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ABSTRACT

Spatial Transcriptomics (ST) merges the benefits of pathology images and gene
expression, linking molecular profiles with tissue structure to analyze spot-level
function comprehensively. Predicting gene expression from histology images is a
cost-effective alternative to expensive ST technologies. However, existing methods
mainly focus on spot-level image-to-gene matching but fail to leverage the full
hierarchical structure of ST data, especially on the gene expression side, leading
to incomplete image-gene alignment. Moreover, a challenge arises from the in-
herent information asymmetry: gene expression profiles contain more molecular
details that may lack salient visual correlates in histological images, demanding
a sophisticated representation learning approach to bridge this modality gap. We
propose HiST, a framework for ST prediction that learns multi-level image-gene
representations by modeling the data’s inherent hierarchy within hyperbolic space,
a natural geometric setting for such structures. First, we design a Multi-Level Rep-
resentation Extractor to capture both spot-level and niche-level representations
from each modality, providing context-aware information beyond individual spot-
level image-gene pairs. Second, a Hierarchical Hyperbolic Alignment module
is introduced to unify these representations, performing spatial alignment while
hierarchically structuring image and gene embeddings. This alignment strategy en-
riches the image representations with molecular semantics, significantly improving
cross-modal prediction. HiST achieves state-of-the-art performance on three public
datasets from different tissues, paving the way for more scalable and accurate
spatial transcriptomics prediction.
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Figure 1: ST data characteristics. (a) A WSI contains hierarchical structures and visually similar
patterns may correspond to different gene expressions. (b) Other works mainly model ST data in
Euclidean Space, which neglects niche-level gene and can lead to biased biological insights. (c) Our
hyperbolic approach models hierarchies based on information specificity, where a general concept
(image/spot) entails its more specific, information-rich counterpart (gene/niche), enabling more
informative representation learning.
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1 INTRODUCTION

Pathological images, particularly Hematoxylin and Eosin (H&E) stained Whole Slide Images (WSIs),
provide critical insights into cell morphology and tissue architecture, serving as a cornerstone in
biomedical research and clinical diagnosis (Lu et al., 2024; Chen et al., 2024a; Li et al., 2024). Gene
expression data complement these pathological images by elucidating the molecular mechanisms
underlying observed features, thereby enhancing disease diagnosis and facilitating therapeutic target
identification (Ash et al., 2021). Spatial Transcriptomics (ST) integrates both modalities by capturing
spatially resolved gene expression and cellular morphology simultaneously (Ståhl et al., 2016),
aligning molecular profiles with tissue structure at micrometer resolution (Williams et al., 2022).
Despite its advantages, ST has not achieved widespread clinical adoption due to its high cost and
laborious experiment compared to traditional techniques (Zhang et al., 2022; Choe et al., 2023).
Consequently, there has been an increasing attention in predicting spatially resolved gene expression
directly from pathological images using deep learning approaches (Wang et al., 2025a).

Recent studies have explored diverse strategies for this prediction task, including direct inference
from spot-level images (He et al., 2020; Monjo et al., 2022), integration of multi-scale features across
WSIs (Chung et al., 2024; Wang et al., 2025b), and contrastive learning to align spot-level images with
gene expression profiles (Xie et al., 2023). Although these methods have shown promising results,
several critical questions remain underexplored. Our study is motivated by two key questions in ST
prediction: (1) Can integrating broader pathological and genetic context improve spot-level gene
expression inference? Previous studies often primarily utilized multi-scale pathological features
for gene expression prediction, neglecting the multi-level structure inherent in gene expression
itself (Jaume et al., 2024b; Chen et al., 2024b), which spans cellular and tissue-level scales. In reality,
both broader pathological context and bulk genetic programs can significantly influence the gene
expression profile at each spot (Chen et al., 2020; Nirmal et al., 2022; Wu et al., 2025; Ye et al., 2024).
(2) How can we effectively learn more target-modality information (i.e., gene expression) during
training to enhance cross-modal prediction? Biological heterogeneity frequently results in visually
similar pathology patches exhibiting distinct gene expression patterns (Zhu et al., 2025; Pizurica et al.,
2024; Fujii et al., 2024; Tang et al., 2025), as illustrated in Figure 1 (a). This phenomenon indicates
that standard image encoders may fail to capture the subtle morphological cues for predicting these
molecular variations. Instead of viewing this as an ill-posed one-to-many problem, we contend that
the key is to learn a more powerful and molecularly-informed image representation.

To address these two questions, we introduce HiST, a novel framework for ST prediction by learning
multi-level hyperbolic image-gene representations. HiST tackles these challenges with two core
components. First, our Multi-Level Representation Extractors capture hierarchical representa-
tions from both pathology images and their corresponding gene expression profiles. They extract
multimodal information at both spot- level and niche-level, where a niche consists of a central spot
and its surrounding neighbors, enabling the capture of comprehensive morphological and molecular
patterns across spatial scales. Second, our Hierarchical Hyperbolic Alignment module acts as
a powerful structural regularizer rather than a generative model. It uses the unique properties of
hyperbolic geometry to impose a meaningful inductive bias on the latent space, guiding the model to
learn molecularly-informed features.

We define our hierarchical relationships based on information specificity. In this view, a concept A
entails a concept B if B is a semantically richer and more specific instance of A. For example, the
concept of a “dog on a beach” is more specific and information-rich than “dog”, and is thus considered
the child concept. Following this principle, we establish two key hierarchies in our framework: (1) A
spot-level representation entails its context-rich niche-level counterpart. (2) A morphological image
entails its corresponding gene expression. This is because the gene profile contains fine-grained
molecular information that offers a much more specific description of the tissue’s state than the
more general pathology image. HiST learns powerful, context-aware representations by modeling
information-based hierarchies in hyperbolic space, which is inherently more suited for capturing such
structures than Euclidean space (Hsu et al., 2021).

We demonstrate HiST’s effectiveness on three public datasets from diverse tissues, where it consis-
tently outperforms state-of-the-art models. Our contributions are summarized as:
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• We propose HiST, a novel framework for predicting spatially resolved gene expression
from WSIs by learning multi-level hyperbolic representations that capture the intrinsic
hierarchical structure of ST data.

• We design Multi-Level Representation Extractors to capture spot- and niche-level repre-
sentations from both modalities, providing comprehensive biological insights.

• We introduce Hierarchical Hyperbolic Alignment to structurally regularize the latent
space, improving cross-modal feature integration.

• Extensive experiments on three public datasets demonstrate that HiST consistently out-
performs existing approaches, underscoring its robust efficacy in spatial gene expression
prediction.

2 RELATED WORK

2.1 PREDICTION OF GENE EXPRESSION FROM HISTOLOGY IMAGES

Recent methodologies for predicting spatially resolved gene expression from histology images have
advanced through diverse computational paradigms, including ST-Net (He et al., 2020), BLEEP (Xie
et al., 2023), TRIPLEX (Chung et al., 2024), and Stem (Zhu et al., 2025). Local image-to-expression
regression models like ST-Net employ ResNet50 (He et al., 2016) to directly map H&E image patches
to gene expressions. While effective in deterministic prediction, these methods assume injective
mappings between morphology and transcription, overlooking biological heterogeneity. Multi-scale
integration approaches like TRIPLEX extract and fuse multi-resolution features from WSIs using
attention mechanisms. Although these methods capture multi-resolution visual patterns, they lack
explicit constraints to preserve the essential biological hierarchy. Generative models like Stem address
the uncertainty in expression prediction by generating probabilistic gene expression profiles. While
these paradigms better preserve transcriptional variability, they neglect the inherent data hierarchy. In
contrast to these prior works, HiST explicitly models the intrinsic parent-child relationships between
spots and their surrounding niches across both imaging and gene expression modalities.

2.2 MULTIMODAL CONTRASTIVE REPRESENTATION LEARNING

Contrastive learning is a pivotal technique for cross-modal tasks by aligning representations across
different modalities. For example, CLIP (Radford et al., 2021) employs contrastive learning to align
paired images and texts in a shared Euclidean embedding space. Inspired by CLIP, BLEEP (Xie
et al., 2023) adapts contrastive learning to histology and gene expression, using direct interpolation
in the embedding space for efficient, decoder-free predictions. These two models rely on Euclidean
embeddings, which limit their ability to capture hierarchical relationships. To overcome these
limitations, MERU (Desai et al., 2023) embeds image and text into hyperbolic space, leveraging its
geometric properties to build a hierarchical representation space through contrastive and entailment
losses. Building on MERU, HyCoCLIP (Pal et al., 2024) introduces intra-modal hierarchical modeling
by extracting object boxes from images and their corresponding textual descriptions, establishing
hierarchical links between box regions and the full image-text pair. HyCoCLIP’s dependence on
pre-trained object detection models to derive these boxes from given captions may result in potential
inaccuracies. In contrast, HiST directly leverages the inherent structure of ST data, from spot-level to
niche-level contexts, avoiding uncertainties associated with external feature extraction.

3 METHOD

The overview of HiST is illustrated in Figure 2. First, we briefly describe the preliminaries of the
hyperbolic geometry in Section 3.1. Second, we present the Multi-Level Representation Extractors in
Section 3.2. Third, we introduce the Hierarchical Hyperbolic Alignment in Section 3.3. Finally, we
describe the Gene Decoder and our Overall Objective Function in Section 3.4.

3.1 PRELIMINARIES

Hyperbolic Geometry Hyperbolic Geometry is a fundamental class of non-Euclidean geometry
with a constant negative curvature. This distinguishing characteristic results in an exponential growth
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Figure 2: Overview of HiST. HiST consists of three components. (a) Multi-Level Representation
Extractors capture spot- and niche-level features from both images and gene expression. (b)
Hierarchical Hyperbolic Alignment module projects these features into a shared hyperbolic latent
space. It uses contrastive alignment for corresponding image-gene pairs and entailment alignment to
structurally regularize the latent space according to information hierarchies. (c) Gene Decoder uses
the resulting aligned and context-aware image representations to predict spot-level gene expression.

of volume with respect to radius, in stark contrast to Euclidean geometry, which exhibits zero
curvature and polynomial volume scaling (Mettes et al., 2024). Consequently, hyperbolic spaces
are naturally adept at representing tree-like or hierarchical data structures, where the number of
elements increases exponentially with depth (Hsu et al., 2021; Pal et al., 2024). Due to their negative
curvature, hyperbolic spaces cannot be isometrically embedded in Euclidean spaces of equivalent
dimensionality without compromising distances or angles. To address this issue, several geometric
models are employed for their representation and computation, including the Poincaré ball model and
the Lorentz model (Cannon et al., 1997; Cho et al., 2022).

Lorentz Model Lorentz model is widely preferred due to its numerical stability and straightforward
geodesic calculations (Nickel & Kiela, 2018). The Lorentz model Ln

c embeds the n-dimensional
hyperbolic space as the upper sheet of a two-sheeted hyperboloid in (n+ 1)-dimensional Minkowski
space, with a constant curvature −c < 0, it consists of all vectors satisfying:

Ln
c = {x ∈ Rn+1 : ⟨x,x⟩L = −1

c
, xtime =

√
1/c+ ∥xspace∥2, c > 0}, (1)

where points x ∈ Rn+1 in Ln
c can be represented as [xtime,xspace]. xtime ∈ R and xspace ∈ Rn

denote the time component and the spatial component (Desai et al., 2023), respectively. For two
vectors x,y ∈ Ln

c , the Lorentzian inner product ⟨·, ·⟩L is defined as ⟨x,y⟩L = ⟨xspace,yspace ⟩E −
xtimeytime , where ⟨x,y⟩E represents the Euclidean inner product in Rn. Besides, the Lorentzian
distance dL(x,y) measures the length of the shortest path between two points x and y, which is
formulated as:

dL(x,y) =
√
1/c · cosh−1(−c⟨x,y⟩L). (2)

Tangent Space and Exponential Map The tangent space of x ∈ Ln is denoted by TxLn
c which is

precisely defined as the set of vectors orthogonal to x under the Lorentzian inner product:

TxLn
c = {v ∈ Rn+1 : ⟨x,v⟩L = 0}. (3)
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A fundamental mechanism for connecting the tangent space to the hyperbolic manifold is the
exponential map. The exponential map expcx : TxLn

c → Ln
c projects tangent vector v onto the Ln

c
along a geodesic emanating from x in the direction of v, given by:

expcx(v) = cosh(
√
c∥v∥L)x+

sinh(
√
c∥v∥L)√

c∥v∥L
v, (4)

where ∥v∥L =
√
⟨v,v⟩L is the Lorentzian norm. Moreover, the exponential map serves as a bridge

between Euclidean and hyperbolic geometries. By interpreting Euclidean vectors as tangent vectors
at the origin O = [

√
1/c, 0, . . . , 0] ∈ Rn+1 of the hyperbolic space (Mettes et al., 2024; Pal et al.,

2024; Khrulkov et al., 2020), we begin by extending the Euclidean embedding veuc ∈ Rn into Rn+1

by defining a vector v = [0,veuc] ∈ Rn+1. This vector v is situated in the tangent space at the origin
O of the hyperboloid as ⟨O,v⟩L = 0. Thus, v can be projected onto the hyperboloid Ln

c employing
the exponential map:

xspace = expcO(veuc) =
sinh(

√
c∥veuc∥E)√

c∥veuc∥E
veuc. (5)

Then we can directly calculate the corresponding time component xtime from xspace. The detailed
derivations of the above equations can be found in Appendix A.

