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Abstract001

Recent advancements in Large Language Mod-002
els (LLMs) have paved the way for Vision003
Large Language Models (VLLMs) capable of004
performing a wide range of visual understand-005
ing tasks. While LLMs have demonstrated006
impressive performance on standard natural007
images, their capabilities have not been thor-008
oughly explored in cluttered datasets where009
there is complex environment having deformed010
shaped objects. In this work, we introduce a011
novel dataset specifically designed for waste012
classification in real-world scenarios, character-013
ized by complex environments and deformed014
shaped objects. Along with this dataset, we015
present an in-depth evaluation approach to rig-016
orously assess the robustness and accuracy of017
VLLMs. The introduced dataset and compre-018
hensive analysis provide valuable insights into019
the performance of VLLMs under challenging020
conditions. Our findings highlight the critical021
need for further advancements in VLLM’s ro-022
bustness to perform better in complex environ-023
ments. The dataset and code for our experi-024
ments will be made publicly available.025

1 Introduction026

In recent years, Large Language Models (LLMs)027

(Chung et al., 2024; Achiam et al., 2023; Tou-028

vron et al., 2023) have demonstrated exceptional029

abilities to comprehend, reason, and generate text030

across a wide range of open-ended tasks. Notably,031

PaLM 2 (Anil et al., 2023) excels in common-032

sense reasoning, multilingual capabilities, and ad-033

vanced coding, while Falcon (Penedo et al., 2023)034

shows excellent performance in multiple Natural035

Language Processing(NLP) tasks. This success of036

LLMs is attributed to their superior performance on037

various tasks (Qin et al., 2023; Devlin et al., 2019).038

Building on the advancements of LLMs, Vision-039

Language Models (VLLMs) have emerged, lever-040

aging aligned image-text data from web imagery041

and manual annotations to facilitate effective self- 042

supervised vision-language modeling, including 043

caption generation (Vinyals et al., 2015; Chou 044

et al., 2020). This progress is exemplified by 045

models like multimodal GPT-4 (Achiam et al., 046

2023; Liu et al., 2023) and open-source initia- 047

tives such as LLaVA (Liu et al., 2024). These 048

VLLMs, developed through generative pretrain- 049

ing and instruction-tuning, excel in zero-shot task 050

completion across a variety of user-oriented mul- 051

timodal tasks. Their advanced capabilities are 052

paving the way for the development of versatile 053

multimodal conversational assistants with exten- 054

sive applications in real-world scenarios (Hu et al., 055

2023). Vision Large Language Models (VLLMs) 056

(Zhu et al., 2024; Shao et al., 2023; Yu et al., 2023) 057

have demonstrated remarkable capabilities in en- 058

gaging with visual content, offering a wide range of 059

potential applications. While several benchmarks 060

have been suggested to evaluate these capabilities, 061

there are still challenges and opportunities for fur- 062

ther development in this field (Yu et al., 2023; Shi 063

et al., 2023). Notably, domains such as waste clas- 064

sification and segregation for improved recycling, 065

reducing material generation, and minimizing envi- 066

ronmental impact present significant opportunities. 067

These advancements can lead to a substantial posi- 068

tive impact on environmental sustainability. 069

Motivated by the wide-scale applications of Vi- 070

sion Large Language Models (VLLMs) and the 071

lack of comprehensive benchmarking efforts for 072

complex visual environments, especially for waste, 073

we present a new benchmark, Waste-Bench, to thor- 074

oughly assess the performance of VLLMs. As 075

shown in Figure 3, Waste-Bench evaluates VLLMs 076

on key aspects of single and multi-class recognition, 077

robustness, and reasoning in visual tasks. It en- 078

compasses scenarios that closely mimic real-world 079

conditions, including cluttered waste images with 080

deformed objects. Waste-Bench is an open-ended 081

visual QA and classification benchmark focusing 082
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‘Q’ : What is the material of the object labeled as  
‘LEADERSHIP’?
 ‘A’: The object labeled as ‘LEADERSHIP’ is made of 
metal.

