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ABSTRACT

Medical time series (MedTS) classification is critical for a wide range of health-
care applications such as Alzheimer’s Disease diagnosis. However, its real-world
deployment is severely challenged by poor generalizability due to inter- and intra-
dataset heterogeneity in MedTS, including variations in channel configurations,
time series lengths, and diagnostic tasks. Here, we propose FORMED, a founda-
tion classification model that leverages a pre-trained backbone and tackles these
challenges through re-purposing. FORMED integrates the general representa-
tion learning enabled by the backbone foundation model and the medical do-
main knowledge gained on a curated cohort of MedTS datasets. FORMED can
adapt seamlessly to unseen MedTS datasets, regardless of the number of chan-
nels, sample lengths, or medical tasks. Experimental results show that, without
any task-specific adaptation, the repurposed FORMED achieves performance that
is competitive with, and often superior to, 11 baseline models trained specifically
for each dataset. Furthermore, FORMED can effectively adapt to entirely new,
unseen datasets, with lightweight parameter updates, consistently outperforming
baselines. Our results highlight FORMED as a versatile and scalable model for
a wide range of MedTS classification tasks, positioning it as a strong foundation
model for future research in MedTS analysis. Code release upon acceptance.

1 INTRODUCTION
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Figure 1: Paradigms of building models for different MedTS classification tasks. Task-Specific
Model (TSM): Traditional classification models are designed for specific input shape and output
classes, thus require retraining from scratch for each new dataset. Task-Specific Adaptation (TSA):
By using a pre-trained and fixed backbone foundation models, the adaptation to new datasets re-
quires training fewer parameters for each dataset, such as pre- and post-backbone adapters, which
makes the combined model no longer applicable to other tasks, lacking generalization across tasks,
and more prone to overfitting. Generalizable Adaptation: Generalizable adaptation is a post-
backbone adaptation module that is shared across tasks of different datasets, which carries domain
knowledge and transferable to unseen datasets with minimal training.

Medical time series (MedTS) classification, such as on electrocardiograms (ECG) and elec-
troencephalograms (EEG), is critical for a wide range of medical scenarios such as diagnosing
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Alzheimer’s Disease (AD; Jeong (2004)), Parkinson’s Disease (PD; Aljalal et al. (2022b;a)), and
heart Arrhythmia (Jin et al., 2024b). Despite significant advancements in developing deep learning
models for MedTS classification, several challenges still hinder their ability to generalize effectively
across different datasets, and even among patients within the same dataset, posing a critical barrier
to the successful translation of predictive algorithms into real-world clinical settings.

As MedTS data can be of various modalities and dimensions, in real-world scenarios, they often
differ from the training data in all aspects. Therefore, developing machine learning models that can
generalize across these diverse datasets is essential for translating predictive algorithms into clini-
cal settings. However, there are three unique key challenges in MedTS that a generalizable model
will have to face: (1) Inter-dataset Heterogeneity: The explicit characteristics of each dataset are
diverse due to factors like the domain of physiological data, the equipment for data collection, etc.
They require the model to be able to handle variations in the number of channels, sample duration,
sampling rates, diagnostic targets, and so on (Ganapathy et al., 2018). (2) Intra-dataset Hetero-
geneity: Given the intractable nature of the underlying physiological state, even within the same
dataset, heterogeneity still exists across the time of recording, experimental session, and most sig-
nificantly, among patients due to the presence of noise and artifacts (Wang et al., 2024c; Ganapathy
et al., 2018). As they are prevailing in the data, models are prone to overfitting to the training data,
and thus show poor generalizability in real-world deployment. (3) Data Insufficiency: The other
challenges could have been solved provided with sufficient data for deep learning methods, while
in reality, available MedTS datasets are often small due to costly data collection or simply privacy
concerns (Kaushik et al., 2020). Consequently, it increases the difficulty of training robust models
that handle the above challenges effectively (Ganapathy et al., 2018).

To this end, developing a foundation model for MedTS classification requires capturing and sharing
medical domain knowledge across tasks. Previous attempt such as Yang et al. (2023) adopts a
Task-Specific Adaptation (TSA; see Figure 1) approach, in hope of capturing such knowledge in
the backbone model. Yet the results of negative performance gain indicate that the model may
only focus on extracting features that are informative for the training task, not of interest to future
datasets, and thus lack generalization from task to task. Meanwhile, recent advances in foundation
models bring sunlight for overcoming the above challenges by learning generic representations of
time series data (Liang et al., 2024). However, they have focused predominantly on forecasting tasks
(Ye et al., 2024; Wen et al., 2022), and simply applying TSA to adapt them for MedTS is not enough
for capturing the sophisticated patterns for specific tasks from our preliminary results. Therefore,
although they can serve as a great backbone model for extracting patterns in time series, dedicated
effort in adaptation design is still required.

In this paper, we propose a novel approach to re-purpose foundation models pre-trained on large-
scale, generic time series data for MedTS classification. We introduce FORMED, a Foundation
model Repurposed for Medical time series classification, which achieves generalizable adaptation
by seamlessly handling datasets with arbitrary channel configurations, dynamic time series lengths,
and diverse diagnostic targets across multiple tasks (see Figure 1). Specifically, FORMED employs
a pre-trained foundation model as a backbone, which captures general temporal features from time
series data. We then adapt this backbone to the medical domain by integrating a specialized shell
enriched with medical knowledge. This shell is trained on a curated cohort of MedTS data, enabling
the model to effectively capture the unique characteristics of medical sequences. Even with far
fewer samples in the MedTS cohort than during pre-training, FORMED retains strong generalization
abilities and domain knowledge for MedTS classification tasks.

