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ABSTRACT

Continuous real-time decoding of target variables from time-series data is needed
for many applications across various domains including neuroscience. Further,
these variables can be encoded across multiple time-series modalities such as
discrete spiking activity and continuous field potentials that can have different
timescales (i.e., sampling rates) and different probabilistic distributions, or can
even be missing at some time-steps. Existing nonlinear models of multimodal
neural activity do not support real-time decoding and do not address the different
timescales or missing samples across modalities. Here, we develop a learning
framework that can nonlinearly aggregate information across multiple time-series
modalities with such distinct characteristics, while also enabling real-time decod-
ing. This framework consists of 1) a multiscale encoder that nonlinearly fuses
information after learning within-modality dynamics to handle different timescales
and missing samples, 2) a multiscale dynamical backbone that extracts multimodal
temporal dynamics and enables real-time decoding, and 3) modality-specific de-
coders to account for different probabilistic distributions across modalities. We
further introduce smoothness regularization objectives on the learned dynamics to
better decode smooth target variables such as behavioral variables and employ a
dropout technique to increase the robustness for missing samples. We show that
our model can aggregate information across modalities to improve target variable
decoding in simulations and in a real multiscale brain dataset. Further, our method
outperforms prior linear and nonlinear multimodal models1.

1 INTRODUCTION

Many engineering and science applications need to infer target variables that are encoded in multiple
time-series modalities and do so in real-time (i.e., causally). An important example of such an
application arises in neuroscience for the inference of cognitive or behavioral variables from multi-
modal neural time-series data. Accurate inference of these variables requires developing nonlinear
dynamical models of the multimodal time-series that can, at each time-step, aggregate information
across modalities in real-time. Further, a natural challenge in developing these models arises when
modalities can be missing at some time-steps due to measurement failures or interruptions (Burger
et al., 2018; Li & Marlin, 2020; Berger et al., 2020) or due to different timescales (i.e., sampling rates)
across modalities (Hsieh et al., 2018; Lu et al., 2021). Therefore, designing a dynamical model of
multimodal time-series data in real-time applications requires enabling temporal and multimodal data
fusion, performing real-time inference, and addressing different timescales and/or missing samples
across modalities. Prior nonlinear dynamical models have not addressed all these challenges. To that
end, we develop a new nonlinear dynamical model of multimodal time-series that provides all these
capabilities. Our model can perform multimodal data fusion and account for different timescales and
missing samples, while also enabling real-time inference.

In neuroscience, real-time multimodal data fusion is important especially for the design of neurotech-
nologies such as brain-computer interfaces. It has been shown that fusing neural modalities such
as local field potentials (LFP) and spiking activity can improve the inference of arm movements

1Our codebase is available at https://anonymous.4open.science/r/mrine
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(Stavisky et al., 2015; Abbaspourazad et al., 2021; Ahmadipour et al., 2023). More specifically,
spiking activity is a binary-valued time-series that indicates the presence of action potential events
from neurons and count processes such as Poisson are employed for modeling spiking activity. LFP
activity is a continuous-valued modality that measures network-level neural processes and is typically
modeled with a Gaussian distribution (Einevoll et al., 2013; Lu et al., 2021). Further, LFPs are often
obtained at a slower timescale than spikes, which are typically measured at a millisecond timescale
(Lu et al., 2021). We refer to multimodal data with different timescales as multiscale data. Thus, to
fuse information across the spiking and LFP modalities and improve downstream behavior decoding
tasks, their dynamics should be modeled by incorporating their cross-modality probabilistic and
timescale differences.

Most of the existing dynamical modeling approaches in neuroscience focus on a single modality
of neural activity. These models are either in linear or switching linear form (Macke et al., 2011;
Koh et al., 2023; Linderman et al., 2017) or utilize deep learning approaches for nonlinear modeling
(Abbaspourazad et al., 2023; Archer et al., 2015; Gao et al., 2016; Pandarinath et al., 2018). However,
these models do not capture multimodal neural dynamics. Even though some approaches aim to
model single-modal neural activity and behavior as multimodal signals (Sani et al., 2021; Hurwitz
et al., 2021; Schneider et al., 2023), their latent factor inference is performed by processing single-
modal neural signals. In contrast, (Rezaei et al., 2023) and (Coleman et al., 2011) propose linear
multimodal frameworks for neural activity, but they do not handle different timescales. Motivated
by this, recent dynamical models have been designed for multiscale neural dynamics while also
enabling real-time inference and handling timescale differences, but they are in linear form and
cannot capture nonlinearities (Abbaspourazad et al., 2021; Ahmadipour et al., 2023). There have also
been important recent studies on nonlinear modeling of multimodal neural data (Kramer et al., 2022;
Brenner et al., 2022; Gondur et al., 2023; Zhou & Wei, 2020), however, their latent factor inference is
done non-causally over time and does not handle different timescales. Beyond neural time-series data,
many approaches in other domains have been proposed to combine multiple modalities to improve
performance in downstream task. However, they are not focused on addressing the challenge of
different timescales and missing samples over time, and their applicability to modeling of Poisson and
Gaussian distributed modalities encountered in neuroscience has not been investigated (see Section
4).

Contributions We develop a novel nonlinear dynamical modeling method that can nonlinearly
aggregate information across multiple modalities with different distributions, distinct timescales,
and/or missing samples over time, while supporting inference both in real-time and non-causally.
To achieve these capabilities and enhance performance compared with baselines, we: 1) design a
multiscale encoder that performs nonlinear information fusion through neural networks after learning
modality-specific linear dynamical models (LDMs) that account for timescale differences and missing
samples in real-time by learning temporal dynamics (Section 2.2), 2) impose smoothness priors on
the latent dynamics via new smoothness regularization objectives that also prevent learning trivial
identity neural network transformations (Section 2.3) and 3) employ a technique termed time-dropout
during model training to increase robustness to missing samples even further (Appendix A). We term
this method Multiscale Real-time Inference of Nonlinear Embeddings (MRINE).

Through stochastic Lorenz attractor simulations and real nonhuman primate (NHP) spiking and LFP
neural datasets, we show that MRINE infers latent factors that are more predictive of target variables –
i.e., true latent factors for the simulations and behavioral arm/manipulandum movement variables for
the NHP datasets. Further, we compare MRINE with various recent linear and nonlinear multimodal
methods and show that MRINE outperforms all methods in behavior decoding for the NHP datasets.

2 METHODOLOGY

We assume that we observe discrete neural signals (e.g., spikes) st ∈ {0, 1}ns for t ∈ T where
T = {1, 2, . . . , T} and continuous neural signals (e.g., LFPs) yt′ ∈ Rny for t′ ∈ T ′ where T ′ ⊆ T .
Note that the two different sets T and T ′ allow for the timescale differences of st and yt′ via different
time-indices. As shown in Figure 1 and expanded on below, we describe the neural processes
generating st and yt′ through multiscale latent and embedding factors, which in turn can be extracted
by nonlinearly aggregating information across these multiple neural modalities with a multiscale
encoder.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: MRINE model architecture. Multiscale encoder nonlinearly (see Figure 2) extracts
multiscale embedding factors (at) by fusing discrete Poisson and continuous Gaussian neural time-
series in real-time (as indicated by thick dashed lines) while accounting for timescale differences
and missing samples. Temporal dynamics on this multiscale embedding are then explained with a
multiscale LDM whose states are the multiscale latent factors (xt). Embedding factors reconstruct the
distribution parameters of both the Poisson and the Gaussian modalities through the modality-specific
decoders. As an example, when y2 is missing, a2 and x2 are inferred by processing only s2.

2.1 MODEL FORMULATION

The model architecture is shown in Figure 1 with its main components being a multiscale encoder for
nonlinear information fusion, a multiscale LDM backbone, and decoders for each modality. We write
the generative model as follows:

xt+1 = Axt +wt (1)
at = Cxt + rt (2)

pθs(st | at) = Poisson(st;λ(at)) (3)
pθy (yt′ | at′) = N (yt′ ;µ(at′),σ). (4)

Here, Eq. 1 and 2 form a multiscale LDM , and t ∈ T where T = {1, 2, . . . , T} and t′ ∈ T ′ where
T ′ ⊆ T . In this LDM, at ∈ Rna , termed multiscale embedding factors, are the observations. We
obtain at as the nonlinear aggregation of multimodal information through the multiscale encoder
designed in Section 2.2. Further, xt ∈ Rnx , termed multiscale latent factors, are the LDM state and
model the linear dynamics in the nonlinear embedding space. Note that from this point onward, we
will only use time-index t (except observation models) for embedding and latent factors as T ′ ⊆ T .
Correspondingly, A ∈ Rnx×nx and C ∈ Rna×nx are the state transition and observation matrices in
the multiscale LDM, respectively; wt ∈ Rnx and rt ∈ Rna are zero-mean Gaussian dynamics and
observation noises with covariance matrices W ∈ Rnx×nx and R ∈ Rna×na .

The observations from different modalities st and yt′ are then generated from at (or at′) as in Eq.
3 and 4, respectively, with the likelihood distributions denoted by pθs(st | at) and pθy (yt′ | at′).
Assuming that data modalities are conditionally independent given at (or at′ for yt′), we modeled
the discrete spiking activity st with a Poisson distribution and the continuous neural signals yt′

with a Gaussian distribution, given that these distributions have shown success in modeling each of
these modalities (Stavisky et al., 2015; Gao et al., 2016; Pandarinath et al., 2018; Abbaspourazad
et al., 2021). The means of the corresponding distributions λ(at) ∈ Rns and µ(at′) ∈ Rny are
parametrized by neural networks with parameters θs and θy. Practically, we observed that learning
the variance of the Gaussian likelihood yielded suboptimal performance, thus we set it to a constant
value, i.e., unit variance, as in previous works (Fraccaro et al., 2017; Henaff et al., 2018; Pong et al.,
2020).

2.2 ENCODER DESIGN AND INFERRING MULTISCALE FACTORS

To infer at and xt from st and yt′ , we first construct the mapping from st and yt′ to at as:

at = fϕ(st,yt′) (5)

3
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where fϕ(·) represents the multiscale encoder network parametrized by a neural network with
parameters ϕ.

