.1 87.7 72.7 76.8 85.5 68.6 73.8 81.5 56.5 54.4 79.6 67.3 74.6 82.4
VQ_MTM 74.5 75.0 82.7 87.9 85.5 94.6 73.7 74.3 82.3 72.6 75.8 69.7 50.7 55.5 63.7 62.1 63.5 64.9 66.8 67.3 81.7
COMETS 86.2 86.0 87.3 93.9 93.4 98.2 76.1 76.3 87.1 74.2 77.4 83.7 53.4 61.6 68.6 65.2 64.1 66.4 76.3 81.5 75.6
MF-CLR 78.2 76.5 83.8 91.2 90.0 97.0 79.5 80.1 88.5 66.6 71.8 88.5 47.6 51.3 50.6 67.1 66.2 67.3 76.3 82.2 76.8
TS2Vec 57.1 67.0 58.7 94.7 94.5 97.5 75.5 74.5 87.7 72.0 75.3 77.8 59.7 64.1 51.8 58.9 51.6 56.7 79.6 82.6 78.5
FAPEX-Small 87.5 86.7 90.0 94.1 93.7 98.4 89.5 89.6 97.5 84.8 86.2 90.4 72.0 75.8 81.2 72.0 72.1 79.4 79.0 82.3 89.8
FAPEX-Base 87.8 87.3 89.9 95.2 94.9 99.7 91.5 91.5 98.0 85.2 86.5 90.6 78.9 83.7 75.2 77.1 77.2 81.1 93.1 94.6 95.2

3.2 Main results
Performance comparison.(RQ1 and RQ2). Tab. 2 and 3 present the results for supervised and self-
supervised pretraining regimes. Across 12 datasets, our approach achieves top-1 Sensitivity (SEN)
and F1 scores on all 12 datasets and top-1 ROC on 10 out of 12 datasets under the subject-dependent
setup. These results demonstrate its robust capability in predicting seizure events across diverse
scenarios, encompassing variations in electrophysiological recording techniques, seizure cohort
etiologies, and even species. Notably, FAPEX benefits significantly from pretraining on large-scale
unannotated data. It surpasses state-of-the-art foundation models, including CBraMod, VQ_MTM, and
Neuro-BERT, when pretrained on the same data corpus, indicating that its performance gains stem
from the model architecture rather than solely from unsupervised pretraining.
Transferability and generalization Analysis (RQ3). Out-of-domain validation is critical for
reliable seizure prediction, requiring models to generalize across species, recording conditions, and
acquisition protocols. Despite the advantages of self-supervised pretraining, generalizing to unseen
domains for seizure prediction remains underexplored. We assess model transferability across diverse
source-target dataset pairs to capture realistic inter-domain variability with progressively stronger
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Table 3: Median Performance Across In-House Datasets. Top-1, Top-2, and Top-3 results are highlighted
in red, blue, and green, respectively, within both supervised (SL) and self-supervised (SSL) groups. FAPEX
demonstrates consistently strong performance, achieving top-1 TO 3 rankings on the majority of datasets and
metrics, reflecting its generalization and adaptability. For detailed results and statistical analysis, refer to App. C.

Model AGS ATLE IESS KAIME PCS
SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC SEN F1 ROC