We curate a repurposing cohort of 5 MedTS datasets, including 2 ECG’s and 3 EEG’s, containing
only 340K samples or 90 million time-points in total. These datasets feature diverse channel con-
figurations (ranging from 12 to 33 channels), sample lengths (from 250 to 300 time-points), and
diagnostic tasks (ranging from binary neurological to 5-class cardiovascular classification). Our
evaluation focuses on two aspects: First, for datasets partially included in the repurposing cohort,
FORMED achieves superior performance on unseen patients, outperforming 11 state-of-the-art TSA
and TSM models across all five datasets. Second, for a completely new dataset not included in the
cohort, FORMED can be efficiently adapted by updating only a small number of parameters while
still achieving the highest accuracy and AUROC compared to TSM and TSA models, even across
different data availability scenarios.
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2 RELATED WORK

Foundation Models for General Time Series. To date, no foundation model has been specifically
designed for time series classification tasks, let alone MedTS classification; instead, recent advances
in time series foundation models mainly concentrate on forecasting tasks (Liang et al., 2024). Notic-
ing their success in forecasting, it is as much tempting as theoretically and practically challenging
to re-purpose these models for MedTS classification, yet these models all have major limitations
such as design for univariate time series and requiring Task-Specific Adaptations (mid-column in
Figure 1) that prevent them from being directly applicable to MedTS classification tasks (Cao et al.,
2024; Sun et al., 2024; Chang et al., 2023).

For instance, Time-LLM (Jin et al., 2024a), UniTime (Liu et al., 2024) and GPT4TS (Zhou et al.,
2023a) are all backboned on large language models, therefore they naturally handle time series
data in a univariate manner, lacking the ability to integrate information across multiple channels for
MedTS classification. Moreover, we empirically observe that time series foundation models that
take LLM as backbone don’t work well on time series datasets, in agree with Tan et al. (2024).
Similarly, although TimeGPT (Garza et al., 2024) and TimesFM (Das et al., 2024) are pre-trained
on large scale time series data, they treat co-evolving multivariate time series data as independent
of each other, thus sharing the same limitation as the previous models. The one of its kind model,
UniTS (Gao et al., 2024), is able to handle multivariate time series data and trained on multiple task
domains including classification, yet due to its scale and design, it often requires fine-tuning of the
whole model or performing prompt learning for optimal performance. This is both computationally
expensive for gradients calculation (Figure 1), and more importantly, data-greedy due to the massive
parameters to tune, making it not suitable for small-scale MedTS datasets.

Therefore, despite their effort and success, current foundation models require significant adaptation
to meet the demands of MedTS classification effectively. This motivates the need for a specialized
foundation model tailored to the complexities of MedTS, which can address these limitations with
dedicated architectural components.

Adaptation of Foundation Models for MedTS. As general-purpose models, foundation models
usually require various techniques to be effectively adapted for specific downstream tasks, includ-
ing prompting, fine-tuning, re-programming and proposed re-purposing. Here we focus on re-
programming and re-purposing as they can serve our purpose, see rest in Appendix A.

Re-programming: By reusing the pre-trained model’s backbone (usually all the Transformer layers)
without altering its internal weights, it leverages the model’s existing capabilities. It is able to handle
new domain of data or type of task, by wrapping the backbone model with input adapters and task
heads (Figure 1 TSA). Yet on its dark side, the re-programmed model no longer serves as a general-
purpose model, as both the input adapters and the task heads are task-specific, making it incapable
of generalizing across tasks and datasets (Tan et al., 2024).

Re-purposing: Proposed in this work, it focuses on adapting the model to a new type of task with
minimal modification to the task head only and refrains from being specific to certain task. There-
fore, the repurposed model remains a general-purpose model for the field, which can serve as a new
foundation model and be further adapted to new datasets efficiently (see Section 3). Its generaliz-
ability, data-efficiency and domain-expert nature make it extremely suitable for adapting time series
foundation models for MedTS classification tasks.

Forecasting v.s. Classification. Although both forecasting and classification are key tasks in time
series analysis, they are fundamentally different in nature. The primary distinction lies in the re-
lationship between the input and output spaces. In forecasting, the model predicts future values
within the same domain as the input, i.e., mapping sequence → sequence (Lim & Zohren, 2021).
For example, using past EEG signals to predict future EEG signals (Wang et al., 2024a). In con-
trast, classification uses the input to predict a categorical label, i.e., sequence → category (Ali et al.,
2019), such as diagnosing a neurological disease from EEG data (Wang et al., 2024a). In essence,
forecasting only involves mapping input to output within the same domain, whereas in classification,
the mapping is from one domain to a variety of others. Therefore, adapting a forecasting model for
general classification tasks requires more than simply modifying the prediction layer; it demands a
comprehensive redesign and a deeper understanding of the problem space.
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3 PROBLEM STATEMENT
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Figure 2: The three-stage process of adapting a time series foundation model for MedTS classifica-
tion tasks. 1) Pre-training is already done on a cohort of diverse general time series datasets with
forecasting tasks. 2) Repurposing the foundation model involves changing the forecasting head to
a classification head, while keeping the rest of the model fixed, and the new model is then trained on
a cohort of MedTS datasets to capture domain knowledge in MedTS. 3) Adapting the repurposed
model to the new MedTS datasets with minimal training, where few parameters are adjusted for
the new dataset and task, while the majority of the model remains fixed. The backbone foundation
model is frozen in pre-training while trainable in repurposing and adapting. The classifier is train-
able in repurposing while frozen in adapting.