Hyperbolic Entailment Loss The entailment cone Ry constitutes a region of point y where all
points x ∈ Ry represent child concepts of the parent concept y (Ganea et al., 2018; Desai et al.,
2023), defined by the half-aperture:

aper(y) = sin−1

(
2K√

c∥yspace∥

)
, (6)

where K = 0.1 determines boundary conditions near the origin. To enforce the partial order
relationship where y entails x, the penalty is formulated as:

Lentail(y,x) = max (0, ext(y,x)− aper(y)), (7)

where ext(y,x) denotes the exterior angle defined as ext(y,x) = cos−1
(

xtime+ytimec⟨y,x⟩L
∥yspace∥

√
(c⟨y,x⟩L)2−1

)
.

3.2 MULTI-LEVEL REPRESENTATION EXTRACTORS

Multi-Level Pathological Images Extractor Following the previous works (Xie et al., 2023;
Zhu et al., 2025), a spot-level image patch Xs ∈ R3×Ls×Ls of each identified spot is extracted
and preprocessed from a H&E stained image, with the spot positioned at the center of the patch,
as depicted in Figure 2 (a), where Ls represents the size of the spot image. While Xs directly
corresponds to the target spot gene expression, the additional nearby visual information from high-
level pathology patches can significantly contribute to the analysis (Chung et al., 2024; Lin et al.,
2024). Therefore, we introduce the niche-level image patch Xn ∈ R3×Ln×Ln , which is defined as a
higher-level region composed of the central spot-level patch Xs and its spatially adjacent spot-level
patches. Ln signifies the patch size of the niche image. These neighboring patches are selected based
on spatial proximity using the K-Nearest Neighbors (KNN) algorithm. By cropping the region of
these patches, Xn forms a larger image region that provides a broader field of view and enhanced
contextual information about the surrounding tissue microenvironment.

We leverage UNI (Chen et al., 2024a), a pathology foundation model pre-trained on large-scale
histology images, to extract feature embeddings for spot-level and niche-level image patches. As the
original UNI was not well-suited for large-sized niche-level image patches, we resized the images
in our dataset and fine-tuned UNI using the Low-Rank Adaptation (LoRA) technique (Hu et al.,
2022), leading to improved multi-level visual representations. Consider a frozen pre-trained weight
matrix Worigin ∈ Rd×d, where d denotes the dimension. The updated weight matrix is formulated as
Wnew = Worigin+∆W = Worigin+BA, where the update ∆W ∈ Rd×d expressed by the product
of two smaller trainable matrices: B ∈ Rd×r, A ∈ Rr×d, and the rank r ≪ d. This approach enables
us to adapt the model to the characteristics of our data while substantially reducing the computational
resources required for fine-tuning. The multi-level image representations Is ∈ Rd and In ∈ Rd are
extracted by Is, In = MIE(Xs, Xn; θUNI ,∆θlora). Here, MIE represent the UNI model adapted
by LoRA, θuni and ∆θlora denote the frozen parameters of UNI and the trainable parameters of
LoRA modules.
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Multi-Level Genomic Profiles Extractor Let Ys ∈ RN be the associated spot-level gene expres-
sion profile of the spot-level image Xs, where N is the gene set size. In the same vein as the niche-level
image patch, we introduce the niche-level gene expression profile Yn ∈ RN = 1

|S|
∑

i∈S Y i
s , where

S = {Y 1
s , · · · , Y K

s } denotes the expression profile set of Ys and its neighbors, K−1 is the number of
selected neighbors. Gs, Gn = MGE(Ys, Yn; θgene), where MGE denotes the multi-level genomic
profiles extractor with trainable parameters implemented by a trainable fully connected network
θgene, Gs ∈ Rd and Gn ∈ Rd are the spot-level and niche-level gene embeddings, respectively.

3.3 HIERARCHICAL HYPERBOLIC ALIGNMENT

To obtain better representations for facilitating the subsequent tasks, the alignment is a pivotal method
which bridges the gap of different modalities (Xie et al., 2023; Zhang et al., 2025; Li et al., 2021).
However, common implementations of alignment, such as BLEEP (Xie et al., 2023) , directly close
the different items in Euclidean space, which may not be appropriate for hierarchical data like ST. To
address this problem, we design a Hierarchical Contrastive Alignment module, which aligns the
different modalities at different levels in hyperbolic space. Subsequently, we introduce a Hierarchical
Entailment Alignment module to regularize the partial order in ST data.

Hierarchical Contrastive Alignment (HCA) Using Equation 5, let expcO(·) : Rd → Ld
c map

Euclidean features to hyperbolic space with trainable curvature −c < 0 and origin O. This yields
hyperbolic spatial components {Îspaces , Îspacen , Ĝspace

s , Ĝspace
n } = expcO ({Is, In, Gs, Gn}), while

the corresponding time components can be calculated by Equation 1. The hyperbolic representations
Îs, În, Ĝs and Ĝn are obtained by concatenating spatial components and time components. To
align the spot-level image embedding to the spot-level embedding, we employ modified infoNCE
loss (Oord et al., 2018), in which the cosine similarity is replaced by the Lorentzian distance dL(·, ·)
described in Equation 2. The contrastive loss is defined as follows:

Lalign(Îs, Ĝs) = − 1

B

B∑
i=1

log
exp(dL(Î

i
s, Ĝ

i
s)/τ)∑B

j=1,j ̸=i exp(dL(Î
i
s, Ĝ

j
s)/τ)

, (8)

where B denotes the batch size and τ is the temperature parameter. To better utilize in-batch negatives,
we also align spot-level gene to spot-level image embeddings using Lalign(Ĝs, Îs). Since spot-level
features represent more general characteristics, a single spot-level feature may correspond to multiple
niche-level features within a batch. To avoid such undesirable negative alignment, we only consider
the alignment from niche-level features to spot-level features, i.e., Lalign(Ĝn, Îs) and Lalign(În, Ĝs).
The objective function of Hierarchical Contrastive Alignment can be expressed as:

LHCA =
1

4
(Lalign(Îs, Ĝs) + Lalign(Ĝs, Îs) + Lalign(Ĝn, Îs) + Lalign(În, Ĝs)) (9)

Hierarchical Entailment Alignment (HEA) Beyond spot-niche hierarchies, we account for the
non-identical nature of image features and gene features. We recognize that gene features provide
finer-grained molecular insights. Thus, we posit that gene features are the child concept of images in
hyperbolic space. In our ST data, this hierarchy can be summarized as spot-level features entailing
niche-level features, and pathological images entailing their corresponding gene expression profiles.
In order to directly constrain this hierarchical structure, we leverage Hyperbolic Entailment Loss
Lentail(·, ·) described in Equation 7. Therefore, the final objective function of this module is
formulated as:

LHEA =
1

4
(Lentail(Îs, În) + Lentail(Ĝs, Ĝn) + Lentail(Îs, Ĝs) + Lentail(În, Ĝn)). (10)

3.4 GENE DECODER BASED ON ALIGNED REPRESENTATIONS AND OBJECTIVE FUNCTION

To predict the spot-level gene expression profiles, we directly concatenate the aligned representa-
tions ( Is and In) and feed the result into a gene decoder implemented by Multi-Layer Perceptron
(MLP) (LeCun et al., 2015), which can be expressed by Y pred = Decodergene(concat(Is, In)).
MSE loss is leveraged to optimize this decoder: Lpred = ∥Y pred − Ys∥22.
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Table 1: Performance comparison on three spatial transcriptomics datasets. Higher values on
PCC@10, PCC@50, PCC@200 are better. Lower values on MAE, MSE are better.

Dataset Model PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum

TRIPLEX 0.701±0.128 0.624±0.154 0.462±0.191 1.869±0.803 1.056±0.239
StNet 0.646±0.134 0.570±0.142 0.419±0.176 1.686±0.373 1.023±0.134
BLEEP 0.637±0.112 0.556±0.120 0.382±0.160 2.038±0.587 1.096±0.164
Stem 0.670±0.116 0.573±0.130 0.399±0.166 1.788±0.418 1.032±0.138
HiST(Ours) 0.721±0.105 0.642±0.128 0.477±0.184 1.498±0.456 0.958±0.158

Skin

TRIPLEX 0.831±0.094 0.799±0.114 0.740±0.142 0.981±0.466 0.685±0.205
StNet 0.804±0.105 0.779±0.117 0.726±0.140 0.993±0.469 0.689±0.198
BLEEP 0.788±0.111 0.761±0.123 0.704±0.145 1.117±0.540 0.701±0.221
Stem 0.782±0.094 0.748±0.113 0.687±0.138 1.276±0.703 0.730±0.261
HiST(Ours) 0.839±0.086 0.812±0.102 0.758±0.129 0.932±0.418 0.657±0.182

Kidney

TRIPLEX 0.579±0.095 0.485±0.084 0.351±0.066 1.122±0.204 0.855±0.104
StNet 0.523±0.105 0.435±0.095 0.305±0.064 1.167±0.217 0.847±0.078
BLEEP 0.518±0.112 0.434±0.102 0.310±0.071 1.233±0.244 0.865±0.085
Stem 0.535±0.111 0.414±0.084 0.271±0.059 1.380±0.347 0.911±0.115
HiST(Ours) 0.617±0.094 0.526±0.088 0.390±0.070 1.077±0.155 0.817±0.058

The Training Objective Function The training objective of HiST is twofold: (1) to align patholog-
ical image and gene expression profiles across multiple levels by modeling the hierarchical structure
of ST data, and (2) to accurately predict gene expression from image features alone. Ultimately, this
objective function consists of two components: hierarchical alignment loss and ST prediction loss,
defined by:

L = Lpred + α(LHCA + βLHEA), (11)

where α balances the loss components, and β controls the entailment loss effect.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Dataset To evaluate HiST, we collected three public datasets from the HEST-1K dataset (Jaume
et al., 2024a), a high-quality collection of spatial transcriptomics data with standardized processing
and rich metadata. (1) Colorectum dataset (Valdeolivas et al., 2024) comprises 14 WSIs (0.45 µm
per pixel) with a total of 20,733 spots; (2) Skin (Schäbitz et al., 2022) includes 46 WSIs and over
35,008 spots. The resolution of pathology images is about 0.52 µm/pixel; (3) Kidney (Lake et al.,
2023) provides 23 WSIs and 25,944 spots at a resolution of approximately 0.76 µm/pixel.

ST Preprocessing To account for variations in image resolution across datasets, we adopted a
physics-aware patch extraction strategy rather than using fixed pixel dimensions for image cropping.
Specifically, we calculated the patch size for each spot based on its physical diameter and crop
the corresponding images at their respective resolutions to obtain spot-level image patches. The
niche-level patch is created by cropping the region encompassing the central spot and its K-nearest
neighbors (determined by spatial coordinates). Subsequently, all extracted patches are resized to
a uniform 224×224 pixel resolution. For the gene expression data, we select the top 200 Highly
Mean, Highly Variant Genes (HMHVG). Gene expression counts for each spot were subsequently
log-transformed.

Evaluation Protocol To ensure robust model evaluation, we performed five independent random
splits of the WSI samples for each dataset, allocating 80% for training, 10% for validation, and 10%
for testing in each iteration. The exact WSI IDs used for each of the five splits are provided in our
code to ensure full reproducibility. Our evaluation metrics include top-k mean Pearson Correlation
Coefficient (PCC@k), mean squared error (MSE), and mean absolute error (MAE), similar to (Zhu
et al., 2025; Chung et al., 2024).
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Figure 3: Visualization of the spatial distribution of the COL1A1 (Top) gene and FN1 gene (Bottom)
in ZEN42 sample.