‘Q’ : How many soft-plastic items are there in the 
image?  
 ‘A’: There are two soft-plastic items in the image.

‘Q’ : What is the color of the small clear plastic?
‘A’: The small clear plastic is blue.

‘Q’: Is there any rigid plastic in the image? 
‘A’: No, there is no rigid plastic bag in the image.

‘Q’ : What is the material of the small container in the 
image?
’A’ : The small container is made of glass.

‘Q’ :  What is the color of the largest cardboard box?
‘A’ :  The color of the largest cardboard box is blue.
.

‘Q’ :  How many soft plastic items are in the image? 
 ‘A’ :  There are 4 Capr isun juice pouches and 1 small 
plastic bag, so there are 5 soft plastic items in the image.

‘Q’ : Are all the cardboard boxes the same size? 
‘A’  : All the cardboard boxes are the same size.
.

‘Q’ : Can you identify the types of waste materials 
present in the image?
‘A’ : The types of waste materials present in the image 
are paper, plastic, metal, glass, and organic waste.

Figure 1: Examples illustrating the challenges faced by models in interpreting cluttered scenes. The model struggles
with recognizing shapes, counting objects, comparing material sizes, and identifying deformed and unrecognized
objects. The cluttered environment and deformed shapes significantly impact the model’s accuracy across different
scenarios, as revealed by the specific questions accompanying each image.

on waste recycling. The performance of VLLMs083

on the Waste-Bench benchmark reveals that these084

models struggle to accurately comprehend complex085

visual environments and identify objects, particu-086

larly in cluttered scenes and when dealing with de-087

formed shapes, counting tasks, and other challeng-088

ing aspects as given in Figure 1. Extensive quantita-089

tive and qualitative analyses using the Waste-Bench090

benchmark provide important insights into these091

VLLMs based on their failure cases and individual092

performances across diverse visual scenarios. As il-093

lustrated in Figure 1, these shortcomings highlight094

the need for improved robustness and reasoning ca-095

pabilities in VLLMs to better handle the intricacies096

of real-world environments. Our main contribu-097

tions can be highlighted as below:098

• We present Waste-Bench, a comprehensive099

benchmark designed to assess the robustness100

and reasoning capabilities of Vision Large101

Language Models (VLLMs) in waste classi-102

fication, reflecting the complexities of real-103

world applications.104

• We comprehensively evaluate a range of105

VLLMs, including both open-source and106

closed-source models. Our evaluation reveals107

that most models exhibit significant perfor-108

mance challenges, highlighting their limited109

reasoning capabilities in cluttered scenes with 110

deformed shaped objects. 111

• We extensively analyze VLLMs on the Waste- 112

Bench benchmark, focusing on scenarios 113

where models struggle, such as identifying 114

deformed shapes, navigating cluttered scenes, 115

and performing counting tasks. Our findings 116

provide insights to enhance future human- 117

centric AI systems’ robustness and reasoning 118

for waste classification and management. 119

2 Related Work 120

Vision Large Language Models(VLLMs) (Zhu 121

et al., 2024; Shao et al., 2023) have demonstrated 122

remarkable capabilities in engaging with visual 123

content, offering a wide range of potential appli- 124

cations. Notable models in this domain include 125

Qwen (Bai et al., 2023), which has consistently 126

demonstrated superior performance across various 127

downstream tasks. LLaVA (Liu et al., 2024) and 128

CogVLM (Wang et al., 2023) have shown robust 129

capabilities in integrating vision and language, en- 130

abling them to excel in multimodal tasks. MiniGPT- 131

4 and InstructBLIP (Zhu et al., 2024; Dai et al., 132

2024) further enhance these capabilities by lever- 133

aging generative pretraining and instruction-tuning 134

to achieve strong zero-shot task completion. Addi- 135

tionally, Gemini-Pro (Reid et al., 2024) exemplifies 136
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Figure 2: Waste-Bench Overview. Left: Illustration of the most frequent keywords in the answer set of the Waste-
Bench benchmark. Right: Frequency distribution of question types.