Foundation models have showcased their capability in capturing general time series patterns, through
pre-training on forecasting tasks, yet modifying them into foundation classification model for
MedTS is not as straightforward. Here we define the problem and the key concepts involved in
the adaptation process from a forecasting model into a general-purpose classification model.

Definition 1 Repurposing: The process of changing the objective of a pre-trained foundation model
to a type of tasks that it was not originally trained for, by replacing and training a relative small
output network while keeping the majority of the model fixed.

The original pre-trained model contains a backbone model f for representation learning and a fore-
casting head g that predicts the horizon from the representations. It takes the input x ∈ RL from
last L steps of a univariate time series and predicts horizon x̂ ∈ RN in the next N steps, which is
essentially a dynamic mapping as L and N can vary:

g ◦ f : RL → RN (1)

We replace the forecasting task head f with a classification task head h, forming a new model that
takes extra parameters E ∈ RC×D and Q ∈ RK×D for indicating the task-specific channels and
classes, respectively, with D as the model dimension, C as the number of channels, and K as the
number of classes. The new model is then trained on a curated list of MedTS datasets DMed, where
the input X ∈ RC×T is a multivariate time series data with C channels and T time steps, and the
output ŷ ∈ ∆K is a label prediction where ∆K =

{
d ∈ [0, 1]K :

∑K
i=1 di = 1

}
is the probability

simplex for K classes. This is also a dynamic mapping as C, T and K may vary across datasets:

h ◦ f : RC×T × RC×D × RK×D → ∆K (2)

Definition 2 Adapting: The process of adjusting a repurposed foundation model to new datasets
and tasks with a few data- or task-related parameters, while keeping the majority of the model fixed.

After repurposing, the new model h ◦ f captures all the domain-specific knowledge in MedTS clas-
sification tasks, and can handle varying number of channels, length of input and number of classes

4
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(Section 4), therefore it is fixed for new coming datasets and tasks. For new datasets DNew with C ′

channels, T ′ time steps, and K ′ classes, the model is adapted to the new dataset by constructing the
E′ ∈ RC′×D and Q′ ∈ RK′×D, which is trained by calculating the loss L(ŷ,y) on the new dataset:

(E′,Q′) = argmin
E′,Q′

∑
(X′,y′)∈DNew

L ((h ◦ f)(X ′,E′,Q′),y′) (3)

4 MODEL ARCHITECTURE

4.1 FEATURE EXTRACTOR FOR VARIABLE LENGTH TIME SERIES
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Figure 3: The architecture of the proposed model in repurposing and adapting. The backbone foun-
dation model acts as a feature extractor and remains frozen all the time. The Channel Embeddings
(CEs) and Label Queries (LQs) are task-specific parameters that are learned during both repur-
posing and adapting, and new ones will be created and learned if encountering new datasets. The
Shared Decoding Attention (SDA) is a shared Transformer decoder layer that captures the interac-
tion between all the features and classes, which once get trained on curated MedTS datasets DMed

during repurposing, will be fixed and reused when adapting to all future datasets and tasks DNew.
The ⊕ denotes broadcast addition.

We take TimesFM (Das et al., 2024) as the backbone for repurposing based on our preliminary
comparative analysis of existing time series foundation models. TimesFM is pre-trained on a largest-
scale dataset of diverse time series data for forecasting tasks and is able to capture general time
series patterns within dynamic length of historical input. To repurpose it for MedTS classification,
we can break down the model’s anatomy into three parts, the input patching network, the stacked
Transformer, and the output prediction network.

Input Patching Network. Given a univariate time series input x ∈ RT and binary mask m ∈
{0, 1}T with length T , they are first broken up into patches X ∈ RL×P and M ∈ {0, 1}L×P

in a non-overlapping fashion, where P is the patch size and L =
⌈
T
P

⌉
is the number of tokens.

Each patch Xi,: is the concatenation of P consecutive elements of the input sequence x in a non-
overlapping fashion and so is the Mi,:. The Xi,: and Mi,: denote the i-th row of X and M ,
respectively. The sequence of patches X and M are then projected to a sequence of tokens Z ∈
RL×D in the model dimension D using an input residual block:

Zi,: =InputResidualBlock(Xi,:;Mi,:) (4)

Stacked Transformer. Before passing into the stacked Transformer, the positional encoding will
be added to the tokens to form the input sequence Z̃ ∈ RL×D. The stacked Transformer is then
applied to the input sequence Z̃ to capture the temporal dependencies and extract features using

5
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casual self-attention, outputting feature rich tokens H ∈ RL×D:

Z̃i,: =Zi,: ⊕ PositionalEncoding(i)

Hi,: =StackedTransformer(Z̃1,:, Z̃2,:, ..., Z̃i,:; ṁ1, ṁ2, ..., ṁi)
(5)

where ṁi = min{Mi,:} is the mask for the i-th patch for masking out completely empty ones.