ModernTCN 87.0 85.0 93.2 91.7 90.2 100.0 73.4 73.4 67.2 83.4 73.2 87.3 85.9 85.4 86.3
MRConv 91.3 90.3 95.2 86.6 96.1 100.0 68.8 68.7 66.9 81.1 68.5 85.0 83.0 84.1 83.7
MultiresNet 90.1 88.8 96.1 85.4 84.3 100.0 72.1 70.4 68.7 80.4 63.7 82.5 69.2 64.4 83.9
Omni-Scale 91.7 90.9 95.2 87.8 98.6 99.9 67.9 68.7 67.2 81.0 68.8 83.0 80.0 79.6 80.9
SPaRCNet 89.1 87.5 93.4 84.0 81.7 99.8 60.7 64.9 61.4 82.0 77.1 86.5 85.5 84.4 91.0
EEGConformer 89.8 88.5 94.4 88.5 91.2 100.0 66.1 67.9 67.0 81.4 73.4 87.1 77.1 78.8 84.3
EEGMamba 93.8 93.5 96.8 88.2 85.0 100.0 69.6 70.0 68.8 80.4 69.4 83.4 70.8 73.3 85.6
iTransformer 89.5 87.8 95.3 54.9 2.9 99.8 53.4 54.5 66.4 81.3 63.4 87.1 74.3 73.0 83.4
Nonformer 93.2 92.7 96.7 84.7 97.5 99.8 69.7 74.7 68.9 79.5 90.3 81.6 68.8 63.7 84.1
PatchTST 90.5 89.3 95.5 86.6 93.0 100.0 61.6 63.8 67.5 83.0 73.8 88.5 71.9 71.2 73.8
Pathformer 92.5 91.8 96.7 88.7 95.3 100.0 71.3 72.1 68.6 80.6 67.4 85.3 78.7 80.9 83.7
SeizureFormer 92.1 91.3 95.4 86.3 97.9 99.9 69.7 69.9 66.7 77.3 53.4 85.9 58.6 62.4 59.7
ATFNet 85.2 84.1 90.8 83.1 97.0 99.8 59.7 56.2 68.2 65.0 45.7 71.9 74.7 73.5 84.6
FreTS 88.7 87.0 93.0 70.2 70.8 77.8 42.7 32.8 67.0 54.3 56.4 73.8 70.5 72.7 77.8
NFM 88.7 87.0 93.0 71.3 71.8 81.7 52.4 56.2 61.2 76.8 64.4 80.4 73.6 76.9 83.0
TSLANet 94.4 94.2 97.3 91.4 91.6 100.0 73.8 72.9 66.2 82.2 88.4 82.4 84.6 84.0 84.9
AdaWaveNet 89.0 87.6 95.1 82.8 96.6 99.8 70.0 70.7 66.3 70.5 77.7 84.8 72.4 74.2 81.3
Medformer 88.7 88.0 96.1 88.2 98.9 99.9 73.7 73.1 66.9 73.2 45.2 72.3 77.9 77.1 96.3
MTST 91.6 90.7 98.0 84.1 97.2 99.8 60.3 56.4 70.1 59.0 60.2 74.2 72.8 70.3 74.1
Pyraformer 92.0 91.3 96.5 85.1 97.7 99.8 71.4 70.2 66.9 83.2 56.6 86.4 76.8 79.9 82.3
SimpleTM 85.1 83.5 88.2 90.8 90.4 99.9 66.7 68.8 64.4 80.0 81.1 84.6 76.0 75.0 84.5
TimesNet 89.7 88.3 94.3 82.1 96.3 99.8 59.9 63.6 66.1 80.0 81.1 84.6 77.7 81.0 84.6
TimeMixer 92.3 91.6 96.6 87.9 95.3 100.0 71.7 71.0 68.6 82.1 90.0 85.2 81.1 83.5 85.4
FAPEX-Small (SL) 94.1 93.7 98.4 87.2 98.4 99.9 70.8 70.4 71.7 86.9 92.1 89.3 81.0 81.2 94.1
FAPEX-Base (SL) 94.9 94.6 99.5 88.0 98.8 99.9 72.3 72.4 71.4 87.0 95.6 90.1 91.5 91.5 96.3
Brant 93.2 92.7 96.6 87.9 83.0 99.9 68.0 67.7 69.5 74.5 74.8 74.4 83.1 82.3 95.8
CBraMod 90.8 90.6 98.7 87.9 82.8 99.9 79.6 80.7 76.2 81.0 79.8 83.7 81.1 83.5 85.4
EEGPT 93.4 92.9 98.5 88.2 83.2 100.0 74.2 73.9 71.4 78.4 77.3 78.6 85.5 84.4 91.0
Neuro-BERT 93.7 93.2 96.8 83.3 90.8 100.0 75.3 75.0 71.5 81.7 80.7 83.6 80.8 81.9 96.8
VQ_MTM 87.9 85.5 94.6 81.7 79.5 99.9 72.8 72.9- 69.8 62.8 64.7 78.2 81.0 81.2 94.1
COMETS 93.9 93.4 98.2 87.7 83.2 99.8 67.6 68.2 79.3 80.6 80.1 84.0 80.8 81.9 96.8
MF-CLR 91.2 90.0 97.0 84.4 82.8 100.0 79.7 80.8 75.6 80.9 79.8 86.3 79.2 77.4 97.2
TS2Vec 94.7 94.5 97.5 62.7 76.1 73.6 72.4 73.6 72.9 76.1 76.2 76.7 69.0 65.9 96.4
FAPEX-Small (SSL) 94.1 93.7 98.4 94.0 92.8 100.0 81.5 83.7 83.4 87.4 87.1 89.3 91.0 91.0 96.7
FAPEX-Base (SSL) 95.2 94.9 99.7 94.8 98.0 100.0 83.7 84.9 85.9 88.7 88.4 91.4 95.0 95.0 97.5