One obstacle in the design of the encoder network is accounting for the different timescales without
using augmentation techniques such as zero-padding as commonly done (Lipton et al., 2016; Zhu
et al., 2021) since they can yield suboptimal performance and distort the information during latent
factor inference (Wells et al., 2013; Che et al., 2018; Luo et al., 2018). Thus, it is important to account
for timescale differences and the possibility of missing samples when designing the multiscale
encoder. Additionally, our goal is to perform multimodal fusion at each time-step while also allowing
for real-time inference of factors. We address these problems with a multiscale encoder network
design shown in Figure 2.

Figure 2: MRINE multiscale encoder design. Modality-
specific LDMs learn within-modality dynamics and account for
timescale differences or missing samples via Kalman filtering.
Then, filtered modality-specific embedding factors (as

t|t and
ay
t|t) are fused and processed by another fusion network to

obtain the multiscale embedding factors at. As an example,
when y2 is missing, ay

2|2 is predicted only by the dynamics of
modality-specific LDM in Eq. 7.

In our multiscale encoder (Figure
2), first, each modality (st and
yt′) is processed by separate mul-
tilayer perception (MLP) networks
with parameters ϕs and ϕy to ob-
tain modality-specific embedding
factors, as

t ∈ Rna and ay
t ∈ Rna ,

respectively. Then, we construct
modality-specific LDMs for each
modality, whose observations are
their corresponding embedding fac-
tors:

xs
t+1 = Asx

s
t +ws

t

as
t = Csx

s
t + rst

(6)

xy
t+1 = Ayx

y
t +wy

t

ay
t = Cyx

y
t + ryt

(7)

where xs
t ,x

y
t ∈ Rnx are modality-

specific latent factors, As,Ay ∈
Rna×na are the state transition ma-
trices, Cs,Cy ∈ Rna×na are
the emission matrices, ws

t ,w
y
t ∈

Rna are the zero-mean dynamics
noises with covariances Ws,Wy ∈
Rna×na , and rst and ryt are the
zero-mean Gaussian observation
noises with covariances Rs,Ry ∈
Rna×na for modalities st and yt′ , respectively. We denote the modality-specific LDM parameters by
ψs = {As,Cs,Ws,Rs} and ψy = {Ay,Cy,Wy,Ry} for st and yt′ , respectively.

In our design, the modality-specific LDMs allow us to account for missing samples whether due to
timescale differences or missed measurements by using the learned within-modality state dynamics
to predict these samples forward in time, while maintaining the operation fully real-time/causal.
Specifically, given the modality-specific LDMs in Eq. 6 and 7, we can obtain the modality-specific
latent factors, xs

t|t and xy
t|t with Kalman filtering, which is real-time and constitutes the optimal

minimum mean-squared error estimator for these models (Kalman, 1960). We use the subscript i|j
to denote the factors inferred at time i given all observations up to time j. As such, subscripts t|t,
t|T and t+ k|t denote causal/real-time filtering, non-causal smoothing and k-step-ahead prediction,
respectively. At this stage, if t is an intermittent time-step such that yt is missing (i.e., t ∈ T and
t /∈ T ′ ), xy

t|t is obtained with forward prediction using the Kalman predictor as xy
t|t = Ayx

y
t−1|t−1

(Åström, 1970), and similarly for xs
t|t if st is missing. Having done this for each modality, we

perform information fusion by concatenating the modality-specific embedding factors and passing
them through a fusion network with parameters ϕm to obtain the initial representation for at, which
later becomes the noisy observations of the multiscale LDM formed by Eq. 1 and 2 (also see Figure
1). We denote the learnable multiscale encoder network parameters by ϕ = {ϕs, ϕy, ψs, ψy, ϕm}.

The multiscale LDM now allows us to infer xt|t with real-time (causal) Kalman filtering, or infer xt|T
with non-causal Kalman smoothing (Rauch et al., 1965). Similarly, k-step-ahead predicted multiscale

4
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latent factors xt+k|t can be obtained by forward propagating xt|t k-times into the future with Eq. 1,
i.e., xt+k|t = Akxt|t. We denote the parameters of the multiscale LDM by ψm = {A,C,W ,R}.
We can now obtain the filtered, smoothed, and k-step-ahead predicted parameters of the likelihood
functions in Eq. 3 and 4 by first using Eq. 2 to compute the corresponding multiscale embedding
factors – i.e. ai|j = Cxi|j , where i|j is t|t, t|T and t+ k|t, respectively – and then forward passing
these factors through each modality’s decoder network parametrized by θs or θy (Figure 1).

2.3 LEARNING THE MODEL PARAMETERS

k-step ahead prediction To learn the MRINE model parameters and encourage learning the dynam-
ics, as part of the loss, we employ the multi-horizon k-step-ahead prediction loss defined as:

Lk = −
∑
k∈K

(∑
t∈T
t≥k

τ log (pθs(st | at|t−k)) +
∑
t′∈T ′

t≥k

log (pθy (yt′ | at′|t′−k))
)

(8)

where T and T ′ denote the time-steps when st and yt′ are observed, respectively. τ is the scaling
parameter as the log-likelihood values of different modalities are of different scales (see Appendix
B.2), and K is the set of future prediction horizons. We note that k-step-ahead prediction is performed
by computing k-step-ahead predicted multiscale latent factors, xt+k|t, rather than modality-specific
ones.

Smoothed reconstruction In addition to the k-step-ahead prediction, we also optimize the recon-
struction from smoothed multiscale factors:

Lsmooth = −
(∑

t∈T
τ log (pθs(st | at|T )) +

∑
t′∈T ′

log (pθy (yt′ | at′|T ))
)

(9)

where T is the last time-step that any modality is observed.

Smoothness regularization To impose a smoothness prior on learned dynamics and to prevent
the model from overfitting by learning trivial identity encoder/decoder transformations, in our loss,
we also apply smoothness regularization on pθs(st | a1:T ), pθy (yt′ | a1:T ) and p(xt | a1:T ) by
minimizing the KL-divergence between the distributions in consecutive time-steps as introduced
in Li et al. (2021) for Gaussian-distributed modalities. Here, we extend this technique also to
Poisson-distributed modalities. Let Lsm be the smoothness regularization penalty, defined as:

Lsm =γs

|T |−1∑
i=1

ns∑
j=1

d
(
pθs(s

j
Ti

| aTi|T ), pθs(s
j
Ti+1

| aTi+1|T )
)

︸ ︷︷ ︸
Smoothness on st

+ γy

|T ′|−1∑
i=1

ny∑
j=1

d
(
pθy (y

j

T ′
i
| aT ′

i |T
), pθy (y

j

T ′
i+1

| aT ′
i+1|T

)
)

︸ ︷︷ ︸
Smoothness on yt′

+ γx

T∑
t=1

⌊nx
2

⌋∑
j=1

d
(
p(xj

t | at|T ), p(x
j
t+1 | at+1|T )︸ ︷︷ ︸

Smoothness on xt

)
(10)

where d(·, ·) is the KL-divergence between given distributions, subscript i denotes the ith element
of the set, superscript j is the jth component of the vector (e.g., sTi), and pθs(st | at|T ) and
pθy (yt′ | at′|T ) are as in Eq. 3 and 4, respectively. Here γs, γy and γx are the scaling hyperparameters.
The smoothness penalties on st and yt′ are computed over the time-steps that they are observed. The
penalty on xt is obtained over all time-steps as xt is inferred for all time-steps. After extracting a1:T

with multiscale encoder, p(xt | a1:T ) can be obtained with the Kalman smoother, which provides the
posterior distribution for the multiscale LDM (Kalman, 1960; Dehghannasiri et al., 2018):

p(xt | a1:T ) = N (xt;xt|T ,Σt|T ) (11)
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where xt|T and Σt|T are the smoothed multiscale latent factors and their error covariances, respec-
tively. To allow the model to learn both fast and slow dynamics, we put the smoothness regularization
on xt on half of its dimensions.

To assess the impact of incorporating smoothness regularization terms in Eq. 10 and smoothed
reconstruction in Eq. 9, we performed an ablation study (see Appendix E.2) which demonstrates
that each term contributes to the improved performance. Further, in the ablation study on the effect
of multiscale modeling (see Appendix E.4), we show that MRINE’s multiscale encoder design is
another important contributing factor to improved performance, compared to the case where missing
samples are imputed by zeros and removed from the training objectives above.

Finally, we form the loss as the sum of the above elements and regularization terms, and minimize it
via mini-batch gradient descent using the Adam optimizer (Kingma & Ba, 2015) to learn the model
parameters {ϕ, ψ, θs, θy}:

LMRINE =Lk + Lsmooth + Lsm + γrL2(θs, θy, ϕs, ϕy) (12)

where L2(·) is the L2 regularization penalty on the MLP weights and γr is the scaling hyperparameter.

Moreover, we employ a dropout technique termed time-dropout during training to increase the
robustness of MRINE to missing samples even further. See Appendix A for more information,
Appendix E.1 for an ablation study on the effect of time-dropout, and Appendix B for training details
and hyperparameters.

3 RESULTS

3.1 STOCHASTIC LORENZ ATTRACTOR SIMULATIONS

Figure 3: Latent reconstruction accuracies for the stochas-
tic Lorenz attractor simulations. a. Accuracies when 5,
10, or 20 Poisson channels were the primary modality to
which Gaussian channels were gradually added. Solid
lines show the mean and shaded areas represent the stan-
dard error of the mean (SEM). b. Similar to a, but with
the Gaussian channels being the primary modality.