Output Prediction Network. The output prediction network is a residual block layer that maps
the last output HL,: from the Transformer back to the original input spaces x̂ ∈ RN , forming the
prediction of the next N time steps:

x̂ = OutputResidualBlock(HL,:) (6)

In summary, the duty of prediction lies solely on the last output prediction network, while the input
patching network plus the stacked Transformer can be viewed as a feature extractor that maps the
input time series x to a sequence of feature tokens H (Figure 3). This can be easily extended to
process multivariate MedTS by processing each channel of input individually and stack the extracted
features as H ∈ RC×L×D for data of C channels. This will serve as the backbone feature extractor
for the downstream classification model.

4.2 ATTENTION-BASED CLASSIFIER FOR INCONSTANT CHANNEL AND CLASS

Instead of using a simple linear classifier, as other time series classification models (Zerveas et al.,
2021; Yang et al., 2023), which will require the input, output or both to have fixed number of
channels and classes, we propose to use a Transformer decoder layer (Vaswani et al., 2017) for
tackling such variability. Although inspired by techniques commonly employed in object detection
(Carion et al., 2020) and image classification (Meng et al., 2023), it introduces key modifications
tailored to address the unique challenges in MedTS classification. Our design is optimized for
practical use, with an aim at handling dynamic shape input and outputing dynamic number of output
classes, while reducing the computational overhead for training on new dataset and lowering risk
of overfitting. Our attention-based classifier contains three key components: Channel Embeddings
(CEs), Label Queries (LQs) and Shared Decoding Attention (SDA).

Channel Embeddings. As MedTS often exist in a multi-variate manner, injecting information
about the channel will help the classifier distinguish between channels, thus promoting a more ro-
bust correspondence between the task and specific channel features. The Channel Embeddings are
lightweight parameters that are grouped into a look-up table that maps the name of dataset to learn-
able channel embeddings E ∈ RC×D. These embeddings are then added to the feature tokens H to
form the prompted feature tokens H̃ ∈ RC×L×D:

H̃:,i,: = H:,i,: ⊕E (7)

Label Queries. Just as CEs, the label queries Q ∈ RK×D are also task-specific, learnable embed-
dings, where K is the number of classes for the given task. These task-specific queries are used
to guide the attention mechanism to focus on the relevant features for the specific task. The label
queries independently attend to the prompted feature tokens H′ to find evidence for each class.

Shared Decoding Attention. The core evidence-finding process in classification is achieved
through a shared decoding attention mechanism. It is a single decoder layer similar in Vaswani
et al. (2017), that performs multi-head attention using Q as queries and H̃ as keys and values,
where H̃ = Flatten(H̃) ∈ R(C·L)×D. It is followed by a residual block to obtain the logits
ŷ ∈ RK for each class, where the probability prediction can be obtained using softmax or sigmoid
functions depending on the type of task:

ŷ =ResidualBlock
(
MultiHeadAttention(Q, H̃, H̃)

)
(8)

Note that all the parameters in SDA is independent on either input length, number of channels, or
number of classes, therefore it is able to handle the inconstant channel, length and class in MedTS
classification tasks. Moreover, as it defines how the task queries will interact with the prompted
feature tokens and is shared across datasets and tasks, it is coerced to learn a shared dynamics and
form a domain knowledge that is fixed and can be reused in adapting to new classification tasks.
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4.3 REPURPOSING AND ADAPTING

During repurposing, the backbone foundation model is frozen, and the weights in SDA is randomly
initialized. For each dataset in our MedTS cohort, a pair of E and Q is also randomly initial-
ized. These are then trained over the MedTS cohort to update their parameters (see Repurposing in
Figure 2). After repurposing, the SDA should already capture the domain knowledge required for
MedTS classification, thus it will be fixed and reused when adapting to new datasets and tasks. For
unseen datasets that need to be classified, a new pair of E and Q will be created and learned during
adapting, while the majority of the model remains fixed (see Adapting in Figure 2).

Summary. Our approach enables generalizability to new datasets, making it particularly suited
for MedTS classification, and serves as a strong foundation model for all future MedTS tasks. In
particular, our design brings significant benefits in overcoming the aforementioned challenges:

• Generalizability Across Datasets: The backbone foundation model is able to capture general
time series patterns and is fixed for all datasets, while the SDA is independent of channel num-
ber, input length or class number, so that it can ben shared across datasets, and gains domain
knowledge during repurposing. This ensures that the model never overlooks general patterns in
the data, and also gains sufficient domain knowledge for MedTS classification. FORMED can be
effectively generalized to datasets with different sample length, channels, and classes.

• Generalization Across Subjects Within Dataset: The E and Q are the only task-specific pa-
rameters that are dependent on the dataset and task, and they are used to guide the model to focus
on the relevant features for the specific task. As their number of parameters is very limited, it is
highly unlikely to memorize the specific pattern of the training data, keeping the model highly
performant across diverse patients.

• Lowered Data Requirement: As the SDA is shared in all tasks, it can be trained on a joint of
diverse small MedTS datasets as a whole, without the need for a single, large and comprehensive
dataset which doesn’t exist in practice. On the other hand, as the majority of the model parameters
is fixed during adapting, the task-specific E and Q can be easily tuned with a little data from the
new dataset. This design significantly reduces the data requirement for repurposing and adapting,
making it particularly suitable for MedTS classification tasks with limited data.

