Under review as a conference paper at ICLR 2026

SAMPLING ON METRIC GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Metric graphs are structures obtained by associating edges in a standard graph
with segments of the real line and gluing these segments at the vertices of the
graph. The resulting structure has a natural metric that allows for the study of
differential operators and stochastic processes on the graph. Brownian motions in
these domains have been extensively studied theoretically using their generators.
However, less work has been done on practical algorithms for simulating these
processes. We introduce the first algorithm for simulating Brownian motions on
metric graphs through a timestep splitting Euler-Maruyama-based discretization
of their corresponding stochastic differential equation. By applying this scheme
to Langevin diffusions on metric graphs, we also obtain the first algorithm for
sampling on metric graphs. We provide theoretical guarantees on the number
of timestep splittings required for the algorithm to converge to the underlying
stochastic process. We also show that the exit probabilities of the simulated par-
ticle converge to the vertex-edge jump probabilities of the underlying stochastic
differential equation as the timestep goes to zero. Finally, since this method is
highly parallelizable, we provide fast, memory-aware implementations of our al-
gorithm in the form of a custom CUDA kernel that is up to ~8000x faster than a
GPU implementation using PyTorch. We corroborate our theoretical results with
numerical experiments applying our implementation to star metric graphs. In
terms of accuracy and efficiency, our scheme significantly outperforms a baseline
finite volume scheme.

1 INTRODUCTION

Metric graphs, also known as quantum graphs (Kuchment, |2004)), are geometric structures formed
by gluing together one-dimensional segments of the real line at the vertices of an underlying
graph, inheriting both the combinatorial topology of a graph and the smooth geometry of a real
line. These objects have emerged as powerful tools for modeling complex systems in diverse fields,
including physics, biology, and network theory. For instance, they are used to model nanoscale
materials like carbon nanostructures (Amovilli et al., |2004), vascular networks (Carlson) [2006)),
nerve impulse transmission (Nicaise, [1985)), acoustics (Cacciapuoti et al., 2006), and traffic flow
on road networks (Garavello & Piccolil, 2006]). Specific applications for vascular networks include
solving diffusion PDEs like the Fokker-Planck equation to simulate blood flow dynamics, drug
delivery, or nutrient transport in the brain. In the case of road networks, applications include
traffic flow simulations which involve solving conservation law PDEs. A common theme that we
explore in this work is that these applications involve numerically solving a diffusion PDE, which
can be done stochastically using sampling methods. We refer the reader to (Kuchment) [2002) for
a comprehensive survey of the applications of quantum graphs. From a theoretical standpoint,
the underlying metric structure of metric graphs allows for the analysis of differential operators
(Mugnolo, [2014} [Erbar et al., |2022|) and stochastic processes (Freidlin & Sheu, 2000)), enabling
the study of phenomena such as diffusion, wave propagation, and random motion on networked
domains.

Brownian motions on metric graphs, a canonical example of such stochastic processes, have been
extensively studied theoretically through their infinitesimal generators (Kostrykin et al., [2007;
2010; [Kostrykin & Schrader), 2006} |Aleandri et al., |2020)). However, practical algorithms for simu-
lating these processes — essential for numerical studies and real-world applications — have remained
underdeveloped. This gap is particularly consequential in modern computational statistics and ma-

Under review as a conference paper at ICLR 2026

chine learning, where efficient sampling methods on complex geometries are indispensable (Byrne
& Girolami, [2013; Betancourt],2017). For example, Langevin diffusions (Roberts & Tweedie, |1996)),
a class of stochastic differential equations (SDEs) central to sampling from high-dimensional dis-
tributions, have seen widespread adoption in Bayesian inference (Girolami & Calderhead, |2011))
and molecular dynamics (Leimkuhler & Matthews, [2015). Extending these methods to metric
graphs could unlock new applications in networked systems, such as diffusive transport in den-
dritic networks in neuroscience (Bressloff] 2014]).

Despite progress in understanding the theory of SDEs on metric graphs (Freidlin & Sheul, [2000) —
including vertex transition rules, Feller properties, and large deviation asymptotics — the numerical
simulation of these processes has been largely unexplored. Existing numerical work on metric
graphs has focused primarily on solving partial differential equations using finite element methods
(Kravitzl, [2022)). Some of these methods, such as finite volume schemes, struggle to stably scale to
finer meshes without requiring prohibitively smaller timesteps (LeVeque, 2002) and are also less
amenable to parallelization on modern hardware (GPUs) compared to Monte Carlo methods.