We first validated that MRINE can suc-
cessfully aggregate information across
multiple modalities by performing simu-
lations with the stochastic Lorenz attrac-
tor dynamics defined in Eq. 18. To do
so, we generated Poisson and Gaussian
observations with 5, 10 and 20 dimen-
sions as described in Appendix C.2. We
generated 4 systems with different ran-
dom seeds and performed 5-fold cross-
validation for each system. Then, we
trained MRINE as well as single-scale
networks with either only Gaussian ob-
servations or only Poisson observations
(see Appendix B.1). To assess MRINE’s
ability to aggregate multimodal informa-
tion, we compared its latent reconstruc-
tion accuracies with those of single-scale networks. For each model, these accuracies were obtained
by computing the average correlation coefficient (CC) between the true and reconstructed latent
factors (see Appendix C.3 for details). We refer to each observation dimension as a channel for
simplicity.

We first considered the Poisson modality as the primary modality and fused with it 5, 10, and 20
Gaussian channels as the secondary modality. As shown in Figure 3a, for all different numbers
of Poisson channels, gradually fusing Gaussian channels significantly improved the latent recon-
struction accuracies (p < 10−5, n = 20, one-sided Wilcoxon signed-rank test). As expected, these
improvements were higher in the low information regime where fewer primary Poisson channels
were available (5 and 10) compared to the high information regime (20 Poisson channels). Likewise,
when the Gaussian modality was the primary modality, latent reconstruction accuracies again showed
consistent improvement across all regimes as Poisson channels were fused (Figure 3b, p < 10−5,
n = 20, one-sided Wilcoxon signed-rank test).
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3.2 MRINE FUSED MULTISCALE INFORMATION IN BEHAVIOR DECODING FOR THE NHP GRID
REACHING DATASET

Figure 4: Behavior decoding accuracies for the NHP grid reaching dataset when spike and LFP
channels had the same (top row) and different (bottom row) timescales. Shaded areas and error bars
represent SEM. a. Accuracies when 5, 10, or 20 spike channels were the primary modality and an
increasing number of LFP channels were fused. b. Similar to a when LFP channels were the primary
modality. c. Percentage improvements in decoding accuracy when 20 LFP channels were added
to 5, 10, and 20 spike channels. Asterisks indicate significance of comparison (***: p < 0.0005,
one-sided Wilcoxon signed-rank test). d. Similar to c, when 20 spike channels were added to 5, 10,
and 20 LFP channels. e–h. Same as a–d but when spike and LFP channels had different timescales.

To test MRINE’s information aggregation capabilities in a real dataset, we used a publicly available
NHP dataset (Makin et al., 2018; O’Doherty et al., 2020). In this dataset, discrete spiking activity
and LFP signals were recorded while the subject was performing sequential 2D reaches on a grid to
random targets appearing in a virtual-reality environment (Makin et al., 2018; O’Doherty et al., 2020)
(details in Appendix D.1). We considered the 2D cursor velocity in the x and y directions as our
target behavior variables to decode from inferred latent factors (see Appendix D.3 for details). We
trained single-scale models with 5, 10, and 20 channels of spike and LFP signals, and MRINE models
for every combination of these multimodal channel sets. In our analyses, we used 4 experimental
sessions recorded on different days and performed 5-fold cross-validation for each session.

First, we tested MRINE’s behavior decoding performance when both spike and LFP modalities had
the same timescale, i.e., were observed every 10 ms (we abbreviate these LFPs as 10 ms LFPs). When
spiking signals were taken as the primary modality, fusing them with increasing numbers of LFP
channels steadily improved the behavior decoding accuracy for all different numbers of primary spike
channels (Figure 4a, p < 0.007, n = 20, one-sided Wilcoxon signed-rank test). Similar to simulation
results, improvements in behavior decoding accuracy were higher in the low-information regimes,
i.e., for 5 and 10 primary spike channels. For instance, adding 20 LFP channels to 5, 10, and 20 spike
channels improved behavior decoding accuracy by 17.7%, 12.6%, and 8.3%, respectively (Figure 4c).
Similarly, when LFP signals were considered as the primary modality, behavior decoding accuracies
again improved significantly when spike channels were fused (Figure 4b, p < 10−4, n = 20, one-
sided Wilcoxon signed-rank test). As illustrated in Figure 4d, the improvements in this scenario were
higher compared to when spiking activity was the primary modality, i.e., adding 20 spike channels
to 5, 10 and 20 LFP channels improved behavior decoding accuracy by 64.2%, 54.9%, and 39.1%,
respectively (Figure 4c), indicating that spiking activity encoded more information than LFP signals
about the target behavior in this dataset. Overall, the bidirectional improvements here suggest that
spike and LFP modalities may encode non-redundant information about behavior variables that can
be fused nonlinearly with MRINE.

We next tested MRINE when modalities had different timescales, i.e., spikes were observed every
10 ms and LFPs every 50 ms (abbreviated as 50 ms LFPs) (Hsieh et al., 2018; Ahmadipour et al.,
2023). As expected, fusing spikes with 50 ms LFPs resulted in smaller improvements in behavior
decoding compared to fusion with 10 ms LFPs. Nevertheless, as shown in Figure 4e,f, MRINE
again improved behavior decoding accuracies significantly when LFP channels were added to spike
channels (p < 0.05, n = 20, one-sided Wilcoxon signed-rank test) and spike channels were added to

7
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LFP channels (p < 10−4, n = 20, one-sided Wilcoxon signed-rank test). For instance, adding 20
channels of 50 ms LFP improved behavior decoding accuracy by 14.7%, 10.4%, and 5.3% when
fused with 5, 10, and 20 spike channels (Figure 4g), respectively. Compared to the previous case,
percentage improvements had a maximum decrease of 3 percentage points, even when MRINE was
trained with 5 times fewer LFP samples. These findings show that MRINE can aggregate multimodal
information even when modalities have different timescales; MRINE utilizes the information in
the undersampled (slower timescale) modality to infer faster timescale latent factors that are more
predictive of the downstream task (here behavior decoding). We also tested MRINE on another
publicly available NHP dataset (Flint et al., 2012), for which, we modeled discrete spiking activity (at
every 10 ms) and LFP power signals (at every 10 or 50 ms) as our Poisson and Gaussian modalities.
As shown in Fig. 7, MRINE again improved behavior decoding accuracy when spiking activity
and LFP power signals are fused together, across all information regimes and both in the same and
different timescale scenarios.

3.3 MRINE’S INFORMATION AGGREGATION WAS ROBUST TO MISSING SAMPLES

Figure 5: Behavior decoding accuracies in the NHP grid
reaching dataset when spike and LFP channels had both
missing samples and different timescales for MRINE. a.
Accuracies when the sample dropping probability of LFPs
was fixed at 0.2 while that of spikes was varied as shown
on the x-axis. Lines represent mean and shaded areas
represent SEM. b. Similar to a when sample dropping
probability of spikes was fixed at 0.2 while that of LFPs
was varied.

Next, we studied the robustness of
MRINE inference to missing samples.
Here, in addition to having different
timescales, we used various sample-
dropping probabilities to drop spike or
LFP samples in the NHP grid reaching
dataset. For models that were trained
with 20 channels of both spikes and 50
ms LFP, we fixed the dropping probabil-
ity for LFP samples as 0.2 while vary-
ing that of spike samples (Figure 5a),
and vice versa (Figure 5b) during infer-
ence. Behavior decoding accuracies of
MRINE remained robust, decreasing by
only 4.3% and 17% when 40% and 80%
of spike samples were missing, respec-
tively, in addition to 20% of LFP sam-
ples missing (Figure 5a). Further, be-
havior decoding accuracies were more
robust to missing LFP samples (Figure
5b), again indicating the dominance of spiking activity in behavior decoding for this dataset. Finally,
both causal filtering and non-causal smoothing were robust to missing samples.

In addition to behavior decoding, we also evaluated MRINE’s information aggregation capabilities in
cross-modal imputed predictions of spike and LFP signals. Similar to the previous case, in addition
to having different timescales, we dropped one modality with various sample dropping probabilities
where the other modality was fully observed. We found that MRINE outperforms single-scale models
in neural cross-modal prediction even when up to 60% of spike samples (Figure 8a) and 40% of LFP
samples were dropped (Figure 8b) where single-scale model predictions were obtained with fully
available observations. See Appendix D.6 for more details.

3.4 MRINE IMPROVED BEHAVIOR DECODING COMPARED WITH PRIOR MULTIMODAL
MODELING METHODS

We compared MRINE with prior multimodal methods, namely the recent MSID in Ahmadipour
et al. (2023), mmPLRNN in Kramer et al. (2022), MMGPVAE in Gondur et al. (2023) and MVAE
in Wu & Goodman (2018). Further, we extended the unimodal LFADS model (Pandarinath et al.,
2018) to the multimodal setting (denoted by mmLFADS) by modeling spikes and LFPs with separate
observation models (similar to Eq. 3 and 4). We also trained LFADS models on multimodal data
with the same likelihood by treating the multimodal data as a single modality, the results of which are
denoted by LFADS below. Please see the ablation study on the effect of different observation models
in Appendix E.3.
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Method 5 Spike
5 LFP

10 Spike
10 LFP

20 Spike
20 LFP

MVAE 0.326
± 0.011

0.386
± 0.009

0.425
± 0.009

MSID 0.380
± 0.021

0.440
± 0.015

0.519
± 0.012

mmPLRNN 0.455
± 0.012

0.478
± 0.011

0.533
± 0.012

LFADS 0.467
± 0.017

0.495
± 0.015

0.548
± 0.011

mmLFADS 0.468
± 0.016

0.507
± 0.015

0.547
± 0.011

MMGPVAE 0.424
± 0.012

0.511
± 0.014

0.579
± 0.009

MRINE 0.487
± 0.007

0.555
± 0.011

0.611
± 0.012

MRINE - noncausal 0.519
± 0.009

0.573
± 0.011

0.621
± 0.011

Table 1: Behavior decoding accuracies for the NHP
grid reaching dataset with 5, 10, and 20 spike and
LFP channels for MRINE, MSID , mmPLRNN,
MVAE, LFADS, mmLFADS and MMGPVAE. The
best-performing method is in bold, the second best-
performing method is underlined, ± represents SEM.