state-of-the-art performance with its advanced rea-137

soning and interaction capabilities, paving the way138

for the development of versatile multimodal con-139

versational assistants. All these models perform ex-140

tremely well on wide range of image understanding141

tasks like caption generation, visual question an-142

swring and so on. These models accept both visual143

and textual inputs and generate textual responses.144

From an architectural perspective, Vision Large145

Language Models (VLLMs) typically combine pre-146

trained vision backbones (Fang et al., 2023) with147

large language models (Touvron et al., 2023; Zheng148

et al., 2023) using connector modules such as MLP149

adapters, Q-former (Dai et al., 2024), and gated150

attention (Alayrac et al., 2022).151

Benchmarking VLLMs With the growing number152

of VLLMs emerging in the research community,153

several benchmarks have been proposed to evalu-154

ate and quantify these models for benchmarking155

and analysis purposes. Notable benchmarks in this156

domain include SEED-Bench (Li et al., 2023b),157

which evaluates the visual capabilities of both im-158

age and video LMMs across multiple dimensions,159

and MV-Bench (Li et al., 2023a), which curates160

challenging tasks to evaluate the spatial and tempo-161

ral understanding of VLLMs. While these bench-162

marks provide effective insights into model per-163

formance, they primarily focus on general visual164

comprehension metrics.165

Additionally, LVLM-eHub (Xu et al., 2023)166

offers an interactive model comparison platform167

through image-related queries, allowing for a168

more dynamic evaluation of VLLMs. OwlEval169

(Zhou et al., 2023) and MM-Vet (Zhang et al.,170

2024) further underscore comprehensive Vision-171

Language(VL) skills by introducing evaluation met-172

rics that transcend mere model hierarchies. MME173

(Chen et al., 2022) also stands out by providing174

a multi-modal evaluation framework that assesses 175

the integration of vision and language capabilities. 176

These benchmarks contribute to a more holistic 177

understanding of VLLM performance in various 178

complex and realistic scenarios. 179

In contrast, Waste-Bench is a comprehensive 180

benchmark designed to assess the robustness and 181

reasoning capabilities of VLLMs in waste classi- 182

fication. The Waste-Bench benchmark includes 183

scenarios with cluttered images and deformed ob- 184

jects to simulate real-world conditions. It aims to 185

thoroughly evaluate the performance of VLLMs in 186

challenging visual environments, providing a more 187

rigorous assessment than existing benchmarks. 188

3 Waste-Bench 189

In this work, our objective is to develop a compre- 190

hensive benchmark to evaluate the robustness and 191

reasoning capabilities of Vision Large Language 192

Models (VLLMs) in various complex and cluttered 193

visual environments, spanning diverse scenarios. 194

To achieve this, we introduce Waste-Bench. Ini- 195

tially, we offer a holistic overview of Waste-Bench 196

and outline the diversity of questions it contains. 197

Following this, we detail the creation process of 198

Waste-Bench in Section 3.2. Performance evalua- 199

tion including experiments and results are given in 200

Section 4. 201

3.1 Waste-Bench Dataset 202

Waste-Bench encompasses 11 different question 203

categories and 9,520 high-quality open-ended 204

question-answer (QA) pairs, spanning 952 high- 205

quality images with an average of 10 questions per 206

image. These questions cover diverse categories 207

related to real-world waste classification scenarios, 208

including individual classification of waste classes, 209

multi-class classification, shapes of objects, and 210
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Figure 3: Left: Waste-Bench comprises of 11 diverse complex quesiton categories encompassing a variety of waste
images context. Right: Overall performance of VLMMs across the images.