In this work, we bridge this gap by introducing the first algorithm (Algorithm [1)) for simulating
Brownian motions and Langevin diffusions on metric graphs. Our approach leverages a timestep
splitting Euler-Maruyama discretization of the underlying SDE, which simultaneously resolves evo-
lution along edges and transitions at vertices. We provide theoretical guarantees on this scheme’s
runtimes and consistency with the underlying SDE as the timestep approaches zero.

An important computational insight is the algorithm’s parallelizability and well-suitedness to
current modern GPU architectures. We implement it as a custom memory-aware CUDA kernel
with Python bindings, enabling fast GPU-accelerated simulations that scale to large particle counts
while effectively utilizing hardware capabilities. This implementation advances the practical utility
of metric graph analyses and provides a first step toward computationally efficient stochastic
simulations of these domains in high-performance computing environments. Furthermore, we
demonstrate that our method significantly outperforms a baseline finite volume scheme in both
accuracy and computational efficiency.

1.1 OUTLINE

In Section[I.2] we summarize our contributions. In Section[2} we provide the necessary background
on metric graphs and Brownian motions on metric graphs. In Section [3] we present our main
algorithm for simulating a Brownian motion on a metric graph with implementation details in
Section 3.1} In Section[d] we present numerical results on star metric graphs with drifts driven by
linear and quadratic potentials.

1.2 CONTRIBUTIONS

e We propose Algorithm |1} a timestep splitting Euler-Maruyama based discretization of the
SDE of the Brownian motion, which is the first algorithm that we know of for simulating
a Brownian motion and sampling on a metric graph.

e We show in Theorem [2| that the number of time-step splittings in Algorithm [1] is finite
with high probability. Additionally, we show in Corollary [I] that the exit probabilities of
the simulated particle using this algorithm converge to the vertex-edge jump probabilities
of the underlying SDE as the timestep goes to zero.

o We provide a fast, memory-aware implementation of Algorithm [I] for GPUs in the form
of a custom CUDA kernel with Python bindings and show significant speedups (up to
~8000x faster) over a GPU implementation using PyTorch (Paszke et al.; [2019)).

e We corroborate our theoretical results with numerical experiments using our implemen-
tation on star metric graphs and significantly outperform a baseline finite volume scheme
both in terms of accuracy (Figure |3) and speed (Figure [4).

The code for our implementation is uploaded as part of the supplementary material.

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 METRIC GRAPHS

In this section, we provide some formal background on metric graphs.

Definition 1 (Metric Graph). Let G = (V, E, 1) be an n-node, m-edge, connected, oriented graph.
We associate the line segment (0,1.) with each edge e € E. We identify the endpoints of the
interval 0 and l. with the corresponding vertices of the edge, which we denote ey and €serm. The
union of open metric edges associated with G is defined as T'° := {(e,z) | e € E,z € (0,1.)}, and
the union of closed metric edges as IT'° :== {(e,z) | e € E,x € [0,1.]}. The metric graph associated
with G is defined as T' .=V UT°.

Additionally, we allow edges to be semi-infinite, i.e., [, = co. In this case, the terminal vertex of
these edges is a vertex at infinity, and the intervals corresponding to these edges are [0, c0).

r re e

Figure 1: An example metric graph I' and its associated spaces.

We also define a special case of metric graphs called star metric graphs where the graph has a
single vertex and all edges are semi-infinite. The remainder of this paper will focus on star metric
graphs, though all results extend to general metric graphs.

Definition 2 (Star Metric Graph). A star metric graph is a metric graph with a single vertex v,
and all edges in E are semi-infinite and have length . = co.

We define the set of edges incident to a vertex v € V as
€ (U) = {6 S ‘ €init = U O €term = U} .

2.1.1 FUNCTION SPACES ON METRIC GRAPHS

The metric structure of each edge combined with the discrete graph metric on G leads to a natural
definition of the distance d : I' x I' — R between two points on the metric graph. For z,y € T,

let G = (‘N/, E,Z) be the discrete graph obtained by adding two new vertices x and y to G and

splitting the edges on which they lie appropriately. Then we define the distance d (z,y) as the

length of the shortest path between z and y in Gi. This metric allows us to define the space C* (T')
as the space of functions on I' that are k times continuously differentiable.

In addition to the global metric structure of I', the metric structure on each edge allows us to
define a broader class of continuous functions by considering continuity restricted to the edges.
For a function f: I' = R (and also for functions f : T'® — R), we define f. : [0,1.] = R to be the
restriction of f to the closed edge e. We similarly define the restriction to open edges for functions
f:T°—=R.