We trained MRINE, MSID, and MVAE
with 5, 10, or 20 channels of spikes and
50 ms LFPs as they allow for different
timescales but we used the same timescale
(10 ms) for both spike and LFP signals
to train mmPLRNN, LFADS, mmLFADS
and MMGPVAE as they do not account for
different timescales. Further, mmPLRNN,
LFADS, mmLFADS and MMGPVAE de-
codings were performed non-causally unlike
MRINE - real time and MSID since mm-
PLRNN, LFADS, mmLFADS and MMGP-
VAE do not support real-time recursive in-
ference. For all numbers of primary chan-
nels (i.e., all information regimes), MRINE
significantly outperformed both MSID, mm-
PLRNN, MVAE, LFADS, mmLFADS and
MMGPVAE in behavior decoding (Table 1,
p < 0.06, n = 20, one-sided Wilcoxon
signed-rank test).

We also trained mmPLRNN, LFADS, mmL-
FADS, and MMGPVAE with different
timescale signals where missing LFP samples are imputed by their global mean, i.e., zero-imputation
due to z-scoring. As shown in Table 10, the performance improvements of MRINE over baseline
methods grew even further, indicating the importance of multiscale modeling. In addition, we com-
pared MRINE’s behavior decoding performance with missing samples with the dynamical baseline
methods in Fig. 6 and show that MRINE outperforms all baseline methods across all missing sample
regimes. Please also see Appendix D.7 for trial-averaged latent factor visualizations, Appendix B
for more details on MSID, mmPLRNN, LFADS, mmLFADS, MMGPVAE and MVAE benchmarks.
Also, see Table 6 for baseline comparisons for the NHP center-out reaching dataset.

4 RELATED WORK

Single-Scale Models of Neural Activity Numerous dynamical models of neural activity have
been developed. Some of these models are in linear, generalized linear, or switching linear form
(Macke et al., 2011; Buesing et al., 2012; Cunningham & Yu, 2014; Kao et al., 2015; Koh et al., 2023;
Linderman et al., 2017). LDMs are widely used in real-time applications because they provide real-
time and recursive inference algorithms. However, LDMs cannot capture the potential nonlinearities
underlying neural activity. For this reason, there has been an increased interest in deep learning
architectures including recurrent neural network (RNN) based methods with nonlinear temporal
dynamics (Pandarinath et al., 2018; She & Wu, 2020), autoencoder-based architectures that utilize the
Markovian-property of linear dynamics to learn a smoothing distribution (Archer et al., 2015; Gao
et al., 2016; Durstewitz, 2017), transformer encoder based models optimized with masked training
(Ye & Pandarinath, 2021; Le & Shlizerman, 2022) and neural ordinary differential equations (Kim
et al., 2021). These models have shown great promise in improving behavior decoding compared
to the linear models (Pandarinath et al., 2018). A recent work Abbaspourazad et al. (2023) has also
developed an autoencoder-based nonlinear framework with linear dynamics that supports real-time
inference by utilizing Kalman filtering similarly with linear approaches (Kalman, 1960). Despite the
LDM-based approaches can handle missing samples as well as some other nonlinear methods such as
(Ramchandran et al., 2021), all these methods are designed for a single modality of neural activity
and do not address multiscale modeling.

Multimodal Information Fusion Outside neuroscience applications, fusing multiple modalities
has been researched across many areas including natural language processing (NLP) and computer
vision. It has been shown that integrating visual and/or acoustic signals with text can improve the
performance of downstream classification tasks in NLP, e.g., sentiment analysis (Hazarika et al.,
2020; Tsai et al., 2019a; Han et al., 2021; Poria et al., 2017; Zadeh et al., 2017). In computer
vision, many studies focused on variational autoencoders (VAE), and approximated the joint posterior
distribution by factorization over modality-specific posteriors (Wu & Goodman, 2018; Shi et al.,

9
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2019; Sutter et al., 2021; Tsai et al., 2019b; Lee & Pavlovic, 2021) to handle missing modalities, or
by concatenating the modality-specific representations (Suzuki et al., 2016; Vedantam et al., 2018).
Instead of learning the common embedding space by factorization or concatenation, some studies
have also employed cross-modality generation (Joy et al., 2021; Pandey & Dukkipati, 2017). Even
though some of these methods can handle time-series modalities with different timescales, they need
to do so using separate networks to noncausally encode each modality into a single vector. However,
real-time applications require aggregating information at each time step, potentially from modalities
with different timescales, in a causal/real-time manner to perform continuous decoding of targets.

Multimodal Models in Neuroscience A line of work for multimodal modeling in neuroscience aims
to model single-scale neural activity and behavior as multimodal signals (Sani et al., 2021; Hurwitz
et al., 2021; Schneider et al., 2023). However, their latent factor inference is performed by processing
single-scale neural activity, similar to the single-scale models discussed above. Several approaches
have been proposed for multiscale modeling of neural dynamics. However, these methods are either
simply linear/generalized-linear or they are designed for offline reconstruction without enabling
real-time inference. Specifically, some approaches proposed multimodal modeling frameworks
(Rezaei et al., 2023; Coleman et al., 2011) that utilize linear temporal dynamics and learn the model
parameters via expectation-maximization (EM). However, their latent factor inference is not designed
to operate on multimodal signals with different timescales. To address this, a multiscale linear
dynamical modeling framework for continuous LFP and discrete spiking activity has been introduced
in Abbaspourazad et al. (2021), where model parameters are also learned with EM. With a similar
linear formulation of multiscale dynamics, recent work in Ahmadipour et al. (2023) proposed a more
computationally efficient learning framework compared to Abbaspourazad et al. (2021) by using
subspace identification and showed that the method also performs more accurately than the EM-based
approach. However, both approaches are of linear form and cannot characterize nonlinearities.

Recent studies Brenner et al. (2022); Kramer et al. (2022); Zhou & Wei (2020); Gondur et al. (2023)
have developed a nonlinear multimodal framework that can process multimodal neural signals for
latent factor inference, but their inference network is non-causal and thus does not enable real-time
inference of latent factors. Further, their formulation assumes the same timescale for the different
modalities and does not consider missing samples. Thus, in such situations, they would need to
rely on indirect approaches such as augmentations with zero-padding, which can be suboptimal
by changing the value of missing samples (Che et al., 2018; Wells et al., 2013; Zhu et al., 2021;
Abbaspourazad et al., 2023). Instead, here we develop a nonlinear dynamical modeling framework
for multimodal time-series data that supports real-time and efficient recursive inference, and handles
both timescale differences and missing samples by directly leveraging the learned dynamical model
to predict these missing samples.

5 DISCUSSION

In this study, we presented MRINE that can nonlinearly and in real-time aggregate information
across multiple time-series modalities, even with different timescales or with missing samples. To
achieve this, we proposed a novel multiscale encoder design that first extracts modality-specific
representations while accounting for their timescale differences and missing samples, and then
performs nonlinear fusion to aggregate multimodal information. We combined this encoder with
a multiscale LDM backbone to achieve real-time multiscale fusion. Through stochastic Lorenz
attractor simulations and real NHP datasets, we show MRINE’s ability to causally fuse information
across modalities even with different timescales or with missing samples. We show that MRINE
outperforms recent linear and nonlinear multimodal methods, and these comparisons in addition
to ablation studies on the effect of loss terms, and using different observation models show the
importance of MRINE’s multiscale nonlinear fusion and training objective outlined in Section 2.3.
Further, as shown in Appendices E.4 and D.5, multiscale modeling is crucial for modalities with
different timescales, as performances of current approaches significantly degrade with data imputation.
A current limitation of MRINE is the assumption of time-invariant multiscale dynamics, which may
not hold in non-stationary cases. In such cases, MRINE models may need to be intermittently
retrained across days/sessions. Extending MRINE to track temporal variability such as with switching
dynamics or adaptive approaches is an important future direction. Overall, we showed that MRINE
enables real-time multiscale decoding and cross-modality prediction that can handle both timescale
differences and missing samples, while also providing competitive performance. Thus MRINE can
be especially important for future real-time systems such as brain-computer interfaces.
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6 REPRODUCIBILITY STATEMENT

We provide all details on training MRINE and baseline models in Appendix B, including hyperpa-
rameters used for training. We also provide the implementation of MRINE, and configuration files to
run MRINE models at this anonymous GitHub repository. We also provide the simulation details in
Appendix C and references to the public dataset used in this study with the preprocessing steps in
Appendix D.1. Details of our analyses are explained throughout the Appendices and the main text.

7 ETHICS STATEMENT

We develop a multiscale dynamical model of different time-series modalities to improve downstream
real-time target decoding performance. The work can have many societal implications by improving
the accuracy and robustness of neurotechnologies, e.g., brain-machine interfaces, for the treatment
of brain disorders in millions of patients. We do not anticipate any negative societal impacts of our
work.
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APPENDICES

A TIME-DROPOUT

To improve the robustness of the MRINE against missing samples, we developed a regularization
technique denoted as “time-dropout". Before training MRINE, based on the availability of the
observations denoted by T and T ′ (see Section 2), we define mask vectors ms,my ∈ RT for st and
yt respectively:

my
t =

{
1, if yt is observed at t (i.e., if t ∈ T ′

0, otherwise
(13)

ms
t =

{
1, if st is observed at t (i.e., if t ∈ T
0, otherwise

(14)

where subscript t is the tth component of the vector. The general assumption is that T ′ ⊆ T , such that
st is available for all time-steps where yt is observed – this choice is motivated by the faster timescale
of spikes compared with field potentials. However, this scenario may not always hold as recording
devices can have independent failures leading to dropped samples at any time. To mimic the partially
missing scenario where either modality can be missing, as well as the fully missing scenarios where
both can be missing, we randomly replaced (dropped) elements of ms and my by 0 at every training
step, with the same dropout probabilities ρt for both modalities. Masked time-steps (time-steps with
0 mask value) were not used either during the latent factor inference described in Section 2.2 or
in the computation of loss terms in Eq. 8 and 9 so that the inference and model learning were not
distorted by missing samples. Instead, note that our inference procedure uses the learned model of
dynamics to account for missing samples during both inference and learning. We note that we used
the original masks (before applying time-dropout) while computing Lsm in Eq. 10, as we wanted
to obtain smooth representations for all available observations. Note that time-dropout differs from
masked training that is commonly used for training transformer-based networks. Masked training
aims to predict masked samples from existing samples unlike our training objective (see Section
2.3 for details). Here, the goal of time-dropout is to increase the robustness to missing samples by
artificially introducing partially and fully missing samples during model training, rather than being
the training objective itself. See the ablation study on the effect of time-dropout in Appendix E.1
which shows that MRINE models trained with time-dropout had more robust behavior decoding
performance and the effect of time-dropout was more prominent with more missing samples.

