
NAS-χ: Neural Adaptive Smoothing via Twisting

Dieterich Lawson*,†

Google Research
dieterichl@google.com

Michael Y. Li*
Stanford University

michaelyli@stanford.edu

Scott W. Linderman
Stanford University

scott.linderman@stanford.edu

Abstract

Sequential latent variable models (SLVMs) are essential tools in statistics and
machine learning, with applications ranging from healthcare to neuroscience. As
their flexibility increases, analytic inference and model learning can become chal-
lenging, necessitating approximate methods. Here we introduce neural adaptive
smoothing via twisting (NAS-X), a method that extends reweighted wake-sleep
(RWS) to the sequential setting by using smoothing sequential Monte Carlo (SMC)
to estimate intractable posterior expectations. Combining RWS and smoothing
SMC allows NAS-X to provide low-bias and low-variance gradient estimates, and
fit both discrete and continuous latent variable models. We illustrate the theoretical
advantages of NAS-X over previous methods and explore these advantages em-
pirically in a variety of tasks, including a challenging application to mechanistic
models of neuronal dynamics. These experiments show that NAS-X substantially
outperforms previous VI- and RWS-based methods in inference and model learning,
achieving lower parameter error and tighter likelihood bounds.

1 Introduction

Sequential latent variable models (SLVMs) are a foundational model class in statistics and machine
learning, propelled by the success of hidden Markov models [1] and linear dynamical systems [2]. To
model more complex data, SLVMs have incorporated nonlinear conditional dependencies, resulting
in models such as sequential variational autoencoders [3–7], financial volatility models [8], and
biophysical models of neural activity [9]. While these nonlinear dependencies make SLVMs more
flexible, they also frustrate inference and model learning, motivating the search for approximate
methods.

One popular method for inference in nonlinear SLVMs is sequential Monte Carlo (SMC), which
provides a weighted particle approximation to the true posterior and an unbiased estimator of the
marginal likelihood. For most SLVMs, SMC is a significant improvement over standard importance
sampling, providing an estimator of the marginal likelihood with variance that grows linearly in
the length of the sequence rather than exponentially [10]. SMC’s performance, however, depends
on having a suitable proposal. The optimal proposal is often intractable, so in practice, proposal
parameters are learned from data. Broadly, there are two approaches to proposal learning: variational
inference [11, 12] and reweighted wake-sleep [13, 14].

* Equal contribution. † Work performed while at Stanford University.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Variational inference (VI) methods for SLVMs optimize the model and proposal parameters by
ascending a lower bound on the log marginal likelihood that can be estimated with SMC, an approach
called variational SMC [15–17]. Recent advances in variational SMC have extended it to work with
smoothing SMC [18, 19], a crucial development for models where future observations are strongly
related to previous model states. Without smoothing SMC, particle degeneracy can cause high
variance of the lower bound and its gradients, resulting in unstable learning [18, 10].

Reweighted wake-sleep (RWS) methods instead use SMC’s posterior approximation to directly
estimate gradients of the log marginal likelihood [14, 20]. This approach can be interpreted as
descending the inclusive KL divergence from the true posterior to the proposal. Notably, RWS
methods work with discrete latent variables, providing a compelling advantage over VI methods that
typically resort to high-variance score function estimates for discrete latent variables.

In this work, we combine recent advances in smoothing variational SMC with the benefits of
reweighted wake-sleep. To this end, we introduce neural adaptive smoothing via twisting (NAS-
X), a method for inference and model learning in nonlinear SLVMs that uses smoothing SMC to
approximate intractable posterior expectations. The result is a versatile, low-bias and low-variance
estimator of the gradients of the log marginal likelihood suitable for fitting proposal and model
parameters in both continuous and discrete SLVMs.

After introducing NAS-X, we present two theoretical results that highlight the advantages of NAS-X
over other RWS-based methods. We also demonstrate NAS-X’s performance empirically in model
learning and inference in linear Gaussian state-space models, discrete latent variable models, and
high-dimensional ODE-based mechanistic models of neural dynamics. In all experiments, we find
that NAS-X substantially outperforms several VI and RWS alternatives including ELBO, IWAE,
FIVO, SIXO. Furthermore, we empirically show that our method enjoys lower bias and lower variance
gradients, requires minimal additional computational overhead, and is robust and easy to train.

2 Background

This work considers model learning and inference in nonlinear sequential latent variable models with
Markovian structure; i.e. models that factor as

pθ(x1:T ,y1:T) = pθ(x1)pθ(y1 | x1)

T∏
t=2

pθ(xt | xt−1)pθ(yt | xt), (1)

with latent variables x1:T ∈ X T , observations y1:T ∈ YT , and global parameters θ ∈ Θ.
By nonlinear, we mean latent variable models where the parameters of the conditional distribu-
tions pθ(xt | xt−1) and pθ(yt | xt) depend nonlinearly on xt−1 and xt, respectively.

Estimating the marginal likelihood pθ(y1:T) and posterior pθ(x1:T | y1:T) for this model class is
difficult because it requires computing an intractable integral over the latents,

pθ(y1:T) =

∫
XT

pθ(y1:T ,x1:T) dx1:T ,

We begin by introducing two algorithms, reweighted wake-sleep [14, 13] and smoothing sequential
Monte Carlo [19], that are crucial for understanding our approach.

2.1 Reweighted Wake-Sleep

Reweighted wake-sleep (RWS, [13, 14]) is a method for maximum marginal likelihood in LVMs that
estimates the gradients of the marginal likelihood using self-normalized importance sampling. This is
motivated by Fisher’s identity, which allows us to write the gradients of the marginal likelihood as a
posterior expectation,

∇θ log pθ(y1:T) = Epθ(x1:T |y1:T) [∇θ log pθ(x1:T ,y1:T)] , (2)

as proved in Appendix 8.1. The term inside the expectation is computable with modern automatic
differentiation tools [21, 22], but the posterior pθ(x1:T | y1:T) is unavailable. Thus, SNIS is used to
form a biased but consistent Monte Carlo estimate of Eq. (2) [23]. Specifically, SNIS draws N IID

2

samples from a proposal distribution, qϕ(x1:T | y1:T) and weights them to form the estimator
N∑
i=1

w(i)∇θ log pθ(x(i)
1:T ,y1:T), x

(i)
1:T ∼ qϕ(x1:T | y1:T), w(i) ∝ pθ(x

(i)
1:T ,y1:T)

qϕ(x
(i)
1:T | y1:T)

(3)

where w(i) are normalized weights, i.e.
∑N
i=1 w

(i) = 1.

The variance of this estimator is reduced as qϕ approaches the posterior [23], so RWS also updates
qϕ by minimizing the inclusive Kullback-Leibler (KL) divergence from the posterior to the proposal.
Crucially, the gradient for this step can also be written as the posterior expectation

∇ϕKL(pθ(x1:T | y1:T) || qϕ(x1:T | y1:T)) = −Epθ(x1:T |y1:T) [∇ϕ log qϕ(x1:T | y1:T)] , (4)
as derived in Appendix 8.2. This allows RWS to estimate Eq. (4) using SNIS with the same set of
samples and weights as Eq. (3),

−Epθ(x1:T |y1:T) [∇ϕ log qϕ(x1:T | y1:T)] ≈ −
N∑
i=1

w(i)∇ϕ log qϕ(x(i)
1:T | y1:T). (5)

Importantly, any method that provides estimates of expectations w.r.t. the posterior can be used for
gradient estimation within the RWS framework, as we will see in the next section.

2.2 Estimating Posterior Expectations with Smoothing Sequential Monte Carlo

As we saw in Eqs. (2) and (4), key quantities in RWS can be expressed as expectations under the
posterior. Standard RWS uses SNIS to approximate these expectations, but in sequence models the
variance of the SNIS estimator can scale exponentially in the sequence length. In this section, we
review sequential Monte Carlo (SMC) [10, 24], an inference algorithm that can produce estimators
of posterior expectations with linear or even sub-linear variance scaling.

SMC approximates the posterior pθ(x1:T | y1:T) with a set of N weighted particles x1:N
1:T con-

structed by sampling from a sequence of target distributions {πt(x1:t)}Tt=1. Since these intermediate
targets are often only known up to some unknown normalizing constant Zt, SMC uses the unnor-
malized targets {γt(x1:t)}Tt=1, where πt(x1:t) = γt(x1:t)/Zt. Provided mild technical conditions
are met and γT (x1:T) ∝ pθ(x1:T ,y1:T), SMC returns weighted particles that approximate the poste-
rior pθ(x1:T | y1:T) [10, 24]. These weighted particles can be used to compute biased but consistent
estimates of expectations under the posterior, similar to SNIS.

SMC repeats the following steps for each time t:

1. Sample latents x1:N
1:t from a proposal distribution qϕ(x1:t | y1:T).

2. Weight each particle using the unnormalized target γt to form an empirical approximation
π̂t to the normalized target distribution πt.

3. Draw new particles x1:N
1:t from the approximation π̂t (the resampling step).

By resampling away latent trajectories with low weight and focusing on promising particles, SMC
can produce lower variance estimates than SNIS. For a thorough review of SMC, see Doucet and
Johansen [10], Naesseth et al. [24], and Del Moral [25].

Filtering vs. Smoothing The most common choice of unnormalized targets γt are the filtering
distributions pθ(x1:t,y1:t), resulting in the algorithm known as filtering SMC or a particle filter.
Filtering SMC has been used to estimate posterior expectations within the RWS framework in neural
adaptive sequential Monte Carlo (NASMC) [20], but a major disadvantage of filtering SMC is that it
ignores future observations yt+1:T . Ignoring future observations can lead to particle degeneracy and
high-variance estimates, which in turn causes poor model learning and inference [17, 18, 26, 27].

We could avoid these issues by using the smoothing distributions as unnormalized targets, choosing
γt(x1:t) = pθ(x1:t,y1:T), but unfortunately the smoothing distributions are not readily available
from the model. We can approximate them, however, by observing that pθ(x1:t,y1:T) is proportional
to the filtering distributions pθ(x1:t,y1:t) times the lookahead distributions pθ(yt+1:T | xt). If
the lookahead distributions are well-approximated by a sequence of twists {rψ(yt+1:T ,xt)}Tt=1,
then running SMC with targets γt(x1:t) = pθ(x1:t,y1:t) rψ(yt+1:T ,xt) approximates smoothing
SMC [26].

3

Twist Learning We have reduced the challenge of obtaining the smoothing distributions to learning
twists that approximate the lookahead distributions. Previous twist-learning approaches include
maximum likelihood training on samples from the model [18, 28] and Bellman-type losses motivated
by writing the twist at time t recursively in terms of the twist at time t+ 1 [18, 29]. For NAS-X we
use density ratio estimation (DRE) via classification to learn the twists, as introduced in Lawson et al.
[19]. This method is motivated by observing that the lookahead distribution is proportional to a ratio
of densities up to a constant independent of xt,

pθ(yt+1:T | xt) =
pθ(xt | yt+1:T) pθ(yt+1:T)

pθ(xt)
∝ pθ(xt | yt+1:T)

pθ(xt)
. (6)

Results from the DRE via classification literature [30] provide a way to approximate this density ratio:
train a classifier to distinguish between samples from the numerator pθ(xt | yt+1:T) and denominator
pθ(xt). Then, the pre-sigmoid output of the classifier will approximate the log of the ratio in Eq. (6).
For an intuitive argument for this fact see Appendix 8.3, and for a full proof see Sugiyama et al. [30].

In practice, it is not possible to sample directly from pθ(xt | yt+1:T). Instead, Lawson et al. [19]
sample full trajectories from the model’s joint distribution, i.e. draw x1:T ,y1:T ∼ pθ(x1:T ,y1:T),
and discard unneeded timesteps, leaving only xt and yt+1:T which are distributed marginally as
pθ(xt,yt+1:T). Training the DRE classifier on data sampled in this manner will approximate the
ratio pθ(xt,yt+1:T)/pθ(xt)pθ(yt+1:T), which is equivalent to Eq. (6), see Appendix 8.3.