We define the function space C* (I'°) as the space of functions on T' whose restriction to each
open edge (0,1.) is k times continuously differentiable. Note that this can be naturally extended
to functions on I'® by extending the restrictions to have values at the endpoints of the edges as:
fe (0) :=lim, 0+ fe (z) and fe (le) := lim, ;- fe (z). By a slight abuse of notation, we will also
allow the use of f, (emit) = fe (0) and fe (éterm) = fe (lc) to denote these endpoint values.

A useful observation is to note that by identification of the vertices, for two edges e, ¢’ € E that
share a vertex v € V such that eini, = el,;, = v, we have for f € C (T") that

fe (O) = fer (O)

Under review as a conference paper at ICLR 2026

Similar results hold for different combinations of initial and terminal vertices of the edges. However,
this is not the case for functions in C* (I'°) or C* (I'?). Specifically, for f € C* (I'°), it need not be

the case that fe(j)(O) = fe(/J)(O) for edges e, e’ € F that share an initial vertex v € V, where fe(j)
denotes the j-th derivative of f..

Finally, for notational convenience, we define the notion of an inward derivative along an edge at
a vertex that is independent of the orientation of the edge.
Definition 3. Let f € C' (T'). We define the inward derivative of f at a vertex v € V along an
edge e € E incident to v as

_8fe (0) ifen .. —

aef (’U) = {Bf?m () Zf Einit v,

ra (le) Zf Cterm = V.
Note that flipping the orientation of edge e does not change the sign of the inward derivative. See
Figure (3 for a visual depiction of the inward derivative.

Figure 2: Visual depiction of the inward derivative 0., f (v) along an edge e; at a vertex v. Its
sign is independent of the orientation of the edge.

2.2 BROWNIAN MOTIONS ON METRIC GRAPHS

Brownian motions on metric graphs are extensively studied in (Kostrykin et al.,[2012)). A Brownian
motion on a metric graph is generated by the standard second-order generator of the Brownian
motion restricted to each open edge, along with specific boundary conditions at the vertices known
as gluing conditions.

Let € C* (T'¢) and o € C! (T') be functions that denote drift and diffusion coefficients respectively.
The generator £ of a Brownian motion on the metric graph applied to a function f € C%(T) is
given by

(Lf),=Lefe forallec E (1)

where L, is the generator of a Brownian motion on the open edge e:

Lofule) = 20) 1 Sy TR,

(2)

The domain of £ is restricted to functions f € C?(T') that satisfy a set of gluing boundary
conditions at each vertex v € V. (Kostrykin et al., [2012) shows that a class of gluing conditions
called the Wentzell boundary conditions characterizes all possible Brownian motions. The Wentzell
boundary conditions for f € C? (T') are given by

1
anf(0) = Y buedef () + 5euf" (V) =0 forallv eV (3)
ec&(v)
where a, € [0,1),bye € [0,1],¢, € [0,1] are constants that satisfy
a, + Z bpe + ¢, =1 forallveV. (4)
e€&(v)

In this paper, we will consider the case where a, = 0,¢, = 0, which are often referred to as the
standard boundary conditions.

Under review as a conference paper at ICLR 2026

Definition 4 (Standard Boundary Conditions). f € C? (T') satisfies the standard boundary con-
ditions if

D buedef (v) =0 forallveV. (5)
)

ec&(v

where bye € [0, 1] are constants that satisfy

Z bye =1 forallveV. (6)
ec&(v)

For convenience, we define the simplex
A, = {x e RE™ |z, €[0,1] and 1Tz = 1}

and note that b, € A, defines a vertex-edge jump probability distribution at each vertex v € V.

The Brownian motion generated by the generator with standard boundary conditions is conserva-
tive, and an extensive analysis of the stochastic properties is provided in (Freidlin & Sheul {2000)).
In particular, (Freidlin & Sheu, 2000) derives an SDE for this Brownian motion and characterizes
the behavior of the process at the vertices of the metric graph. As a first simplification, we only
need to characterize the stochastic process’s behavior at a single vertex since this is a local prop-
erty that can be extended to other vertices. Effectively, we only need to consider the behavior of
the process on star metric graphs. We restate the main results of (Freidlin & Sheu, 2000) in the
following theorem.

Theorem 1 (Lemma 2.2 and Corollary 2.4 in (Freidlin & Sheu, [2000)). Let X; = (es, xt) be a
Brownian motion on a star metric graph T' with standard boundary conditions. There exists a
1-dimensional Brownian motion Wy and a local time process l; adapted to the filtration generated
by X: such that

d.]?t = He, (a:t) dt + Oe, (Z‘t) th + dlt (7)

Moreover, the local time process l; is a continuous, non-decreasing process that only increases when
the particle is at the vertex, i.e., x; = 0.