4.2 EXPERIMENTAL RESULTS AND VISUALIZATION

Baseline Comparison Table 1 shows that HiST outperforms all existing methods across all datasets
(Colorectum, Skin, and Kidney), highlighting HiST’s superior accuracy and robustness in predicting
gene expression from pathology images across diverse biological contexts, which were trained under
a rigorous, fair comparison protocol (details in Appendix B.2). For instance, compared to the second-
best method TRIPLEX, HiST achieves an improvement of 6.33% and 3.24% in PCC@200 on the
Kidney and Skin datasets, respectively. Notably, TRIPLEX wachieves the next-best performance,
underscoring the crucial role of multi-level structure in accurately predicting gene expression. Ac-
knowledging the variance in the results of Table 1 , we performed paired t-tests in Appendix C.1 to
confirm the statistical significance of HiST’s improvements. To further demonstrate the robustness of
our model, we also conducted a series of additional experiments, including an efficiency benchmark
(Appendix C.2), cross-laboratory generalization tests (Appendix C.3), robustness analysis on the
HVG gene set (Appendix C.4), evaluation with patient-level data splitting (Appendix C.5) and so on.

Biomarker Visualization To further qualitatively assess the model’s behavior, we performed
visualization of sample ZEN42 in the Colorectum dataset, focusing on two established colorectal
cancer biomarkers, i.e., COL1A1 (Zhang et al., 2018; Pawlak et al., 2025) and FN1 (Sun et al., 2020).
Figure 3 demonstrates that HiST more accurately captures the key high-expression regions compared
to other methods. More visualizations are available in Section D of Appendix.

Table 2: Performance on MSI Sta-
tus Classification (AUROC).

Model
AUROC

MSI-H MSS
TRIPLEX - -
StNet 0.57±0.08 0.54±0.03
BLEEP 0.55±0.05 0.53±0.06
Stem - -
Ours 0.72±0.06 0.60±0.06

Clinical Downstream Task Validation We designed a down-
stream validation experiment to further validate the clinical util-
ity of the representations learned by HiST. First, we employed
our model, pre-trained on the Colorectum dataset, to perform
zero-shot inference on H&E slides from an independent exter-
nal dataset, TCGA-COADREAD (colon and rectal adenocar-
cinoma). The inferred gene expression profiles were then used
to train a Random Forest classifier for predicting microsatel-
lite instability (MSI) status, a critical clinical biomarker for
immunotherapy response (Feng et al., 2024). As shown in Ta-
ble 2, we note that applying some baseline models to this large-
scale experiment was computationally infeasible. TRIPLEX’s
global attention mechanism led to prohibitive memory require-
ments (>60GB of VRAM for a single WSI), while Stem’s diffusion-based inference was excessively
slow (over 230 hours for the entire cohort). The gene profiles predicted by HiST led to significantly
better MSI prediction performance compared to other baselines. This result indicates that the repre-
sentations learned by HiST generalize remarkably well and carry tangible clinical value, underscoring
its potential for downstream clinical applications.

8
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4.3 ABLATION STUDY

We performed an ablation study on the model’s structure and hyperparameters to observe the strategy
of alignment, input data for gene decoder and the impact of LoRA. Here, we describe the results in
Colorectum dataset. The ablation study on the impact of LoRA, as well as more experiment results
on other datasets, can be found in Appendix E.

Strategy of Alignment We compared the different alignment strategies including: a) removing
only the gene-image regularization term of the HEA loss (w/o G-I HEA), b) removing the entire HEA
loss (w/o HEA), c) removing the entire Hierarchical Hyperbolic Alignment (HHA) module (w/o HEA
+ HCA), d) replacing the HHA module by a MERU variant in Hyperbolic Space (without mutil-level
representation learning) (Desai et al., 2023) and e) replacing the HHA module by a CLIP variant in
Euclidean Space (Radford et al., 2021), as shown in Table 3. The results imply that our approach
can learn better representations by leveraging inherent hierarchies, enhancing the overall model
performance. Notably, the performance gap between our full model and its Euclidean counterpart
(CLIP) strongly validates our core hypothesis on the superiority of hyperbolic space for this task.

Table 3: Ablation study of the alignment strategy.

Alignment PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓
w/o G-I HEA 0.708±0.116 0.633±0.139 0.470±0.186 1.523±0.471 0.972±0.160
w/o HEA 0.708±0.118 0.627±0.142 0.465±0.186 1.523±0.444 0.969±0.154
w/o HEA + HCA 0.697±0.141 0.615±0.162 0.456±0.201 1.675±0.810 0.997±0.250
MERU 0.705±0.101 0.618±0.159 0.451±0.142 1.535±0.341 0.970±0.125
CLIP 0.693±0.093 0.605±0.102 0.441±0.135 1.523±0.219 1.011±0.124
Ours 0.721±0.105 0.642±0.128 0.477±0.184 1.498±0.456 0.958±0.158

Input of Decoder We evaluated the impact of different input strategies on the decoder’s perfor-
mance, including using a) only spot-level image, b) only niche-level images and c) the combination of
both. As shown in Figure 4, the results reveal that our combined approach yields the best performance
across all metrics. In summary, this ablation study confirms that the integration of both spot-level and
niche-level information is critical for achieving optimal performance.

Figure 4: Ablation study of the input data of decoder.

5 CONCLUSION

We present HiST, a novel framework that leverages multi-level hyperbolic representations to predict
spatial transcriptomics from histology images. By modeling the intrinsic hierarchical structure
of ST data within hyperbolic space, HiST learns more comprehensive spatial histological and
genetic features. Our comprehensive experimental evaluation demonstrates that HiST consistently
outperforms state-of-the-art approaches, underscoring the potential of geometric deep learning in
spatial omics analysis. We hope this framework inspires future research toward geometric-aware
multimodal learning in the biological domain, harnessing the inherent geometry of biological systems
for designing more sophisticated representation models.
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Dataset and Preprocessing Our research is based on publicly available datasets. Their detailed
descriptions, sources, and the full data preprocessing pipeline (including patch extraction and gene
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Badillo, Alice Julien-Laferrière, Demeter Túrós, Lena Voith von Voithenberg, Isabelle Wells,
et al. Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial
transcriptomics. NPJ precision oncology, 8(1):10, 2024.

Chuhan Wang, Adam S Chan, Xiaohang Fu, Shila Ghazanfar, Jinman Kim, Ellis Patrick, and Jean YH
Yang. Benchmarking the translational potential of spatial gene expression prediction from histology.
Nature Communications, 16(1):1544, 2025a.

Hongyi Wang, Xiuju Du, Jing Liu, Shuyi Ouyang, Yen-Wei Chen, and Lanfen Lin. M2ost: Many-to-
one regression for predicting spatial transcriptomics from digital pathology images. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 7709–7717, 2025b.

Cameron G Williams, Hyun Jae Lee, Takahiro Asatsuma, Roser Vento-Tormo, and Ashraful Haque.
An introduction to spatial transcriptomics for biomedical research. Genome medicine, 14(1):68,
2022.

Sijia Wu, Jiajin Zhang, Yanfei Wang, Xinyu Qin, Zhaocan Zhang, Zhennan Lu, Pora Kim, Xiaobo
Zhou, and Liyu Huang. metsdb: a knowledgebase of cancer metastasis at bulk, single-cell and
spatial levels. Nucleic Acids Research, 53(D1):D1427–D1434, 2025.

Ronald Xie, Kuan Pang, Sai Chung, Catia Perciani, Sonya MacParland, Bo Wang, and Gary Bader.
Spatially resolved gene expression prediction from histology images via bi-modal contrastive
learning. Advances in Neural Information Processing Systems, 36:70626–70637, 2023.

Jiazhou Ye, Yan Lin, Zhiling Liao, Xing Gao, Cheng Lu, Lu Lu, Julu Huang, Xi Huang, Shilin
Huang, Hongping Yu, et al. Single cell-spatial transcriptomics and bulk multi-omics analysis of
heterogeneity and ecosystems in hepatocellular carcinoma. NPJ Precision Oncology, 8(1):262,
2024.

Linlin Zhang, Dongsheng Chen, Dongli Song, Xiaoxia Liu, Yanan Zhang, Xun Xu, and Xiangdong
Wang. Clinical and translational values of spatial transcriptomics. Signal Transduction and
Targeted Therapy, 7(1):111, 2022.

Yikun Zhang, Geyan Ye, Chaohao Yuan, Bo Han, Long-Kai Huang, Jianhua Yao, Wei Liu, and
Yu Rong. Atomas: Hierarchical adaptive alignment on molecule-text for unified molecule under-
standing and generation. In The Thirteenth International Conference on Learning Representations,
2025.

Zheying Zhang, Yongxia Wang, Jinghang Zhang, Jiateng Zhong, and Rui Yang. Col1a1 promotes
metastasis in colorectal cancer by regulating the wnt/pcp pathway. Molecular Medicine Reports,
17(4):5037–5042, 2018.

Sichen Zhu, Yuchen Zhu, Molei Tao, and Peng Qiu. Diffusion generative modeling for spatially
resolved gene expression inference from histology images. arXiv preprint arXiv:2501.15598,
2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A Exponential Map Derivations 15

B Implementation Details 15

B.1 Implementation Details for Gene Selection . . . . . . . . . . . . . . . . . . . . . . 15

B.2 Implementation Details for Experiments . . . . . . . . . . . . . . . . . . . . . . . 15

B.3 Implementation Details for Ablation Studies . . . . . . . . . . . . . . . . . . . . . 18

B.4 Implementation Details for Evaluation Metrology . . . . . . . . . . . . . . . . . . 18

C Additional Experiment Results 19

C.1 Statistical Significance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.2 Efficiency Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.3 Cross-Laboratory Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.4 Robustness on HVG Gene Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.5 Evaluation with Patient-Level Data Splitting . . . . . . . . . . . . . . . . . . . . . 20

C.6 Scalability with Number of Target Genes . . . . . . . . . . . . . . . . . . . . . . . 21

C.7 Sensitivity to Neighborhood Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C.8 Quantitative Gene-wise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.9 Biological Validation on Key Marker Genes . . . . . . . . . . . . . . . . . . . . . 22

D Additional Visualization 22

E Additional Ablation Study 25

F Limitation 27

G The Use of Large Language Models (LLMs) 27

H Broader Impact 27

H.1 Impact on Real-world Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 27

H.2 Impact on Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A EXPONENTIAL MAP DERIVATIONS

In this section, we present the derivation of the exponential map (Equation 5) in our approach Desai
et al. (2023). Let the vector v = [0,veuc] ∈ Rn+1 denotes the extension of the Euclidean embedding
veuc ∈ Rn. This vector belongs in the tangent space at the origin O = [

√
1/c, 0, . . . , 0] ∈ Rn+1

of the hyperboloid as the Lorentzian inner product of these two vectors is zero, where −c < 0 is
the curvature of the hyperboloid. Based on Equation 4, we can simplify the exponential map by
considering only the space components:

xspace = cosh(
√
c∥v∥L)0 +

sinh (
√
c∥v∥L)√

c∥v∥L
veuc, (12)

where the first term of this equation is zero. The Lorentzian norm of v is equal to the Euclidean norm
of space components:

∥v∥L =
√

⟨v,v⟩L =
√
0 + ⟨v,v⟩E = ∥veuc∥, (13)

where ⟨·, ·⟩E denotes standard Euclidean inner product. Therefore, this exponential map can be
formulated as:

xspace = expcO(veuc) =
sinh(

√
c∥veuc∥E)√

c∥veuc∥E
veuc. (14)

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS FOR GENE SELECTION

The gene expression profiles of Spatial Transcriptomics (ST) typically contain approximately 20,000
to 30,000 genes, most of which exhibit low variability. Directly feeding all these genes into a
deep learning model would lead to the severe curse of dimensionality. To address this issue, we
implemented two gene selection strategies based on previous work (Zhu et al., 2025): 1) The top
200 genes with both high mean expression and high variability (MHHVG); 2) The top 300 genes
selected from all highly variable genes (HVG) ranked by mean expression level. Specifically, for each
WSI, we extracted the top 2,000 highly variable genes based on its corresponding gene expression
profile. These highly variable gene sets are then pooled across all WSIs to form a union set. From
this union set, we rank genes by mean expression and variance independently to identify the top 300
genes in each category. The top 300 genes with the highest mean expression are designated as highly
expressed genes (HEG), and the top 300 genes with the highest variance are designated as highly
variable genes (HVG). We then take the intersection of these two sets to define the Highly Mean and
Highly Variable Genes (HMHVG). This approach ensures a robust and consistent gene selection for
downstream analyses. Figure 5 displays the Highly Mean and Highly Variable Genes (HMHVG) set,
while Figure 6 shows the selected Highly Variable Genes (HVG) set.