3 NAS-X: Neural Adaptive Smoothing via Twisting

The goal of NAS-X is to combine recent advances in smoothing SMC with the advantages of
reweighted wake-sleep. Because SMC is a self-normalized importance sampling algorithm, it can
be used to estimate posterior expectations and therefore the model and proposal gradients within a
reweighted wake-sleep framework. In particular, NAS-X repeats the following steps:

1. Draw a set of N trajectories x(1:N)
1:T and weights w(1:N)

1:T from a smoothing SMC run with
model pθ, proposal qϕ, and twist rψ .

2. Use those trajectories and weights to form estimates of gradients for the model pθ and
proposal qϕ, as in reweighted wake-sleep. Specifically, NAS-X computes the gradients of
the inclusive KL divergence for learning the proposal qϕ as

−
T∑
t=1

N∑
i=1

w
(i)
t ∇ϕ log qϕ(x(i)

t | x(i)
t−1,yt:T) (7)

and computes the gradients of the model pθ as
T∑
t=1

N∑
i=1

w
(i)
t ∇θ log pθ(x(i)

t ,yt | x(i)
t−1). (8)

3. Update the twists rψ using density ratio estimation via classification.

A full description is available in Algorithms 1 and 2.

A key design decision in NAS-X is the specific form of the gradient estimators. Smoothing SMC
provides two ways to estimate expectations of test functions with respect to the posterior: both the
timestep-t and timestep-T approximations of the target distribution could be used, in the latter case
by discarding timesteps after t. Specifically,

pθ(x1:t | y1:T) ≈
N∑
i=1

w
(i)
t δ(x1:t ; x

(i)
1:t) ≈

N∑
i=1

w
(i)
T δ(x1:t ; (x

(i)
1:T)1:t) (9)

where δ(a ; b) is a Dirac delta of a located at b and (x1:T)1:t denotes selecting the first t timesteps of
a timestep-T particle; due to SMC’s ancestral resampling step these are not in general equivalent.
For NAS-X we choose the time-t approximation of the posterior to lessen particle degeneracy, as in
NASMC [20]. Note, however, that in the case of NASMC this amounts to approximating the posterior
with the filtering distributions, which ignores information from future observations. In the case of
NAS-X, the intermediate distributions directly approximate the posterior distributions because of the
twists, a key advantage that we explore theoretically in Section 3.1 and empirically in Section 5.

4

Algorithm 1: NAS-X
Procedure NAS-X(θ0, ϕ0, ψ0, y1:T)

θ ← θ0, ϕ← ϕ0, ψ ← ψ0

while not converged do
x1:N
1:T , w

1:N
1:T ← SMC({pθ(x1:t,y1:t), qϕ(xt | xt−1,yt:T), rψ(xt,yt+1:T)}Tt=1)

∆θ =
∑T
t=1

∑N
i=1 w

(i)
t ∇θ log pθ(x(i)

t ,yt | x(i)
t−1)

∆ϕ = −∑T
t=1

∑N
i=1 w

(i)
t ∇ϕ log qϕ(x(i)

t | x(i)
t−1,yt:T)

θ ← grad-step(θ,∆θ)
ϕ← grad-step(ϕ,∆ϕ)
ψ ← twist-training(θ, ψ)

end
return θ, ϕ, ψ
Procedure twist-training(θ, ψ0)

See Algorithm 2 in Appendix 8.3.

3.1 Theoretical Analysis of NAS-X

In this section, we state two theoretical results that illustrate NAS-X’s advantages over NASMC, with
proofs given in Appendix 7.

Proposition 1. Consistency of NAS-X’s gradient estimates. Suppose the twists are optimal so that
rψ(yt+1:T ,xt) ∝ p(yt+1:T | xt) up to a constant independent of xt for t = 1, . . . , T − 1. Let
∇̂θ log pθ(y1:T) be NAS-X’s weighted particle approximation to the true gradient of the log marginal
likelihood∇θ log pθ(y1:T). Then ∇̂θ log pθ(y1:T)

a.s.→ ∇θ log pθ(y1:T) as N →∞.

Proposition 2. Unbiasedness of NAS-X’s gradient estimates. Assume that proposal distribution
qϕ(xt | x1:t−1,y1:T) is optimal so that qϕ(xt | x1:t−1,y1:T) = p(xt | x1:t−1,y1:T) for t =
1, . . . , T , and the twists rψ(yt+1:T ,xt) are optimal so that rψ(yt+1:T ,xt) ∝ p(yt+1:T | xt) up to a
constant independent of xt for t = 1, . . . , T − 1. Let ∇̂θ log pθ(y1:T) be NAS-X’s weighted particle
approximation to the true gradient of the log marginal likelihood, ∇θ log pθ(y1:T). Then, for any
number of particles, E[∇̂θ log pθ(y1:T)] = log pθ(y1:T).

4 Related Work

VI Methods There is a large literature on model learning via stochastic gradient ascent on an
evidence lower bound (ELBO) [31, 32, 4, 33]. Subsequent works have considered ELBOs defined
by the normalizing constant estimates from multiple importance sampling [34], nested importance
sampling, [35, 36], rejection sampling, and Hamiltonian Monte Carlo [37]. Most relevant to our work
is the literature that uses SMC’s estimates of the normalizing constant as a surrogate objective. There
are a number of VI methods based on filtering [17, 16, 15] and smoothing SMC [18, 38, 39, 19, 27],
but filtering SMC approaches can suffer from particle degeneracy and high variance [18, 19].

Reweighted Wake-Sleep Methods The wake-sleep algorithm was introduced in Hinton et al.
[13] as a way to train deep directed graphical models. Bornschein and Bengio [14] interpreted
the wake-sleep algorithm as self-normalized importance sampling and proposed reweighted wake-
sleep, which uses SNIS to approximate gradients of the inclusive KL divergence and log marginal
likelihood. Neural adaptive sequential Monte Carlo (NASMC) extends RWS by using filtering SMC
to approximate posterior expectations instead of SNIS [20]. To combat particle degeneracy, NASMC
approximates the posterior with the filtering distributions, which introduces bias.

NAS-X vs. SIXO Both NAS-X and SIXO [19] leverage smoothing SMC with DRE-learned twists,
but NAS-X uses smoothing SMC to estimate gradients in an RWS-like framework while SIXO uses it
within a VI-like framework. Thus, NAS-X follows biased but consistent estimates of the log marginal
likelihood while SIXO follows unbiased estimates of a lower bound on the log marginal likelihood.
It is not clear a-priori which approach would perform better, but we provide empirical evidence in
Section 5 that shows NAS-X is more stable than SIXO and learns better models and proposals. In

5

0 100 200 300 400 500 600 700

Proposal training steps (1000s)

10−1

100

101

102

lo
g
p(

y
1:
T

)
−
L 1

28

NAS-X

NASMC

ELBO

IWAE

RWS

SIXO

FIVO

0 100 200 300 400 500 600 700

Proposal training steps (1000s)

10−2

10−1

100

P
ro

p
os

al
re

la
ti

ve
er

ro
r

0 10 20 30 40 50

Model timesteps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

σ
2

va
lu

e

Figure 1: Comparison of NAS-X and baseline methods on inference in LG-SSM. (left) Compari-
son of log-marginal likelihood bounds (lower is better), (middle) proposal parameter error (lower
is better), and (right) learned proposal variances. NAS-X outperforms all baseline methods and
recovers the true posterior marginals.

addition to these empirical advantages, NAS-X can fit discrete latent variable models while SIXO
would require high-variance score function estimates.

5 Experiments

We empirically validate the following advantages of NAS-X:

• By using the approximate smoothing distributions as targets for proposal learning, NAS-X
can learn proposals that match the true posterior marginals, while NASMC and other baseline
methods cannot. We illustrate this in Section 5.1, in a setting where the true posterior is
tractable. We illustrate the practical benefits on inference in nonlinear mechanistic models
in Section 5.3.

• By optimizing the proposal within the RWS framework (e.g., descending the inclusive KL),
NAS-X can perform learning and inference in discrete latent variable models, which SIXO
cannot. We explore this in Section 5.2.

• We explore the practical benefits of this combination in a challenging setting in Section 5.3,
where we show NAS-X can fit ODE-based mechanistic models of neural dynamics with 38
model parameters and an 18-dimensional latent state.

In addition to these experiments, we analyze the computational complexity and wall-clock speed
of each method and the bias and variance of the gradient estimates in Sections 15 and 16 of the
Appendix.

5.1 Linear Gaussian State Space Model

We first consider a one-dimensional linear Gaussian state space model with joint distribution

p(x1:T ,y1:T) = N (x1; 0, σ
2
x)

T∏
t=2

N (xt+1;xt, σ
2
x)

T∏
t=1

N (yt;xt, σ
2
y). (10)

In Figure 1, we compare NAS-X against several baselines (NASMC, FIVO, SIXO, RWS, IWAE, and
ELBO) by evaluating log marginal likelihood estimates (left panel) and recovery of the true posterior
(middle and right panels). For all methods we learn a mean-field Gaussian proposal factored over
time, q(x1:T) =

∏T
t=1 qt(xt) =

∏T
t=1N (xt;µt, σ

2
t), with parameters µ1:T and σ2

1:T corresponding
to the means and variances at each time-step. For twist-based methods, we parameterize the twist as a
quadratic function in xt whose coefficients are functions of the observations and time step. We chose
this form to match the functional form of the analytic log density ratio. For details, see Section 9
in the Appendix. NAS-X outperforms all baseline methods, achieving a tighter lower bound on the
log-marginal likelihood and lower parameter error.

In the right panel of Figure 1, we compare the learned proposal variances against the true posterior
variance, which can be computed in closed form. See Section 9 for comparison of proposal means;
we do not report this comparison in the main text since all methods recover the posterior mean. This
comparison gives insight into NAS-X’s better performance. NASMC’s learned proposal overestimates
the posterior variance and fails to capture the true posterior distribution, because it employs a filtering

6

approximation to the gradients of the proposal distribution. On the other hand, by using the twisted
targets, which approximate the smoothing distributions, to estimate proposal gradients, NAS-X
recovers the true posterior.

5.2 Switching Linear Dynamical Systems

To explore NAS-X’s ability to handle discrete latent variables, we consider a switching linear
dynamical system (SLDS) model [40, 41]. Specifically, we adapt the recurrent SLDS example
from Linderman et al. [41] in which the latent dynamics trace ovals in a manner that resembles cars
racing on a NASCAR track. There are two coupled sets of latent variables: a discrete state zt, with
K = 4 possible values, and a two-dimensional continuous state xt that follows linear dynamics that
depend on zt. The observations are a noisy projection of xt into a ten-dimensional observation space.
There are 1000 observations in total. For the proposal, we factor q over both time and the continuous
and discrete states. The continuous distributions are parameterized by Gaussians, and categorical
distributions are used for the discrete latent variables. For additional details on the proposal and twist,
see Section 10 in the Appendix and for details on the generative model see Linderman et al. [41].

(a) Comparing learned dynamics of NAS-X, NASMC, and Laplace EM on rSLDS.

−2 0 2

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

Ground truth

−2 0 2

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

NAS-X

−2 0 2

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

NASMC

−2 0 2

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

Laplace EM

(b) Train L1024
BPF for rSLDS.

Method σ2
O = 0.001 σ2

O = 0.01 σ2
O = 0.1

NAS-X 19.837± 0.0234 8.63± 0.0015 −2.79± 0.0009
NASMC 19.834± 0.0018 8.53± 0.001 −2.874± 0.0007
Laplace EM 19.154± 0.057 8.54± 0.0039 −2.765± 0.0012
RWS 17.148± 0.087 6.314± 0.023 −5.78± 0.0026

Figure 2: Inference and model learning in switching linear dynamical systems (SLDS). (top)
Comparison of learned dynamics and inferred latent states in model learning. Laplace EM sometimes
learns incorrect segmentations, as seen in the rightmost panel. (bottom) Quantitative comparison
of log marginal likelihood lower bounds obtained from running bootstrap particle filter (BPF) with
learned models.