supervision and adaptation: (1) Source-only transfer (SOT); (2) DIVERSIFY [36], an unsupervised
domain generalization method specifically tailored for time series data, including physiological
signals; (3) Semi-supervised finetuning (SSFT): 1% labels of the training split of target domain data
is available; (4) MME [45] and CDAC [31], two domain adaptation methods. Similar to (3), only
1% target domain labels are utilized. Fig. 4 shows the relative improvement in relative gains (∆%)
of FAPEX-Base over Neuro-BERT and CBraMod in median F1. FAPEX-Base consistently achieves
positive ∆% in F1 across diverse cases. It excels in the SOT setup, with ∆% often exceeding 30%,
highlighting its strong generalization without target supervision relative to other models. In more
informative setups like CDAC and MME, where SOTA models improve with target data, FAPEX-Base
still outperforms or matches them in most cases, despite the narrowing gap and occasional dataset-
specific underperformance. This resilience underscores its robust architecture and clinical potential
in label-scarce settings and adaptivity to different finetuning techniques. See App. C for full results.
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Figure 4: Relative improvement in F1-score medians (∆%) of FAPEX-Base over Neuro-BERT and CBraMod
across five distinct transfer learning setupsfor six source-target dataset pairs. FAPEX-Base demonstrates
consistent performance gains for most cases, under both weak (SOT) and stronger supervision regimes (CDAC).
A: KAIME → AGS, B: AGS → BEIRUT, C: IESS → BEIRUT, D: LPIRE → AGS, E:LPIRE → IESS, F:
LPIRE → KAIME). FAPEX-Base consistently achieves superior performance.
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Ablation study and further analysis (RQ4). To evaluate the contributions of each component
within FAPEX, we conduct comprehensive ablation experiments. These studies isolate the effects of
core modules—FrNFO, APCE, and SCA—on seizure prediction performance, providing insights
into their individual and collective impacts (see App. D). We further explored the representational
characteristics and interpretability of FAPEX (see App. B). These analyses offer deeper insights into
the model’s decision-making processes and its alignment with known neural patterns.

4 Conclusion
We presennt FAPEX, a compact yet powerful neural architecture that integrates fractional frame theory
directly into its core operators. Unlike the trend toward ever-larger models, FAPEX strategically
leverages fractional neural frame operators to jointly encode amplitude and phase, achieving provable
robustness against deformation and superior preservation of high-frequency biomarkers essential
for precise seizure prediction. Extensive evaluations across fully supervised, self-supervised, and
multi-cohort, multi-species out-of-domain settings consistently demonstrate that FAPEX surpasses
specialized baselines and even large foundation models under comparable data regimes. These
results establish FAPEX as a significant step forward in AI for healthcare with strong potential for
improving clinical epilepsy management. Future work will aim to expand clinical datasets through
collaboration with medical centers, incorporate complementary neuroimaging modalities, and explore
deployment on wearable devices and closed-loop neurostimulation systems. Additionally, further
theoretical analysis of phase–amplitude disentanglement and interpretability will be prioritized to
enhance clinical trust and impact.
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• The assumptions made should be given (e.g., Normally distributed errors).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information in the appendix.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are informed of code of ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide discussions on limitations, societal impacts, among others.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discussed it in the supplementaries.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited models and datasets of others with download links provided.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Answer: [Yes] .
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]
Guidelines:
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [Yes]
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and approval by human subjects and ethics committees.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLM was used for editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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