B.2 IMPLEMENTATION DETAILS FOR EXPERIMENTS

We compare HiST against four state-of-the-art methods: TRIPLEX (Chung et al., 2024), StNet (He
et al., 2020), BLEEP (Xie et al., 2023), and Stem (Zhu et al., 2025). To ensure a fair and rigorous
comparison, we re-implemented all baseline models and trained them from scratch using the exact
same data splits described in our evaluation protocol of Section 4.1. For each method, we meticu-
lously followed the hyperparameter tuning strategies outlined in their original publications, adapting
their official public code where available. This standardized setup guarantees that all performance
differences can be attributed to model architecture and learning strategy rather than variations in data
or implementation.

Our model is trained with AdamW with an initial learning rate of 0.0001. The batch size is 128 and
the hidden embedding channel is 1024. The hyperparameters of α and β are 0.2 and 0.4 respectively.
As for LoRA, we only adapt the attention weights of the foundational model with rank 4, applying it
to the last 11 attention layers. Besides, we implement mixed precision training using PyTorch’s AMP
for accelerated computation, with all experiments seeded at 42 for reproducibility. The epochs of
training are up to 200 with early stopping, and we assume models have converged when the validation
loss fails to improve for 10 consecutive epochs. All experiments are trained on RTX4090 GPUs.
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Under review as a conference paper at ICLR 2026

Dataset Genes to be predicted

Colorectum

'A2M', 'ACTA2', 'AEBP1', 'AGR2', 'AHNAK', 'ANXA11', 'APOE', 'ASS1', 'ATP1B1', 'ATP5ME', 'ATP6V0C', 'B2M', 

'BCAP31', 'BGN', 'BST2', 'BTF3', 'C15orf48', 'C19orf33', 'C1QA', 'C1QB', 'C1R', 'C1S', 'C3', 'CALD1', 'CALM1', 

'CCN2', 'CD24', 'CD44', 'CD55', 'CD59', 'CD74', 'CD81', 'CD99', 'CDH17', 'CEACAM5', 'CEACAM6', 'CEACAM7', 

'CKB', 'CLCA1', 'CLDN3', 'CLDN4', 'CLDN7', 'COL12A1', 'COL18A1', 'COL1A1', 'COL1A2', 'COL3A1', 'COL4A1', 

'COL4A2', 'COL5A1', 'COL5A2', 'COL6A1', 'COL6A2', 'COL6A3', 'COMMD6', 'COX5A', 'COX5B', 'COX6B1', 

'COX7B', 'CRIP1', 'CSTB', 'CTSB', 'CTSC', 'CTSD', 'CXCL1', 'CXCL10', 'CXCL14', 'DBI', 'DCN', 'DEFA5', 'DMBT1', 

'DUOX2', 'DUSP1', 'EEF1A1', 'EGR1', 'EIF5A', 'ELF3', 'ENO1', 'EPCAM', 'FABP1', 'FAM3D', 'FBLN1', 'FCGBP', 

'FLNA', 'FN1', 'FOS', 'FSTL1', 'FTH1', 'FTL', 'FXYD3', 'GPRC5A', 'GPX2', 'GREM1', 'GSN', 'HLA-A', 'HLA-B', 

'HLA-C', 'HLA-DPA1', 'HLA-DPB1', 'HLA-DQB1', 'HLA-DRA', 'HLA-DRB1', 'HMGN2', 'HNRNPH1', 'HNRNPU', 

'HSPB1', 'HSPD1', 'ID1', 'IDO1', 'IER2', 'IER3', 'IFI30', 'IFI6', 'IGFBP4', 'IGFBP5', 'IGFBP7', 'IGHA1', 'IGHG1', 

'IGHG3', 'IGHG4', 'IGHM', 'IGKC', 'IGLC1', 'IGLC2', 'IGLC3', 'IL32', 'IRF1', 'ISG15', 'ITLN1', 'ITM2B', 'ITM2C', 

'JCHAIN', 'JUNB', 'JUND', 'JUP', 'KDELR2', 'KLF5', 'KRT18', 'KRT19', 'KRT8', 'LCN2', 'LDHB', 'LGALS1', 

'LGALS3', 'LGALS4', 'LUM', 'LY6E', 'LYZ', 'MALAT1', 'MARCKSL1', 'MDK', 'MGP', 'MMP1', 'MMP11', 'MMP2', 

'MUC1', 'MUC12', 'MUC13', 'MUC2', 'MUC5B', 'MYL12B', 'MYL9', 'NBL1', 'NDUFA13', 'NORAD', 'NR4A1', 

'OLFM4', 'PABPC1', 'PERP', 'PGK1', 'PHGR1', 'PI3', 'PIGR', 'PLA2G2A', 'POSTN', 'PPIB', 'PRSS8', 'PSMB8', 

'PTMA', 'RBM3', 'REG1A', 'REG3A', 'REG4', 'RHOA', 'RHOC', 'ROMO1', 'RRBP1', 'S100A14', 'S100A6', 'S100A8', 

'S100A9', 'S100P', 'SAT1', 'SELENOP', 'SERPINA1', 'SERPING1', 'SFN', 'SLC12A2', 'SMIM22', 'SNRPB', 'SOD2', 

'SPARC', 'SPINK1', 'SPINK4', 'SPINT2', 'SPTBN1', 'ST14', 'STAT1', 'SULF1', 'TAGLN', 'TFF1', 'TFF3', 'TGFBI', 

'THBS1', 'THY1', 'TIMP1', 'TIMP2', 'TM9SF2', 'TMEM176B', 'TMEM54', 'TMEM59', 'TMSB4X', 'TPM2', 'TPT1', 

'TSPAN1', 'TSPAN3', 'TSPAN8', 'TSPO', 'TYMP', 'UBD', 'UQCR11', 'UQCRH', 'VIM', 'YWHAB', 'ZFP36', 'ZG16'

Skin

'ACTB', 'ACTG1', 'AHNAK', 'ANXA1', 'ANXA2', 'APRT', 'AQP3', 'ARPC2', 'ASPRV1', 'ATP1B3', 'ATP5F1A', 

'ATP5F1B', 'ATP5F1E', 'ATP5MC2', 'ATP5MC3', 'ATP5ME', 'ATP5MF', 'ATP5MG', 'B2M', 'BTF3', 'C19orf33', 

'CALM1', 'CALML3', 'CALML5', 'CASP14', 'CCL27', 'CD24', 'CD44', 'CD74', 'CD9', 'CDSN', 'CFL1', 'CHCHD2', 

'CLTB', 'CNBP', 'CNFN', 'COL17A1', 'COL1A1', 'COL1A2', 'COL3A1', 'COL6A1', 'COL6A2', 'COX4I1', 'COX5B', 

'COX6A1', 'COX6B1', 'COX6C', 'COX7A2', 'COX7B', 'COX7C', 'COX8A', 'CRABP2', 'CSNK1A1', 'CST3', 'CST6', 

'CSTA', 'CSTB', 'CTNNBIP1', 'CTSB', 'CTSD', 'CXCL14', 'DBI', 'DCD', 'DCN', 'DEFB4A', 'DEGS1', 'DMKN', 'DSC1', 

'DSC3', 'DSG1', 'DSG3', 'DSP', 'DSTN', 'DYNLL1', 'EEF1A1', 'EEF1B2', 'EEF1D', 'EEF2', 'EIF1', 'EIF3E', 'EIF3F', 

'EIF4G2', 'EIF5A', 'ELOB', 'ENO1', 'FABP5', 'FADS2', 'FAM25A', 'FAU', 'FLG', 'FLG2', 'FTH1', 'FTL', 'GAPDH', 

'GJA1', 'GJB2', 'GLTP', 'GPNMB', 'GSTP1', 'GUK1', 'H3-3A', 'H3-3B', 'HINT1', 'HLA-B', 'HLA-C', 'HLA-DPA1', 

'HLA-DPB1', 'HLA-DQB1', 'HLA-DRA', 'HLA-DRB1', 'HLA-E', 'HMGB1', 'HNRNPA1', 'HNRNPA2B1', 'HNRNPK', 

'HOPX', 'HSP90AA1', 'HSP90AB1', 'HSPA8', 'HSPB1', 'IFI27', 'IFI6', 'IFITM3', 'IGKC', 'ITM2B', 'IVL', 'KLF5', 

'KLK7', 'KRT1', 'KRT10', 'KRT14', 'KRT16', 'KRT17', 'KRT2', 'KRT5', 'KRT6A', 'KRT6B', 'KRT6C', 'KRTDAP', 

'LAD1', 'LCE1B', 'LCE3D', 'LDHA', 'LGALS1', 'LGALS3', 'LGALS7', 'LGALS7B', 'LMNA', 'LY6D', 'LYPD3', 'LYZ', 

'MIF', 'MUCL1', 'MYL6', 'NACA', 'NCCRP1', 'NDUFA4', 'NDUFS5', 'NOP53', 'NPM1', 'OAZ1', 'P4HB', 'PABPC1', 

'PERP', 'PFDN5', 'PFN1', 'PGAM1', 'PI3', 'PKM', 'PKP1', 'PLP2', 'POLR2L', 'PPDPF', 'PPIA', 'PPL', 'PRDX1', 

'PSAP', 'PSMA7', 'PTMA', 'RAB11A', 'RAC1', 'RACK1', 'RAN', 'RBM3', 'ROMO1', 'RTN4', 'S100A10', 'S100A11', 

'S100A14', 'S100A16', 'S100A2', 'S100A4', 'S100A6', 'S100A7', 'S100A8', 'S100A9', 'SBSN', 'SCGB2A2', 'SDC1', 

'SELENOW', 'SERBP1', 'SERF2', 'SERPINB3', 'SERPINB4', 'SERPINB5', 'SFN', 'SH3BGRL3', 'SLC25A3', 

'SLC25A5', 'SLC25A6', 'SLC2A1', 'SLPI', 'SLURP1', 'SNRPD2', 'SPARC', 'SPINK5', 'SPINT2', 'SPRR1B', 

'SPRR2A', 'SPRR2B', 'SPRR2D', 'SPRR2E', 'SPRR2G', 'SUB1', 'TACSTD2', 'TAGLN2', 'TMA7', 'TMBIM6', 

'TMEM45A', 'TMSB10', 'TMSB4X', 'TOMM7', 'TPI1', 'TPT1', 'TRIM29', 'TSPO', 'TUBA1B', 'TUBA1C', 'TUBB4B', 

'TXN', 'TYMP', 'UBA52', 'UBB', 'UBC', 'UBL5', 'UQCR10', 'UQCR11', 'UQCRB', 'UQCRQ', 'VIM', 'YBX1', 'YBX3', 

'YWHAB', 'YWHAZ'

Kidney

'A2M', 'ACADVL', 'ACTA2', 'ACTB', 'ACTG1', 'ADGRG1', 'ADIRF', 'AEBP1', 'ALDOB', 'ANPEP', 'ANXA2', 'APLP2', 'APOE', 

'APP', 'AQP1', 'AQP2', 'ASAH1', 'ASS1', 'ATP1A1', 'ATP1B1', 'ATP5F1A', 'ATP5F1D', 'ATP5MC3', 'ATP5ME', 'ATP5MF', 

'ATP6V0C', 'B2M', 'BCAM', 'BGN', 'BSG', 'C1QA', 'C1R', 'C7', 'CA2', 'CALB1', 'CALD1', 'CALM1', 'CALM2', 'CANX', 'CD151', 

'CD24', 'CD74', 'CD81', 'CD9', 'CDH16', 'CDKN1C', 'CFL1', 'CHCHD10', 'CHCHD2', 'CIRBP', 'CKB', 'CLCNKB', 'CLU', 'COL1A2', 

'COL3A1', 'COL4A1', 'COL4A2', 'COX5A', 'COX5B', 'COX6A1', 'COX6B1', 'COX6C', 'COX7A2', 'COX7B', 'COX7C', 'COX8A', 

'CRIM1', 'CRYAB', 'CST3', 'CTSB', 'CTSH', 'CXCL12', 'CXCL14', 'CYSTM1', 'DCN', 'DDX17', 'DDX5', 'DEFB1', 'DSTN', 'DUSP1', 

