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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have paved the way for Vision
Large Language Models (VLLMs) capable of
performing a wide range of visual understand-
ing tasks. While LLMs have demonstrated
impressive performance on standard natural
images, their capabilities have not been thor-
oughly explored in cluttered datasets where
there is complex environment having deformed
shaped objects. In this work, we introduce a
novel dataset specifically designed for waste
classification in real-world scenarios, character-
ized by complex environments and deformed
shaped objects. Along with this dataset, we
present an in-depth evaluation approach to rig-
orously assess the robustness and accuracy of
VLLMs. The introduced dataset and compre-
hensive analysis provide valuable insights into
the performance of VLLMs under challenging
conditions. Our findings highlight the critical
need for further advancements in VLLM’s ro-
bustness to perform better in complex environ-
ments. The dataset and code for our experi-
ments will be made publicly available.

1 Introduction

In recent years, Large Language Models (LLMs)
(Chung et al., 2024; Achiam et al., 2023; Tou-
vron et al., 2023) have demonstrated exceptional
abilities to comprehend, reason, and generate text
across a wide range of open-ended tasks. Notably,
PalLM 2 (Anil et al., 2023) excels in common-
sense reasoning, multilingual capabilities, and ad-
vanced coding, while Falcon (Penedo et al., 2023)
shows excellent performance in multiple Natural
Language Processing(NLP) tasks. This success of
LLMs is attributed to their superior performance on
various tasks (Qin et al., 2023; Devlin et al., 2019).

Building on the advancements of LLMs, Vision-
Language Models (VLLMs) have emerged, lever-
aging aligned image-text data from web imagery

and manual annotations to facilitate effective self-
supervised vision-language modeling, including
caption generation (Vinyals et al., 2015; Chou
et al., 2020). This progress is exemplified by
models like multimodal GPT-4 (Achiam et al.,
2023; Liu et al., 2023) and open-source initia-
tives such as LLaVA (Liu et al., 2024). These
VLLMs, developed through generative pretrain-
ing and instruction-tuning, excel in zero-shot task
completion across a variety of user-oriented mul-
timodal tasks. Their advanced capabilities are
paving the way for the development of versatile
multimodal conversational assistants with exten-
sive applications in real-world scenarios (Hu et al.,
2023). Vision Large Language Models (VLLMs)
(Zhu et al., 2024; Shao et al., 2023; Yu et al., 2023)
have demonstrated remarkable capabilities in en-
gaging with visual content, offering a wide range of
potential applications. While several benchmarks
have been suggested to evaluate these capabilities,
there are still challenges and opportunities for fur-
ther development in this field (Yu et al., 2023; Shi
et al., 2023). Notably, domains such as waste clas-
sification and segregation for improved recycling,
reducing material generation, and minimizing envi-
ronmental impact present significant opportunities.
These advancements can lead to a substantial posi-
tive impact on environmental sustainability.
Motivated by the wide-scale applications of Vi-
sion Large Language Models (VLLMs) and the
lack of comprehensive benchmarking efforts for
complex visual environments, especially for waste,
we present a new benchmark, Waste-Bench, to thor-
oughly assess the performance of VLLMs. As
shown in Figure 3, Waste-Bench evaluates VLLMs
on key aspects of single and multi-class recognition,
robustness, and reasoning in visual tasks. It en-
compasses scenarios that closely mimic real-world
conditions, including cluttered waste images with
deformed objects. Waste-Bench is an open-ended
visual QA and classification benchmark focusing



|
| ‘Q’: Is there any rigid plastic in the image?
¢A’: No, there is no rigid plastic bag in the image.

image?

“Q’ : What is the material of the object labeled as
‘LEADERSHIP’?

¢A’: The object labeled as ‘LEADERSHIP’ is made of
metal.

| “Q’ : How many soft-plastic items are there in the
y P

| image?

| ‘A’: There are two soft-plastic items in the image.

present in the image?

‘Q’ : What is the material of the small container in the

A’ : The small container is made of glass.