5 EXPERIMENTS

Datasets. We select 5 MedTS datasets to formulate a MedTS cohort and use it for repurposing
(Figure 2). These datasets provide a broad range of physiological signals, capturing both cardiac
and neurological activity, which are among the most commonly analyzed modalities in MedTS. See
Table 3 for details on the datasets. Moreover, we also include an unseen, out-of-domain dataset
(Liu et al., 2016) to assess our model’s ability to generalize to new tasks. All datasets are split into
train-test-valid sets following the patient-independent setting as in Wang et al. (2024c). The datasets
span a wide range of channels, sampling rates, sample durations, and disease labels, allowing for
the evaluation of inter-dataset heterogeneity. We use inter-subject variation, a key contributor to
intra-dataset heterogeneity (Wang et al., 2023), as a proxy to assess the generalization capability of
FORMED.

Baselines. We compare FORMED with 11 SOTA baselines including 10 TSM and 1 TSA models.
The TSM models, including Autoformer (Wu et al., 2021), Crossformer (Zhang & Yan, 2022),
FEDformer (Zhou et al., 2022b), Informer (Zhou et al., 2021), iTransformer (Liu et al., 2023),
MTST (Zhang et al., 2024), Nonformer (Liu et al., 2022), PatchTST (Nie et al., 2022), Reformer
(Kitaev et al., 2020) and Transformer (Vaswani et al., 2017), are included for comparing our model’s
performance on seen tasks to verify the applicability of repurposing. The additional TSA model,
PatchTST-TSA, is modified from PatchTST by adding task-specific classification heads on top of the
backbone model and trained on all datasets jointly from scratch. Due to its architectural similarity
to TimesFM (Das et al., 2024), we use it to evaluate both the quality of repurposing and adapting.

Evaluations. The effectiveness of our method is demonstrated through the performance in terms of
accuracy, precision, recall, F1 score, AUROC, and AUPRC, evaluated on the test sets. Additionally,
the robustness of the models against intra-dataset distribution discrepancies is assessed by comparing
delta values, i.e., the absolute difference between the performance on validation and test sets. The
generalization ability of the models to unseen tasks is evaluated by conducting few-shot adapting
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experiments on a small, unseen, out-of-domain dataset. These experiments are conducted on five
random seeds for all models, and the results are averaged across the seeds.

Table 1: Results on MedTS Cohort for disease classification. Best results in non-TSM models are
highlighted in bold, and the best results across all models are underlined. Our model, FORMED,
consistently outperforms the other non-TSM model across all datasets on F1 along with many other
metrics, and achieves highly competitive performance with SOTA TSM models. The delta values are
shown in parentheses: lower delta values indicate more robustness against intra-dataset variances.

Datasets Adaptation Models Accuracy Precision Recall F1 score AUROC AUPRC

PTB
(2-Classes)

TSM

Autoformer 73.35 (17.17) 72.11 (5.51) 63.24 (8.45) 63.69 (7.51) 78.54 (2.78) 74.25 (6.62)

Crossformer 80.17 (11.51) 85.04 (9.66) 71.25 (7.19) 72.75 (6.92) 88.55 (3.64) 87.31 (7.54)

FEDformer 76.05 (15.54) 77.58 (5.72) 66.10 (8.12) 67.14 (6.70) 85.93 (3.01) 82.59 (7.71)

Informer 78.69 (13.96) 82.87 (5.60) 69.19 (7.54) 70.84 (6.07) 92.09 (1.77) 90.02 (10.05)

iTransformer 83.89 (6.14) 88.25 (17.43) 76.39 (3.05) 79.06 (5.17) 91.18 (1.80) 90.93 (19.78)

MTST 76.59 (18.40) 79.88 (6.57) 66.31 (14.20) 67.38 (15.61) 86.86 (4.61) 83.75 (2.75)

Nonformer 78.66 (14.59) 82.77 (3.94) 69.12 (9.66) 70.90 (7.89) 89.37 (1.22) 86.67 (5.19)

PatchTST 74.74 (20.40) 76.94 (10.95) 63.89 (15.42) 64.36 (18.50) 88.79 (5.47) 83.39 (4.65)

Reformer 77.96 (14.80) 81.72 (4.22) 68.20 (8.55) 69.65 (7.36) 91.13 (0.86) 88.42 (9.28)

Transformer 77.37 (15.43) 81.84 (4.38) 67.14 (10.22) 68.47 (8.93) 90.08 (2.08) 87.22 (7.22)

TSA PatchTST-TSA 78.61 (11.68) 80.32 (7.87) 68.74 (2.87) 70.07 (5.97) 93.28 (1.51) 97.15 (1.83)

GA FORMED (Ours) 86.24 (3.62) 89.27 (7.20) 79.36 (4.18) 82.11 (4.19) 95.45 (3.01) 97.33 (1.08)

PTB-XL
(5-Classes)

TSM

Autoformer 61.68 (0.87) 51.60 (2.28) 49.10 (1.53) 48.85 (1.75) 82.04 (0.82) 51.93 (1.92)

Crossformer 73.30 (1.37) 65.06 (1.60) 61.23 (1.83) 62.59 (1.80) 90.02 (0.66) 67.43 (1.84)

FEDformer 57.20 (0.46) 52.38 (1.35) 49.04 (1.27) 47.89 (1.41) 82.13 (0.52) 52.31 (1.44)

Informer 71.43 (1.36) 62.64 (1.76) 59.12 (2.20) 60.44 (2.08) 88.65 (0.81) 64.76 (2.20)

iTransformer 69.28 (0.83) 59.59 (1.28) 54.62 (1.58) 56.20 (1.62) 86.71 (0.73) 60.27 (1.79)

MTST 72.14 (1.00) 63.84 (1.40) 60.01 (1.64) 61.43 (1.61) 88.97 (0.64) 65.83 (2.02)