'DYNLL1', 'EEF1A1', 'EEF1D', 'EEF1G', 'EEF2', 'EFHD1', 'EIF3K', 'EIF4A1', 'ENG', 'EPAS1', 'EZR', 'FABP1', 'FAU', 'FLNA', 

'FTH1', 'FTL', 'FXYD2', 'FXYD4', 'GABARAP', 'GATM', 'GHITM', 'GPX3', 'GSTM3', 'GSTP1', 'GTF2I', 'HINT1', 'HLA-A', 'HLA-B', 

'HLA-C', 'HLA-DPA1', 'HLA-DRA', 'HLA-DRB1', 'HLA-E', 'HNRNPA1', 'HNRNPA2B1', 'HSD11B2', 'HSP90AB1', 'HSPA8', 

'HSPB1', 'HTRA1', 'IDH2', 'IFITM2', 'IFITM3', 'IGFBP2', 'IGFBP4', 'IGFBP5', 'IGFBP7', 'IGHA1', 'IGHG1', 'IGHG3', 'IGHG4', 

'IGKC', 'IGLC1', 'IGLC2', 'IGLC3', 'ITGA3', 'ITGB1', 'ITM2B', 'IVNS1ABP', 'KCNJ1', 'KCNJ15', 'KNG1', 'LAMP1', 'LAMTOR5', 

'LAPTM4A', 'LDHA', 'LGALS1', 'LRP2', 'LUM', 'MAL', 'MALAT1', 'MGP', 'MGST1', 'MGST3', 'MIF', 'MIOX', 'MMP7', 'MUC1', 

'MYL12A', 'MYL6', 'MYL9', 'MZT2B', 'NAT8', 'NDRG1', 'NDUFA1', 'NDUFA13', 'NDUFA2', 'NDUFA4', 'NDUFA6', 'NDUFB2', 

'NDUFB7', 'NDUFB8', 'NDUFB9', 'NDUFC1', 'NDUFS5', 'NDUFS6', 'NDUFV1', 'NEAT1', 'NME2', 'NPC2', 'OAZ1', 'OGDHL', 

'OST4', 'P4HB', 'PCBP1', 'PCK1', 'PDZK1IP1', 'PEBP1', 'PEPD', 'PFN1', 'PGK1', 'PHPT1', 'PIGR', 'PODXL', 'POLR2L', 

'PPP1R1A', 'PTGDS', 'PTH1R', 'REN', 'RHCG', 'RHOA', 'RNASE1', 'ROMO1', 'RTN4', 'S100A10', 'S100A2', 'S100A6', 'SAT1', 

'SDC1', 'SELENOP', 'SERPINA1', 'SERPINA5', 'SFRP1', 'SLC12A1', 'SLC12A3', 'SLC13A3', 'SLC25A3', 'SLC25A5', 'SLC25A6', 

'SLC3A1', 'SLC5A12', 'SMIM24', 'SNHG25', 'SOD1', 'SOD2', 'SPARC', 'SPINK1', 'SPP1', 'SRP14', 'SSR4', 'SUCLG1', 'TAGLN', 

'TAGLN2', 'THY1', 'TIMP1', 'TIMP2', 'TIMP3', 'TINAGL1', 'TMA7', 'TMSB10', 'TMSB4X', 'TPI1', 'TPM1', 'TPT1', 'TSPAN1', 

'TUBB', 'TXN', 'UBA52', 'UGT2B7', 'UMOD', 'UQCRB', 'UQCRC1', 'UQCRFS1', 'VIM', 'WFDC2’

Figure 5: HMHVG gene selection in each dataset
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Under review as a conference paper at ICLR 2026

Dataset Genes to be predicted

Colorectum

'A2M', 'ACTA2', 'AEBP1', 'AGR2', 'AHNAK', 'ANXA11', 'ANXA5', 'APLP2', 'APOE', 'ARPC2', 'ASS1', 'ATP1B1', 'ATP5F1A', 

'ATP5IF1', 'ATP5ME', 'ATP6V0B', 'ATP6V0C', 'B2M', 'BCAP31', 'BGN', 'BST2', 'BTF3', 'C15orf48', 'C19orf33', 'C1QA', 'C1QB', 

'C1R', 'C1S', 'C3', 'CALD1', 'CALM1', 'CALM3', 'CAPZB', 'CCN2', 'CCND1', 'CD24', 'CD44', 'CD55', 'CD59', 'CD74', 'CD81', 'CD99',

'CDH17', 'CEACAM5', 'CEACAM6', 'CEACAM7', 'CHCHD10', 'CIRBP', 'CKB', 'CLCA1', 'CLDN3', 'CLDN4', 'CLDN7', 'CLTA', 

'COL12A1', 'COL18A1', 'COL1A1', 'COL1A2', 'COL3A1', 'COL4A1', 'COL4A2', 'COL5A1', 'COL5A2', 'COL6A1', 'COL6A2', 

'COL6A3', 'COMMD6', 'COX5A', 'COX5B', 'COX6B1', 'COX7B', 'CRIP1', 'CSTB', 'CTSB', 'CTSC', 'CTSD', 'CTSS', 'CXCL1', 

'CXCL10', 'CXCL14', 'CYCS', 'DBI', 'DCN', 'DEFA5', 'DMBT1', 'DUOX2', 'DUSP1', 'EEF1A1', 'EGR1', 'EIF3K', 'EIF5A', 'ELF3', 

'ENO1', 'EPCAM', 'FABP1', 'FAM3D', 'FBLN1', 'FCGBP', 'FLNA', 'FN1', 'FOS', 'FSTL1', 'FTH1', 'FTL', 'FXYD3', 'GAS5', 'GLUL', 

'GNB1', 'GPI', 'GPRC5A', 'GPX2', 'GREM1', 'GSN', 'HLA-A', 'HLA-B', 'HLA-C', 'HLA-DPA1', 'HLA-DPB1', 'HLA-DQB1', 'HLA-DRA', 

'HLA-DRB1', 'HMGN1', 'HMGN2', 'HNRNPAB', 'HNRNPH1', 'HNRNPU', 'HSPB1', 'HSPD1', 'HSPG2', 'ID1', 'IDO1', 'IER2', 'IER3', 

'IFI30', 'IFI6', 'IGFBP4', 'IGFBP5', 'IGFBP7', 'IGHA1', 'IGHG1', 'IGHG3', 'IGHG4', 'IGHM', 'IGKC', 'IGLC1', 'IGLC2', 'IGLC3', 'IL32', 

'IRF1', 'ISG15', 'ITLN1', 'ITM2B', 'ITM2C', 'JCHAIN', 'JTB', 'JUNB', 'JUND', 'JUP', 'KDELR2', 'KLF5', 'KRT18', 'KRT19', 'KRT8', 

'KRTCAP2', 'LCN2', 'LDHB', 'LGALS1', 'LGALS3', 'LGALS4', 'LUM', 'LY6E', 'LYZ', 'MALAT1', 'MARCKSL1', 'MDK', 'MGP', 'MGST1', 

'MLEC', 'MMP1', 'MMP11', 'MMP2', 'MORF4L2', 'MUC1', 'MUC12', 'MUC13', 'MUC2', 'MUC5B', 'MYL12B', 'MYL9', 'NAMPT', 'NBL1', 

'NDUFA13', 'NDUFB1', 'NDUFS6', 'NOP53', 'NORAD', 'NR4A1', 'OLFM4', 'PABPC1', 'PDIA4', 'PERP', 'PFKL', 'PGK1', 'PHGR1', 

'PI3', 'PIGR', 'PLA2G2A', 'POLR2L', 'POSTN', 'PPIB', 'PRDX2', 'PRDX6', 'PRR13', 'PRSS8', 'PSMA1', 'PSMA4', 'PSMB8', 'PTBP1', 

'PTGES3', 'PTMA', 'PTMS', 'QSOX1', 'RAB1A', 'RBM3', 'REG1A', 'REG3A', 'REG4', 'RHOA', 'RHOB', 'RHOC', 'RNASE1', 

'RNASEK', 'ROMO1', 'RRBP1', 'S100A14', 'S100A4', 'S100A6', 'S100A8', 'S100A9', 'S100P', 'SAT1', 'SDC4', 'SEC61A1', 

'SELENOP', 'SELENOW', 'SERBP1', 'SERPINA1', 'SERPING1', 'SFN', 'SKP1', 'SLC12A2', 'SMIM22', 'SNRPB', 'SOD2', 'SPARC', 

'SPINK1', 'SPINK4', 'SPINT2', 'SPTBN1', 'SRP14', 'SRRM2', 'SRSF3', 'SSR3', 'ST14', 'STAT1', 'SULF1', 'TAGLN', 'TFF1', 'TFF3',

'TGFBI', 'THBS1', 'THY1', 'TIMP1', 'TIMP2', 'TM9SF2', 'TMED10', 'TMEM176B', 'TMEM54', 'TMEM59', 'TMSB4X', 'TPM2', 'TPT1', 

'TSPAN1', 'TSPAN3', 'TSPAN8', 'TSPO', 'TST', 'TXNDC5', 'TYMP', 'UBD', 'UQCR10', 'UQCR11', 'UQCRH', 'VIM', 'XBP1', 'YWHAB', 

'ZFAS1', 'ZFP36', 'ZFP36L1', 'ZG16'

Skin

'ACTB', 'ACTG1', 'ACTN4', 'AHNAK', 'AHNAK2', 'ANXA1', 'ANXA2', 'APOE', 'APRT', 'AQP3', 'ARPC2', 'ASPRV1', 'ATP1B3', 

'ATP5F1A', 'ATP5F1B', 'ATP5F1E', 'ATP5MC2', 'ATP5MC3', 'ATP5ME', 'ATP5MF', 'ATP5MG', 'ATP5PD', 'B2M', 'BTF3', 'BTG1', 

'C19orf33', 'C4orf3', 'CALM1', 'CALM2', 'CALML3', 'CALML5', 'CASP14', 'CCL27', 'CD24', 'CD44', 'CD63', 'CD74', 'CD81', 'CD9',

'CDSN', 'CFL1', 'CHCHD2', 'CLTB', 'CNBP', 'CNFN', 'COL17A1', 'COL1A1', 'COL1A2', 'COL3A1', 'COL6A1', 'COL6A2', 'COX4I1', 

'COX5B', 'COX6A1', 'COX6B1', 'COX6C', 'COX7A2', 'COX7B', 'COX7C', 'COX8A', 'CRABP2', 'CSDE1', 'CSNK1A1', 'CST3', 'CST6', 

'CSTA', 'CSTB', 'CTNNBIP1', 'CTSB', 'CTSD', 'CXCL14', 'DBI', 'DCD', 'DCN', 'DDX5', 'DEFB4A', 'DEGS1', 'DMKN', 'DSC1', 'DSC3',

'DSG1', 'DSG3', 'DSP', 'DSTN', 'DYNLL1', 'EEF1A1', 'EEF1B2', 'EEF1D', 'EEF2', 'EIF1', 'EIF3E', 'EIF3F', 'EIF3K', 'EIF4G2', 'EIF5A', 

'ELOB', 'EMP2', 'ENO1', 'EZR', 'FABP5', 'FADS2', 'FAM25A', 'FAU', 'FLG', 'FLG2', 'FTH1', 'FTL', 'GAPDH', 'GJA1', 'GJB2', 'GLTP',

'GPNMB', 'GPX4', 'GRN', 'GSN', 'GSTP1', 'GUK1', 'H3-3A', 'H3-3B', 'HINT1', 'HLA-B', 'HLA-C', 'HLA-DPA1', 'HLA-DPB1', 'HLA-

DQB1', 'HLA-DRA', 'HLA-DRB1', 'HLA-E', 'HMGB1', 'HMGN2', 'HNRNPA1', 'HNRNPA2B1', 'HNRNPK', 'HOPX', 'HSP90AA1', 

'HSP90AB1', 'HSP90B1', 'HSPA8', 'HSPB1', 'IFI27', 'IFI6', 'IFITM3', 'IGFBP7', 'IGKC', 'ITM2B', 'IVL', 'KLF4', 'KLF5', 'KLK7', 'KRT1', 

'KRT10', 'KRT14', 'KRT16', 'KRT17', 'KRT2', 'KRT5', 'KRT6A', 'KRT6B', 'KRT6C', 'KRTDAP', 'LAD1', 'LAPTM4A', 'LCE1B', 'LCE3D',