‘Q’ : What is the color of the small clear plastic?
‘A’: The small clear plastic is blue.

‘Q’: Can you identify the types of waste materials

‘A’ : The types of waste materials present in the image
are paper, plastic, metal, glass, and organic waste.

‘Q’: What is the color of the largest cardboard box?
‘A’: The color of the largest cardboard box is blue.

‘Q’: How many soft plastic items are in the image?
‘A’: There are 4 Capr isun juice pouches and 1 small
plastic bag, so there are 5 soft plastic items in the image.

“Q’ : Are all the cardboard boxes the same size?
‘A’ : All the cardboard boxes are the same size.

Figure 1: Examples illustrating the challenges faced by models in interpreting cluttered scenes. The model struggles
with recognizing shapes, counting objects, comparing material sizes, and identifying deformed and unrecognized
objects. The cluttered environment and deformed shapes significantly impact the model’s accuracy across different
scenarios, as revealed by the specific questions accompanying each image.

on waste recycling. The performance of VLLMs
on the Waste-Bench benchmark reveals that these
models struggle to accurately comprehend complex
visual environments and identify objects, particu-
larly in cluttered scenes and when dealing with de-
formed shapes, counting tasks, and other challeng-
ing aspects as given in Figure 1. Extensive quantita-
tive and qualitative analyses using the Waste-Bench
benchmark provide important insights into these
VLLM:s based on their failure cases and individual
performances across diverse visual scenarios. As il-
lustrated in Figure 1, these shortcomings highlight
the need for improved robustness and reasoning ca-
pabilities in VLLMs to better handle the intricacies
of real-world environments. Our main contribu-
tions can be highlighted as below:

* We present Waste-Bench, a comprehensive
benchmark designed to assess the robustness
and reasoning capabilities of Vision Large
Language Models (VLLMs) in waste classi-
fication, reflecting the complexities of real-
world applications.

* We comprehensively evaluate a range of
VLLMs, including both open-source and
closed-source models. Our evaluation reveals
that most models exhibit significant perfor-
mance challenges, highlighting their limited

reasoning capabilities in cluttered scenes with
deformed shaped objects.

* We extensively analyze VLLMs on the Waste-
Bench benchmark, focusing on scenarios
where models struggle, such as identifying
deformed shapes, navigating cluttered scenes,
and performing counting tasks. Our findings
provide insights to enhance future human-
centric Al systems’ robustness and reasoning
for waste classification and management.

2 Related Work

Vision Large Language Models(VLLMs) (Zhu
et al., 2024; Shao et al., 2023) have demonstrated
remarkable capabilities in engaging with visual
content, offering a wide range of potential appli-
cations. Notable models in this domain include
Qwen (Bai et al., 2023), which has consistently
demonstrated superior performance across various
downstream tasks. LLaVA (Liu et al., 2024) and
CogVLM (Wang et al., 2023) have shown robust
capabilities in integrating vision and language, en-
abling them to excel in multimodal tasks. MiniGPT-
4 and InstructBLIP (Zhu et al., 2024; Dai et al.,
2024) further enhance these capabilities by lever-
aging generative pretraining and instruction-tuning
to achieve strong zero-shot task completion. Addi-
tionally, Gemini-Pro (Reid et al., 2024) exemplifies
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Figure 2: Waste-Bench Overview. Left: [llustration of the most frequent keywords in the answer set of the Waste-
Bench benchmark. Right: Frequency distribution of question types.

state-of-the-art performance with its advanced rea-
soning and interaction capabilities, paving the way
for the development of versatile multimodal con-
versational assistants. All these models perform ex-
tremely well on wide range of image understanding
tasks like caption generation, visual question an-
swring and so on. These models accept both visual
and textual inputs and generate textual responses.
From an architectural perspective, Vision Large
Language Models (VLLMSs) typically combine pre-
trained vision backbones (Fang et al., 2023) with
large language models (Touvron et al., 2023; Zheng
et al., 2023) using connector modules such as MLP
adapters, Q-former (Dai et al., 2024), and gated
attention (Alayrac et al., 2022).