We present qualitative results from model learning and inference in the top panel of Figure 2.
We compare the learned dynamics for NAS-X, NASMC, and a Laplace-EM algorithm designed
specifically for recurrent state space models [42]. In each panel, we plot the vector field of the learned
dynamics and the posterior means, with different colors corresponding to the four discrete states.
NAS-X recovers the true dynamics accurately. In the Table in Figure 2, we quantitatively compare
the model learning performances across these three approaches by running a bootstrap proposal with
the learned models and the true dynamics and observation variances. We normalize the bounds by
the sequence length. NAS-X outperforms or performs on par with both NASMC and Laplace EM
across the different observation noises σ2

O. See Section 10, for additional results on inference.

5.3 Biophysical Models of Neuronal Dynamics

For our final set of experiments we consider inference and parameter learning in Hodgkin-Huxley
(HH) models [9, 43] — mechanistic models of voltage dynamics in neurons. These models use
systems of coupled nonlinear differential equations to describe the evolution of the voltage difference
across a neuronal membrane as it changes in response to external stimuli such as injected current. Un-

7

derstanding how voltage propagates throughout a cell is central to understanding electrical signaling
and computation in the brain.

Voltage dynamics are governed by the flow of charged ions across the cell membrane, which is in
turn mediated by the opening and closing of ion channels and pumps. HH models capture the states
of these ion channels as well as the concentrations of ions and the overall voltage, resulting in a
complex dynamical system with many free parameters and a high dimensional latent state space.
Model learning and inference in this setting can be extremely challenging due to the dimensionality,
noisy data, and expensive and brittle simulators that fail for many parameter settings.

Model Description We give a brief introduction to the models used in this section and defer a
full description to the appendix. We are concerned with modeling the potential difference across
a neuronal cell membrane, v, which changes in response to currents flowing through a set of ion
channels, c ∈ C. Each ion channel c has an activation which represents a percentage of the maximum
current that can flow through the channel and is computed as a nonlinear function gc of the channel
state λc, with gc(λc) ∈ [0, 1]. This activation specifies the time-varying conductance of the channel
as a fraction of the maximum conductance of the channel, gc. Altogether, the dynamics for the
voltage v can be written as

cm
dv

dt
=
Iext
S
−
∑
c∈C

gcgc(λc)(v − Ecion) (11)

where cm is the specific membrane capacitance, Iext is the external current applied to the cell, S
is the cell membrane surface area, cion is the ion transported by channel c, and Ecion is that ion’s
reversal potential. In addition to the voltage dynamics, the ion channel states {λc}c∈C evolve as

dλc
dt

= A(v)λc + b(v) ∀c ∈ C (12)

where A(v) and b(v) are nonlinear functions of the membrane potential that produce matrices and
vectors, respectively. Together, equations (11) and (12) define a conditionally linear system of
first-order ordinary differential equations (ODEs), meaning that the voltage dynamics are linear if the
channel states are known and vice-versa.

Following Lawson et al. [19], we augment the deterministic dynamics with zero-mean, additive
Gaussian noise to the voltage v and unconstrained gate states logit(λc) at each integration time-step.
The observations are produced by adding Gaussian noise to the instantaneous membrane potential.

Proposal and Twist Parameterization For all models in this section we amortize proposal and
twist learning across datapoints. SIXO and NAS-X proposals used bidirectional recurrent neural
networks (RNNs) [44, 45] with a hidden size of 64 units to process the raw observations and external
current stimuli, and then fed the processed observations, previous latent state, and a transformer
positional encoding [46] into a 64-unit single-layer MLP that produced the parameters of an isotropic
Gaussian distribution over the current latent state. Twists were similarly parameterized with an RNN
run in reverse across observations, combined with an MLP that accepts the RNN outputs and latent
state and produces the twist values.

Integration via Strang Splitting The HH ODEs are stiff, meaning they are challenging to integrate
at large step sizes because their state can change rapidly. While small step sizes can ensure numerical
stability, they also make methods prohibitively slow. For example, many voltage dynamics of interest
unfold over hundreds of milliseconds, which could take upwards of 40,000 integration steps at the
standard 0.005 milliseconds per step. Because running our models for even 10,000 steps would be
too costly, we developed new numerical integration techniques based on an explicit Strang splitting
approach that allowed us to stably integrate at 0.1 milliseconds per step, a 20-time speedup [47]. For
details, see Section 13 in the Appendix.

5.3.1 Hodgkin-Huxley Inference Results

First, we evaluated NAS-X, NASMC, and SIXO in their ability to infer underlying voltages and
channel states from noisy voltage observations. For this task we sampled 10,000 noisy voltage traces
from a probabilistic Hodgkin-Huxley model of the squid giant axon [9], and used each method to

8

4 8 16 32 64 128 256

Eval Num Particles

-169

-181

-193

-206

L
og

-l
ik

el
ih

o
o
d

lo
w

er
b

o
u

n
d

IWAE

FIVO

NASMC

SIXO

NAS-X

(a) HH inference performance.
Proposals were trained with 4 particles
and evaluated across a range of particle
numbers. RWS performed too poorly
to be included.

−50

0

50

V
ol

ta
ge

(m
V

)

SIXO

True Voltage

Inferred Voltage

Resampling Event

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

−50

0

50

V
ol

ta
ge

(m
V

)

NAS-X

(b) Inferred voltage traces for SIXO and NAS-X.
(top) SIXO generates a high number of resampling events leading
to particle degeneracy and a single mistimed spike. (bottom) NAS-
X perfectly infers the latent voltage with no mistimed spikes, and
resamples infrequently. See Fig. 9 in Appendix for NASMC’s traces.

Figure 3: Inference in Mechanistic HH Model

train proposals (and twists for NAS-X and SIXO) to compute the marginal likelihood assigned to
the data under the true model. As in [19], we sampled trajectories of length 50 milliseconds, with a
single noisy voltage observation every millisecond. The stability of the Strang splitting based ODE
integrator allowed us to integrate at dt = 0.1ms, meaning there were 10 latent states per observation.

In Figure (3a) we plot the performance of proposals and twists trained with 4 particles and evaluated
across a range of particle numbers. All methods perform roughly the same when evaluated with
256 particles, but with lower numbers of evaluation particles the smoothing methods emerge as
more particle-efficient than the filtering methods. To achieve NAS-X’s inference performance with 4
particles, NASMC would need 256 particles, a 64x increase, and NAS-X is also on average 2x more
particle-efficient than SIXO.

In Figure 3b we further investigate these results by examining the inferred voltage traces of NAS-X
and SIXO. SIXO accurately infers the timing of most spikes but resamples at a high rate, which can
lead to particle degeneracy and poor bound performance. NAS-X correctly infers the voltage across
the whole trace with no spurious or mistimed spikes and almost no resampling events, indicating it
has learned a high-quality proposal that does not generate poor particles that must be resampled away.
These qualitative results support the quantitative results in Figure 3a: SIXO’s high resampling rate
and NASMC’s filtering approach lead to lower bound values.

These results highlight a benefit of RWS-based methods over VI methods: when the model is
correctly specified, it can be beneficial to have a more deterministic proposal. Empirically, we find
that maximizing the variational lower bound encourages the proposal to have high entropy, which in
this case resulted in SIXO’s poorer performance relative to NAS-X. In the next section, we explore
the implications of this on model learning.

5.3.2 Hodgkin-Huxley Model Learning Results

In this section, we assess NAS-X and SIXO’s ability to fit model parameters in a more complex,
biophysically realistic model of a pyramidal neuron from the mouse visual cortex. This model was
taken from the Allen Institute Brain Atlas [48] and includes 9 different voltage-gated ion channels
as well as a calcium pump/buffer subsystem and a calcium-gated potassium ion channel. In total,
the model had 38 free parameters and an 18-dimensional latent state space, in contrast to the 1 free
parameter and 4-dimensional state space of the model considered by Lawson et al. [19]. For full
details of the models, see Appendix Section 12.

We fit these models to voltage traces gathered from a real mouse neuron by the Allen Institute, but
downsampled and noised the data to simulate a more common voltage imaging setting. We ran a
hyperparameter sweep over learning rates and initial values of the voltage and observation noise
variances (270 hyperparameter settings in all), and selected the best performing model via early
stopping on the train log marginal likelihood lower bound. Each hyperparameter setting was run for

9

0 20 40 60 80 100 120 140 160 180 200

Time (ms)

T
ru

e
V

ol
ta

ge
S

IX
O

S
am

p
le

s
N

A
S

-X
S

am
p

le
s

Method L32
BPF # Spikes Err. Rest Voltage Err. Cross-Corr. % Runs Failed

NAS-X −686.4± 6.8 0.76± 0.15 2.74± 0.1 6258± 11 18.9
SIXO −660.6± 4.4 1.88± 0.41 1.8± 0.2 6055± 22 25.2

Figure 4: Model learning in HH model of a mouse pyramidal neuron (top) Samples drawn from
learned models when stimulated with a square pulse of 250 picoamps beginning at 20 milliseconds
(vertical grey dashed line). NAS-X’s samples are noisier than SIXO’s, but spike more consistently.
(bottom) A comparison of NAS-X- and SIXO-trained models along various evaluation metrics.
SIXO’s models achieve higher bounds, but are less stable and capture overall spike count more poorly
than NAS-X-trained models. All errors are absolute errors.

5 seeds, and each seed was run for 2 days on a single CPU core with 7 Gb of memory. Because of the
inherent instability of these models, many seeds failed, and we discarded hyperparameter settings
with more than 2 failed runs.

In Figure 4 (bottom), we compare NAS-X and SIXO-trained models with respect to test set log-
likelihood lower bounds as well as biophysically relevant metrics. To compute the biophsyical
metrics, we sampled 32 voltage traces for each input stimulus trace in the test set, and averaged the
feature errors over the samples and test set. NAS-X better captures the number of spikes, an important
feature of the traces, and attains a higher cross correlation. Both methods capture the resting voltage
well, although SIXO attains a slightly lower error and outperforms NAS-X in terms of log-likelihood
lower bound.

Training instability is a significant practical challenge when fitting mechanistic models. Therefore,
we also include the percentage of runs that failed for each method. SIXO’s more entropic proposals
more frequently generate biophysically implausible latent states, causing the ODE integrator to return
NaNs. In contrast, fewer of NAS-X’s runs suffer from numerical instability issues, a great advantage
when working with mechanistic models.

6 Conclusion

In this work we presented NAS-X, a new method for model learning and inference in sequential latent
variable models, that combines reweighted wake-sleep framework and approximate smoothing SMC.
Our approach involves learning twist functions to use in smoothing SMC, and then running smoothing
SMC to approximate gradients of the log marginal likelihood with respect to the model parameters
and gradients of the inclusive KL divergence with respect to the proposal parameters. We validated
our approach in experiments including model learning and inference for discrete latent variable
models and mechanistic models of neural dynamics, demonstrating that NAS-X offers compelling
advantages in many settings.

10

Acknowledgements

This work was supported by the Simons Collaboration on the Global Brain (SCGB 697092), NIH
(U19NS113201, R01NS113119, and R01NS130789), NSF (2223827), Sloan Foundation, McKnight
Foundation, the Stanford Center for Human and Artificial Intelligence, and the Stanford Data Science
Institute.

References
[1] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state

markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966.

[2] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. ASME
Journal of Basic Engineering, 82(1):35–45, March 1960.

[3] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on Machine
Learning, pages 1278–1286. PMLR, 2014.

[4] Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In 2nd International
Conference on Learning Representations, 2014.

[5] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep Kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

[6] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. Advances in neural information
processing systems, 28, 2015.

[7] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural
models with stochastic layers. Advances in Neural Information Processing Systems, 29, 2016.