'LDHA', 'LGALS1', 'LGALS3', 'LGALS7', 'LGALS7B', 'LMNA', 'LY6D', 'LYPD3', 'LYZ', 'MIF', 'MUCL1', 'MYL12A', 'MYL6', 'MZT2B', 

'NACA', 'NAP1L1', 'NCCRP1', 'NDUFA1', 'NDUFA4', 'NDUFB1', 'NDUFB4', 'NDUFC1', 'NDUFS5', 'NOP53', 'NPM1', 'OAZ1', 'OST4', 

'P4HB', 'PABPC1', 'PCBP1', 'PCBP2', 'PERP', 'PFDN5', 'PFN1', 'PGAM1', 'PGK1', 'PI3', 'PKM', 'PKP1', 'PLP2', 'POLR2L', 'PPDPF', 

'PPIA', 'PPIB', 'PPL', 'PPP1R14B', 'PRDX1', 'PSAP', 'PSMA7', 'PTMA', 'RAB11A', 'RAC1', 'RACK1', 'RAN', 'RBM3', 'RHOA', 

'ROMO1', 'RTN4', 'S100A10', 'S100A11', 'S100A14', 'S100A16', 'S100A2', 'S100A4', 'S100A6', 'S100A7', 'S100A8', 'S100A9', 

'SBSN', 'SCGB2A2', 'SDC1', 'SELENOW', 'SEM1', 'SERBP1', 'SERF2', 'SERPINB3', 'SERPINB4', 'SERPINB5', 'SFN', 

'SH3BGRL3', 'SKP1', 'SLC25A3', 'SLC25A5', 'SLC25A6', 'SLC2A1', 'SLC38A2', 'SLPI', 'SLURP1', 'SNRPD2', 'SPARC', 'SPINK5', 

'SPINT2', 'SPRR1B', 'SPRR2A', 'SPRR2B', 'SPRR2D', 'SPRR2E', 'SPRR2G', 'SRP14', 'SSR4', 'SUB1', 'TACSTD2', 'TAGLN2', 

'TMA7', 'TMBIM6', 'TMEM45A', 'TMSB10', 'TMSB4X', 'TOMM7', 'TPI1', 'TPT1', 'TRIM29', 'TSPO', 'TUBA1B', 'TUBA1C', 'TUBB', 

'TUBB4B', 'TXN', 'TXNIP', 'TYMP', 'UBA52', 'UBB', 'UBC', 'UBE2D3', 'UBL5', 'UQCR10', 'UQCR11', 'UQCRB', 'UQCRQ', 'VIM', 

'YBX1', 'YBX3', 'YWHAB', 'YWHAZ', 'ZFP36L1', 'ZFP36L2'

Kidney

'A2M', 'ACADVL', 'ACAT1', 'ACO2', 'ACTA2', 'ACTB', 'ACTG1', 'ADGRG1', 'ADI1', 'ADIRF', 'AEBP1', 'ALDOB', 'ANAPC16', 

'ANPEP', 'ANXA2', 'ANXA5', 'APLP2', 'APOE', 'APP', 'AQP1', 'AQP2', 'ARHGDIA', 'ASAH1', 'ASS1', 'ATP1A1', 'ATP1B1', 

'ATP5F1A', 'ATP5F1D', 'ATP5MC3', 'ATP5ME', 'ATP5MF', 'ATP6AP2', 'ATP6V0C', 'ATP6V1F', 'B2M', 'BCAM', 'BGN', 'BSG', 

'C1QA', 'C1R', 'C7', 'CA2', 'CALB1', 'CALD1', 'CALM1', 'CALM2', 'CANX', 'CAPN2', 'CD151', 'CD24', 'CD74', 'CD81', 'CD9', 

'CDH16', 'CDKN1C', 'CFL1', 'CHCHD10', 'CHCHD2', 'CIRBP', 'CKB', 'CLCNKB', 'CLTC', 'CLU', 'COL1A2', 'COL3A1', 'COL4A1', 

'COL4A2', 'COX5A', 'COX5B', 'COX6A1', 'COX6B1', 'COX6C', 'COX7A2', 'COX7B', 'COX7C', 'COX8A', 'CRIM1', 'CRIP2', 'CRYAB', 

'CSDE1', 'CSRP1', 'CST3', 'CTSB', 'CTSH', 'CXCL12', 'CXCL14', 'CYSTM1', 'DCN', 'DDT', 'DDX17', 'DDX5', 'DEFB1', 'DSTN', 

'DUSP1', 'DYNLL1', 'DYNLL2', 'EEF1A1', 'EEF1D', 'EEF1G', 'EEF2', 'EFHD1', 'EIF3K', 'EIF4A1', 'EIF4A2', 'EIF4B', 'ENG', 'EPAS1', 

'EZR', 'FABP1', 'FAU', 'FCGRT', 'FLNA', 'FTH1', 'FTL', 'FXYD2', 'FXYD4', 'GABARAP', 'GATM', 'GHITM', 'GPX3', 'GSN', 'GSTM3', 

'GSTP1', 'GTF2I', 'HINT1', 'HLA-A', 'HLA-B', 'HLA-C', 'HLA-DPA1', 'HLA-DRA', 'HLA-DRB1', 'HLA-E', 'HNRNPA1', 'HNRNPA2B1', 

'HNRNPH1', 'HSD11B2', 'HSP90AB1', 'HSPA8', 'HSPB1', 'HSPD1', 'HTRA1', 'IDH2', 'IFITM2', 'IFITM3', 'IGFBP2', 'IGFBP4', 

'IGFBP5', 'IGFBP7', 'IGHA1', 'IGHG1', 'IGHG3', 'IGHG4', 'IGKC', 'IGLC1', 'IGLC2', 'IGLC3', 'ITGA3', 'ITGB1', 'ITM2B', 'IVNS1ABP', 

'JUND', 'KCNJ1', 'KCNJ15', 'KNG1', 'LAMB2', 'LAMP1', 'LAMTOR5', 'LAPTM4A', 'LDHA', 'LGALS1', 'LITAF', 'LRP2', 'LUM', 'MAL', 

'MALAT1', 'METTL7A', 'MGP', 'MGST1', 'MGST3', 'MIF', 'MIOX', 'MMP7', 'MUC1', 'MYL12A', 'MYL6', 'MYL9', 'MZT2B', 'NAT8', 

'NDRG1', 'NDUFA1', 'NDUFA13', 'NDUFA2', 'NDUFA4', 'NDUFA6', 'NDUFB2', 'NDUFB7', 'NDUFB8', 'NDUFB9', 'NDUFC1', 

'NDUFS5', 'NDUFS6', 'NDUFV1', 'NEAT1', 'NME2', 'NOP53', 'NORAD', 'NPC2', 'NUCB1', 'OAZ1', 'OGDHL', 'OST4', 'P4HB', 

'PCBP1', 'PCK1', 'PDZK1IP1', 'PEBP1', 'PEPD', 'PFKL', 'PFN1', 'PGAM1', 'PGK1', 'PHPT1', 'PIGR', 'PODXL', 'POLR2L', 'PPIB', 

'PPP1R1A', 'PTGDS', 'PTH1R', 'RABAC1', 'RAC1', 'REN', 'RHCG', 'RHOA', 'RNASE1', 'ROMO1', 'RTN4', 'S100A10', 'S100A2', 

'S100A6', 'SAT1', 'SCNN1A', 'SCP2', 'SDC1', 'SELENOM', 'SELENOP', 'SERPINA1', 'SERPINA5', 'SFRP1', 'SH3BGRL3', 

'SLC12A1', 'SLC12A3', 'SLC13A3', 'SLC25A3', 'SLC25A5', 'SLC25A6', 'SLC3A1', 'SLC5A12', 'SMIM24', 'SNHG25', 'SOD1', 'SOD2', 

'SPARC', 'SPINK1', 'SPP1', 'SRP14', 'SSR4', 'ST13', 'SUCLG1', 'SUMO2', 'TAGLN', 'TAGLN2', 'TAPBP', 'THY1', 'TIMP1', 'TIMP2', 

'TIMP3', 'TINAGL1', 'TMA7', 'TMSB10', 'TMSB4X', 'TPI1', 'TPM1', 'TPM3', 'TPT1', 'TRIR', 'TSC22D1', 'TSPAN1', 'TUBA1A', 'TUBB', 

'TXN', 'UBA52', 'UGT2B7', 'UMOD', 'UQCRB', 'UQCRC1', 'UQCRFS1', 'VIM', 'WFDC2', 'ZFP36L2'

Figure 6: HVG gene selection in each dataset
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B.3 IMPLEMENTATION DETAILS FOR ABLATION STUDIES

In this work, HiST consists of three main modules: Hierarchical Hyperbolic Alignment (HHA), Gene
Decoder and Multi-Level Representation Extractors. To validate the necessity of each component,
we design a series of ablation experiments for each module respectively.

Strategy of Alignment We design five strategies of alignment to evaluate the necessity of the
HHA module. First, we remove only the gene-image regularization term of the HEA loss (w/o G-I
HEA) to investigate the impact of lacking the entailment loss between gene and image. Second, we
remove the Hierarchical Entailment Alignment component of HHA (w/o HEA) to investigate the
impact of lacking hierarchical constraints in hyperbolic space on model performance. Third, we
eliminate HHA module (w/o HEA + HCA), retaining only multi-scale image information to assess
its contribution. Fourth, we replace this module with MERU (Desai et al., 2023) (MERU), preserving
only the cross-model hierarchical structure while disregarding intra-modal multi-scale information
in ST data. Finally, we substitute this module with CLIP (Radford et al., 2021) (CLIP), aligning
only spot-level gene expression with spot-level images. These experiments collectively highlight
the critical roles of hierarchical constraints, multi-scale information integration, and cross-modal
alignment mechanisms in the module’s effectiveness.

Input of Decoder In order to investigate the impact of input data on the overall performance of
the Gene Decoder, we conducted ablation experiments where we separately use the representations
learned from spot-level images and niche-level images as inputs to the Gene Decoder to predict genes.

Choice of LoRA To investigate the significance of the LoRA (Low-Rank Adaptation) component
within the Multi-Level Representation Extractors, we design experiments to evaluate its role in
efficient finetuning the pre-trained model to current task for multi-scale inputs, particularly niche-
level images, which may differ in resolution from standard inputs. By adjusting the number of last
attention layers adapted by LoRA, we can control the extent of fine-tuning. Setting the number of
adapted attention layers to 0 (i.e., freezing all pre-trained weights) allowed us to establish a baseline
where no fine-tuning occurs.

B.4 IMPLEMENTATION DETAILS FOR EVALUATION METROLOGY

We evaluate model performance using the top-k mean Pearson Correlation Coefficient (PCC@k),
mean squared error (MSE), and mean absolute error (MAE). For the j-th gene at the i-th spot, the
PCC of the j-th gene (PCCj) is formulated as:

PCCj =

∑n
i=1(ŷi,j − ¯̂y·,j)(yi,j − ȳ·,j)√∑n

i=1(ŷi,j − ¯̂y·,j)2
√∑n

i (yi,j
− ȳ·,j)2

, (15)

where ŷi,j and yi,j represent the predicted and actual gene expression of the j-th gene at the i-th spot,
respectively, and ¯̂y·,j and ȳ·,j denote the mean predicted and actual gene expression of the j-th gene
across spots. m and n are the numbers of genes and spots, separately. For PCC@k, the average value
across top-k PCCj is calculated as:

PCC@k =
1

k

∑
j∈Topk

PCCj . (16)

Subsequently, MSE and MAE can be defined as:

MAE =
1

n×m

n∑
i=1

m∑
j=1

|yi,j − ŷi,j |, (17)

MSE =
1

n×m

n∑
i=1

m∑
j=1

(yi,j − ŷi,j)
2. (18)
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C ADDITIONAL EXPERIMENT RESULTS

C.1 STATISTICAL SIGNIFICANCE ANALYSIS

To assess the statistical significance of the observed performance improvements, we conducted
paired t-tests across 5 independent runs. As shown in Table 4, HiST shows statistically significant
improvements (p < 0.05) on the vast majority of metrics when compared to baselines. For the
comparison against TRIPLEX, although a few metrics did not reach the significance threshold, HiST
still demonstrated a consistent performance trend rather than an incidental improvement. We attribute
these few instances of non-significance to the high biological variance inherent in the datasets, yet
the overall results strongly support the robustness of our method.