Benchmarking VLLMs With the growing number
of VLLMs emerging in the research community,
several benchmarks have been proposed to evalu-
ate and quantify these models for benchmarking
and analysis purposes. Notable benchmarks in this
domain include SEED-Bench (Li et al., 2023b),
which evaluates the visual capabilities of both im-
age and video LMMs across multiple dimensions,
and MV-Bench (Li et al., 2023a), which curates
challenging tasks to evaluate the spatial and tempo-
ral understanding of VLLMs. While these bench-
marks provide effective insights into model per-
formance, they primarily focus on general visual
comprehension metrics.

Additionally, LVLM-eHub (Xu et al., 2023)
offers an interactive model comparison platform
through image-related queries, allowing for a
more dynamic evaluation of VLLMs. OwlIEval
(Zhou et al., 2023) and MM-Vet (Zhang et al.,
2024) further underscore comprehensive Vision-
Language(VL) skills by introducing evaluation met-
rics that transcend mere model hierarchies. MME
(Chen et al., 2022) also stands out by providing

a multi-modal evaluation framework that assesses
the integration of vision and language capabilities.
These benchmarks contribute to a more holistic
understanding of VLLM performance in various
complex and realistic scenarios.

In contrast, Waste-Bench is a comprehensive
benchmark designed to assess the robustness and
reasoning capabilities of VLLMs in waste classi-
fication. The Waste-Bench benchmark includes
scenarios with cluttered images and deformed ob-
jects to simulate real-world conditions. It aims to
thoroughly evaluate the performance of VLLMs in
challenging visual environments, providing a more
rigorous assessment than existing benchmarks.

3 Waste-Bench

In this work, our objective is to develop a compre-
hensive benchmark to evaluate the robustness and
reasoning capabilities of Vision Large Language
Models (VLLMs) in various complex and cluttered
visual environments, spanning diverse scenarios.
To achieve this, we introduce Waste-Bench. Ini-
tially, we offer a holistic overview of Waste-Bench
and outline the diversity of questions it contains.
Following this, we detail the creation process of
Waste-Bench in Section 3.2. Performance evalua-
tion including experiments and results are given in
Section 4.

3.1 Waste-Bench Dataset

Waste-Bench encompasses 11 different question
categories and 9,520 high-quality open-ended
question-answer (QA) pairs, spanning 952 high-
quality images with an average of 10 questions per
image. These questions cover diverse categories
related to real-world waste classification scenarios,
including individual classification of waste classes,
multi-class classification, shapes of objects, and
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Figure 3: Left: Waste-Bench comprises of 11 diverse complex quesiton categories encompassing a variety of waste
images context. Right: Overall performance of VLMMs across the images.

colors. This comprehensive dataset is designed to
rigorously test the capabilities of Vision Large Lan-
guage Models (VLLMs) in handling complex and
cluttered visual environments.In Figure 2 (right),
we present the distribution of different question
types in Waste-Bench, aimed at evaluating model
robustness related to classification categories. Fig-
ure 2 (left) shows a word cloud of frequent key-
words in the answer set, emphasizing objects and
attributes relevant to waste classification.

3.1.1 Waste-Bench Different Question Types

To assess the robustness and reasoning capabilities
of Vision Large Language Models (VLLMs) in the
Waste-Bench benchmark, we ensure it contains var-
ious question types to encompass a wide range of
real-world complex and cluttered visual environ-
ments within each image. Below, we provide a
detailed definition of the Waste-Bench as given in
Figure 3.

* Single Class Classification (Cardboard, Metal,
Soft Plastic, Rigid Plastic): This category in-
cludes questions that require the model to
classify individual waste items into one of
the specified single classes. The questions
aim to determine whether the model can ac-
curately identify and distinguish between dif-
ferent types of materials commonly found in
waste.

* Multiclass Categorization: In this category,
the models are challenged with images con-
taining multiple deformed waste items that
need to be classified into more than one cat-
egory. The goal is to assess the model’s abil-
ity to handle complex scenes where multiple
waste types are present and need to be accu-
rately categorized.