Nonformer 70.56 (1.36) 61.57 (2.10) 57.75 (2.33) 59.10 (2.26) 88.32 (0.94) 63.40 (2.52)

PatchTST 73.23 (1.07) 65.70 (1.53) 60.82 (1.90) 62.61 (1.86) 89.74 (0.60) 67.32 (2.28)

Reformer 71.72 (1.09) 63.12 (1.34) 59.20 (1.74) 60.69 (1.60) 88.80 (0.73) 64.72 (1.98)

Transformer 70.59 (1.25) 61.57 (1.82) 57.62 (2.04) 59.05 (1.96) 88.21 (0.81) 63.36 (2.17)

TSA PatchTST-TSA 61.45 (0.69) 53.38 (2.13) 43.78 (1.43) 44.41 (1.63) 82.40 (0.66) 51.36 (1.62)
GA FORMED (Ours) 71.31 (0.79) 63.94 (1.87) 56.40 (1.47) 57.58 (1.77) 88.44 (0.92) 63.67 (2.65)

TDBrain
(2-Classes)

TSM

Autoformer 87.33 (7.23) 88.06 (6.72) 87.33 (7.23) 87.26 (7.29) 93.81 (4.96) 93.32 (5.42)

Crossformer 81.56 (12.81) 81.97 (12.47) 81.56 (12.81) 81.50 (12.87) 91.20 (7.38) 91.51 (7.08)

FEDformer 78.13 (16.85) 78.52 (16.56) 78.13 (16.85) 78.04 (16.93) 86.56 (12.43) 86.48 (12.51)

Informer 89.02 (5.79) 89.42 (5.66) 89.02 (5.79) 88.98 (5.82) 96.64 (2.66) 96.75 (2.57)

iTransformer 74.67 (12.00) 74.71 (12.07) 74.67 (12.00) 74.65 (12.00) 83.37 (10.02) 83.73 (9.60)

MTST 76.96 (13.65) 77.24 (14.51) 76.96 (13.65) 76.88 (13.65) 85.27 (12.28) 82.81 (13.93)

Nonformer 87.88 (8.02) 88.86 (7.16) 87.88 (8.02) 87.78 (8.11) 97.05 (2.31) 96.99 (2.35)

PatchTST 79.25 (11.04) 79.60 (11.82) 79.25 (11.04) 79.20 (11.01) 87.95 (9.92) 86.36 (11.10)

Reformer 87.92 (7.02) 88.64 (6.46) 87.92 (7.02) 87.85 (7.08) 96.30 (2.92) 96.40 (2.84)

Transformer 87.17 (7.85) 87.99 (7.19) 87.17 (7.85) 87.10 (7.92) 96.28 (2.82) 96.34 (2.74)

TSA PatchTST-TSA 75.50 (13.50) 77.23 (12.45) 75.50 (13.50) 75.09 (13.86) 82.28 (14.48) 84.73 (12.19)

GA FORMED (Ours) 89.56 (3.42) 89.94 (3.66) 89.56 (3.42) 89.53 (3.44) 96.25 (2.84) 96.89 (2.06)

APAVA
(2-Classes)

TSM

Autoformer 68.64 (7.87) 68.48 (8.33) 68.77 (8.69) 68.06 (8.20) 75.94 (11.64) 74.38 (11.74)

Crossformer 73.77 (8.12) 79.29 (6.07) 68.86 (10.40) 68.93 (11.18) 72.39 (20.13) 72.05 (19.55)

FEDformer 74.94 (10.26) 74.59 (8.07) 73.56 (7.11) 73.51 (8.89) 83.72 (15.66) 82.94 (17.12)

Informer 73.11 (5.18) 75.17 (5.93) 69.17 (5.99) 69.47 (6.49) 70.46 (14.33) 70.75 (14.59)

iTransformer 74.55 (9.03) 74.78 (8.49) 71.76 (11.37) 72.30 (10.78) 85.59 (6.15) 84.39 (6.90)

MTST 71.14 (15.51) 79.30 (8.65) 65.27 (19.58) 64.01 (21.71) 68.87 (25.53) 71.06 (22.50)

Nonformer 71.89 (5.29) 71.80 (5.85) 69.44 (5.86) 69.74 (5.96) 70.55 (15.03) 70.78 (14.44)

PatchTST 67.03 (15.93) 78.76 (6.74) 59.91 (20.38) 55.97 (25.34) 65.65 (27.19) 67.99 (24.14)

Reformer 78.70 (2.33) 82.50 (2.82) 75.00 (3.19) 75.93 (3.16) 73.94 (14.21) 76.04 (12.49)

Transformer 76.30 (3.03) 77.64 (3.67) 73.09 (3.31) 73.75 (3.55) 72.50 (13.18) 73.23 (12.77)

TSA PatchTST-TSA 69.80 (4.71) 79.62 (13.96) 63.49 (6.55) 61.25 (7.41) 74.78 (8.71) 74.36 (12.24)
GA FORMED (Ours) 76.46 (8.84) 77.11 (8.08) 74.42 (11.68) 74.65 (10.50) 82.13 (11.86) 83.69 (12.40)

ADFTD
(3-Classes)

TSM

Autoformer 45.25 (4.53) 43.66 (5.28) 42.96 (6.02) 42.59 (4.96) 61.02 (4.80) 43.10 (5.42)