Table 4: HiST performance improvement (P-value) compared to baseline models on three datasets
for HMHVGs.

Dataset Model PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum

TRIPLEX 2.83% (0.119) 2.94% (0.135) 3.24% (0.083) 19.84% (0.048) 9.26% (0.034)
StNet 11.62% (0.012) 12.62% (0.010) 13.8% (0.019) 11.12% (<0.01) 6.31% (<0.01)
BLEEP 13.15% (<0.01) 15.47% (<0.01) 24.7% (<0.01) 26.48% (<0.01) 12.57% (<0.01)
Stem 7.62% (0.030) 12.10% (<0.01) 19.52% (<0.01) 16.19% (0.015) 7.13% (0.031)

Skin

TRIPLEX 0.91% (0.057) 1.59% (0.018) 2.52% (<0.01) 5.08% (0.066) 5.32% (<0.01)
StNet 4.34% (<0.01) 4.24% (<0.01) 4.52% (<0.01) 6.22% (0.081) 4.73% (<0.01)
BLEEP 6.48% (<0.01) 6.63% (<0.01) 7.76% (<0.01) 16.59% (<0.01) 6.29% (<0.01)
Stem 7.26% (<0.01) 8.43% (<0.01) 10.35% (<0.01) 27.00% (<0.01) 10.07% (<0.01)

Kidney

TRIPLEX 6.63% (<0.001) 8.30% (<0.01) 10.95% (<0.01) 3.94% (0.051) 4.41% (0.043)
StNet 17.94% (<0.01) 20.77% (<0.01) 27.85% (<0.01) 7.71% (<0.01) 3.58% (<0.01)
BLEEP 19.20% (<0.01) 21.16% (<0.01) 25.68% (<0.01) 12.59% (<0.01) 5.54% (<0.01)
Stem 15.43% (<0.01) 26.85% (<0.01) 43.98% (<0.01) 21.90% (<0.01) 10.31% (<0.001)

C.2 EFFICIENCY BENCHMARK

We evaluated the computational overhead of our proposed model by comparing the memory usage and
runtime performance of HiST against other Euclidean models. While HiST’s hyperbolic computations
incur higher overhead without specific hardware optimization, we find this acceptable given its
superior performance advantages (as shown in Table 1 in the main text), its generalization power, and
its future scalability potential for biological modeling. Table 5 details the training memory, training
time per epoch, and inference time per epoch on the HCC dataset for 200 target genes.

Table 5: Memory usage and runtime performance comparison of HiST and baseline models on the
HCC dataset with 200 target genes.

Model Memory Usage (GB) ↓ Training Time (s/epoch) ↓ Inference Time (s/epoch) ↓
TRIPLEX 13.34 30 2
StNet 18.44 27 1
BLEEP 5.89 10 1
Stem 12.96 22 1553
HiST (Ours) 18.39 74 3

C.3 CROSS-LABORATORY GENERALIZATION

We conducted a cross-laboratory validation experiment to assess the model’s generalization capability
across different laboratory settings and potential stain variations. We used a Whole Slide Image
(WSI) (NCB1563) from a new, independent kidney dataset (Canela et al., 2023). As shown in Table
6, our model, HiST (Ours), achieved significantly superior performance compared to the baseline
models. This result highlights HiST’s robustness and its ability to capture transferable biological
features that generalize beyond the training domain.
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Table 6: Performance comparison on a cross-laboratory whole slide image.

Model PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓
TRIPLEX 0.374±0.056 0.265±0.035 0.162±0.030 1.595±0.121 1.015±0.038
StNet 0.215±0.039 0.111±0.033 -0.003±0.031 1.758±0.183 1.045±0.046
BLEEP 0.281±0.042 0.199±0.053 0.096±0.056 1.646±0.215 1.019±0.057
Stem 0.357±0.015 0.254±0.008 0.145±0.007 1.822±0.143 1.033±0.042
HiST 0.510±0.016 0.361±0.022 0.197±0.024 1.574±0.128 0.983±0.039

C.4 ROBUSTNESS ON HVG GENE SET

We evaluated HiST on the HVG gene set, as described in Section B.1, to further demonstrate the
robustness of our model. As presented in Table 7, HiST outperforms other methods, achieving
PCC@200 values of 0.505, 0.821, and 0.450 across all three datasets ( Colorectum (Valdeolivas et al.,
2024), Skin (Schäbitz et al., 2022), Kidney (Lake et al., 2023)), respectively. Similar to the results for
HMHVG in Table 1, TRIPLEX also achieves the second-best overall performance, demonstrating
that the integration of multi-scale image features consistently enhances model performance across
different gene selection criteria.

Table 7: Performance comparison on the HVG gene set of three spatial transcriptomics datasets.
Higher values on PCC@10, PCC@50, PCC@200 are better. Lower values on MAE and MSE are
better.

Dataset Model PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum

TRIPLEX 0.685±0.154 0.613±0.181 0.484±0.238 1.830±0.826 1.042±0.257
StNet 0.656±0.122 0.578±0.138 0.447±0.181 1.642±0.427 1.009±0.154
BLEEP 0.662±0.119 0.568±0.122 0.422±0.170 1.891±0.673 1.064±0.211
Stem 0.679±0.111 0.574±0.124 0.415±0.173 1.799±0.613 1.045±0.205
HiST (Ours) 0.716±0.117 0.641±0.137 0.504±0.195 1.464±0.564 0.951±0.197

Skin

TRIPLEX 0.826±0.093 0.795±0.112 0.745±0.136 0.957±0.488 0.675±0.219
StNet 0.808±0.100 0.782±0.113 0.739±0.135 0.970±0.402 0.677±0.192
BLEEP 0.782±0.108 0.755±0.120 0.708±0.139 1.117±0.559 0.696±0.224
Stem 0.781±0.097 0.749±0.116 0.698±0.140 1.196±0.626 0.707±0.241
HiST (Ours) 0.838±0.089 0.812±0.104 0.766±0.127 0.882±0.387 0.631±0.181

Kidney

TRIPLEX 0.541±0.094 0.453±0.087 0.331±0.068 1.138±0.255 0.843±0.098
StNet 0.537±0.111 0.454±0.100 0.332±0.079 1.084±0.153 0.822±0.052
BLEEP 0.508±0.123 0.426±0.114 0.306±0.087 1.181±0.219 0.853±0.080
Stem 0.501±0.112 0.404±0.097 0.273±0.067 1.288±0.199 0.888±0.071
HiST (Ours) 0.618±0.099 0.530±0.090 0.399±0.071 1.079±0.198 0.821±0.082

C.5 EVALUATION WITH PATIENT-LEVEL DATA SPLITTING

We implemented a strict patient-level data splitting protocol to address potential data leakage and
ensure a more rigorous evaluation of generalization performance. This ensures that all Whole Slide
Images (WSIs) from a single patient are confined to a single data partition (train, validation, or test),
adopting a stricter and more clinically meaningful evaluation standard than prior works (Zhu et al.,
2025; Xie et al., 2023).

As shown in Table 8, this more challenging setup led to a performance drop across all methods, which
confirms the presence of patient-specific features and highlights the importance of this strict separation.
Crucially, even under these stringent conditions, HiST maintains its position as the top-performing
model. It consistently achieves state-of-the-art results across most Pearson Correlation (PCC) metrics
and datasets, demonstrating that its architectural advantages provide greater generalization capability
to new, unseen patients, making it more robust for real-world applications.
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Table 8: Performance comparison on three spatial transcriptomics datasets using strict patient-level
splits. Bold indicates the best performance, and underline indicate the second-best performance.

Dataset Model PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum

TRIPLEX 0.685±0.115 0.613±0.128 0.418±0.116 2.423±0.744 1.187±0.187
StNet 0.654±0.111 0.585±0.114 0.386±0.091 2.284±0.319 1.155±0.098
BLEEP 0.612±0.119 0.538±0.117 0.340±0.081 2.551±0.513 1.213±0.137
Stem 0.653±0.136 0.560±0.126 0.357±0.086 2.351±0.504 1.166±0.144
HiST 0.712±0.096 0.642±0.093 0.448±0.078 2.152±0.515 1.131±0.152

Skin

TRIPLEX 0.816±0.089 0.783±0.108 0.726±0.131 1.361±0.701 0.812±0.196
StNet 0.786±0.102 0.759±0.112 0.704±0.128 1.407±0.652 0.832±0.194
BLEEP 0.789±0.102 0.761±0.116 0.705±0.132 1.479±0.627 0.826±0.204
Stem 0.765±0.103 0.734±0.117 0.673±0.132 1.743±1.040 0.898±0.264
HiST 0.828±0.079 0.799±0.093 0.746±0.111 1.310±0.727 0.792±0.210

Kidney

TRIPLEX 0.511±0.107 0.418±0.109 0.288±0.102 1.207±0.249 0.868±0.100
StNet 0.503±0.079 0.425±0.079 0.303±0.077 1.332±0.311 0.917±0.166
BLEEP 0.495±0.083 0.407±0.085 0.279±0.086 1.368±0.365 0.915±0.137
Stem 0.468±0.073 0.365±0.063 0.227±0.059 1.449±0.323 0.942±0.115
HiST 0.587±0.065 0.495±0.069 0.357±0.074 1.283±0.362 0.889±0.140

C.6 SCALABILITY WITH NUMBER OF TARGET GENES

We investigated the model’s scalability by analyzing how its performance, memory usage, and
training time scale with an increasing number of target genes. As shown in Table 9, increasing
the number of target genes from 200 to 3000 has a minimal impact on memory and training time.
This is because only the first and last linear layers of the gene encoder and decoder are affected by
the number of genes. While the computational cost of these layers scales linearly, this overhead is
insignificant compared to the model’s overall complexity, demonstrating HiST’s excellent scalability
for larger-scale genomic analyses.

Table 9: Analysis of performance, memory, and training time scale with the number of target genes
in the HiST Model on the HCC dataset.

Metric Target Genes

200 1000 3000

PCC@10 ↑ 0.721±0.105 0.723±0.114 0.713±0.107
PCC@50 ↑ 0.642±0.128 0.655±0.133 0.649±0.123
PCC@200 ↑ 0.477±0.184 0.557±0.165 0.564±0.153
PCC@500 ↑ - 0.472±0.187 0.492±0.167
PCC@1000 ↑ - 0.387±0.184 0.429±0.169
PCC@2000 ↑ - - 0.353±0.156
PCC@3000 ↑ - - 0.143±0.294

MSE ↓ 1.498±0.456 0.933±0.215 0.632±0.095
MAE ↓ 0.958±0.158 0.766±0.092 0.621±0.039

Memory Usage (GB) 18.39 18.43 18.76
Training Time (s/epoch) 74 73 73
Inference Time (s/epoch) 3 3 2

C.7 SENSITIVITY TO NEIGHBORHOOD SIZE

The construction of a niche is dependent on the neighborhood size, a key hyperparameter in our model.
To evaluate the model’s sensitivity to this hyperparameter, we varied the neighborhood sizes (6, 18,
and 36) for niche construction on the HCC dataset. As shown in Table 10, the model’s performance
remains highly stable across the different settings. This demonstrates that HiST is robust and not
sensitive to the choice of neighborhood size.
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Table 10: Performance comparison on different neighborhood sizes on the HCC dataset.

Neighborhood sizes PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓
6 0.721±0.105 0.642±0.128 0.477±0.184 1.498±0.456 0.958±0.158
18 0.714±0.112 0.633±0.132 0.474±0.173 1.569±0.582 0.978±0.189
36 0.716±0.109 0.636±0.126 0.474±0.172 1.616±0.613 0.993±0.201

C.8 QUANTITATIVE GENE-WISE ANALYSIS

Our quantitative, per-gene analysis reveals that the enhanced performance of HiST on spatially-
constrained genes (e.g., immune, structural, and tissue-specific markers) validates our hypothesis that
morphological context provides meaningful constraints for these gene categories. Table 11 presents a
detailed comparison of the gene-wise Pearson Correlation Coefficient (PCC) improvement of HiST
over TRIPLEX in the tumor region of a representative sample, highlighting significant performance
gains on genes with known biological importance.

Table 11: Gene-wise PCC improvement of HiST vs. TRIPLEX in the tumor region of sample ZEN42.
Genes with significant biological importance are highlighted in bold.