* Counting: This category involves tasks where
the model must count the number of specific
items or categories within an image. For
example, counting the number of cardboard
pieces or the number of recyclable items in
a cluttered environment. The questions are
designed to evaluate the model’s precision in
quantifying objects in a scene.

* Color Diversity: This question type tests the
model’s ability to distinguish and identify
items based on color. Tasks in this category
include identifying objects of a specific color
or categorizing items by color diversity. It as-
sesses the model’s capability to utilize color
as a key feature in classification.

* Geometric Shape Analysis: This category of
questions focuses on the model’s ability to rec-
ognize and categorize objects based on their
geometric shapes. Questions involve identify-
ing items with specific shapes, such as cylin-
drical, circular or rectangular objects, which
are common in waste sorting processes.

* Complex and Cluttered Environment: This
category includes questions to evaluate the
model’s performance in recognizing and rea-
soning about the environment in which waste
is found. Model evaluates whether waste is
in an indoor or outdoor setting. It includes
questions that require comprehensive image
analysis.

* Condition Evaluation: In this category, the
model must evaluate the condition of waste
items. This includes assessing whether items
are intact, twisted, clean or dirty. The ques-
tions are designed to test the model’s ability



to make nuanced judgments about the state of
objects.

* Similarity Metric: These questions require the
model to compare and determine the similarity
between different waste items. For example,
identifying items that belong to the same cate-
gory or have similar features. It assesses the
model’s ability to draw comparisons and make
associations based on visual features, robust-
ness in recognizing objects in challenging set-
tings, and adaptability to varying conditions.

* Combined Classification and Counting: This
category merges classification and counting
tasks, requiring the model to not only clas-
sify multiple items in a scene but also provide
accurate counts for each category. This com-
bined approach tests the model’s capability to
perform multiple reasoning tasks simultane-
ously.

These question types present in our dataset help
to rigorously test the capabilities of VLLMs in
handling the intricacies of waste classification in
complex and cluttered environments.

3.2 Building Waste Bench Benchmark

After defining the waste dataset question cate-
gories, we now proceed to building the Waste-
Bench benchmark, which consists of four steps.
Each step is presented in detail below, and can be
visually explored in Figure 4.

Stage 1: Data Collection and Annotation. We
thoroughly reviewed various datasets to find those
that represent waste images within cluttered en-
vironments. We meticulously pre-processed the
metadata provided with the images to ensure ac-
curate representation of the categories assigned to
each image. The test dataset contains 952 images.
Following the image collection process, we utilized
the Gemini-Vision model to generate high-quality
captions for these images. These captions were
subsequently verified by experienced human an-
notators. We adhered to stringent annotation and
verification instructions to ensure a robust and reli-
able set of captions. The prompt used for generat-
ing captions is provided in Figure 4. Personalized
annotation guidelines were used for each image
category to ensure accuracy.

Stage 2: Question-Answer Generation The first
challenge is to select an evaluation setting to assess

VLLMs. Inspired by human interaction in day-to-
day life, we aim to simulate a similar style of in-
teraction with VLLMs by curating open-ended QA
pairs to evaluate these models for robustness and
reasoning. We feed detailed ground-truth image
captions to GPT-3.5, which are utilized to generate
open-ended questions covering both reasoning and
robustness aspects. With VLLMs being increas-
ingly integrated into waste management systems,
it’s crucial to validate their ability to accurately
analyze and respond to questions about waste ob-
jects in cluttered environments. In evaluating the
capabilities of VLLMs, our goal is to determine
whether these models can understand the input im-
age not only by analyzing spatial content and rec-
ognizing classes but also by comprehending the
underlying rationale behind the depicted waste ob-
jects and their relationships with the surrounding
context. This involves creating questions that go
beyond simple image comprehension and require
the model to engage in complex logical inference
and contextual understanding. Specifically, we cre-
ate question types that test the model’s ability to
classify objects based on recognition, color, shape,
single class, multiclass, condition, and other rele-
vant aspects in complex, cluttered settings. It was
particularly challenging to ensure that the models
not only correctly analyzed the images but also
responded accurately and appropriately to the ques-
tions posed. Example prompts used as instructions
to LLMs for curating QA pairs are provided in Fig-
ure 4.