In addition to the time-dropout, we also applied regular dropout (Srivastava et al., 2014) in the
encoder’s input and output layers with probability ρd.

B TRAINING DETAILS

B.1 TRAINING SINGLE-SCALE NETWORKS

For the case of single-scale networks, we use a special case of the architecture in Fig. 1 by replacing
the multiscale encoder with an MLP encoder, and by just using a single-scale LDM with one
modality’s decoder network. In particular, for field potentials, we use a Gaussian decoder , and for
the spikes we use a Poisson decoder to obtain the corresponding likelihood distribution parameters.
Unlike MRINE’s modality-specific LDMs used in the multiscale encoder, the single-scale networks
have an MLP. Also, instead of the multiscale LDM of MRINE, this MLP is then followed by a
single-scale LDM to perform inference both in real-time and non-causally. During learning of the
single-scale networks, we dropped the terms related to the discarded modality from loss functions in
Eq. 8, 9 and 10.

B.2 SETTING THE LIKELIHOOD SCALING PARAMETER τ

The log-likelihood values of modalities with different likelihood distributions may be of different
scales, e.g., Poisson log-likelihood has a smaller scale than Gaussian log-likelihood in our case
(and this can change arbitrarily by simply multiplying the Gaussian modality with any constant).
To prevent the model from putting more weight on one modality vs. the other due to a higher
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log-likelihood scale while learning the dynamics, we scaled the log-likelihood of the modality with a
smaller scale by a parameter τ . To set this parameter, we first computed the time averages of each
modality over T and T ′ for st and yt′ , respectively, as:

λ =
1

|T |
∑
t∈T

st (15)

µ =
1

|T ′|
∑
t′∈T ′

yt′ (16)

where λ ∈ Rns and µ ∈ Rny . Then, we computed the corresponding log-likelihoods of st and yt′

by using these time averages as the means of their likelihood distributions (assuming unit variance
for Gaussian distribution). Finally, we set τ as the ratio between the higher and smaller scale
log-likelihoods:

τ =

1
|T ′|

∑
t′∈T ′ log(N (yt′ ;µ,1))

1
|T |

∑
t∈T log(Poisson(st;λ))

(17)

where 1 ∈ Rny is the 1’s vector denoting the unit variances for the Gaussian likelihood. The above
allows us to balance the contribution of both modalities in our loss function during learning.

B.3 HYPERPARAMETERS

Tables 2, 3, 4 and 5 provide the hyperparameters and network architectures used for training single-
scale networks and MRINE on stochastic Lorenz simulations and analyses of the real NHP datasets.

For all models, we used a cyclical learning rate scheduler (Smith, 2015) starting with a minimum
learning rate of 0.001, and reaching the maximum learning rate of 0.01 in 10 epochs. The maximum
learning rate is exponentially decreased by a scale of 0.99. Across all experiments, batch size was set
to 32, MLP weights were initialized by Xavier-normal initialization (Glorot & Bengio, 2010), and
tanh function was used as the activation function of hidden layers. All models were trained on CPU
servers (AMD Epyc 7513 and 7542, 2.90 GHz with 32 cores) with parallelization.

Models Hyperparameters
ϕs ϕy ϕm θs θy na nx K ρt ρd GC γs γy γx γr TE

SS-Poisson 3,128 - - 3,128 - 32 32 1,2,3,4 0.3 0.4 0.1 100 - 30 0.0001 200
SS-Gaussian - 3,128 - - 3,128 32 32 1,2,3,4 0.3 0.4 0.1 - 50 30 0.0001 200
MRINE 3,128 3,128 1,128 3,128 3,128 32 32 1,2,3,4 0.3 0.4 0.1 250 10 30 0.001 200

Table 2: Hyperparameters used for the stochastic Lorenz attractor simulations. SS denotes single-scale
network. We represent the architecture’s various MLP encoders and decoders with their parameter
notations, and for each, provide the number of hidden layers and hidden units in order, separated by
commas. Specifically. ϕs and ϕy – i.e., MLP blocks through which st and yt′ are passed in Figure 2
– represent the modality-specific encoder networks for Poisson and Gaussian modalities, respectively.
ϕm is the fusion network (the last MLP block in Figure 2). Modality-specific decoder networks are θs
and θy for Poisson and Gaussian modalities, respectively.na and nx represent dimensions of at and
xt, respectively. K is the set of future prediction horizons in Eq. 8. ρt is the time dropout probability
on the mask vectors, and ρd denotes the dropout probability applied in the input and output layers of
the encoder network (see Appendix A). GC represents the global gradient clipping norm on learnable
parameters. γs, γy, and γx are scaling parameters for smoothness regularization penalty in Eq. 10.
γr is the L2 penalty on MLP weights of the encoder and decoder networks. TE denotes the number
of training epochs.

B.4 MSID TRAINING

Multiscale subspace identification (MSID) is a recently proposed linear multiscale dynamical model
of neural activity that assumes linear dynamics. MSID can handle different timescales and allow
for real-time inference of latent factors (Ahmadipour et al., 2023). We compared MRINE with
MSID and showed that compared with the linear approach of MSID, the nonlinear information
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Models Hyperparameters
ϕs ϕy ϕm θs θy na nx K ρt ρd GC γs γy γx γr TE

SS-Poisson 3,128 - - 3,128 - 64 64 1,2,3,4 0.3 0.1 0.1 100 - 30 0.0001 500
SS-Gaussian - 3,128 - - 3,128 64 64 1,2,3,4 0.3 0.1 0.1 - 10 30 0.0001 500
MRINE 3,128 3,128 1,128 3,128 3,128 64 64 1,2,3,4 0.3 0.1 0.1 250 10 30 0.001 500

Table 3: Hyperparameters used for the NHP grid reaching dataset analysis with same timescales for
both modalities. Hyperparameter definitions are the same as in Table 2.

Models Hyperparameters
ϕs ϕy ϕm θs θy na nx K ρt ρd GC γs γy γx γr TE

SS-Poisson 3,128 - - 3,128 - 64 64 1,2,3,4 0.3 0.1 0.1 100 - 30 0.0001 500
SS-Gaussian - 3,128 - - 3,128 64 64 1,2,3,4 0.3 0.1 0.1 - 5 30 0.0001 500
MRINE 3,128 3,128 1,128 3,128 3,128 64 64 1,2,3,4 0.3 0.1 0.1 250 5 30 0.001 500

Table 4: Hyperparameters used for the NHP grid reaching dataset analysis with different timescales
for the different modalities. Hyperparameter definitions are the same as in Table 2.

Models Hyperparameters
ϕs ϕy ϕm θs θy na nx K ρt ρd GC γs γy γx γr TE

SS-Poisson 3,128 - - 3,128 - 64 64 1,2,3,4 0.3 0.1 0.1 30 - 30 0.0001 200
SS-Gaussian - 3,128 - - 3,128 64 64 1,2,3,4 0.3 0.1 0.1 - 5 30 0.0001 200
MRINE 3,128 3,128 1,128 3,128 3,128 64 64 1,2,3,4 0.3 0.1 0.1 50 5 30 0.001 200

Table 5: Hyperparameters used for the NHP center-out reaching dataset analysis with same and
different timescales for the different modalities. Hyperparameter definitions are the same as in Table
2.

aggregation enabled by MRINE can improve downstream behavior decoding while still allowing
for real-time recursive inference and for handling different timescales. To train MSID, we used
the implementation provided by the authors and set the horizon hyperparameters with the values
provided in their manuscript, i.e., hy = hz = 10. For the comparisons reported in Table 1, as
recommended by the developers in their manuscript (Ahmadipour et al., 2023), we fitted MSID
models with various latent dimensionalities consisting of [8, 16, 32, 64] and picked the one with the
best behavior decoding accuracy found with inner-cross validation done on the training data.

B.5 MMPLRNN TRAINING

Multimodal piecewise-linear recurrent neural networks (mmPLRNN) is a recent multimodal frame-
work that assumes piecewise-linear latent dynamics coupled with modality-specific observation
models (Kramer et al., 2022). As discussed in Section 4, mmPLRNN has shown great promise in re-
constructing the underlying dynamical system but its inference network operates non-causally in time
and assumes the same timescale between modalities, unlike MRINE. Therefore, for the comparisons
provided in Table 1, the behavior decoding with mmPLRNN was performed non-causally and with
neural modalities of the same timescale (10 ms) unlike MRINE and MSID. To train mmPLRNN, we
used the variational inference training code provided by the authors in their manuscript. However, the
default implementation of mmPLRNN only supports Gaussian and categorical distributed modalities.
Thus, we implemented the Poisson observation model by following Appendix C of Kramer et al.
(2022). Further, we replaced the default linear decoder networks with nonlinear MLP networks for a
fair comparison and better performance.

Finally, we trained all mmPLRNN models for 100 epochs. We also performed hyperparameter
searches for latent state dimension, learning rate, and number of neurons in encoder/decoder layers
over grids of [16, 32, 64], [1e-4, 5e-4, 1e-3, 1e-2] and [32, 64, 128], respectively.