[8] Siddhartha Chib, Yasuhiro Omori, and Manabu Asai. Multivariate stochastic volatility. In
Handbook of Financial Time Series, pages 365–400. Springer, 2009.

[9] Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.

[10] Arnaud Doucet and Adam M. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In Dan Crisan and Boris Rozovsky, editors, The Oxford Handbook of Nonlinear
Filtering, pages 656–704. Oxford University Press, 2011.

[11] David Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[12] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

[13] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The “wake-sleep”
algorithm for unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

[14] Jörg Bornschein and Yoshua Bengio. Reweighted Wake-Sleep. arXiv preprint arXiv:1406.2751,
2014.

[15] Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding
Sequential Monte Carlo. In 6th International Conference on Learning Representations, 2018.

[16] Christian A. Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational
Sequential Monte Carlo. In International Conference on Artificial Intelligence and Statistics,
pages 968–977. PMLR, 2018.

[17] Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. Advances in
Neural Information Processing Systems, 30, 2017.

11

[18] Dieterich Lawson, George Tucker, Christian A. Naesseth, Chris Maddison, Ryan P. Adams, and
Yee Whye Teh. Twisted Variational Sequential Monte Carlo. In Third workshop on Bayesian
Deep Learning (NeurIPS), 2018.

[19] Dieterich Lawson, Allan Raventós, Andrew Warrington, and Scott Linderman. SIXO: Smooth-
ing Inference with Twisted Objectives. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[20] Shixiang Shane Gu, Zoubin Ghahramani, and Richard E. Turner. Neural Adaptive Sequential
Monte Carlo. Advances in Neural Information Processing Systems, 28, 2015.

[21] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[22] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[23] Art B Owen. Monte Carlo Theory, Methods and Examples. Stanford, 2013.

[24] Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön, et al. Elements of Sequential Monte
Carlo. Foundations and Trends® in Machine Learning, 12(3):307–392, 2019.

[25] Pierre Del Moral. Feynman-Kac formulae: genealogical and interacting particle systems with
applications, volume 88. Springer, 2004.

[26] Nick Whiteley and Anthony Lee. Twisted particle filters. The Annals of Statistics, 42(1):
115–141, 2014.

[27] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state–space models.
Annals of the Institute of Statistical Mathematics, 62(1):61–89, 2010.

[28] Ming Lin, Rong Chen, and Jun S. Liu. Lookahead strategies for sequential Monte Carlo.
Statistical Science, 28(1):69–94, 2013.

[29] Vasileios Lioutas, Jonathan Wilder Lavington, Justice Sefas, Matthew Niedoba, Yunpeng Liu,
Berend Zwartsenberg, Setareh Dabiri, Frank Wood, and Adam Scibior. Critic sequential monte
carlo. arXiv preprint arXiv:2205.15460, 2022.

[30] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

[31] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 814–822. PMLR, 2014.

[32] Matthew D. Hoffman, David Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 2013.

[33] Andriy Mnih and Danilo Rezende. Variational inference for Monte Carlo objectives. In
International Conference on Machine Learning, pages 2188–2196. PMLR, 2016.

[34] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
4th International Conference on Learning Representations, 2016.

[35] Christian Naesseth, Fredrik Lindsten, and Thomas Schon. Nested Sequential Monte Carlo
Methods. In International Conference on Machine Learning, pages 1292–1301. PMLR, 2015.

12

http://github.com/google/jax
https://www.tensorflow.org/
https://www.tensorflow.org/

[36] Heiko Zimmermann, Hao Wu, Babak Esmaeili, and Jan-Willem van de Meent. Nested vari-
ational inference. Advances in Neural Information Processing Systems, 34:20423–20435,
2021.

[37] Dieterich Lawson, George Tucker, Bo Dai, and Rajesh Ranganath. Energy-inspired models:
Learning with sampler-induced distributions. Advances in Neural Information Processing
Systems, 32, 2019.

[38] Antonio Moretti, Zizhao Wang, Luhuan Wu, Iddo Drori, and Itsik Pe’er. Variational objectives
for Markovian dynamics with backward simulation. In ECAI 2020, pages 1371–1378. IOS
Press, 2020.

[39] Antonio Moretti, Zizhao Wang, Luhuan Wu, and Itsik Pe’er. Smoothing nonlinear variational
objectives with sequential Monte Carlo. ICLR Workshop: Deep Generative Models for Highly
Structured Data, 2019.

[40] Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric Bayesian Learning
of Switching Linear Dynamical systems. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems, volume 21. Curran Associates,
Inc., 2008.

[41] Scott W. Linderman, Matthew J. Johnson, Andrew C. Miller, Ryan P. Adams, David M. Blei,
and Liam Paninski. Bayesian learning and inference in recurrent switching linear dynamical
systems. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[42] David Zoltowski, Jonathan Pillow, and Scott Linderman. A general recurrent state space
framework for modeling neural dynamics during decision-making. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 11680–11691. PMLR, 13–18 Jul
2020.

[43] Peter Dayan and Laurence F. Abbott. Theoretical Neuroscience: Computational and Mathemat-
ical Modeling of Neural Systems. MIT press, 2005.

[44] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[45] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All You Need. Advances in Neural Information
Processing Systems, 30, 2017.

[47] Zhengdao Chen, Baranidharan Raman, and Ari Stern. Structure-preserving numerical integrators
for Hodgkin–Huxley-type systems. SIAM Journal on Scientific Computing, 42(1):B273–B298,
2020.

[48] Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis,
Maitham Naeemi, Benjamin Facer, Anh Ho, et al. The Allen mouse brain common coordinate
framework: a 3d reference atlas. Cell, 181(4):936–953, 2020.

[49] Michael I Jordan. Serial order: A parallel distributed processing approach. In Advances in
psychology, volume 121, pages 471–495. Elsevier, 1997.

[50] Diederik Kingma, Jimmy Ba, Yoshua Bengio, and Yann LeCun. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Representations, 2015.

[51] Tom Rainforth, Adam Kosiorek, Tuan Anh Le, Chris Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. Tighter variational bounds are not necessarily better. In International
Conference on Machine Learning, pages 4277–4285. PMLR, 2018.

13

[52] AIBS. Biophysical modeling — perisomatic. Technical report, Allen Institute for Brain Science,
10 2017. URL http://help.brain-map.org/display/celltypes/Documentation.

[53] Costa M Colbert and Enhui Pan. Ion channel properties underlying axonal action potential
initiation in pyramidal neurons. Nature neuroscience, 5(6):533–538, 2002.

[54] Jacopo Magistretti and Angel Alonso. Biophysical properties and slow voltage-dependent
inactivation of a sustained sodium current in entorhinal cortex layer-ii principal neurons: a
whole-cell and single-channel study. The Journal of general physiology, 114(4):491–509, 1999.

[55] Maarten HP Kole, Stefan Hallermann, and Greg J Stuart. Single ih channels in pyramidal
neuron dendrites: properties, distribution, and impact on action potential output. Journal of
Neuroscience, 26(6):1677–1687, 2006.

[56] I Reuveni, A Friedman, Y Amitai, and Michael J Gutnick. Stepwise repolarization from ca2+
plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of hva ca2+
channels in dendrites. Journal of Neuroscience, 13(11):4609–4621, 1993.

[57] Robert B Avery and Daniel Johnston. Multiple channel types contribute to the low-voltage-
activated calcium current in hippocampal ca3 pyramidal neurons. Journal of Neuroscience, 16
(18):5567–5582, 1996.

[58] AD Randall and RW Tsien. Contrasting biophysical and pharmacological properties of t-type
and r-type calcium channels. Neuropharmacology, 36(7):879–893, 1997.

[59] PR Adams, DA Brown, and A Constanti. M-currents and other potassium currents in bullfrog
sympathetic neurones. The Journal of Physiology, 330(1):537–572, 1982.

[60] Alon Korngreen and Bert Sakmann. Voltage-gated k+ channels in layer 5 neocortical pyramidal
neurones from young rats: subtypes and gradients. The Journal of physiology, 525(3):621–639,
2000.

[61] M Köhler, B Hirschberg, CT Bond, John Mark Kinzie, NV Marrion, James Maylie, and
JP Adelman. Small-conductance, calcium-activated potassium channels from mammalian brain.
Science, 273(5282):1709–1714, 1996.

[62] Alastair J Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 8(10):127–128, 1974.

[63] Richard A Kronmal and Arthur V Peterson Jr. On the alias method for generating random
variables from a discrete distribution. The American Statistician, 33(4):214–218, 1979.

14

http://help.brain-map.org/display/celltypes/Documentation

7 Theoretical Analyses

Proposition 1. Consistency of NAS-X’s gradient estimates. Suppose the twists are optimal so that
rψ(yt+1:T ,xt) ∝ p(yt+1:T | xt) up to a constant independent of xt for t = 1, . . . , T − 1. Let
∇̂θ log pθ(y1:T) be NAS-X’s weighted particle approximation to the true gradient of the log marginal
likelihood∇θ log pθ(y1:T). Then ∇̂θ log pθ(y1:T)

a.s.→ ∇θ log pθ(y1:T) as N →∞.

Proof. This is a direct application of Theorem 7.4.3 from Del Moral [25]. SMC methods provide
strongly consistent estimates of expectations of test functions with respect to a normalized target
distribution. That is, consider some test function h and let SMC’s particle weights be denoted as wti .
We have that

∑K
i=1 w

k
t h(x

k
1:t)

a.s.→
∫
h(x1:t)πt(x1:t) as K → ∞ where πt(x1:t) is the normalized

target distribution. NAS-X sets πt(x1:t) ∝ γt(x1:t) = pθ(x1:t,y1:t)rψ∗(yt+1:T ,xt), which by
assumption is proportional to pθ(x1:t,y1:t)pθ(yt+1:T | xt) = pθ(x1:t,y1:T). The desired result
follows immediately.

Proposition 2. Unbiasedness of NAS-X’s gradient estimates. Assume that proposal distribution
qϕ(xt | x1:t−1,y1:T) is optimal so that qϕ(xt | x1:t−1,y1:T) = p(xt | x1:t−1,y1:T) for t =
1, . . . , T , and the twists rψ(yt+1:T ,xt) are optimal so that rψ(yt+1:T ,xt) ∝ p(yt+1:T | xt) up to a
constant independent of xt for t = 1, . . . , T − 1. Let ∇̂θ log pθ(y1:T) be NAS-X’s weighted particle
approximation to the true gradient of the log marginal likelihood, ∇θ log pθ(y1:T). Then, for any
number of particles, E[∇̂θ log pθ(y1:T)] = log pθ(y1:T).

Proof. We first provide a proof sketch then give a more detailed derivation, adapting the proof of
a similar theorem in Lawson et al. [19]. We will prove that particles produced from running SMC
with the smoothing targets and optimal proposal are exact samples from the posterior distribution
of interest. The claim then follows immediately. Under the stated assumptions, both NAS-X
and NASMC propose particles from the true posterior. However, the different intermediate target
distributions will affect how these particles are distributed after reweighting. For NAS-X, the particles
will have equal weight since they are reweighted using the smoothing targets. Thus, after reweighting,
the particles are still samples from the true posterior. In contrast, in NASMC, the samples are
reweighted by filtering targets and will not be distributed as samples from the true posterior.

We first consider NAS-X which uses the smoothing targets. We will show that the particles drawn
at each timestep are sampled from the posterior distribution. This will follow from the fact that the
particle weights at each timestep in the SMC sweep are equal; that is, wkt = 1 or wkt = p(y1:T)
for k = 1, . . . ,K, depending on whether resampling occurred. We proceed by induction on t, the
timestep in the SMC sweep.

For t = 1 note that

1. γ1(xk1) = p(xk1 ,y1)p(y2:T | xk1),

2. γ0 ≜ 1,

3. and q1(xk1) = p(xk1 | y1:T).

This implies that the incremental weight αk1 is

αk1 =
p(xk1 ,y1)p(y2:T | xk1)

p(xk1 | y1:T)
=

p(xk1 ,y1:T)

p(xk1 | y1:T)
= p(y1:T) (13)

which does not depend on k. Because wk0 ≜ 1, we have that wk1 = wk0α
k
1 = p(y1:T) for all k.