Gene PCC (HiST) PCC (TRIPLEX) PCC Improvement
HLA-DQB1 0.592 0.237 0.355
S100A14 0.575 0.224 0.351
GREM1 0.625 0.296 0.329
FABP1 0.161 -0.166 0.327
PIGR 0.810 0.511 0.299
MUC5B 0.580 0.291 0.289
REG3A 0.536 0.279 0.257
REG1A 0.476 0.226 0.250
LCN2 0.497 0.258 0.240
FXYD3 0.461 0.230 0.232
HLA-DPB1 0.539 0.315 0.223
TFF3 0.769 0.552 0.217
CD74 0.589 0.379 0.210
SPINK1 0.531 0.346 0.186

C.9 BIOLOGICAL VALIDATION ON KEY MARKER GENES

To demonstrate the translational value and biological insights of our method, we conducted a
region-specific gene prediction analysis targeting the tumor-stromal interface in colorectal cancer,
a critical area for prognosis and therapeutic response (Valdeolivas et al., 2024; Feng et al., 2024).
We selected three clinically validated marker genes representing distinct functional compartments:
KRT18 (epithelial tumor core), ACTA2 (stromal activation), and IGKC (B-cell/plasma cell immune
response).

As shown in Table 12, we measured the region-specific prediction accuracy improvement over
baseline methods. The results indicate that HiST more accurately captures the spatial expression
patterns of these critical genes, which is essential for downstream applications such as therapeutic
target identification, immune infiltration assessment, and tumor margin evaluation.

D ADDITIONAL VISUALIZATION

In this section, we present visualizations of additional marker genes across different tissues to
demonstrate the robustness of our findings. We selected three samples (MICS27, NCBI476, and
NCBI704) from datasets of lung, skin, and kidney tissues, respectively, and plotted the predicted gene
expressions on their H&E images for the following marker genes: ALDH1A1, ELF3, GJB2, KRT6B,
UMOD, and PODXL. These genes are highly correlated with specific tissue cell types. Specifically,
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Table 12: Region-specific gene prediction accuracy improvement over baseline models. P-values
were determined by a paired Student’s t-test across tissue regions.

Gene Model MAE Improv. (%) MSE Improv. (%) Correlation Improv. (%)

KRT18

BLEEP 8.80 (0.1084) 23.13 (0.0698) 18.92
iSTAR 52.42 (<0.001) 131.37 (<0.001) 12.91
Stem 17.94 (<0.001) 42.71 (<0.001) 7.56
StNet 9.86 (0.0875) 31.95 (0.0171) 14.04
TRIPLEX 84.57 (<0.001) 238.58 (<0.001) 10.40

ACTA2

BLEEP 36.66 (0.0064) 70.55 (0.0582) 5.34
iSTAR 43.89 (0.0016) 108.59 (0.0105) 24.04
Stem 10.67 (0.4406) 16.43 (0.6867) 2.45
StNet 28.76 (0.0414) 62.14 (0.1025) 1.08
TRIPLEX 36.89 (0.0413) 72.50 (0.1153) 7.72

IGKC

BLEEP 53.18 (0.0037) 231.16 (0.0169) 41.84
iSTAR 4.26 (0.8164) 52.25 (0.4332) 1.96
Stem 53.06 (0.0030) 250.32 (0.0072) 31.50
StNet 36.73 (0.0299) 206.47 (0.0417) 32.97
TRIPLEX 143.21 (<0.001) 691.59 (<0.001) 24.43

ALDH1A1 and ELF3 are marker genes for lung tissue, GJB2 and KRT6B are marker genes for skin
tissue, and UMOD and PODXL are marker genes for kidney tissue. Visualizations of predicted gene
expressions by different models, along with their PCC comparisons, are presented in Figures 7 to 10.
The figures clearly demonstrate that HiST’s gene expression predictions exhibit strong consistency
with the ground truth, achieving higher PCC than existing models.

Figure 7: Visualization of GJB2 and KRT6B gene predictions in the NCBI476 sample from the Skin
dataset. We present the PCC values comparing the ground truth with the gene expression predictions
generated by each model.
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STUPA
(Ours) StNet BLEEP Stem TRIPLEX

GJB2
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0.873

0.916
PCC

STUPA
(Ours) StNet BLEEP Stem TRIPLEX

KRT6B
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0.880

0.921
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NCBI476

Figure 8: PCC comparison of GJB2 and KRT6B gene predictions (Higher PCC reflects greater
accuracy)

Figure 9: Visualization of UMOD and PODXL gene predictions in the NCBI704 sample from the
Kidney dataset. We present the PCC values comparing the ground truth with the gene expression
predictions generated by each model.

STUPA
(Ours) StNet BLEEP Stem TRIPLEX

UMOD
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0.748
PCC

STUPA
(Ours) StNet BLEEP Stem TRIPLEX

PODXL

0.442

0.533

0.624

0.715
PCC

NCBI704

Figure 10: PCC comparison of UMOD and PODXL gene predictions (Higher PCC reflects greater
accuracy)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E ADDITIONAL ABLATION STUDY

We conduct further ablation studies on the HMHVG gene set for the Skin and Kidney datasets,
with results for alignment strategy, LoRA settings, and decoder input detailed in Tables 13, 14,
and 15, respectively. Through these ablation studies, we rigorously evaluate the contribution of
HiST’s individual modules to system performance. These experiments demonstrate that HiST
consistently achieves optimal performance in the majority of experimental conditions, highlighting
the effectiveness and robustness of these modules.

Table 13: Additional ablation study of the alignment strategy

Dataset Alignment PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Skin

w/o G-I HEA 0.833±0.084 0.805±0.100 0.753±0.126 0.981±0.431 0.672±0.184
w/o HEA 0.832±0.090 0.803±0.108 0.746±0.136 0.974±0.418 0.681±0.181
w/o HEA + HCA 0.809±0.099 0.783±0.113 0.731±0.137 1.006±0.437 0.695±0.187
MERU 0.812±0.098 0.784±0.115 0.730±0.142 0.986±0.420 0.672±0.181
CLIP 0.810±0.098 0.784±0.113 0.733±0.137 0.980±0.393 0.681±0.176
Ours 0.839±0.086 0.812±0.102 0.758±0.129 0.932±0.418 0.657±0.182

Kidney

w/o G-I HEA 0.610±0.101 0.514±0.096 0.378±0.074 1.147±0.188 0.839±0.065
w/o HEA 0.607±0.092 0.513±0.085 0.377±0.066 1.131±0.195 0.837±0.074
w/o HEA + HCA 0.576±0.099 0.484±0.089 0.344±0.064 1.134±0.168 0.837±0.058
MERU 0.586±0.099 0.494±0.090 0.355±0.062 1.148±0.205 0.842±0.071
CLIP 0.558±0.098 0.462±0.087 0.321±0.058 1.220±0.293 0.867±0.097
Ours 0.617±0.094 0.526±0.088 0.390±0.07 1.077±0.155 0.817±0.058

Table 14: Ablation study of the LoRA settings

Dataset LoRA Layers PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum

0 0.701±0.126 0.622±0.151 0.458±0.200 1.662±0.638 1.007±0.212
5 0.704±0.131 0.619±0.158 0.456±0.201 1.565±0.612 0.976±0.207
7 0.713±0.117 0.627±0.146 0.468±0.187 1.562±0.606 0.978±0.209
Ours (11) 0.721±0.105 0.642±0.128 0.477±0.184 1.498±0.456 0.958±0.158

Skin

0 0.831±0.088 0.804±0.104 0.751±0.130 0.977±0.437 0.677±0.185
5 0.833±0.088 0.806±0.105 0.754±0.130 0.971±0.438 0.670±0.189
7 0.838±0.083 0.810±0.100 0.756±0.126 0.944±0.413 0.654±0.184
Ours (11) 0.839±0.086 0.812±0.102 0.758±0.129 0.932±0.418 0.657±0.182

Kidney

0 0.587±0.099 0.498±0.088 0.366±0.071 1.110±0.162 0.828±0.059
5 0.603±0.096 0.510±0.088 0.376±0.071 1.100±0.207 0.826±0.083
7 0.606±0.105 0.511±0.100 0.378±0.084 1.106±0.193 0.827±0.077
Ours (11) 0.617±0.094 0.526±0.088 0.390±0.070 1.077±0.155 0.817±0.058

Table 15: Additional ablation study of the decoder input

Dataset Decoder Input PCC@10 ↑ PCC@50 ↑ PCC@200 ↑ MSE ↓ MAE ↓

Colorectum
only spot 0.709±0.098 0.622±0.115 0.450±0.169 1.564±0.334 0.973±0.119
only niche 0.661±0.179 0.570±0.203 0.405±0.238 1.801±0.878 1.031±0.268
Ours (spot+niche) 0.721±0.105 0.642±0.128 0.477±0.184 1.498±0.456 0.958±0.158

Skin
only spot 0.814±0.096 0.787±0.111 0.735±0.134 1.003±0.417 0.673±0.187
only niche 0.831±0.092 0.803±0.107 0.748±0.132 0.979±0.441 0.670±0.188
Ours (spot+niche) 0.839±0.086 0.812±0.102 0.758±0.129 0.932±0.418 0.657±0.182

Kidney
only spot 0.584±0.093 0.492±0.088 0.353±0.067 1.171±0.184 0.849±0.065
only niche 0.588±0.097 0.491±0.090 0.356±0.073 1.110±0.139 0.828±0.051
Ours (spot+niche) 0.617±0.094 0.526±0.088 0.390±0.070 1.077±0.155 0.817±0.058
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Figure 11: Ablation study on the choice of the last layers of LoRA for Colorectum

Figure 12: Ablation study on the choice of the last layers of LoRA for Skin

Figure 13: Ablation study on the choice of the last layers of LoRA for Kidney

Figure 14: Ablation study of the input data of decoder for Skin

Figure 15: Ablation study of the input data of decoder for Kidney
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F LIMITATION

While HiST advances spatial transcriptomics prediction through the hierarchical hyperbolic structure,
several limitations merit discussion. First, the gene decoder relies on a simple multilayer perceptron
(MLP) to predict expression from aligned image representations, potentially limiting its capacity to
model complex gene-gene interactions. Second, the integration of multi-level features (spot-level
and niche-level images) is achieved through concatenation, which may overlook fine-grained feature
fusion. Third, the model is trained and fine-tuned on a limited dataset, and its generalization capability
could be further enhanced by training on larger, more diverse cohorts. In the future, we plan to
address these limitations by training on a large-scale dataset and transforming HiST into a foundation
model for broader applicability.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the writing of this paper, we used large language models only for aiding and polishing the text.
We did not use them for research ideation or to make a substantive contribution to the content of the
paper.

H BROADER IMPACT

H.1 IMPACT ON REAL-WORLD APPLICATIONS

For decades, WSIs have served as a foundation in biomedical research and clinical diagnostics.
However, the expensive and labor-intensive nature of Spatial Transcriptomics (ST) limits its broad
use, driving the demand for deep learning methods that directly predict spatially resolved gene
expression from these images. To tackle the challenges of incorporating broader pathological
and genetic contexts while effectively capturing target-modality information, we present HiST, an
innovative framework for predicting spatial transcriptomics. HiST leverages multi-level hyperbolic
image-gene representations, which model hierarchical structures and improve the integration of
cross-modal features. Evaluated across three diverse tissue datasets, HiST consistently surpasses
current state-of-the-art models, showcasing its performance in predicting spatial gene expression.
Therefore, the proposed method, which reduces research costs and enhances efficiency, shows promise
in advancing the development and application of spatial transcriptomics. The primary focus of our
work is to advance scientific methodology, and we foresee no direct negative societal consequences.

H.2 IMPACT ON FUTURE RESEARCH

In this paper, we observe that current spatial transcriptomics prediction methods, which operate
within traditional Euclidean space, neglect the inherent multi-level structure of gene expression
and overlook biological heterogeneity. Given that hyperbolic space is more suitable for modeling
hierarchical structures and can capture richer information, it enhances the cross-modal representation
between pathological images and gene expression. Therefore, we propose HiST, which, in contrast to
traditional Euclidean approaches, incorporates Multi-Level Representation Extractors and Hierarchi-
cal Hyperbolic Alignment to fully exploit the intrinsic hierarchical structure of ST data. We hope this
framework will inspire future studies in multimodal learning that leverage geometric structures, such
as hyperbolic spaces, in the biological field, like single-cell RNA sequencing, proteomics, and other
data modalities. Blending the inherent geometry of biological systems with multimodal learning can
guide the development of future sophisticated representation models.
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