As shown in Table 1, MRINE outperformed mmPLRNN in behavior decoding for the NHP grid
reaching dataset across all information regimes, even though MRINE was trained on neural modalities
of different timescales. We believe that the future-step-ahead prediction training objective along
with new smoothness regularization terms and smoothed reconstruction are important elements con-
tributing to such performance gap (see Appendix E.2) whereas mmPLRNN is trained on optimizing
evidence lower bound (ELBO), whose optimization can be challenging due to KL-divergence term
(Dosovitskiy & Brox, 2016; Bowman et al., 2016; Razavi et al., 2019; Shao et al., 2020).
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B.6 (MM)LFADS TRAINING

LFADS is a sequential autoencoder-based model of unimodal neural activity proposed by Pandarinath
et al. (2018). The results reported for LFADS were obtained by training LFADS models on concate-
nated multimodal data which corresponds to treating multimodal data as a single modality. Further,
we extended LFADS to support multimodal neural activity with different observation models (denoted
by mmLFADS), i.e. Poisson and Gaussian observation models for spikes and LFP, respectively. To
achieve that, we replaced LFADS’ unimodal decoder network that maps factors to observation model
parameters with multimodal decoder networks similar to Eq. 3 and 4. We used the authors’ codebase
2 to train LFADS models and implement the multimodal extension, i.e., mmLFADS. We used the
hyperparameters in the second row of Supplementary Table 1 in Pandarinath et al. (2018) with a
factor dimension of 64 and used the default learning rate scheduler and early stopping criterion used
in the codebase. As shown in Appendix E.2 and E.4, we believe that MRINE’s training objectives and
multiscale encoder design are contributing factors to its improved performance over (mm)LFADS.

B.7 MVAE TRAINING

Multimodal variational autoencoder (MVAE) is a variational autoencoder-based architecture proposed
in Wu & Goodman (2018) that can account for partially paired multimodal datasets by a mixture
of experts posterior distribution factorization. However, the notion of partial observations in our
work and MVAE are different. In MVAE, partial observations refer to having partially missing data
tuples in each element of the batch, which would translate to having completely missing LFP or
spike signals for a given trial/segment of multimodal neural activity. However, as we detailed in
Section 2, we are interested in modeling multimodal neural activities with different sampling rates,
i.e., partially missing time-steps rather than missing either of the signals completely. Further, as
discussed in Section 4, the latent factor inference in MVAE is designed to encode each modality to a
single factor, whereas MRINE is designed to infer latent factors for each time-step so that behavior
decoding can be performed at each time-step. To account for all these differences, we trained MVAE
models without a dynamic backbone by treating each time-step as a different data point that allowed
us to train MVAE models with partially missing time-steps as done for MRINE. As shown in Table
1, MVAE showed the lowest performance among all methods, which could be caused by lacking a
dynamical backbone, unlike other methods.

B.8 MMGPVAE TRAINING

Multimodal Gaussian process variational autoencoder (MMGPVAE) is another recent multimodal
framework that utilizes Gaussian process to model latent distribution underlying multimodal obser-
vations (Gondur et al., 2023). Distinct from other approaches discussed in this work, MMGPVAE
inference network extracts the frequency content of the latent factors followed by conversion to time
domain representations, rather than direct estimation on the time domain. This approach allows
MMGPVAE to prune high-frequency content in the latent factors that help in obtaining smooth repre-
sentations. Similar to mmPLRNN, MMGVAE does not allow training on modalities with different
timescales, thus, for the comparisons provided in Table 1, the behavior decoding with MMGPVAE
was also performed non-causally and with neural modalities of the same timescale (10 ms). To train
MMGPVAE, we used the authors’ official implementation provided in their manuscript. To provide a
fair comparison, we trained MMGPVAE models with 64-dimensional latent factors for each modality,
where 32 dimensions of 64-dimensional latent factors were shared across modalities. All MMGPVAE
models are trained for 100 epochs as behavior decoding performances reached their peak performance
in around 100 epochs, then started degrading due to overfitting. The default encoder/decoder archi-
tecture for Gaussian modality in the MMGPVAE codebase was implemented for an image dataset,
which resulted in poor performance in our dataset. Therefore, for the encoder/decoder architectures,
we used the same architectures as MRINE. Further, we scaled the likelihood of Poisson modality with
the same τ value as done for MRINE (see Section B.2). We also performed a hyperparameter search
for the learning rate in a grid of [1e-3, 5e-4, 1e-4] since default values resulted in poor convergence.
Despite MMGPVAE being the best competitor of MRINE as shown in Table 1 and Table 6, we believe

2https://lfads.github.io/lfads-run-manager/
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that MRINE’s training objective is an important factor contributing to its improved performance over
MMGPVAE.

C STOCHASTIC LORENZ ATTRACTOR SIMULATIONS

C.1 DYNAMICAL SYSTEM

The following set of dynamical equations defines the stochastic Lorenz attractor system:

dx1 = σ(x2 − x1)dt+ q1

dx2 = (ρx1 − x1x3 − x2)dt+ q2

dx3 = (x1x2 − βx3)dt+ q3

(18)

where x1, x2, and x3 are the latent factors of the Lorenz attractor dynamics, dt denotes the discretiza-
tion time-step of the continuous system and d is the change of variables in dt time. We used σ = 10,
ρ = 28, β = 8

3 and dt = 0.006 as in Pandarinath et al. (2018). q1, q2, and q3 are zero-mean Gaussian
dynamic noises with variances of 0.01. We generated 750 trials each containing 200 time-steps, and
the initial condition of each trial was obtained by running the system for 500 burn-in steps starting
from a random point. Then, we normalized trajectories to have zero mean and a maximum value of 1
across time for each latent dimension.

C.2 GENERATING HIGH DIMENSIONAL OBSERVATIONS

To generate the Gaussian-distributed modalities, we multiplied the normalized latent factors by a
random matrix Cy ∈ Rny×3 and added zero mean Gaussian noise with variance of 5 to generate
noisy observations.

To generate the Poisson-distributed modalities, we first generated firing rates by multiplying the
normalized trajectories by another random matrix Cs ∈ Rns×3 and added a log baseline firing rate of
5 spikes/sec with bin-size of 5 ms, followed by exponentiation. We then generated spiking activity
by sampling from the Poisson process whose mean is the simulated firing rates.

C.3 COMPUTING THE LATENT RECONSTRUCTION ACCURACY

For MRINE and each single-scale network trained only on Poisson or Gaussian modalities, we
obtained the smoothed single-scale or multiscale latent factors xt|T , t ∈ {1, 2, . . . , T} for each trial
in the training and test sets. To quantify how well the inferred latent factors can reconstruct the true
latent factors, we fitted a linear regression model from the inferred latent factors of the training set
to the corresponding true latent factors. Using the same linear regression model, we reconstructed
the true latent factors from the inferred latent factors of the test set. Then, we computed the Pearson
correlation coefficient (CC) between the true and reconstructed latent factors for each trial and latent
dimension. The reported values are averaged over trials and latent dimensions.

D REAL DATASET ANALYSIS

D.1 NONHUMAN PRIMATE (NHP) GRID REACHING DATASET

In this publicly available dataset (Makin et al., 2018; O’Doherty et al., 2020), a macaque monkey
performed a 2D target-reaching task by controlling a cursor in a 2D virtual environment. All
experiments were performed in accordance with the US National Research Council’s Guide for the
Care and Use of Laboratory Animals and were approved by the UCSF Institutional Animal Care and
Use Committee. Monkey I was trained to perform continuous reaches to circular targets with a 5 mm
visual radius randomly appearing on an 8-by-8 square or an 8-by-17 rectangular grid. The cursor
was controlled by the monkey’s fingertips, and the targets were acquired if the cursor stayed within a
7.5 mm-by-7.5 mm target acceptance zone for 450 ms. Even though there was no inter-trial interval
between sequential reaches, there existed a 200 ms lockout interval after a target acquisition during
which no target could be acquired. After the lockout interval, a new target was randomly drawn
from the set of possible targets with replacement. Fingertip position was recorded with a six-axis
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electromagnetic position sensor (Polhemus Liberty, Colchester, VT) at 250 Hz and non-causally
low-pass filtered to reject the sensor noise (4th order Butterworth, with 10 Hz cut-off frequency). The
cursor position was computed by a linear transformation of the fingertip position, and we computed
2D cursor velocity using discrete differentiation of the 2D cursor position in the x and y directions.
In our analysis, we used the 2D cursor velocity as the behavior variable to decode.

One 96-channel silicon microelectrode array (Blackrock Microsystems) was chronically implanted
into the subject’s right hemisphere primary motor cortex. Each array consisted of 96 electrodes,
spaced at 400 µm and covering a 4mm-by-4mm area. We used multi-unit spiking activity obtained at
a 10 ms timescale, and LFP signals were extracted from the raw neural signals by low-pass filtering
with 300 Hz cut-off frequency, and downsampling to either 100 Hz (10 ms timescale) or 20 Hz (50
ms timescale). In our study, we picked the top spiking and LFP channels based on their individual
behavior prediction accuracies and considered a maximum of 20 channels for each modality. As this
dataset consists of continuous recordings without a clear trial structure, we created 1-second non-
overlapping segments from continuous recordings to form trials so that we could utilize mini-batch
gradient descent during model learning.

D.2 NHP CENTER-OUT REACHING DATASET

In this publicly available dataset (Flint et al., 2012), a macaque monkey performed a 2D center-out
reaching task while grasping a two-link manipulandum. All experiments were performed with
approval from the Institutional Animal Care and Use Committee of Northwestern University. Monkey
C was trained to perform reaches from a center position to 2-cm square outer targets in an 8-target
environment, where outer targets were spaced at 45-degree intervals around a 10-cm radius circle.
Each trial of the task started with the illumination of the center target where the monkey had to hold
the manipulandum for a random hold time of 0.5-0.6 seconds. After, the center target disappeared
and an outer target was randomly selected from the pool of possible 8 targets, which signaled the
monkey to start the reach. To obtain the reward, the monkey had to reach the outer target within 1.5
seconds and hold the manipulandum at the outer target for a random time of 0.2-0.4 seconds. Then,
the monkey returned back to the center target position and the next trial started. In our analysis, we
used 2D manipulandum velocity as the behavior variable to decode.