Note that, since the proposal is optimal, prior to SMC’s reweighting step, the particles were distributed
as follows xk1 ∼ p(x1 | y1:T). Since the incremental weights are equal, the distribution of particles is
unchanged.

For the induction step, assume that w1:K
t−1 equals 1 or p(y1:T) and that xk1:t−1 ∼ p(x1:t−1 | y1:T).

The particles are distributed as follows, xkt ∼ p(xt | x1:t−1,y1:T). This implies that (xk1:t−1,x
k
t) ∼

p(xt | x1:t−1,y1:T)p(x1:t−1 | y1:T) = p(x1:t | y1:T).

15

We now show that the incremental particle weights αkt are equal using the following identi-
ties/assumptions

1. γt(xk1:t) = p(xk1:t,y1:t)p(yt+1:T | xkt),

2. γt−1(x
k
1:t−1) = p(xk1:t−1,y1:t−1)p(yt:T | xkt−1),

3. rψ(yt+1:T ,xt) ∝ p(yt+1:T | xt) up to a constant independent of xt for t = 1, . . . , T − 1.

4. and qt(xkt) = p(xkt | xk1:t−1,y1:T)

This shows that αkt is given by

αkt =
p(xk1:t,y1:t)p(yt+1:T | xkt)

p(xk1:t−1,y1:t−1)p(yt:T | xkt−1)p(x
k
t | xk1:t−1,y1:T)

(14)

=
p(xk1:t,y1:T)

p(xk1:t−1,y1:T)p(xkt | xk1:t−1,y1:T)
(15)

=
p(xk1:t−1,y1:T)p(x

k
t | x1:t−1,y1:T)

p(xk1:t−1,y1:T)p(xkt | xk1:t−1,y1:T)
(16)

= 1 (17)

for k = 1, . . . ,K.

There are two cases depending on the value of the weights at the previous timestep. If w1:K
t−1 = 1,

then wkt = wkt−1α
k
t = 1 for all k. On the other hand, if w1:K

t−1 = p(y1:T) then wkt = p(y1:T) for all k.
Therefore, even after reweighting, the particles are still drawn from the true posterior distribution. If
resampling occurs, since the weights are equal in both cases, the distribution of the particles remains
unchanged.

To conclude, we note that the incremental particle weights are, in general, not the same for NASMC.
To see this, consider NASMC’s incremental weights at timestep 1.

αk1 =
p(xk1 ,y1)

p(xkt | y1:T)
(18)

After reweighting, the particles will be distributed according to the filtering distributions. The
distribution of particles after reweighting is proportional to p(xk1 | y1). This is because the distribution
of the reweighted particles is proportional to the incremental weights times the optimal proposal
distribution. Therefore, the term in the denominator corresponding to the proposal cancels out with
the proposal distribution term.

Interestingly, the particle weights will be the same at each iteration under a certain dependency
structure for the model p(x1:t−1|y1:t) = p(x1:t−1|y1:t−1) that was identified in Maddison et al.
[17]. However, this dependency is not satisfied in general and therefore NASMC’s gradients are not
unbiased.

16

8 Derivations

8.1 Gradient of the Marginal Likelihood

We derive the gradients for the marginal likelihood. This identity is known as Fisher’s identity.

∇θ log p(y1:T) = ∇θ log
∫
pθ(x1:T ,y1:T)dy1:T

=
1

pθ(y1:T)
∇θ
∫
pθ(x1:T ,y1:T)dx1:T

=
1

pθ(y1:T)

∫
∇θpθ(x1:T ,y1:T)dx1:T

=
1

pθ(y1:T)

∫
pθ(x1:T ,y1:T)∇θ log pθ(x1:T ,y1:T)dx1:T

=

∫
pθ(x1:T |y1:T)∇θ log pθ(x1:T ,y1:T)dx1:T

=

∫
pθ(x1:T |y1:T)∇θ

∑
t

log pθ(yt,xt|xt−1)dx1:T

=
∑
t

∫
pθ(x1:T |y1:T)∇θ log pθ(yt,xt|xt−1)dx1:T

=
∑
t

Epθ(x1:T |y1:T) [∇θ log pθ(yt,xt|xt−1)]

The key steps were the log-derivative trick and Bayes rule.

8.2 Gradient of Inclusive KL Divergence

Below, we derive the gradient of the inclusive KL divergence for a generic Markovian model. In this
derivation, we assume there are no shared parameters between the proposal and model.

−∇ϕKL(pθ||qϕ) = ∇ϕ
∫
pθ(x1:T |y1:T) log qϕ(x1:T |y1:T)dx1:T

=

∫
pθ(x1:T |y1:T)∇ϕ log qϕ(x1:T |y1:T)dx1:T

=

∫
pθ(x1:T |y1:T)∇ϕ

(∑
t

log qϕ(xt|xt−1,yt:T)

)
dx1:T

=
∑
t

∫
pθ(x1:T |y1:T)∇ϕ log qϕ(xt|xt−1,yt:T)dx1:T

=
∑
t

Epθ(x1:T |y1:T) [∇ϕ log qϕ(xt|xt−1,yt:T)]

We use the assumption that there are no shared parameters in the second equality.

8.3 Density Ratio Estimation via Classification

Here we briefly summarize density ratio estimation (DRE) via classification. For a full treatment, see
Sugiyama et al. [30].

Let a(x) and b(x) be two distributions defined over the same space X , and consider a classifier
g : X → R that accepts a specific x ∈ X and classifies it as either being sampled from a or b. We
will train this classifier to predict whether a given x was sampled from a(x) or b(x). The raw outputs
(logits) of this classifier will approximate log(a(x)/b(x)) up to a constant that does not depend on x.

To see this, define an expanded generative model where we first sample z ∈ {0, 1} from a Bernoulli
random variable with probability 0 < ρ < 1, and then sample x from a(x) if z = 1, and sample x

17

from b(x) if z = 0. This defines the joint distribution

p(x, z) = p(z)p(x|z) = Bernoulli(z; ρ)a(x)zb(x)(1−z), (19)

where p(x | z = 1) = a(x) and p(x | z = 0) = b(x).

Let g : X → R be a function that accepts x ∈ X and produces the logit for Bernoulli distribution over
z. This function will parameterize a classifier via the sigmoid function, meaning that the classifier’s
Bernoulli conditional distribution over z is defined as

pg(z|x) ≜ σ(g(x))z(1− σ(g(x)))1−z, z ∈ {1, 0} (20)

where σ is the sigmoid function and σ−1 is its inverse, the logit function

σ(ℓ) =
1

1 + e−ℓ
, σ−1(p) = log

(
p

1− p

)
. (21)

The optimal function g∗ will be selected by solving the maximum likelihood problem

g∗ ≜ argmax
g

Ep(x,z) [pg(z | x)] . (22)

The solution to this problem is the true p(z | x). Because we have not restricted g, this solution can
be obtained. Thus,

p(z = 1 | x) =pg∗(z = 1 | x) (23)

=σ(g∗(x))1(1− σ(g∗(x)))1−1 (24)
=σ(g∗(x)). (25)

This in turn implies that

g∗(x) =σ−1(p(z = 1 | x)) (26)

= log

(
p(z = 1 | x)

1− p(z = 1 | x)

)
(27)

= log

(
p(z = 1 | x)
p(z = 0 | x)

)
(28)

= log

(
p(z = 1 | x)p(x)
p(z = 0 | x)p(x)

)
(29)

= log

(
p(z = 1, x)

p(z = 0, x)

)
(30)

= log

(
p(x | z = 1)p(z = 1)

p(x | z = 0)p(z = 0)

)
(31)

= log

(
p(x | z = 1)

p(x | z = 0)

)
+ log

(
p(z = 1)

p(z = 0)

)
(32)

= log

(
a(x)

b(x)

)
+ log

(
ρ

1− ρ

)
(33)

Thus, the optimal solution to the classification problem, g∗, is proportional to log(a(x)/b(x)) up to a
constant that does not depend on x. In practice we observe empirically that as long as a sufficiently
flexible parametric family for g is selected, g∗ will closely approximate the desired density ratio.

In the case of learning the ratio required for smoothing SMC,

pθ(xt | yt+1:T)

pθ(xt)
, (34)

Lawson et al. [19] instead learn the equivalent ratio

pθ(xt,yt+1:T)

pθ(xt)pθ(yt+1:T)
. (35)

18

0 100 200 300 400 500 600 700

Proposal training steps (1000s)

10−1

100

101

102

lo
g
p(

y
1:
T

)
−
L 1

28

NAS-X

NASMC

ELBO

IWAE

RWS

SIXO

FIVO

0 100 200 300 400 500 600 700

Proposal training steps (1000s)

10−2

10−1

100

P
ro

p
os

al
re

la
ti

ve
er

ro
r

0 10 20 30 40 50

Model timesteps

−4

−2

0

2

4

6

µ
va

lu
e

Figure 5: Comparison of NAS-X vs baseline methods on Inference in LG-SSM. (left) Comparison
of log-marginal likelihood bounds (lower is better), (middle) proposal parameter error (lower is
better), and (right) learned proposal means. NAS-X outperforms several baseline methods and
recovers the true posterior marginals.

As per the previous derivation, it suffices to train a classifier to distinguish between samples from
the numerator and denominator of Eq. 35. To accomplish this, Lawson et al. [19] draw paired and
unpaired samples from the model that are distributed marginally according to the desired densities.
Specifically, consider drawing

x1:T ,y1:T ∼ pθ(x1:T ,y1:T) x̃1:T ∼ pθ(x1:T) (36)

and note that any xt,yt+1:T selected from the sample will be distributed marginally according to
pθ(xt,yt+1:T). Similarly, any x̃t,yt+1:T will be distributed marginally as pθ(xt)pθ(yt+1:T). In
this way, T − 1 positive and negative training examples for the DRE classifier can be drawn using a
single set of samples as in Eq. (36).

The twist training process is summarized in Algorithm 2.

Algorithm 2: Twist Training
Procedure twist-training(θ, ψ0)

ψ ← ψ0

while not converged do
x1:T ,y1:T ∼ pθ(x1:T ,y1:T)
x̃1:T ∼ pθ(x1:T)

L(ψ) = 1
T−1

∑T−1
t=1 log σ(rψ(xt,yt+1:T)) + log(1− σ(rψ(x̃t,yt+1:T)))

ψ ← grad-step(ψ,∇ψL(ψ))
end

return ψ

9 LGSSM

Model Details We consider a one-dimensional linear Gaussian state space model with joint distri-
bution

p(x1:T ,y1:T) = N (x1; 0, σ
2
x)

T∏
t=2

N (xt+1;xt, σ
2
x)

T∏
t=1

N (yt;xt, σ
2
y). (37)

In our experiments we set the dynamics variance σ2
x = 1.0 and the observation variance σ2

y = 1.0.

Proposal Parameterization For both NAS-X and NASMC, we use a mean-field Gaussian proposal
factored over time

q(x1:T) =

T∏
t=1

qt(xt) =

T∏
t=1

N (xt;µt, σ
2
t), (38)

with parameters µ1:T and σ2
1:T corresponding to the means and variances at each timestep. In total,

we learn 2T proposal parameters.

19

Twist Parametrization We parameterize the twist as a quadratic function in xt whose coefficients
are functions of the observations and time step and are learned via the density ratio estimation
procedure described in [19]. We chose this form to match the analytic log density ratio for the model
defined in Eq 10. Given that p(x1:T , y1:T) is a multivariate Gaussian, we know that p(xt | yt+1:T)
and p(xt) are both marginally Gaussian. Let

p(xt | yt+1:T) ≜ N (µ1, σ
2
1)

p(xt) ≜ N (0, σ2
1)

Then,

log

(
p(xt | yt+1:T)

p(xt)

)
= logN (xt;µ1, σ

2
1)− logN (xt; 0, σ

2
2)

= logZ(σ1)−
1

2σ2
1

x2t +
µ1

σ2
1

xt −
µ2
1

2σ2
1

− logZ(σ2) +
1

2σ2
x2t

where Z(σ) = 1
σ
√
2π

, so logZ(σ) = − log(σ
√
2π).