Stage 3: QA Pairs Filtration After generating QA
pairs, a manual filtration step is employed, with
human assistance to verify each generated QA pair.
Therefore, an exhaustive filtering process is con-
ducted which involves QA rectification and remov-
ing those samples which are not relevant to the
image or evaluation type. This process results in
a final set of 9552 high-quality QA pairs for the
Waste-Bench benchmark.

Stage 4: Evaluation Procedure Previous methods
in the literature have explored using LLLM mod-
els as judges for quantifying results in open-ended
QA benchmarks. We adopt a similar approach and
instruct LLMs to act as evaluators to assess the
correctness of predicted responses from VLLMs
compared to ground-truth answers. We generate
open-ended predictions from VLLMs by providing
image-question pairs as inputs and then present the
model predictions and their corresponding ground-
truth responses to the LLLM Judge alongside the
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Figure 4: Step I: Gemini-Pro generates detailed captions for images of waste, which are then verified by human
annotators. Step II: Nearly 10k diverse questions are generated from these captions, evaluated by GPT-4, and

verified by humans.

evaluation prompt. The Judge determines whether
the prediction is correct or incorrect through a bi-
nary judgment, assigns a score from 1 to 5 repre-
senting the quality of the prediction, and provides
reasoning to explain its decision. The evaluation
prompt used in our case is shown in Figure 5.

l—"role": "system",

| "content": "You are an intelligent chatbot designed for evaluating the correctness of AI

| assi predictions for g pairs. "

| "Your task is to compare the predicted answer with the ground-truth answer and

| determine if the predicted answer is correct or not. Here's how you can accomplish the
task:"

I

"

| "##INSTRUCTIONS: "
"- Focus on the correctness and accuracy of the predicted answer with the ground
| truth\n"
| "- Consider predictions with less specific details as correct evaluation, unless such details
| are icitly asked in the ion.\n"
RS
{
| "role": "user",
"content"': please eval the following
Question: {question}\n
| Ground truth correct Answer: {ground truth}\n"
| Predicted Answer: {predicted}\n\n"
| ""Provide your evaluation as a correct/incorrect prediction along with the score where the
score is an integer value between 0 (fully wrong) and 5 (fully correct). The middle score
| provides the percentage of correctness."
""Please generate the response in the form of a Python dictionary string with keys
'predicted’, 'score' and 'reason’, where the value of 'predicted’ is a string of 'correct' or
| 'incorrect', the value of 'score' is in INTEGER, not STRING, and value of 'reason' should
| provide the reason behind the decision."
| "Only provide the Python dictionary string."
| "For example, your response should look like this: {'predicted': 'correct', 'score': 4.8,
, " "
| 'reason': reason}.

pair:\n\n"

Figure 5: The prompt is designed to enable the Lan-
guage Model to act as an evaluation judge, assessing
and scoring the performance of VLLMs. It categorizes
responses as accurate or not and assigns a score from 1
to 5 based on the correctness and quality of the predic-
tion. Additionally, it also provides the reasoning.

4 Performance Evaluation on
Waste-Bench

Both open-soruce and closed-source models are ex-
plored and selected for the evaluation. We evaluate
six models in total where among the open-source
models, we evaluate five recent VLLMs, including
InstructBLIP, LLaVA-1.6, CogVLM, Qwen-VL,
and MiniGPT-4. For evaluating closed-source mod-
els, we use Gemini-Pro.

4.1 Main Experiments on Waste-Bench

In Table 1, we present the evaluation results of
various Vision Large Language Models (VLLMs)
across accuracy metrics on the Waste-Bench
dataset. We analyse these results and present sev-
eral key findigs.