colors. This comprehensive dataset is designed to211

rigorously test the capabilities of Vision Large Lan-212

guage Models (VLLMs) in handling complex and213

cluttered visual environments.In Figure 2 (right),214

we present the distribution of different question215

types in Waste-Bench, aimed at evaluating model216

robustness related to classification categories. Fig-217

ure 2 (left) shows a word cloud of frequent key-218

words in the answer set, emphasizing objects and219

attributes relevant to waste classification.220

3.1.1 Waste-Bench Different Question Types221

To assess the robustness and reasoning capabilities222

of Vision Large Language Models (VLLMs) in the223

Waste-Bench benchmark, we ensure it contains var-224

ious question types to encompass a wide range of225

real-world complex and cluttered visual environ-226

ments within each image. Below, we provide a227

detailed definition of the Waste-Bench as given in228

Figure 3.229

• Single Class Classification (Cardboard, Metal,230

Soft Plastic, Rigid Plastic): This category in-231

cludes questions that require the model to232

classify individual waste items into one of233

the specified single classes. The questions234

aim to determine whether the model can ac-235

curately identify and distinguish between dif-236

ferent types of materials commonly found in237

waste.238

• Multiclass Categorization: In this category,239

the models are challenged with images con-240

taining multiple deformed waste items that241

need to be classified into more than one cat-242

egory. The goal is to assess the model’s abil-243

ity to handle complex scenes where multiple244

waste types are present and need to be accu-245

rately categorized.246

• Counting: This category involves tasks where 247

the model must count the number of specific 248

items or categories within an image. For 249

example, counting the number of cardboard 250

pieces or the number of recyclable items in 251

a cluttered environment. The questions are 252

designed to evaluate the model’s precision in 253

quantifying objects in a scene. 254

• Color Diversity: This question type tests the 255

model’s ability to distinguish and identify 256

items based on color. Tasks in this category 257

include identifying objects of a specific color 258

or categorizing items by color diversity. It as- 259

sesses the model’s capability to utilize color 260

as a key feature in classification. 261

• Geometric Shape Analysis: This category of 262

questions focuses on the model’s ability to rec- 263

ognize and categorize objects based on their 264

geometric shapes. Questions involve identify- 265

ing items with specific shapes, such as cylin- 266

drical, circular or rectangular objects, which 267

are common in waste sorting processes. 268

• Complex and Cluttered Environment: This 269

category includes questions to evaluate the 270

model’s performance in recognizing and rea- 271

soning about the environment in which waste 272

is found. Model evaluates whether waste is 273

in an indoor or outdoor setting. It includes 274

questions that require comprehensive image 275

analysis. 276

• Condition Evaluation: In this category, the 277

model must evaluate the condition of waste 278

items. This includes assessing whether items 279

are intact, twisted, clean or dirty. The ques- 280

tions are designed to test the model’s ability 281
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to make nuanced judgments about the state of282