Collecting terms gives:

− log(σ1
√
2π) + log(σ2

√
2π)

−1

2

(
1

σ2
1

− 1

σ2
2

)
x2t

+
µ1

σ2
1

xt

− µ2
1

2σ2
1

So we’ll define

a ≜ −1

2

(
1

σ2
1

− 1

σ2
2

)
b ≜

µ1

σ2
1

c ≜ − µ2
1

2σ2
1

− log(σ1
√
2π) + log(σ2

√
2π)

We’ll explicitly model log σ2
1 , log σ2

2 and µ1. Both log σ2
1 and log σ2

2 are only functions of t, not of
yt+1:T , so those can be vectors of shape T initialized at 0. µ1 is a linear function of yt+1:T and t, so
that can be parameterized by a set of T × T weights, initialized to 1/T and T biases initialized to 0.

Training Details We use a batch size of 32 for the density ratio estimation step. Since we do not
perform model learning, we do not repeatedly alternate between twist training and proposal training
for NAS-X. Instead, we first train the twist for 3,000,000 iterations with a batch size of 32 using
samples from the model. We then train the proposal for 750, 000 iterations. For the twist, we used
Adam with a learning rate schedule that starts with a constant learning rate of 1e − 3, decays the
learning by 0.3 and 0.33 at 100, 000 and 300, 000 iterations. For the proposal, we used Adam with a
constant learning rate of 1e− 3. For NASMC, we only train the proposal.

Evaluation In the right panel of Figure 1, we compare the bound gaps of NAS-X and NASMC
averaged across 20 different samples from the generative model. To obtain the bound gap for NAS-X,
we run SMC 16 times with 128 particles and with the learned proposal and twists. We then record
the average log marginal likelihood. For NASMC, we run SMC with the current learned proposal
(without any twists).

10 rSLDS

Model details The generative model is as follows. At each time t, there is a discrete latent state
zt ∈ {1, . . . , 4} as well as a two-dimensional continuous latent state xt ∈ R2. The discrete state

20

0 100 200 300 400 500

Proposal training steps (100s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z t
ab

so
lu

te
er

ro
r NAS-X, σ2

O = 0.1

NASMC, σ2
O = 0.1

0 100 200 300 400 500

Proposal training steps (100s)

0.2

0.4

0.6

0.8

1.0

x
t

ab
so

lu
te

er
ro

r NAS-X, σ2
O = 0.1

NASMC, σ2
O = 0.1

Figure 6: Inference in NASCAR experiments.

transition probabilities are given by

p(zt+1 = i | zt = j, xt) ∝ exp
(
ri +RTi xt−1

)
(39)

Here Ri and ri are weights for the discrete state zi.

These discrete latent states dictates two-dimensional latent state xt ∈ R2 which evolves according to
linear Gaussian dynamics.

xt+1 = Azt+1xt + bzt+1 + vt, vt ∼iid N (0, Qzt+1) (40)

Here Ak, Qk ∈ R2x2 and bk ∈ R2. Importantly, from Equations 40 and 39 we see that the dynamics
of the continuous latent states and discrete latents are coupled. The discrete latent states index into
specific linear dynamics and the discrete transition probabilities depend on the continuous latent state.

The observations yt ∈ R10 are linear projections of the continuous latent state xt with some additive
Gaussian noise.

yt = Cxt + d+ wt, vt ∼iid N (0, S) (41)

Here C, S ∈ R10x10 and d ∈ R10.

Proposal Parameterization We use a mean-field proposal distribution factorized over the discrete
and continuous latent variables (i.e. q(z1:T ,x1:T) = q(z1:T)q(x1:T)). For the continuous states,
q(x1:T) is a Gaussian factorized over time with parameters µ1:T and σ2

1:T . For the discrete states,
q(z1:T) is a Categorical distribution over K categories factorized over time with parameters p1:K1:T . In
total, we learn 2T + TK proposal parameters.

Twist Parameterization We parameterize the twists using a recurrent neural network (RNN) that
is trained using density ratio estimation. To produce the twist values at each timestep, we first run a
RNN backwards over the observations y1:T to produce a sequence of encodings e1:T−1. We then
concatenate the encodings of xt and zt into a single vector and pass that vector into an MLP which
outputs the twist values at each timestep. The RNN has one layer with 128 hidden units. The MLP
has 131 hidden units and ReLU activations.

Model Parameter Evaluation We closely follow the parameter initialization strategy employed by
Linderman et al. [41]. First, we use PCA to obtain a set of continuous latent states and initialize the
matrices C and d. We then fit an autoregressive HMM to the estimated continuous latent states in
order to initialize the dynamics matrices {Ak, bk}. Importantly, we do not initialize the proposal with
the continuous latent states described above.

Training Details We use a batch size of 32 for the density ratio estimation step. We alternate
between 100 steps of twist training and 100 steps of proposal training for a total of 50,000 training
steps in total. We used Adam and considered a grid search over the model, proposal, and twist
learning rates. In particular, we considered learning rates of 1e − 4, 1e − 3, 1e − 2 for the model,
proposal, and twist.

Bootstrap Bound Evaluation To obtain the log marginal likelihood bounds and standard deviations
in Table 5.2, we ran a bootstrapped particle filter (BPF) with the learned model parameters for all
three methods (NAS-X, NASMC, Laplace EM) using 1024 particles. We repeat this across 30 random
seeds. Initialization of the latent states was important for a fair comparison. To initialize the latent

21

states, for NAS-X and NASMC, we simply sampled from the learned proposal at time t = 0. To
initialize the latent state for Laplace EM, we sampled from a Gaussian distribution with the learned
dynamics variance at t = 0.

Inference Comparison In the top panel of Figure 6, we compare NAS-X and NASMC on inference
in the SLDS model. We report (average) posterior parameter recovery for the continuous and discrete
latent states across 5 random samples from the generative model. NAS-X systematically recovers
better estimates of both the discrete and continuous latent states.

11 Inference in Squid Giant Axon Model

11.1 HH Model Definition

For the inference experiments (Section 5.3.1) we used a probabilistic version of the squid giant
axon model [9, 43]. Our experimental setup was constructed to broadly match [19], and used a
single-compartment model with dynamics defined by

Cm
dv

dt
= Iext − gNam

3h(v − ENa)− ḡKn4(v − EK)− gleak(v − Eleak) (42)

dm

dt
= αm(v)(1−m)− βm(v)m (43)

dh

dt
= αh(v)(1− h)− βh(v)h (44)

dn

dt
= αn(v)(1− n)− βn(v)n (45)

where Cm is the membrane capacitance; v is the potential difference across the membrane; Iext
is the external current; ḡNa, ḡK, and ḡleak are the maximum conductances for sodium, potassium,
and leak channels; ENa, EK, and Eleak are the reversal potentials for the sodium, potassium, and
leak channels; m and h are subunit states for the sodium channels and n is the subunit state for the
potassium channels. The functions α and β that define the dynamics for n, m, and h are defined as

αm(v) =
−4− v/10

exp(−4− v/10)− 1
, βm(v) = 4 · exp((−65− v)/18) (46)

αh(v) = 0.07 · exp((−65− v)/20), βh(v) =
1

exp(−3.5− v/10) + 1
(47)

αn(v) =
−5.5− v/10

exp(−5.5− v/10)− 1
, βn(v) = 0.125 · exp((−65− v)/80) (48)

This system of ordinary differential equations defines a nonlinear dynamical system with a four-
dimensional state space: the instantaneous membrane potential v and the ion gate subunit states n, m,
and h.

As in [19], we use a probabilistic version of the original HH model that adds zero-mean Gaussian
noise to both the membrane voltage v and the “unconstrained” subunit states. The observations are
produced by adding Gaussian noise with variance σ2

y to the membrane potential v.

Specifically, let xt be the state vector of the system at time t containing (vt,mt, ht, nt), and let
φdt(x) be a function that integrates the system of ODEs defined above for a step of length dt. Then
the probabilistic HH model can be written as

p(x1:T ,y1:T) = p(x1)

T∏
t=2

p(xt | φdt(xt−1))

T∏
t=1

N (yt;xt,1, σ
2
y) (49)

where the 4-D state distributions p(x1) and p(xt | φdt(xt−1)) are defined as

p(xt | φdt(xt−1)) = N (xt,1;φdt(xt−1)1, σ
2
x,1)

4∏
i=2

LogitNormal(xt,i;φdt(xt−1)i, σ
2
x,i). (50)

22

4 8 16 32 64 128 256

Num Particles

-148

-197

-262

-347

-461

-612

-812

L
og

-l
ik

el
ih

o
o
d

lo
w

er
b

ou
n

d

Inference in Hodgkin-Huxley
50ms trace, 1 obs/ms, σ2

y = 20

FIVO-BS

FIVO

NASMC

SIXO

NAS-X

4 8 16 32 64 128 256

Num Particles

-167

-174

-181

-188

-195

-203

-211

L
og

-l
ik

el
ih

o
o
d

lo
w

er
b

ou
n

d

SIXO vs NAS-X
50ms trace, 1 obs/ms, σ2

y = 20

SIXO

NAS-X

Figure 7: HH inference performance across different numbers of particles.
(left) Log-likelihood lower bounds for proposals trained with 4 particles and evaluated across a
range of particle numbers. NAS-X’s inference performance decays only minimally as the number
of particles is decreased, while all other methods experience significant performance degradation.
(right) A comparison of SIXO and NAS-X containing the same values as the left panel, but zoomed
in. NAS-X is roughly twice as particle efficient as SIXO, and outperforms SIXO by roughly 34 nats
at 4 particles.

In words, we add Gaussian noise to the voltage (xt,1) and logit-normal noise to the gate states n,m,
and h. The logit-normal is defined as the distribution of a random variable whose logit has a Gaussian
distribution, or equivalently it is a Gaussian transformed by the sigmoid function and renormalized.
We chose the logit-normal because its values are bounded between 0 and 1, which is necessary for
the gate states.

Problem Setting For the inference experiments we sampled 10,000 noisy voltage traces from a
fixed model and used each method to train proposals (and possibly twists) to compute the marginal
likelihood assigned to the data under the true model.

As in [19], we sampled trajectories of length 50 milliseconds, with a single noisy voltage observation
every millisecond. The stability of our ODE integrator allowed us to integrate at dt = 0.1ms, meaning
that there were 10 latent states per observation.

Proposal and Twist Details Each proposal was parameterized using the combination of a bidi-
rectional recurrent neural network (RNN) that conditioned on all observed noisy voltages as well
as a dense network that conditioned on the RNN hidden state and the previous latent state xt−1

[45, 49]. The twists for SIXO and NAS-X were parameterized using an RNN run in reverse over the
observations combined with a dense network that conditioned on the reverse RNN hidden state and
the latent being ‘twisted’, xt. Both the proposal and twists were learned in an amortized manner, i.e.
they were shared across all trajectories. All RNNs had a single hidden layer of size 64, as did the
dense networks. All models were fit with ADAM [50] with proposal learning rate of 10−4 and twist
learning rate of 10−3.

A crucial aspect of fitting the proposals was defining them in terms of a ‘residual’ from the prior, a
technique known as Resq [7]. In our setting, we defined the true proposal density as proportional to
the product of a unit-variance Gaussian centered at φ(xt) and a Gaussian with parameters output
from the RNN proposal.