Crossformer 50.45 (7.53) 45.57 (11.71) 45.88 (11.27) 45.50 (11.51) 66.45 (4.77) 48.33 (6.26)

FEDformer 46.30 (4.79) 46.05 (4.52) 44.22 (5.82) 43.91 (4.52) 62.62 (4.98) 46.11 (5.41)

Informer 48.45 (5.12) 46.54 (6.95) 46.06 (6.15) 45.74 (5.94) 65.87 (2.26) 47.60 (4.22)

iTransformer 52.60 (2.79) 46.79 (6.02) 47.28 (6.30) 46.80 (5.83) 67.26 (3.29) 49.53 (3.93)

MTST 45.60 (3.30) 44.70 (2.73) 45.05 (2.65) 44.31 (2.60) 62.50 (2.36) 45.16 (2.27)

Nonformer 49.95 (2.87) 47.71 (5.54) 47.46 (4.39) 46.96 (4.66) 66.23 (2.22) 47.33 (5.89)

PatchTST 44.37 (7.57) 42.40 (7.97) 42.06 (8.24) 41.97 (7.12) 60.08 (8.03) 42.49 (8.78)

Reformer 50.78 (2.18) 49.64 (4.08) 49.89 (2.30) 47.94 (2.62) 69.17 (2.03) 51.73 (3.93)

Transformer 50.47 (3.49) 49.13 (4.48) 48.01 (3.84) 48.09 (3.83) 67.93 (2.40) 48.93 (3.92)

TSA PatchTST-TSA 50.95 (5.90) 53.34 (7.91) 43.50 (1.47) 40.61 (3.93) 62.77 (3.56) 46.89 (5.80)

GA FORMED (Ours) 47.76 (2.54) 46.58 (2.27) 43.26 (3.92) 43.05 (2.46) 61.70 (2.82) 44.31 (2.46)
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Figure 4: Evaluation of model consistency and robustness across six metrics: accuracy, precision,
recall, F1, AUROC, and AUPRC. X-axis: delta values, calculated as the absolute difference between
validation and test sets, lower is better; Y-axis: models for comparison, ordered by average delta
values. The delta values are collected from 5 datasets for each model and each metric. The range
of delta values (minimum and maximum) are indicated by the horizontal lines, and the average
delta values are shown with vertical marks. Joint training of multiple datasets helps to reduce the
delta values (compare PatchTST-TSA with PatchTST), yet it still falls far behind many other models
including ours. Our model consistently exhibits smaller delta values across all metrics, indicating
superior robustness and consistency against distributional discrepancies among subjects.

5.1 EVALUATION ON REPURPOSING: GENERALIZE TO UNSEEN SUBJECTS

Setup. For repurposing datasets in MedTS cohort, we trained 50 TSM models (10 models for each),
and 1 TSA model but with 5 task-specific heads. our one FORMED model is trained on all 5 datasets
with no change to it during repurposing.

Effectiveness of Repurposing. We find that repurposing with a generalizable adaptation layer is
more effective than TSM and TSA methods in classification tasks. As shown in Table 1, our model
surpasses the TSA model in F1 across all datasets, as well as many other metrics. On top of that,
it achieves competitive performance compared to the TSM models, if not better, on most datasets.
These findings demonstrate the overall effectiveness of our proposed repurposing framework.
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Figure 5: Performance on few-shot adapting to
small, unseen, out-of-domain dataset. Numbers
of trainable parameters are included in parenthe-
sis. The performance is plotted against the ratio
of available training data. FORMED dominates
other models across all data ratios in both metrics.

Quality of Repurposing. The repurposing
also grants the model more robustness towards
intra-dataset discrepancies across subjects. The
delta values of our repurposed model across six
key metrics Figure 4 outperform all 11 base-
lines, showcasing its consistency and robust-
ness against such variations in data. This im-
plies the applicability of our methods towards
real-world healthcare usage, where the subject
population at the time of testing is often not
fully represented in the training data.

5.2 EVALUATION ON
ADAPTING: GENERALIZE TO UNSEEN TASK

Setup. In few-shot adapting evaluation, we use
a small out-of-domain dataset with a limited
amount of training data and a binary classification task. The data is recordings of phonocardio-
gram (PCG), and is pre-processed into spectrogram time series, where 61 channels each represent a
different frequency band. The PatchTST-TSA previously trained on MedTS cohort is modified with
a new head, and the PatchTST with reduced parameters is also included for a fair comparison of
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both the PatchTST-TSA and our model. Our repurposed model is frozen, and only the newly added
channel embedding and task query are learnable.

Results. We find that adapting to even drastically different dataset and different task is easily achiev-
able with our model. Despite the such inter-dataset heterogeneity, our model outperforms all base-
lines across all data ratios in both accuracy and AUROC Figure 5. Interestingly, the PatchTST’s
performance drops with more available data, and a potential explanation to it is that it quickly mem-
orizes the few training data and comes to an early stop. Nonetheless, our method demonstrates the
superior generalization ability to unseen tasks, a significant advantage for use in real-world health-
care applications, where new tasks may arise frequently, and the expert-labeled data is often limited.

6 CONCLUSION AND DISCUSSION

In this paper, we present FORMED, a foundation model for MedTS classification, that leverages
a pre-trained backbone that can capture general time series patterns and a generalizable adapta-
tion head to repurpose the model and capture domain-specific knowledge. We demonstrate that
FORMED can effectively generalize both within and across datasets, providing superior perfor-
mance with more robustness against distribution discrepancies compared to state-of-the-art models,
and can be seamlessly adapted to unseen MedTS datasets with lightweight training. Next, we discuss
the potential impact of our work, the limitations, and future directions.