objects.283

• Similarity Metric: These questions require the284

model to compare and determine the similarity285

between different waste items. For example,286

identifying items that belong to the same cate-287

gory or have similar features. It assesses the288

model’s ability to draw comparisons and make289

associations based on visual features, robust-290

ness in recognizing objects in challenging set-291

tings, and adaptability to varying conditions.292

• Combined Classification and Counting: This293

category merges classification and counting294

tasks, requiring the model to not only clas-295

sify multiple items in a scene but also provide296

accurate counts for each category. This com-297

bined approach tests the model’s capability to298

perform multiple reasoning tasks simultane-299

ously.300

These question types present in our dataset help301

to rigorously test the capabilities of VLLMs in302

handling the intricacies of waste classification in303

complex and cluttered environments.304

3.2 Building Waste Bench Benchmark305

After defining the waste dataset question cate-306

gories, we now proceed to building the Waste-307

Bench benchmark, which consists of four steps.308

Each step is presented in detail below, and can be309

visually explored in Figure 4.310

Stage 1: Data Collection and Annotation. We311

thoroughly reviewed various datasets to find those312

that represent waste images within cluttered en-313

vironments. We meticulously pre-processed the314

metadata provided with the images to ensure ac-315

curate representation of the categories assigned to316

each image. The test dataset contains 952 images.317

Following the image collection process, we utilized318

the Gemini-Vision model to generate high-quality319

captions for these images. These captions were320

subsequently verified by experienced human an-321

notators. We adhered to stringent annotation and322

verification instructions to ensure a robust and reli-323

able set of captions. The prompt used for generat-324

ing captions is provided in Figure 4. Personalized325

annotation guidelines were used for each image326

category to ensure accuracy.327

Stage 2: Question-Answer Generation The first328

challenge is to select an evaluation setting to assess329

VLLMs. Inspired by human interaction in day-to- 330

day life, we aim to simulate a similar style of in- 331

teraction with VLLMs by curating open-ended QA 332

pairs to evaluate these models for robustness and 333

reasoning. We feed detailed ground-truth image 334

captions to GPT-3.5, which are utilized to generate 335

open-ended questions covering both reasoning and 336

robustness aspects. With VLLMs being increas- 337

ingly integrated into waste management systems, 338

it’s crucial to validate their ability to accurately 339

analyze and respond to questions about waste ob- 340

jects in cluttered environments. In evaluating the 341

capabilities of VLLMs, our goal is to determine 342

whether these models can understand the input im- 343

age not only by analyzing spatial content and rec- 344

ognizing classes but also by comprehending the 345

underlying rationale behind the depicted waste ob- 346

jects and their relationships with the surrounding 347

context. This involves creating questions that go 348

beyond simple image comprehension and require 349

the model to engage in complex logical inference 350

and contextual understanding. Specifically, we cre- 351

ate question types that test the model’s ability to 352

classify objects based on recognition, color, shape, 353

single class, multiclass, condition, and other rele- 354

vant aspects in complex, cluttered settings. It was 355

particularly challenging to ensure that the models 356

not only correctly analyzed the images but also 357

responded accurately and appropriately to the ques- 358

tions posed. Example prompts used as instructions 359

to LLMs for curating QA pairs are provided in Fig- 360

ure 4. 361

Stage 3: QA Pairs Filtration After generating QA 362

pairs, a manual filtration step is employed, with 363

human assistance to verify each generated QA pair. 364

Therefore, an exhaustive filtering process is con- 365

ducted which involves QA rectification and remov- 366

ing those samples which are not relevant to the 367

image or evaluation type. This process results in 368

a final set of 9552 high-quality QA pairs for the 369

Waste-Bench benchmark. 370

Stage 4: Evaluation Procedure Previous methods 371

in the literature have explored using LLM mod- 372

els as judges for quantifying results in open-ended 373

QA benchmarks. We adopt a similar approach and 374

instruct LLMs to act as evaluators to assess the 375

correctness of predicted responses from VLLMs 376

compared to ground-truth answers. We generate 377

open-ended predictions from VLLMs by providing 378

image-question pairs as inputs and then present the 379

model predictions and their corresponding ground- 380

truth responses to the LLM Judge alongside the 381
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An image of  crumpled 
waste with plastic , papers 

and cardboard.

Prompts for Question Generation

You are a helpful and intelligent AI assistant which can curate
high-quality and challenging questions and corresponding 
answers. Given an image depicting waste materials in a 

cluttered environment, with the following detailed 
caption explaining the scene: The caption is: {caption content}. 

Formulate 10 diverse questions …

An Image of Cluttered dataset

GPT-4 Evaluation Waste-Bench

I

II

Caption

 You are a smart image-understanding agent for image captioning. The 
given image depicts various waste materials.
{my-string}. Describe their physical appearance and overall scene 
environment. Make sure to provide information only for the items given in 
the context. Now proceed with providing the detailed caption using the 
given context.'''