11.2 Experimental Results

In Figure 7 we plot the performance of proposals and twists trained with 4 particles and evaluated
across a range of particle numbers. All methods except FIVO perform roughly the same when
evaluated with 256 particles, but with lower numbers of evaluation particles the smoothing methods
emerge as more particle-efficient than the filtering methods. To achieve NAS-X’s inference perfor-

23

4 8 16 32 64 128 256

-169

-179

-189

-200

L
og

-l
ik

el
ih

o
o
d

lo
w

er
b

ou
n

d

Train num particles = 4

4 8 16 32 64 128 256

Eval Num Particles

Train num particles = 8

4 8 16 32 64 128 256

Train num particles = 16

IWAE

FIVO

NASMC

SIXO

NAS-X

Figure 8: Training HH proposals with increasing numbers of particles. HH proposal performance
plots similar to Figure 7, but trained with varying numbers of particles. Increasing the number of
particles at training time has a negligible effect on NAS-X performance in this setting, but caused
many VI-based methods to perform worse. This could be due to signal-to-noise issues in proposal
gradients, as discussed in Rainforth et al. [51].

0 5 10 15 20 25 30 35 40 45 50
80

60

40

20

0

20

40

Vo
lta

ge
 (m

V)

True Voltage
Inferred Voltage
Resampling Event

NASMC

−50

0

50

V
ol

ta
ge

(m
V

)

SIXO

True Voltage

Inferred Voltage

Resampling Event

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

−50

0

50

V
ol

ta
ge

(m
V

)

NAS-X

Figure 9: Inferred voltage traces for NASMC, SIXO, and NAS-X.
(top) NASMC exhibits poor performance, incorrectly inferring the timing of most spikes. (middle)
SIXO’s inferred voltage traces are more accurate than NASMC’s with only a single mistimed spike,
but SIXO generates a high number of resampling events leading to particle degeneracy. (bottom)
NAS-X perfectly infers the latent voltage with no mistimed spikes, and resamples very infrequently.

24

mance with 4 particles, NASMC would need 256 particles, a 64-times increase. NAS-X is also more
particle-efficient than SIXO, achieving on average a 2x particle efficiency improvement. We show
the effect of changing the number of training particles in Figure 8.

The FIVO method with a parametric proposal drastically underperformed all smoothing methods as
well as NASMC, indicating that the combination of filtering SMC and the exclusive KL divergence
leads to problems optimizing the proposal parameters. To compensate, we also evaluated the
performance of “FIVO-BS", a filtering method that uses a bootstrap proposal. This method is
identical to a bootstrap particle filter, i.e. it proposes from the model and has no trainable parameters.
FIVO-BS far outperforms standard FIVO, and is only marginally worse than NASMC in this setting.

In Figure 9 we investigate these results qualitatively by examining the inferred voltage traces of
each method. We see that NASMC struggles to produce accurate spike timings and generates
many spurious spikes, likely because it is unable to incorporate future information into its proposal
or resampling method. SIXO performs better than NASMC, accurately inferring the timing of
most spikes but resampling at a high rate. High numbers of resampling events can lead to particle
degeneracy and poor inferences. NAS-X is able to correctly infer the voltage across the whole trace
with no suprious or mistimed spikes. Furthermore NAS-X rarely resamples, indicating it has learned a
high-quality proposal that does not generate low-quality particles that must be resampled away. These
qualitative results seem to support the quantitative results in Figure 7 — SIXO’s high resampling rate
and NASMC’s filtering approach lead to lower bound values.

Table 1: Train Bound comparison
Metric NAS-X SIXO
L256

BPF −660.7003 −636.2579
L4

train −664.3528 −668.6865
L8

train −662.8712 −653.6352
L16

train −662.0753 −644.8764
L32

train −661.5387 −639.5388
L64

train −660.8040 −636.5131
L128

train −660.5102 −633.7875
L256

train −660.3423 −632.1377

12 Model Learning in Mouse Pyramidal Neuron Model

12.1 Model Definition

For the model learning experiments in Section 5.3.2 we used a generalization of the Hodgkin-Huxley
model developed for modeling mouse visual cortex neurons by the Allen Institute for Brain Science
[48, 52]. Specifically we used the perisomatic model with ID 482657528 developed to model cell
480169178. The model is detailed in the whitepaper [52] and the accompanying code, but we
reproduce the details here to ensure our work is self-contained.

Similar to the squid giant axon model, the mouse visual cortex model is composed of ion channels
that affect the current flowing in and out of the cell. Let I be the set of ions {Na+,Ca2+,K+}. Each
ion has associated with it

1. A set of channels that transport that ion, denoted Ci for i ∈ I.
2. A reversal potential, Ei.
3. An instantaneous current density, Ii, which is computed by summing the current density

flowing through each channel that transports that ion.

Correspondingly, let C be the set of all ion channels so that C = ⋃i∈I Ci. Each c ∈ C has associated
with it

1. A maximum conductance density, gc.
2. A set of subunit states, referred to collectively as the vector λc. Let λc ∈ [0, 1]dc , i.e. λc is a
dc-dimensional vector of values in the interval [0, 1].

25

3. A function gc that combines the gate values to produce a number in [0, 1] that weights the
maximum conductance density, gc · gc(λc).

4. Functions Ac(·) and bc(·) which compute the matrix and vector used in the ODE describing
λc dynamics. Ac and bc are functions of both the current membrane voltage v and calcium
concentration inside the cell [Ca2+]i. If the number of subunits (i.e. the dimensionality of
λc) is dc, then the output of Ac(v, [Ca2+]i) is a dc × dc diagonal matrix and the output of
bc(v, [Ca

2+]i) is a dc-dimensional vector.

With this notation we can write the system of ODEs

Cm
dv

dt
=
Iext
SA
− gleak(v − Eleak)−

∑
i∈ions

Ii (51)

Ii =
∑
c∈Ci

gcgc(λc)(v − Ei) (52)

dλc
dt

= Ac(v, [Ca
2+]i)λc + bc(v, [Ca

2+]i) ∀c ∈ C (53)

d[Ca2+]i
dt

= −kICa2+ −
[Ca2+]i − [Ca2+]min

τ
. (54)

Most symbols are as described earlier, SA is the membrane surface area of the neuron, [Ca2+]i is the
calcium concentration inside the cell, [Ca2+]min is the minimum interior calcium concentration with
a value of 1 nanomolar, τ is the rate of removal of calcium with a value of 80 milliseconds, and k and
is a constant with value

k = 10000 · γ

2 · F · depth (55)

where 10000 is a dimensional constant, γ is the percent of unbuffered free calcium, F is Faraday’s
constant, and depth is the depth of the calcium buffer with a value of 0.1 microns.

Because the concentration of calcium changes over time, this model calculates the reversal potential
for calcium ECa2+ using the Nernst equation

ECa2+ =
G · T
2 · F log

(
[Ca2+]o

[Ca2+]i

)
(56)

where G is the gas constant, T is the temperature in Kelvin (308.15◦), F is Faraday’s constant, and
[Ca2+]o is the extracellular calcium ion concentration which was set to 2 millimolar.

Probabilistic Model The probabilistic version of the deterministic ODEs was constructed similarly
to the probabilistic squid giant axon model — Gaussian noise was added to the voltage and uncon-
strained gate states. One difference is that the system state now includes [Ca2+]i which is constrained
to be greater than 0. To noise [Ca2+]i we added Gaussian noise in the log space, analagous to the
logit-space noise for the gate states.

Model Size The 38 learnable parameters of the model include:

1. Conductances g for all ion channels (10 parameters).

2. Reversal potentials of sodium, potassium, and the non-specific cation: EK+ , ENa+ , and
ENSC+ .

3. The membrane surface area and specific capacitance.

4. Leak channel reversal potential and max conductance density.

5. The calcium decay rate and free calcium percent.

6. Gaussian noise variances for the voltage v and interior calcium concentration [Ca2+]i.

7. Gaussian noise variances for all subunit states (16 parameters).

8. Observation noise variance.

26

The 18-dimensional state includes:

1. Voltage v

2. Interior calcium concentration [Ca2+]i

3. All subunit states (16 dimensions)

12.2 Channel Definitions

In this section we provide a list of all ion channels used in the model. In the following equations we
often use the function exprel which is defined as

exprel(x) =

1 if x = 0
exp(x)− 1

x
otherwise

(57)

A numerically stable implementation of this function was critical to training our models.

Additionally, many of the channel equations below contain a ‘temperature correction’ qt that adjusts
for the fact that the original experiments and Allen Institute experiments were not done at the same
temperature. In those equations, T is the temperature in Celsius which was 35◦.

12.2.1 Transient Na+

From Colbert and Pan [53].

λc = (m,h), gc(λc) = m3h

1

qt

dm

dt
= αm(v)(1−m)− βm(v)m

1

qt

dh

dt
= αh(v)(1− h)− βh(v)h

qt = 2.3(
T−23

10)

αm(v) =
0.182 · 6

exprel(−(v + 40)/6)
, βm(v) =

0.124 · 6
exprel((v + 40)/6)

αh(v) =
0.015 · 6

exprel((v + 66)/6)
, βh(v) =

0.015 · 6
exprel(−(v + 66)/6)

12.2.2 Persistent Na+

From Magistretti and Alonso [54].

λc = h, gc(λc) = m∞h

m∞ =
1

1 + exp(−(v + 52.6)/4.6)

1

qt

dh

dt
= αh(v)(1− h)− βh(v)h

qt = 2.3(
T−21

10)

αh(v) =
2.88× 10−6 · 4.63

exprel((v + 17.013)/4.63)
, βh(v) =

6.94× 10−6 · 2.63
exprel(−(v + 64.4)/2.63)

12.2.3 Hyperpolarization-activated cation conductance

From Kole et al. [55]. This channel uses a ‘nonspecific cation current’ meaning it can transport any
cation. In practice, this is modeled by giving it its own special ion NSC+ with resting potential

27

ENSC+ .
λc = m, gc(λc) = m

ENSC+ = −45.0
dm

dt
= αm(v)(1−m)− βm(v)m

αm(v) =
0.001 · 6.43 · 11.9

exprel((v + 154.9)/11.9)
, βm(v) = 0.001 · 193 · exp(v/33.1)

12.2.4 High-voltage-activated Ca2+ conductance

From Reuveni et al. [56]
λc = (m,h), gc(λc) = m2h

dm

dt
= αm(v)(1−m)− βm(v)m

dh

dt
= αh(v)(1− h)− βh(v)h

αm(v) =
0.055 · 3.8

exprel(−(v + 27)/3.8)
, βm(v) = 0.94 · exp(−(v + 75)/17)

αh(v) = 0.000457 · exp(−(v + 13)/50), βh(v) =
0.0065

exp(−(v + 15)/28) + 1

12.2.5 Low-voltage-activated Ca2+ conductance

From Avery and Johnston [57], Randall and Tsien [58].
λc = (m,h), gc(λc) = m2h

1

qt

dm

dt
=
m∞ −m
mτ

1

qt

dh

dt
=
h∞ − h
hτ

qt =2.3(T−21)/10

m∞ =
1

1 + exp(−(v + 40)/6)
, mτ = 5 +

20

1 + exp((v + 35)/5)

h∞ =
1

1 + exp((v + 90)/6.4)
, hτ = 20 +

50

1 + exp((v + 50)/7)

12.2.6 M-type (Kv7) K+ conductance

From Adams et al. [59].
λc = m, gc(λc) = m

1

qt

dm

dt
= αm(v)(1−m)− βm(v)m

qt = 2.3(
T−21

10)

αm(v) = 0.0033 exp(0.1(v + 35)), βm(v) = 0.0033 · exp(−0.1(v + 35))

12.2.7 Kv3-like K+ conductance

λc = m, gc(λc) = m

dm

dt
=
m∞ −m
mτ

m∞ =
1

1 + exp(−(v − 18.7)/9.7)
, mτ =

4

1 + exp(−(v + 46.56)/44.14)

28

12.2.8 Fast inactivating (transient, Kv4-like) K+ conductance

From Korngreen and Sakmann [60].