One 96-channel silicon microelectrode array (Blackrock Microsystems) was chronically implanted
into the subject’s proximal arm area of primary motor (M1) and premotor (PMd) cortices contralateral
to the arm used to perform the task. We used multi-unit spiking activity obtained at a 10 ms timescale.
LFP signals in the original dataset were extracted from the raw neural signals by band-pass filtering
between 0.5 and 500 Hz and sampled at 2 kHz. From these LFP signals, we computed LFP power
signals with a window of size 256 ms (moved at 10 ms resolution) over 5 bands (0-4, 7-20, 70-115,
130-200 and 200-300 Hz), resulting in LFP power signals at 100 Hz. For the different timescale
analyses, we downsampled LFP power signals to 20 Hz (50 ms timescale). The rest of the dataset
generation details are the same as the previous dataset.

D.3 BEHAVIOR DECODING

In our analysis, we took 2D cursor velocity in the x and y directions as the behavior variables
for downstream decoding. After we inferred smoothed (or filtered) multiscale (or single-scale)
latent factors xt from MRINE or single-scale networks for both training and test sets, we fitted a
linear regression model from inferred latent factors of the training set to the corresponding behavior
variables. Then, we used the same linear regression model to decode the behavior variables from the
inferred latent factors in the test set. We quantified the behavior decoding accuracy by computing the
CC between the true and reconstructed behavior variables across time and averaging over behavior
dimensions. Unless otherwise stated, all decodings were performed from smoothed latent factors.

When MRINE was trained with spiking activity and LFP signals with timescales of 10 ms and
50 ms, respectively, behavior decoding was performed at the 10 ms timescale for comparisons
between MRINE and single-scale networks trained with spike channels. To provide a fair comparison
between MRINE and single-scale networks trained with 50 ms LFP signals, inferred latent factors of
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MRINE were downsampled to 50 ms from 10 ms, and behavior was decoded at every 50 ms in these
comparisons with LFP.

D.4 BEHAVIOR DECODING WITH MISSING SAMPLES

In this analysis, we first trained MRINE models with 20 spike and 20 LFP channels with different
timescales (whose behavior decoding accuracies are shown in Figure 4e,f when there were no missing
samples). To test the robustness of MRINE to missing samples, we randomly dropped samples
in time during inference with fixed sample dropping probabilities for both modalities. Then, we
inferred latent factors at all time-steps using only the available observations after sample dropping
and performed behavior decoding as described above. Note that even though time-series observations
were missing in time, behavior variables were available for all time-steps and were decoded at all
time-steps using MRINE’s inference method that accounts for missing observations with the learned
local dynamics.

Figure 6: Behavior decoding accuracies all models for the NHP grid reaching dataset when spike and
LFP channels had missing samples and the same timescale. a. Accuracies for models trained with 20
spike and 20 LFP channels. Sample dropping probability of LFPs was fixed at 0.2 while that of spikes
was varied as shown on the x-axis. Lines represent mean and shaded areas represent SEM. b. Similar
to a when sample dropping probability of spikes was fixed at 0.2 while that of LFPs was varied.

In addition to the different timescales scenario (Figure 5), we performed the same missing sample
robustness analysis for all dynamical models (i.e., MRINE, MSID, mmPLRNN, LFADS, mmLFADS
and MMGPVAE) trained with modalities of the same timescale. For all methods, we followed the
same procedure described above after training models with same timescale signals. As shown in
Figure 6, MRINE was again robust to missing samples for both modalities and outperformed all
baseline dynamical models across all missing sample regimes. Compared to dropping 50 ms LFP
samples, MRINE was more robust to missing LFP samples in this case where both LFPs and spikes
had a 10 ms timescale, and thus LFPs were more abundant. Further, in general, the decoding was
more robust to missing LFPs than missing spikes (compare panel b vs. a), which, consistent with
earlier findings, again indicates the dominance of spiking activity in behavior decoding for this
dataset.

D.5 BEHAVIOR DECODING FOR THE NHP CENTER-OUT REACHING DATASET

We tested MRINE’s information aggregation capabilities also in another real NHP dataset (Flint et al.,
2012). In this dataset, discrete spiking activity and LFP power signals were recorded while the subject
was performing center-out reaches to random targets (Flint et al., 2012) (details in Appendix D.2). We
considered the 2D manipulandum velocity in the x and y directions as our target behavior variables
to decode from inferred latent factors. We trained single-scale models with 5, 10, and 20 channels
of spike and LFP power signals, and MRINE models for every combination of these multimodal
channel sets. Note that for this dataset, each 5 power band signals are extracted for each LFP channel,
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Figure 7: Behavior decoding accuracies for the NHP center-out reaching dataset when spike and LFP
power signals had the same (top row) and different (bottom row) timescales. Figure convention is the
same as Fig. 4.

thus, the input dimensionality for 5, 10, and 20 LFP channels are 25, 50, and 100. In our analyses,
we used 3 experimental sessions recorded on different days and performed 5-fold cross-validation for
each session.

Similar to our prior analysis on the grid reaching dataset, we tested MRINE’s behavior decoding
performance when both spike and LFP modalities had the same (10 ms for both) and different (10 ms
for spikes and 50 ms for LFP power signals) timescales. In line with our previous results, MRINE
was able to improve behavior decoding accuracy in a bidirectional manner, i.e., adding LFP power
signals to spiking activity and vice versa, both in same and different timescale scenarios. However,
unlike the grid reaching dataset, fusing LFP power signals with spiking activity resulted in higher
improvements in behavior decoding accuracy, indicating that they encode more information about the
target behavior compared to the first dataset.

Method 5 Spike
5 LFP

10 Spike
10 LFP

20 Spike
20 LFP

MSID 0.444
± 0.018

0.529
± 0.021

0.571
± 0.021

mmPLRNN 0.530
± 0.022

0.556
± 0.025

0.591
± 0.027

LFADS 0.443
± 0.019

0.450
± 0.022

0.414
± 0.022

mmLFADS 0.395
± 0.026

0.443
± 0.018

0.519
± 0.025

MMGPVAE 0.558
± 0.022

0.624
± 0.022

0.670
± 0.021

MRINE - real time 0.550
± 0.021

0.628
± 0.022

0.664
± 0.020

MRINE - noncausal 0.572
± 0.022

0.647
± 0.023

0.681
± 0.021

Table 6: Behavior decoding accuracies for the NHP center-out reaching dataset with 5, 10, and
20 spike and LFP channels for MRINE, MSID, mmPLRNN, MVAE, LFADS, mmLFADS and
MMGPVAE. The best-performing method is in bold, the second best-performing model is underlined,
± represents SEM.

Further, we compared MRINE’s behavior decoding accuracy with dynamical baseline methods for
center-out reaching dataset. For MRINE, we report behavior decoding accuracies both with real-time
(causal) and noncausal latent factor inference procedures. Note that mmPLRNN, LFADS, mmLFADS,
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and MMGPVAE perform noncausal latent factor inference as they do not support real-time inference.

As shown in Table 6, MRINE achieves the best behavior decoding performance among all methods
with noncausal latent factor inference (p < 0.006, n = 15, one-sided Wilcoxon signed-rank test).
When MRINE performs real-time (causal) latent factor inference, MMGPVAE outperforms MRINE
across low (5 channels) and high (20 channels) information regimes where MRINE is slightly better
in medium (10 channels) information regime, however, improvements are not statistically significant
(p = 0.08 for 5 channels and MMGPVAE > MRINE, p = 0.12 for 10 channels and MRINE
> MMGPVAE, and p = 0.11 for 20 channels and MMGPVAE > MRINE, n = 15, one-sided
Wilcoxon-signed rank test).

Similar to the ablation study in Appendix E.4, we trained mmPLRNN and MMGPVAE models
with different timescale signals where missing LFP power signals are imputed with their global
mean, i.e., zero-imputation due to z-scoring, and removed from each model’s training objective (from
the likelihood calculations). In this scenario, performances of both mmPLRNN and MMGPVAE
degraded significantly, whereas MRINE outperformed both methods significantly (p < 10−6, n = 15,
one-sided Wilcoxon-signed rank test), and it achieved comparable performance to that of in the same
timescale scenario. Overall, these results again indicate the importance of multiscale modeling.

Model Behavior Decoding
(CC)

MRINE 0.661 ± 0.022
mmPLRNN w/

Zero Imputation and Loss Masking 0.538 ± 0.032

MMGPVAE w/
Zero Imputation and Loss Masking 0.530 ± 0.030

Table 7: Behavior decoding accuracies for the NHP center-out reaching dataset with 20 channels of
10 ms spike and 20 channels of 10 ms zero-imputed LFP signals for mmPLRNN and MMGPVAE
where zero-imputed LFP time-steps are masked in the training objective. MRINE models are trained
with different timescale signals as it supports multiscale training. The best-performing method is in
bold, ± represents SEM.

D.6 CROSS-MODAL IMPUTATION

To evaluate MRINE’s information aggregation capabilities beyond behavior decoding, we computed
cross-modal imputed one-step-ahead prediction accuracies of both modalities under various sample
dropping probabilities in addition to having different timescales. To do that, the modality of interest
was randomly dropped when the other modality was fully observed. Therefore, the one-step-ahead
predictions of the missing modality were generated by leveraging the learned modality-specific
and multiscale dynamics that allow for cross-modal imputations. Unlike MRINE, one-step-ahead
prediction accuracies of single-scale networks were obtained with fully available observations.

For LFP signals modeled with Gaussian likelihood, we quantified the one-step-ahead prediction
accuracy by computing the CC between the one-step-ahead predicted mean of the Gaussian likelihood
distribution (µ(at+1|t)) and the true observations across time.

For spike signals modeled with Poisson likelihood, one-step-ahead prediction accuracy was quantified
using the prediction power (PP) measure, which is defined as PP= 2AUC−1 where AUC denotes
the area under the curve of the receiver operating characteristic (ROC) curve (Macke et al., 2011;
Abbaspourazad et al., 2021). We constructed the ROC by using the one-step-ahead predicted firing
rates, i.e., λ(at+1|t), as the classification scores to determine whether a time-step contained a spike
or not (Truccolo et al., 2010). Both metrics were averaged over observation dimensions.