Caption Generation Prompt

Human Verification

“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image

 “Q”  What is the overall environment in the image?
“A” The overall environment depicted in the image is one of 
waste”
…..

La
rg

e 
La

ng
ua

ge
 

M
od
el

(L
LM

)

Gemini-Pro

Question Answers

Human-Verification 
“Q”  What is the color of the cardboard box in the image?
”A”  The cardboard box in the image is brown

“Q” How many soft plastic items are present in the image?
“A” There are three soft plastic items in the image
….

Question Answers

Figure 4: Step I: Gemini-Pro generates detailed captions for images of waste, which are then verified by human
annotators. Step II: Nearly 10k diverse questions are generated from these captions, evaluated by GPT-4, and
verified by humans.

evaluation prompt. The Judge determines whether382

the prediction is correct or incorrect through a bi-383

nary judgment, assigns a score from 1 to 5 repre-384

senting the quality of the prediction, and provides385

reasoning to explain its decision. The evaluation386

prompt used in our case is shown in Figure 5.

Figure 5: The prompt is designed to enable the Lan-
guage Model to act as an evaluation judge, assessing
and scoring the performance of VLLMs. It categorizes
responses as accurate or not and assigns a score from 1
to 5 based on the correctness and quality of the predic-
tion. Additionally, it also provides the reasoning.

387

4 Performance Evaluation on 388

Waste-Bench 389

Both open-soruce and closed-source models are ex- 390

plored and selected for the evaluation. We evaluate 391

six models in total where among the open-source 392

models, we evaluate five recent VLLMs, including 393

InstructBLIP, LLaVA-1.6, CogVLM, Qwen-VL, 394

and MiniGPT-4. For evaluating closed-source mod- 395

els, we use Gemini-Pro. 396

4.1 Main Experiments on Waste-Bench 397

In Table 1, we present the evaluation results of 398

various Vision Large Language Models (VLLMs) 399

across accuracy metrics on the Waste-Bench 400

dataset. We analyse these results and present sev- 401

eral key findigs. 402

Open Source VLLMs Struggle on Waste Bench 403

having cluttered environment : All open-source 404

VLLMs find it challenging to perform well and 405

thus show inferiror performance when evaluated 406

on the Waste-Bench dataset, particularly in clut- 407

tered scenes. Additionally cluttered scenes filled 408

with deformed shaped objects make the task more 409

competitive. Interestingly, the performance of mod- 410

els like LLaVA-1.6, and InstructBLIP is relatively 411

higher compared to models such as Qwen-VL and 412

MiniGPT-4. For instance, Gemini achieves an ac- 413
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Model Versions LLM Accuracy Score

Gemini Gemini-1.0 Pro Proprietary LLM 49.45 3.09
LLaVA LLaVA-1.6 Vicuna-7B 47.45 3.06
Qwen-VL Qwen-VL-Chat Qwen-7B 41.30 2.60
MiniGPT-4 MiniGPT-4 Vicuna-7B 36.40 2.53
CogVLM Cogvlm-chat-v1.1 Vicuna-7B 41.58 2.81
InstructBLIP BLIP-2_Vicuna_Instruct Vicuna-7B 48.58 3.03

Table 1: Evaluation results of various VLLMs across different accuracy metrics. We present results for both
open-source and closed-source models, providing a comprehensive assessment of their performance.