Let 75 := inf {t > 0: xz; = &} be the first time the process exits a ball of radius & centered at the
vertex (assume Xo =v). The discrete edge process e; is characterized by the following transition
probabilities,

lim Ple,, =i =by; forallie & (v). (8)
0—0

3 TIMESTEP SPLITTING EULER-MARUYAMA SCHEME FOR METRIC GRAPHS

In this section, we present our main algorithm, an Euler-Maruyama-based method for simulating
Brownian motion on a metric graph via timestep splitting. First, we recall the standard Euler-
Maruyama discretization for a particle on the real line R with the update rule

X1 = X + 1 (Xg) At + 0 (Xg) Wip1 VAL, (9)

where Wy, are i.i.d. standard normal random variables. Note that @D is a first-order finite difference
approximation with timestep At of the SDE

dX: = p(Xy)dt + o (Xy) dWr, (10)
where W; is a standard Brownian motion.

We extend the Euler-Maruyama method to simulate Brownian motions on a metric graph T
The main challenge in implementing a discretization scheme for the SDE is to handle the case
when the particle crosses a vertex in one Euler-Maruyama step in a way that is consistent with the
underlying Brownian motion. To tackle this scenario, we propose a timestep splitting approach
that first performs a partial Euler-Maruyama step so that the particle is exactly at the vertex
and then chooses a new edge based on the vertex-edge jump probabilities b,. Following this, we

Under review as a conference paper at ICLR 2026

complete the remaining Euler-Maruyama step using the drift and diffusion coefficients of the new
edge.

A complication that arises is that the remaining step could also result in a vertex crossing. A
recursive application of the timestep splitting approach allows us to handle multiple vertex cross-
ings in a single time step. The detailed algorithm in the case of a single vertex is described in
Algorithm [I] A visual depiction of the algorithm is shown in Figure

Algorithm 1 Timestep Splitting Euler-Maruyama Algorithm for Metric Graphs

Require: Star metric graph T' = (V, E,l) (star graph so V = {v} is a singleton and all edges
are semi-infinite, with ey, = v Ve € E), drift function p : I'® — R, diffusion function
o: T — R, edge-vertex jump probabilities b, € Apg.

1: procedure EM-STEP(e, X, At) > (e, X) € T, At is the time to simulate
2 M + 0. > Number of vertex crossings
3 if X #0 then > Particle is not at the vertex
4: Sample W ~ N (0,1).
5: X — X + pie (X) At + 0 (X) VAIW.
6 if X <0 then > Particle hits vertex
7 Solve X + aie (X) At + 0 (X) VaAtW = 0 for a.
8: Sample € from & (v) according to b,,.
9: e+ e.

10: X 0.

11: At + (1 — a)At.

12: else N

13: return (e,X).

14: while At > 0 do > Particle is at vertex

15: M <+ M +1.

16: Sample W ~ N (0,1).

17: X — X1 + pe (0) At + o (0) VAL |W.

18: if X <0 then > Particle hits vertex again

19: Sample € from & (v) according to b,,.

20: € < 5W202(0)

21: o 4= uz(OjAt'

22: At + (1 — a)At.

23: else _

24: return (e,X).

A possible issue with the algorithm is that the number of timestep splittings required to simulate
a single step of the Brownian motion is not guaranteed to be finite. This could lead to an infinite
runtime for simulating a finite timestep. However, we rigorously establish in Theorem [2| that this
scenario does not arise, ensuring that the algorithm terminates in a finite number of steps with
high probability.

Theorem 2 (Finite vertex crossings with high probability). Let M be the number of vertex
crossings the particle makes in a single Euler-Maruyama step starting from the vertex, as computed
in Algorithm (1] with input (e,0). Then for all k > 0, we have

(k=2

PM<kl>1—c =

where v is defined as the following dimensionless quantity:

2
pe (v)

= At - e
g ce(s) o2(v)

In addition to the above, we also show that the exit probabilities of the simulated particle using
this partial stepping algorithm converge to the vertex-edge jump probabilities of the SDE as the
timestep goes to zero. Intuitively, this is because the number of vertex crossings approaches 1 as
the timestep goes to zero. We formalize this in Theorem [3| and Corollary

Under review as a conference paper at ICLR 2026

Theorem 3 (Number of crossings is 1 with high probability). Let M be the number of vertex
crossings the particle makes in a single Euler-Maruyama step starting from the vertex, as computed
n Algom'thm with input (e,0). Let v be defined as in Theorem @ Then,

PM=1>Q(e).