As shown in Figure 8, MRINE outperformed single-scale networks in one-step-ahead prediction
accuracy even when 60% of spike samples (panel a) and 40% of LFP samples were missing. This
result suggests that MRINE’s information aggregation capabilities are not only limited to behavior
decoding, but can also enable cross-modal prediction under missing sample scenarios.
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Figure 8: Cross-modal one-step-ahead prediction accuracies for the NHP grid reaching dataset when
spike and LFP channels had different timescales. a. The one-step-ahead prediction accuracies of
the spike channels. Sample dropping probability of spikes was varied as shown on the x-axis while
LFP channels were fully available. The yellow dashed line represents the single-scale network’s
performance with fully available spike channels. Lines represent mean and shaded areas represent
SEM. b. Similar to a when sample dropping probability of LFPs was varied while spike channels
were fully available.

D.7 VISUALIZATIONS OF LATENT DYNAMICS

To compute trial-averaged 3D PCA visualizations, for each algorithm, we first computed 3D PCA
projections of latent factors, split them based on trial start and end indices, interpolated them to a
fixed length (due to variable-length trials), and then computed trial averages of PCA projections
for each of 8 different reach directions. As expected based on literature (Pandarinath et al., 2015;
Kalidindi et al., 2021), all models recovered rotational neural population dynamics (see Fig. 9).
Among all these algorithms, MRINE had the most clear rotations.

Figure 9: 3D PCA visualizations of trial-averaged latent factors inferred by a) MRINE, b) MSID, c)
mmPLRNN, d) mmLFADS and e) MMGPVAE.
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E ABLATION STUDIES

E.1 EFFECT OF TIME-DROPOUT

To test the effectiveness of time-dropout, we performed an ablation study with the same setting
used to generate Fig. 5 (see Section 3.3) but we disabled time-dropout (ρt = 0). The remaining
hyperparameters were as in Table 4. As shown in Fig. 10a, without time-dropout, the behavior
decoding accuracies of MRINE decreased by 6.3% and 28.9% when 40% and 80% of spike samples
were missing (in addition to 20% of LFP samples missing), whereas MRINE models trained with
time-dropout experienced smaller performance drops of 4.3% and 17% in the same missing sample
settings (see Figure 5). Similarly, MRINE models trained with time-dropout were more robust to
missing LFP samples (Fig. 10b vs. Fig. 5b) but the performance drops were smaller due to spiking
activity being the dominant modality for behavior decoding in this dataset. As expected, the effect
of time-dropout was more prominent in the high sample dropping probability regimes (i.e., more
missing samples).

Figure 10: Behavior decoding accuracies in the NHP grid reaching dataset when time-dropout was
disabled (ρt = 0), and spike and LFP channels had both missing samples and different timescales.
The figure conventions are the same as in Fig. 5 .

E.2 EFFECT OF LOSS TERMS IN THE BEHAVIOR DECODING PERFORMANCE

To gain intuition on the improved performance with MRINE, we performed an ablation study on the
effect of smoothness regularization terms in Eq. 10 and smoothed reconstruction term in Eq. 9 on
behavior decoding performance. To achieve that, we trained MRINE models with 20 channels of 10
ms spike and 20 channels of 10 ms LFP signals by removing Eq. 9 and individual terms in Eq. 10
from the training objective in Eq. 12. Then, we performed behavior decoding with these MRINE
models as described in Section D.3.

As shown in Table 8, both smoothness regularization terms in Eq. 10 and smoothed reconstruction
term in Eq. 9 are important factors contributing to improved behavior decoding performance as
MRINE model trained without Eq. 9 and 10 (row 2) achieve worse performance than that of
mmPLRNN and mmLFADS in Table 1. We observed that applying smoothness regularization on xt

is an important contributing factor to improved performance (row 3 vs row 5) as well as smoothing
reconstruction term (row 2 vs row 3). Even though smoothness regularizations on st and yt′ may
seem marginal when comparing results in rows 3 and 4, they play a crucial role when combined with
smoothness regularization on xt (comparing row 1 and row 5).

E.3 EFFECT OF USING DIFFERENT OBSERVATION MODELS

While designing models of multimodal neural activity, a natural design choice is to treat modalities
with different statistical properties as a single modality with the same observation model, e.g.,
modeling spikes with Gaussian likelihood as LFPs. Even though this modeling approach would not
be effective when modalities are recorded with different timescales due to requiring imputation for
missing time-steps, it would allow the training of unimodal models of neural activity on multimodal
neural signals when recorded with the same timescale.
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Model Behavior Decoding
(CC)

MRINE 0.621 ± 0.010
MRINE w/o

Eq. 9 and Eq. 10 0.524 ± 0.013

MRINE w/o
Eq. 10 0.565 ± 0.012

MRINE w/o
xt in Eq. 10 0.566 ± 0.016

MRINE w/o
st and yt′ in Eq. 10 0.598 ± 0.012

Table 8: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10 ms
spike and 20 channels of 10 ms LFP signals for MRINE models trained without (w/o) loss terms
denoted in the first column. The best-performing method is in bold, ± represents SEM.

To test the effect of treating each modality with their corresponding observation models, we trained
MRINE models with 20 channels of spike and LFP signals sampled at 10 ms resolution where we
modeled spikes with Gaussian or Poisson observation models, as done for LFADS and mmLFADS
results in Table 1 (see Appendix B.6 for details).

Model Behavior Decoding
(CC)

MRINE 0.621 ± 0.010
MRINE w/

Same Observation Model 0.606 ± 0.009

LFADS 0.548 ± 0.011
mmLFADS 0.547 ± 0.011

Table 9: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10 ms
spike and 20 channels of 10 ms LFP signals for MRINE and LFADS models trained with same and
different observation models. The best-performing method is in bold, ± represents SEM.

As shown in Table 9, MRINE models trained with different observation models, i.e., Poisson and
Gaussian observation models for spikes and LFPs, respectively, outperforms MRINE models trained
with Gaussian observation model. We observed that LFADS performance does not improve with
mmLFADS when spiking activity is treated with a separate Poisson observation model, unlike
MRINE. However, the performance gap between MRINE models trained with different and same
observation models indicate that treating the modalities with appropriate observation models can
indeed improve performance.

E.4 EFFECT OF MULTISCALE ENCODER DESIGN

As discussed in Section 2.2, accounting for different sampling rates for neural signals is an important
consideration for MRINE’s encoder design shown in Fig. 2. To achieve that, we learn modality-
specific LDMs in MRINE’s encoder that can leverage within-modality state dynamics to account
for missing samples whether due to timescale differences or missed measurements. Therefore,
MRINE can perform inference without relying on augmentations to impute missing samples, such
as zero-imputation as done in common practice (Lipton et al., 2016; Zhu et al., 2021) that can yield
suboptimal performance (Che et al., 2018; Wells et al., 2013).

To investigate this, we upsampled 50 ms LFP signals to 10 ms with zero-imputation (note that
zero-imputation translates to mean-imputation since LFP signals are z-scored before training) and
trained MRINE, mmPLRNN and mmLFADS models with 20 channels of 10 ms spike and 10 ms
zero-imputed LFP signals. For all models, we trained 2 versions where reconstructions/predictions
of zero-imputed LFP time-steps are either included (T ′ = T ) or masked (T ′ ⊂ T ) in the training
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objective. For both versions of MRINE, zero-imputed LFP time-steps were not treated as missing
samples during latent factor inference (even if they were masked in the training objective for the
second version).

Model Behavior Decoding
(CC)

MRINE 0.611 ± 0.012
MRINE w/

Zero Imputation 0.523 ± 0.013

MRINE w/
Zero Imputation and Loss Masking 0.581 ± 0.014

mmPLRNN w/
Zero Imputation 0.498 ± 0.009

mmPLRNN w/
Zero Imputation and Loss Masking 0.539 ± 0.011

mmLFADS w/
Zero Imputation 0.280 ± 0.022

mmLFADS w/
Zero Imputation and Loss Masking 0.253 ± 0.023

MMGPVAE w/
Zero Imputation 0.393 ± 0.023

MMGPVAE w/
Zero Imputation and Loss Masking 0.518 ± 0.011

Table 10: Behavior decoding accuracies for the NHP grid reaching dataset with 20 channels of 10
ms spike and 20 channels of 10 ms zero-imputed LFP signals for MRINE, mmPLRNN, mmLFADS
and MMGPVAE where zero-imputed LFP time-steps are either included or masked in the training
objective. The best-performing method is in bold, ± represents SEM.

As shown in Table 10, the performance of MRINE models trained with zero-imputed LFP signals
degraded compared to MRINE models trained with 50 ms LFP signals (row 1 vs rows 2 and 3). As
expected, masking zero-imputed LFP time-steps in the loss function improved behavior decoding
performance compared to the scenario where they are included in the loss function (row 2 vs row 3).
However, removing zero-imputed LFP time-steps from the training objective still results in degraded
performance for MRINE, showing the importance of multiscale encoder design (row 1 vs row 3).

Even though the performance of mmPLRNN improved significantly when zero-imputed LFP time-
steps were masked in the training objective (row 4 vs row 5), allowing it to achieve performance
comparable to that in Table 1, mmLFADS performance did not show a similar improvement. This is
likely caused by mmLFADS’ inference procedure that requires summarization of the input signal
into an initial condition for the generator network. In contrast, mmPLRNN, MRINE and MMGPVAE
do not require such a summarization process. Therefore, even if zero-imputed LFP time-steps are
discarded in the training objective, they can still distort the inference procedure and distort and yield
suboptimal performance. Unlike mmPLRNN, MMGPVAE performance experienced a higher decline
in its performance compared to that of in Table 1, with zero-imputed LFP time-steps, potentially
due to distorting the frequency content of the signal significantly. As expected, when zero-imputed
LFP time-steps were not discarded in the training objective, MMGPVAE performance degraded
even further. Overall, MRINE significantly outperformed all models when they were trained with
zero-imputed different timescale signals, including its own variants (p < 0.0003, n = 20, one-sided
Wilcoxon-signed rank test). These results show the importance of encoder design when modeling
modalities with different timescales.
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