Open Source VLLMs Struggle on Waste Bench
having cluttered environment : All open-source
VLLMs find it challenging to perform well and
thus show inferiror performance when evaluated
on the Waste-Bench dataset, particularly in clut-
tered scenes. Additionally cluttered scenes filled
with deformed shaped objects make the task more
competitive. Interestingly, the performance of mod-
els like LLaVA-1.6, and InstructBLIP is relatively
higher compared to models such as Qwen-VL and
MiniGPT-4. For instance, Gemini achieves an ac-



Model Versions LLM Accuracy Score
Gemini Gemini-1.0 Pro Proprietary LLM 49.45 3.09
LLaVA LLaVA-1.6 Vicuna-7B 47.45 3.06
Qwen-VL Qwen-VL-Chat Qwen-7B 41.30 2.60
MiniGPT-4  MiniGPT-4 Vicuna-7B 36.40 2.53
CogVLM Cogvlm-chat-v1.1 Vicuna-7B 41.58 2.81
InstructBLIP BLIP-2_Vicuna_Instruct Vicuna-7B 48.58 3.03

Table 1: Evaluation results of various VLLMs across different accuracy metrics. We present results for both
open-source and closed-source models, providing a comprehensive assessment of their performance.

curacy of 49.45% with a score of 3.09, however
MiniGPT-4 suffers severely with these particularly
challenging conditions and thus under perform. Ta-
ble 1 results show Accuracy of the response and
the score of the models where total score is 5.
Closed Source Model Perform Competitively on
Waste-Bench:

As shown in Table 1, the Gemini model sur-
passes the performance of open-source models
and achieves high gains compared to other mod-
els. However, it still remains at the lower end of
performance for this type of dataset, with an accu-
racy below 50%. GEMINI handles cluttered scenes
with deformed shaped objects, better than others,
indicating a more sophisticated understanding of
complex visual contents. In handling cluttered con-
ditions with mixed and deshpaed objects, Gem-
ini maintains a performance with an accuracy of
49.45% and a score of 3.09.

Comparison Across Models: As evident from Ta-
ble 1, among the models evaluated, Gemini consis-
tently outperforms others with the highest accuracy
of 49.45%. This is followed closely by InstBLIP
with an accuracy of 48.58% and 42.29%, respec-
tively. On the other hand, models like MiniGPT-4
and Qwen-VL show lower performance metrics,
with MiniGPT-4 having the lowest scores 36.40%.

4.2 Key Highlights and Qualitative Results

Based on the evaluation of Vision Large Language
Models (VLLMs) on the Waste-Bench benchmark,
several key insights have emerged that provide valu-
able guidance for future development. This analy-
sis focuses on the models’ performance under dif-
ferent conditions, highlighting their strengths and
areas needing improvement. Models show weak
reasoning capabilities, often failing to accurately
identify objects and understand contexts in clut-
tered environments. For instance, cluttered scenes
lead to frequent classifications, such as confusing

different types of plastics or failing to recognize
partially obscured objects, thus ignoring the pres-
ence of the objects in the image. Few samples are
shown in the Figure 6 for reference.

Issues in Real-World Waste Classification: Mod-
els which shows super performance on organized
exhibit less promising results on Waste-Bench es-
pecially in counting irregular shaped objects and
and many a times predicting the colour wrong be-
cause of clutter and presence of one object on top of
the other. Figure 6 second row shows the question
asked about color of the plastic bag and as transpar-
ent plastic is present on top of cardboard it seems
as pink so model predicts it as pink. Most mod-
els are trained on datasets that lack the complexity
of real-world waste scenarios. This training bias
results in poor generalization to the diverse condi-
tions of Waste-Bench. Enhanced training strategies,
including diverse and realistic samples, are needed
to improve robustness.