Potential Impact. Our work has mainly focused on field of MedTS classification, where leakage of
patient information and bias in the model are critical concerns. Regarding the former, we only use
datasets that are publicly available and have been de-identified, and the details and sources of them
are provided in Table 3. As for the latter, we have taken steps to ensure that our model is fair, such
as using a backbone model that has been pre-trained on the largest dataset to capture more general
time series patterns, and no covariate information is used other than dataset-level embeddings. Yet,
we acknowledge that there may still be biases in the data that we have not accounted for, and we are
to release the weights of our model along with a detailed model card (Mitchell et al., 2019) for our
community to assess the potential bias and privacy concerns in a joint effort.

Relation to TimesFM. The TimesFM (Das et al., 2024) is a foundation model whose sole purpose
is time series forecasting, and by repurposing it, we create FORMED which is now a foundation
model for medical time series classification, fundamentally different from TimesFM.

Backbone and Repurposing Domain. The proposed repurposing-and-adapting framework is not
limited to specific backbone model, and can be applied to other time series foundation models with
similar anatomy. Our framework can repurpose to other domains like weather forecasting, financial
tasks, etc., by simply using a domain-specific repurposing data cohort.

Computation Efficiency. Computational cost is of great concern for large foundation models, espe-
cially so when the model needs to be frequently adapted to new downstream tasks (Hu et al., 2021).
We have recognized such need and already incorporated several strategies to make our model more
computationally efficient. By freezing the backbone model and omitting pre-backbone adapters, the
gradients do not need to be back-propagated through the backbone model during repurposing (Fig-
ure 1), which significantly reduces the computational cost. Moreover, we take what is categorized as
an external memorization approach (Wang et al., 2024b), where new knowledge of specific tasks is
stored in the task-specific embeddings and queries, rather than tuning the model parameters, which
further reduces the computational cost at the adaptation stage. On the whole, our model is designed
to be computationally efficient and scalable to larger datasets and more complex tasks.

Interpretability and Explainability. When it comes to medical applications, interpretability and
explainability are crucial for the model to be trusted and adopted by healthcare professionals. As
our model is fully transformer-based, it can harness the power of tools that dissect the attention
mechanism like Chefer et al. (2021); Hao et al. (2021). Moreover, the task-specific knowledge is
explicitly stored in channel embeddings and label queries, which can be used to compare and explain
the model’s behavior across different tasks. However, all these are beyond the scope of this paper
and deserves to be explored in future work.
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A COMPARISON OF ADAPTATION TECHNIQUES

As discussed in Section 2, adaptation techniques for foundation models mainly includes Prompt-
ing, Fine-tuning, Re-programming, and Re-purposing. We have introduced re-programming and
re-purposing, and here we provide a brief overview of prompting and fine-tuning, and compare
these techniques based on three aspects: Data Efficiency, New Task Type, and Generalizability.

Prompting & Fine-tuning: Both are common adaptation techniques for foundation models, where
prompting involves conditioning the model with specific instructions or cues, either handcrafted
(Zhou et al., 2023b; Reynolds & McDonell, 2021) or learned through data (Zhou et al., 2022a),
and fine-tuning involves updating the model’s internal parameters on dedicated dataset (Howard &
Ruder, 2018; Ding et al., 2023). While they focus on different aspects of adaptation, they share the
commonality of not altering the model’s core architecture, therefore the functionality of the model
remains unchanged, e.g., model for forecasting remains a forecasting model. Moreover, fine-tuning
is often more data-greedy, as it requires updating the whole model’s parameters, while prompting
only requires learning a few task-specific embeddings or prompts.

In general, these techniques can be categorized based on three aspects: Data efficiency, as the scale
of dataset used for adaptation, typically measured by the number of parameters updated; New Task
Type, as the ability to adapt to new tasks that are different from the original task, such as from
forecasting to classification; and Generalizability, as the ability for the adapted model to be used
on unseen datasets and share knowledge across tasks. Table 2 provides a comparison of these tech-
niques based on these aspects.

Table 2: Comparison of adaptation techniques of time series foundation models.
Adaptation Data Efficiency New Task Type Generalizability

Prompting ✓ ✓1

Fine-tuning ✓
Re-programming ✓

Re-purposing ✓ ✓ ✓

B DATA AVAILABILITY

Here we provide the details of the datasets Table 3 used as the MedTS cohort for repurposing in Sec-
tion 5. The datasets are publicly available, and we follow the pre-processing and splitting procedures
as in Wang et al. (2024c).

Table 3: MedTS Cohort Datasets.

Dataset Type # Subject # Sample Sampling
Rate

Sampling
Length # Channel # Classes

PTB
(Goldberger et al., 2000) ECG 198 64 356 250Hz 300 15 2

PTB-XL
(Wagner et al., 2020) ECG 17 596 191 400 250Hz 250 12 5

TDBrain
(van Dijk et al., 2022) EEG 72 6240 256Hz 256 33 2

APAVA
(Escudero et al., 2006) EEG 23 5967 256Hz 256 16 2

ADFTD
(Miltiadous et al., 2023; ADF) EEG 88 69 762 256Hz 256 19 3

1Although the model structure is fixed and still applicable to other datasets and tasks, the engineered or
learned prompts can be task-specific.
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