λc = (m,h), gc(λc) = m4h

1

qt

dm

dt
=
m∞ −m
mτ

1

qt

dh

dt
=
h∞ − h
hτ

qt =2.3(T−21)/10

m∞ =
1

1 + exp(−(v + 47)/29)
, mτ = 0.34 +

0.92

exp(((v + 71)/59)2)

h∞ =
1

1 + exp((v + 66)/10)
, hτ = 8 +

49

exp(((v + 73)/23)2)

g = 1× 10−5

12.2.9 Slow inactivating (persistent) K+ conductance

From Korngreen and Sakmann [60].

λc = (m,h), gc(λc) = m2h

1

qt

dm

dt
=
m∞ −m
mτ

1

qt

dh

dt
=
h∞ − h
hτ

qt =2.3(T−21)/10

m∞ =
1

1 + exp(−(v + 14.3)/14.6)

mτ =

{
1.25 + 175.03 · e0.026v, if v < −50
1.25 + 13 · e−0.026v, if v ≥ −50

h∞ =
1

1 + exp((v + 54)/11)

hτ =
24v + 2690

exp(((v + 75)/48)2)

g = 1× 10−5

12.2.10 SK-type calcium-activated K+ conductance

From Köhler et al. [61]. Note this is the only calcium-gated ion channel in the model.

λc = z, gc(λc) = z

dz

dt
=
z∞ − z
zτ

z∞ =
1

1 + (0.00043/[Ca2+]i)4.8
, zτ = 1

12.3 Training Details

Dataset The dataset used to fit the model was a subset of the stimulus/response pairs available
from the Allen Institute. First, all stimuli and responses were downloaded for cell 480169178. Then,
sections of length 200 milliseconds were extracted from a subset of the stimuli types. The stimuli
types and sections were chosen so that the neuron was at rest and unstimulated at the beginning of
the trace. We list the exclusion criteria below.

29

1. Any “Hold” stimuli: Excluded because these traces were collected under voltage clamp
conditions which we did not model.

2. Test: Excluded because the stimulus is 0 mV for the entire trace.
3. Ramp/Ramp to Rheobase: Excluded because the cell is only at rest at the very beginning of

the trace.
4. Short Square: 250 ms to 450 ms.
5. Short Square — Triple: 1250 ms to 1450 ms.
6. Noise 1 and Noise 2: 1250 ms to 1450 ms, 9250 ms to 9450 ms, 17250 ms to 17450 ms.
7. Long Square: 250 ms to 450 ms.
8. Square — 0.5ms Subthreshold: The entire trace.
9. Square — 2s Suprathreshold: 250 ms to 450 ms.

10. All others: Excluded.

For cell 480169178, the criteria above selected 95 stimulus/response pairs of 200 milliseconds each.
Each trace pair was then downsampled to 1 ms (from the original 0.005 ms per step) and corrupted
with mean-zero Gaussian noise of variance 20 mV2 to simulate voltage imaging conditions. Finally,
the 95 traces were randomly split into 72 training traces and 23 test traces.

Proposal and Twist The proposal and twist hyperparameters were broadly similar to the squid
axon experiments, with the proposal being parameterized by a bidirectional RNN with a single hidden
layer of size 64 and an MLP with a single hidden layer of size 64. The RNN was conditioned on the
observed response and stimulus voltages at each timestep, and the MLP accepted the RNN hidden
state, the previous latent state, and a transformer positional encoding of the number of steps since
the last voltage response observation. The twist was similarly parameterized using an RNN run in
reverse across the stimulus and response, combined with an MLP that accepted the RNN hidden
state, the latent state being evaluated, and a transformer positional encoding of the number of steps
elapsed since the last voltage response observation. The positional encodings were used to inform the
twist and proposal of the number of steps elapsed since the last observation because the model was
integrated with a stepsize of 0.1ms while observations were received once every millisecond.

Hyperparameter Sweeps To evaluate the methods we swept across the parameters

1. Initial observation variance: e2, e3, e5

2. Initial voltage dynamics variance: e, e2, e3

3. Bias added to scales produced by the proposal: e2, e5

We also evaluated the models across three different data noise variances (20, 10, and 5) but the results
were similar for all values, so we reported only the results for variance 20. This amounted to 3 ·3 ·3 ·2
different hyperparameter settings, and 5 seeds were run for each setting yielding a total of 270 runs.

When computing final performance, a hyperparameter setting was only evaluated if it had at least
3 runs that achieved 250,000 steps without NaN-ing out. For each hyperparameter setting selected
for evaluation, all successful seeds were evaluated using early stopping on the train 4-particle log
likelihood lower bound.

13 Strang Splitting for Hodgkin-Huxley Models

Because the Hodgkin-Huxley model is a stiff ODE, integrating it can be a challenge, especially at
large step sizes. The traditional solution is to use an implicit integration scheme with varying step
size, allowing the algorithm to take large steps when the voltage is not spiking. However, because our
model adds noise to the ODE state at each timestep adaptive step-size methods are not viable as the
different stepsizes would change the noise distribution.

Instead, we sought an explicit, fixed step-size method that could be stably integrated at relatively large
stepsizes. Inspired by Chen et al. [47], we developed a splitting approach that exploits the conditional
linearity of the system. The system of ODEs describing the model can be split into two subsystems

30

0 500 1000 1500 2000 2500 3000

Twist training steps

10−1

100

101

T
w

is
t

p
ar

am
et

er
er

ro
r

0 500 1000 1500 2000 2500 3000

Twist training steps

0.65

0.70

0.75

0.80

T
w

is
t

ac
cu

ra
cy

Figure 10: Twist learning in LG-SSM. (left) Twist parameter error relative to optimal twist param-
eters for LG-SSM task; (right) Classification accuracy of learned twist. With an appropriate twist
parameterization, twist learning via density ratio estimation is robust.

of linear first-order ODEs when conditioned on the state of the other subsystem. Specifically, the
dynamics of the channel subunit states {λc | c ∈ C} is a system of linear first-order ODEs when
conditioned on the voltage v and interior calcium concentration [Ca2+]i. Similarly, the dynamics for
v and [Ca2+]i is a system of linear first-order ODEs when conditioned on the subunit states.

Because the conditional dynamics of each subsystem are linear first-order ODEs, an exact solution to
each subsystem is possible under the assumption that the states being conditioned on are constant for
the duration of the step. Our integration approach uses these exact updates in an alternating fashion,
first performing an exact update to the voltage and interior calcium concentration while holding the
subunit states constant, and then performing an exact update to the subunit states while holding the
voltage and interior calcium concentration constant. For details on Strang and other splitting methods
applied to Hodgkin-Huxley type ODEs, see [47].

14 Robustness of Twist Learning

NAS-X uses SIXO’s twist learning framework to approximate the smoothing distributions. The
twist learning approaches involves density ratio estimation. In brief, the density ratio estimation
procedure involves training a classifier to distinguish between samples from pθ(xt | yt+1:T) and
pθ(xt). These samples can be obtained from the generative model. For details see Section 2.2. In
principle, incorporating twists complicates the overall learning problem and traditional methods
for twist learning can indeed be challenging. However, in practice, twist learning using the SIXO
framework is robust and easy. In Figure 10, we present twist parameter recovery and classification
accuracy for the Gaussian SSM experiments (Section 5.1); in this setting, the optimal twists have
a known parametric form. The optimal twist parameters are recovered quickly, the classification
accuracy is high, and training is stable. This suggests that, with an appropriate twist parameterization,
twist learning via density ratio estimation is tractable and straightforward.

15 Computational Complexity and Wall-clock Time

Theoretically, all multi-particle methods considered (NAS-X, SIXO, FIVO, NASMC, RWS, IWAE)
have O(KT) time complexity, where K is the number of particles and T is the number of time steps.
Once concern is that the resampling operation in SMC could require super-linear time in the number
of particles, but drawing K samples from a K-category discrete distribution can be accomplished
in O(K) time using the alias method [62, 63]. Additionally, for NAS-X, evaluating the twists is
amortized across timesteps as in Lawson et al. [19], giving time linear in T .

NAS-X and SIXO have similar wall-clock speeds but are slower than FIVO and NASMC, primarily
because of twist training, see Table 2. Even if FIVO and NASMC were run with more particles to
equalize wall-clock times, they would still far underperform NAS-X in log marginal likelihood lower
bounds, see Figure 7.

Specifically, SIXO and NAS-X take 3.5x longer per step than NASMC and FIVO and 2.5x longer per
step than RWS and IWAE. However, Figure 7 shows that FIVO, NASMC, IWAE, and RWS cannot
match NAS-X’s performance even with 64 times more computation (4 vs. 256 particles). SIXO only
matches NAS-X’s performance with 4x as many particles (4 vs. 16 particles). Therefore, NAS-X
uses computational resources much more effectively than other methods.

31

Method ms / global step ms / proposal step ms / twist step
IWAE 70.3± 15.9 70.3± 15.9 N/A
RWS 71.6± 8.2 71.6± 8.2 N/A
NASMC 53.9± 6.6 53.9± 6.6 N/A
FIVO 51.4± 13.3 51.4± 13.3 N/A
NAS-X 163.2± 39.8 73.5± 18.5 89.7± 21.3
SIXO 175.3± 42.4 85.6± 21.1 89.7± 21.3

Table 2: Wall-clock speeds of various methods during HH inference.

0 100 200 300
Proposal training steps (1000s)

10−3

10−1

101

103

G
ra

d
ie

nt
va

ri
an

ce
s

0 100 200 300
Proposal training steps (1000s)

100

101

G
ra

d
ie

nt
b

ia
s

0 100 200 300
Proposal training steps (1000s)

−104

−103

L
M

L
lo

w
er

b
ou

n
d

NAS-X

NASMC

SIXO

RWS

FIVO

IWAE

Figure 11: Hodgkin-Huxley gradient variances (left) gradient bias (middle), and log-marginal
likelihood lower bounds (right) over training.

16 Empirical analysis of bias and variance of gradients

In Figure 11, we analyze the gradient variance and bias for the Hodgkin-Huxley experiments,
supplementing our theoretical analyses in Section 3.1. Figure 11 (left) shows NAS-X attains lower
variance gradient estimates than IWAE, FIVO, and SIXO with comparable variance to RWS. We also
studied the bias (middle) by approximating the true gradient by running a bootstrap particle filter with
256 particles using the best proposal from the inference experiments. NAS-X’s gradients are lower
bias than all methods but FIVO, but FIVO’s gradients are also the highest variance. We hypothesize
that FIVO’s gradients appear less biased because its parameters are pushed towards degenerate values
where gradient estimation is “easier”. We illustrate this in the right panel, where we plot log-marginal
likelihood bounds.

32

	Introduction
	Background
	Reweighted Wake-Sleep
	Estimating Posterior Expectations with Smoothing Sequential Monte Carlo

	NAS-X: Neural Adaptive Smoothing via Twisting
	Theoretical Analysis of NAS-X

	Related Work
	Experiments
	Linear Gaussian State Space Model
	Switching Linear Dynamical Systems
	Biophysical Models of Neuronal Dynamics
	Hodgkin-Huxley Inference Results
	Hodgkin-Huxley Model Learning Results

	Conclusion
	Theoretical Analyses
	Derivations
	Gradient of the Marginal Likelihood
	Gradient of Inclusive KL Divergence
	Density Ratio Estimation via Classification

	LGSSM
	rSLDS
	Inference in Squid Giant Axon Model
	HH Model Definition
	Experimental Results

	Model Learning in Mouse Pyramidal Neuron Model
	Model Definition
	Channel Definitions
	Transient Na+
	Persistent Na+
	Hyperpolarization-activated cation conductance
	High-voltage-activated Ca 2+ conductance
	Low-voltage-activated Ca 2+ conductance
	M-type (Kv7) K+ conductance
	Kv3-like K+ conductance
	Fast inactivating (transient, Kv4-like) K+ conductance
	Slow inactivating (persistent) K+ conductance
	SK-type calcium-activated K+ conductance

	Training Details

	Strang Splitting for Hodgkin-Huxley Models
	Robustness of Twist Learning
	Computational Complexity and Wall-clock Time
	Empirical analysis of bias and variance of gradients