curacy of 49.45% with a score of 3.09, however414

MiniGPT-4 suffers severely with these particularly415

challenging conditions and thus under perform. Ta-416

ble 1 results show Accuracy of the response and417

the score of the models where total score is 5.418

Closed Source Model Perform Competitively on419

Waste-Bench:420

As shown in Table 1, the Gemini model sur-421

passes the performance of open-source models422

and achieves high gains compared to other mod-423

els. However, it still remains at the lower end of424

performance for this type of dataset, with an accu-425

racy below 50%. GEMINI handles cluttered scenes426

with deformed shaped objects, better than others,427

indicating a more sophisticated understanding of428

complex visual contents. In handling cluttered con-429

ditions with mixed and deshpaed objects, Gem-430

ini maintains a performance with an accuracy of431

49.45% and a score of 3.09.432

Comparison Across Models: As evident from Ta-433

ble 1, among the models evaluated, Gemini consis-434

tently outperforms others with the highest accuracy435

of 49.45%. This is followed closely by InstBLIP436

with an accuracy of 48.58% and 42.29%, respec-437

tively. On the other hand, models like MiniGPT-4438

and Qwen-VL show lower performance metrics,439

with MiniGPT-4 having the lowest scores 36.40%.440

4.2 Key Highlights and Qualitative Results441

Based on the evaluation of Vision Large Language442

Models (VLLMs) on the Waste-Bench benchmark,443

several key insights have emerged that provide valu-444

able guidance for future development. This analy-445

sis focuses on the models’ performance under dif-446

ferent conditions, highlighting their strengths and447

areas needing improvement. Models show weak448

reasoning capabilities, often failing to accurately449

identify objects and understand contexts in clut-450

tered environments. For instance, cluttered scenes451

lead to frequent classifications, such as confusing452

different types of plastics or failing to recognize 453

partially obscured objects, thus ignoring the pres- 454

ence of the objects in the image. Few samples are 455

shown in the Figure 6 for reference. 456

Issues in Real-World Waste Classification: Mod- 457

els which shows super performance on organized 458

exhibit less promising results on Waste-Bench es- 459

pecially in counting irregular shaped objects and 460

and many a times predicting the colour wrong be- 461

cause of clutter and presence of one object on top of 462

the other. Figure 6 second row shows the question 463

asked about color of the plastic bag and as transpar- 464

ent plastic is present on top of cardboard it seems 465

as pink so model predicts it as pink. Most mod- 466

els are trained on datasets that lack the complexity 467

of real-world waste scenarios. This training bias 468

results in poor generalization to the diverse condi- 469

tions of Waste-Bench. Enhanced training strategies, 470

including diverse and realistic samples, are needed 471

to improve robustness. 472

Recognition and Counting Challenge: Models 473

generally struggle with recognizing and classifying 474

objects across all classes in cluttered environments. 475

They often face significant challenges with soft 476

plastics, which exhibit a wider range of shapes, 477

sizes, and levels of transparency, complicating ob- 478

ject enumeration. As illustrated in Figure 6, ques- 479

tions related to the shape and color of soft plastics 480

are frequently answered incorrectly by the models. 481

This discrepancy highlights the difficulties models 482

encounter in accurately identifying and classify- 483

ing objects in cluttered environments. Addition- 484

ally, models often struggle with partially occluded 485

objects or objects that are very small, sometimes 486

failing to recognize them entirely. However, mod- 487

els perform slightly better on cardboard due to its 488

distinctive features. Cardboard typically exhibits 489

consistent visual features such as texture, color, 490

and edges, which facilitate easier recognition and 491

classification. These features are less susceptible to 492
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The larger piece of plastic is rectangular in 
shape.

What is the shape of the larger piece of 
plastic?

The larger piece of plastic is in  in the shape of a 
banana.

The larger piece of plastic appears to be a 
balloon, s it has a round shape and is yellow in 
color.

The larger piece of plastic is irregular in 
shape.

The larger piece of plastic is irregularly shaped.

The larger piece of plastic is irregularly shaped.

What is the color of the plastic bag located 
in the middle of the image?

MiniGPT-4

The plastic bag in the middle of the image is 
pink.

The color of the plastic bag located in the 
middle of the image is white.

The middle plastic bag exists. The bag is pink.

The plastic bag located  in the middle of the image 
is pink.

The plastic bag located in the middle of the 
image is pink.

The color of the plastic bag located in the middle of 
the image is white.

Where is the metal can located in the 
image?

There is no metal can in the image.