Recognition and Counting Challenge: Models
generally struggle with recognizing and classifying
objects across all classes in cluttered environments.
They often face significant challenges with soft
plastics, which exhibit a wider range of shapes,
sizes, and levels of transparency, complicating ob-
ject enumeration. As illustrated in Figure 6, ques-
tions related to the shape and color of soft plastics
are frequently answered incorrectly by the models.
This discrepancy highlights the difficulties models
encounter in accurately identifying and classify-
ing objects in cluttered environments. Addition-
ally, models often struggle with partially occluded
objects or objects that are very small, sometimes
failing to recognize them entirely. However, mod-
els perform slightly better on cardboard due to its
distinctive features. Cardboard typically exhibits
consistent visual features such as texture, color,
and edges, which facilitate easier recognition and
classification. These features are less susceptible to
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Figure 6: Qualitative results illustrating models struggling with identifying shapes, colors, and recognizing rare
classes within cluttered scenes, indicating areas for further investigation and improvement.

the effects of clutter compared to the more varied
appearances of soft plastics. Cardboard items are
often larger and more easily distinguishable, sim-
plifying the counting process. Thus, while there
are overall challenges, the models show a relatively
better performance with cardboard due to its dis-
tinct and consistent visual features.

Classifying Visually Similar Objects: The models
often struggle with accurately predicting similar ob-
jects due to the complexity and clutter in the scenes.
For instance, in the case of identifying hard plastic,
the models frequently confuse it with soft plastic.
In cluttered scenes, soft and hard plastics may over-
lap or be partially obscured, further complicating
the classification task. Even small amounts of noise
in the images can distort the visual features that the
models rely on to differentiate between soft and
hard plastics. This added complexity degrades the
model’s performance and increases the likelihood
of misclassification. As illustrated in Figure 1, the
image in the center shows an example where the
model confused soft plastic and hard plastic, classi-
fying both as plastic. This response is highlighted
by the model’s answer to Question 3.

Challenges in Rare Class Recognition: Models
often struggle with accurately recognizing and clas-
sifying less frequent categories within cluttered
scenes, especially when these objects are deformed.
This difficulty is particularly evident in the case of

metals, a class with a small number of instances in
the images. As illustrated in fig:evaluation (bottom
row), the models frequently miss minor details or
fail to identify metals, indicating a need for better
handling.

Challenges with Noise and Enhanced Lighting:
While not the main focus of our paper, we observed
that introducing noise or enhanced lighting condi-
tions in images exacerbates performance issues in
some models. For instance, some models suffer a
significant drop in accuracy with noise, highlight-
ing their vulnerability, whereas others demonstrate
better noise-handling capabilities. These findings
suggest the importance of considering environmen-
tal factors in future evaluations.

5 Conclusion

In this paper, we evaluated various VLLMs in com-
plex environments with deformed objects, reveal-
ing significant weaknesses in identifying shapes,
colors, and locations. We introduced the Waste-
Bench benchmark, featuring multiple categories
to enable comprehensive validation of these mod-
els. The Waste-Bench benchmark provides a robust
framework for assessing VLLMs in challenging
conditions, aiding in the development of more re-
silient and accurate models for real-world applica-
tions like waste segregation and autonomous waste
management.



Limitations Our study though comprehensive has
some limitations. The scope of our evaluation was
limited to a specific set of cluttered environments,
which may not fully represent the variety of real-
world scenarios. Additionally, the models were
tested under controlled conditions, and their perfor-
mance in more dynamic and unpredictable settings
remains to be explored. We tested models on a
variety of questions to ensure robust testing for our
evaluation purposes, accuracy and score were cal-
culated and seemed sufficient, showcasing the ro-
bustness of our approach. Incorporating additional
evaluation methods in future work could provide
an even more comprehensive understanding. De-
spite these limitations, our findings offer valuable
insights and a strong foundation for advancing re-
search in this area.

Ethics Statement We constrcuted this dataset
based on images given in zwaste-f dataset
(Bashkirova et al., 2022). We constructed this
dataset based on images provided in the Zerowaste-
F dataset (Bashkirova et al., 2022). This dataset
includes various images of waste in cluttered envi-
ronments to simulate real-world conditions. Some
images contain identifiable objects, but we ensured
that no personal identification details are included.
When used properly, our image and annotation
dataset provides significant value for evaluating
waste classification models.
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