In the upper left-hand corner. 

The metal can is located on the ground in 
the image.

There is no existence of metal can in the image.

The can is on the floor.

The metal can is located on top of trash.

MiniGPT-4

MiniGPT-4

Figure 6: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

the effects of clutter compared to the more varied493

appearances of soft plastics. Cardboard items are494

often larger and more easily distinguishable, sim-495

plifying the counting process. Thus, while there496

are overall challenges, the models show a relatively497

better performance with cardboard due to its dis-498

tinct and consistent visual features.499

Classifying Visually Similar Objects: The models500

often struggle with accurately predicting similar ob-501

jects due to the complexity and clutter in the scenes.502

For instance, in the case of identifying hard plastic,503

the models frequently confuse it with soft plastic.504

In cluttered scenes, soft and hard plastics may over-505

lap or be partially obscured, further complicating506

the classification task. Even small amounts of noise507

in the images can distort the visual features that the508

models rely on to differentiate between soft and509

hard plastics. This added complexity degrades the510

model’s performance and increases the likelihood511

of misclassification. As illustrated in Figure 1, the512

image in the center shows an example where the513

model confused soft plastic and hard plastic, classi-514

fying both as plastic. This response is highlighted515

by the model’s answer to Question 3.516

Challenges in Rare Class Recognition: Models517

often struggle with accurately recognizing and clas-518

sifying less frequent categories within cluttered519

scenes, especially when these objects are deformed.520

This difficulty is particularly evident in the case of521

metals, a class with a small number of instances in 522

the images. As illustrated in fig:evaluation (bottom 523

row), the models frequently miss minor details or 524

fail to identify metals, indicating a need for better 525

handling. 526

Challenges with Noise and Enhanced Lighting: 527

While not the main focus of our paper, we observed 528

that introducing noise or enhanced lighting condi- 529

tions in images exacerbates performance issues in 530

some models. For instance, some models suffer a 531

significant drop in accuracy with noise, highlight- 532

ing their vulnerability, whereas others demonstrate 533

better noise-handling capabilities. These findings 534

suggest the importance of considering environmen- 535

tal factors in future evaluations. 536

5 Conclusion 537

In this paper, we evaluated various VLLMs in com- 538

plex environments with deformed objects, reveal- 539

ing significant weaknesses in identifying shapes, 540

colors, and locations. We introduced the Waste- 541

Bench benchmark, featuring multiple categories 542

to enable comprehensive validation of these mod- 543

els. The Waste-Bench benchmark provides a robust 544

framework for assessing VLLMs in challenging 545

conditions, aiding in the development of more re- 546

silient and accurate models for real-world applica- 547

tions like waste segregation and autonomous waste 548

management. 549
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Limitations Our study though comprehensive has550

some limitations. The scope of our evaluation was551

limited to a specific set of cluttered environments,552

which may not fully represent the variety of real-553

world scenarios. Additionally, the models were554

tested under controlled conditions, and their perfor-555

mance in more dynamic and unpredictable settings556

remains to be explored. We tested models on a557

variety of questions to ensure robust testing for our558

evaluation purposes, accuracy and score were cal-559

culated and seemed sufficient, showcasing the ro-560

bustness of our approach. Incorporating additional561

evaluation methods in future work could provide562

an even more comprehensive understanding. De-563

spite these limitations, our findings offer valuable564

insights and a strong foundation for advancing re-565

search in this area.566

Ethics Statement We constrcuted this dataset567

based on images given in zwaste-f dataset568

(Bashkirova et al., 2022). We constructed this569

dataset based on images provided in the Zerowaste-570

F dataset (Bashkirova et al., 2022). This dataset571

includes various images of waste in cluttered envi-572

ronments to simulate real-world conditions. Some573

images contain identifiable objects, but we ensured574

that no personal identification details are included.575

When used properly, our image and annotation576

dataset provides significant value for evaluating577

waste classification models.578
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