As a consequence, we can choose

1 1
At <O 0oy 10g <)
MAXeeg (o) pz(v) 1-§

LHO)

to ensure that P[M =1] > 1 — 6.
Corollary 1 (Jump probabilities converge to b,). Let (€,X) be the output of the procedure in
Algorithm (1] with timestep At and input (e,0). Then,

lim Ple=1i] = by i .
Jim [e=1] for alli € € (v)

Proofs of Theorem [2] Theorem [3] and Corollary [] can be found in Section

3.1 FAsT, PARALLELIZED, MEMORY-AWARE IMPLEMENTATION IN CUDA

The standard Euler-Maruyama discretization lends itself to a fast, parallelized implementation on
GPUs because each particle can be simulated independently. Previous works have explored the use
of GPUs for algorithms like Markov Chain Monte Carlo and Gibbs sampling in Euclidean spaces
(Sountsov et al., 2024} |Quiroz et all |2015; [Terenin et al., [2019). Our Algorithm [1| enjoys similar
computational benefits, and we can leverage the parallelism of GPUs to simulate a large number
of particles in parallel on metric graphs. Further, this algorithm works particularly well with
GPUs’ exact architecture, where the balance between memory transfers and compute operations
significantly impacts practical performance.

We provide a brief overview of the architectural details of GPUs that are relevant to our imple-
mentation; further details can be found in the CUDA programming guide (Nvidia, 2011). A GPU
consists of thousands of CUDA cores that can independently execute threads of computation in
parallel. Along with a large number of compute units, the GPU also has a hierarchy of memory
that the cores can access. The hierarchy stems from a fundamental trade-off between memory
size, latency, and bandwidth. The fastest memory is the register memory, which is local to each
thread and is used to store intermediate results. The next level of memory is the shared memory,
which is shared between a local group of threads. The global memory is the largest and slowest
memory, but it is accessible by all threads.

Achieving high performance on GPUs requires optimizing memory accesses so that the threads can
maximize the utilization of the compute units. A significant advantage of Monte Carlo methods,
like the standard Unadjusted Langevin Algorithm (ULA) as well as our Algorithm [1} is that they
lend themselves to highly optimized memory access patterns. Specifically, since each particle
simulation is completely independent, we can assign each thread to simulate a single particle.
This allows the particle’s state to remain in register memory over multiple timesteps, which is
the fastest memory available. Consequently, the compute units can operate at peak utilization
without being bottlenecked by memory accesses. Slower transfers to and from global memory are
only required when evaluating ensemble statistics, such as histogram averages. We implement
our algorithm in CUDA to take advantage of these architectural features. Specifically, we provide
CUDA kernels for running multiple timesteps of Algorithm [I] for multiple particles in parallel. We
also provide a CUDA kernel for computing empirical histograms of these particles, which allows
us to measure the error between their density and the steady-state density. We present detailed
numerical experiments in Section [l CUDA kernel source code can be found in Section [A24]

4 NUMERICAL EXPERIMENTS

We consider a simple star metric graph with 5 edges and 1 vertex. For simplicity, we choose
constant diffusion o.(x) = o for all edges e € E. We choose the vertex-edge jump probabilities
to be uniform, i.e., b,; = z. We consider two cases of drift, driven by a linear potential and by a
quadratic potential.

Under review as a conference paper at ICLR 2026

Linear Potential In the case of linear potentials, each edge has constant drift towards the vertex
with varying magnitudes given by p.,(z) = —10-¢ for ¢ € {1,2,3,4,5}. This drift corresponds
to a linear potential with constant diffusion along each edge, which is equivalent to the Ornstein-
Uhlenbeck (Ornstein|, |1930) process on each edge, but edges interact through the gluing boundary
conditions. The steady-state distributions p; on each edge are exponential with means inversely
proportional to 4.

pi(r) = Bexp (—%x) for x € [0, 0], (11)

where B is a normalization constant. Note that all edges have the same normalizing constant due
to the continuity of the density at the vertex. Since the drift on each edge is constant and inward,
it is not continuous at the vertex. Therefore, the gluing boundary condition (which is effectively a
flux balance condition) also has a term involving the densities at the vertex. Specifically, the flux
balance condition at the vertex is given by

Z pipi(0) = D Z dipi (0) .

ecE ecE
This condition is satisfied by the densities defined in for all choices of B. Finally, the nor-
malizing constant can be computed by setting the total mass to 1. We obtain B = ZD -
i Mg

Quadratic Potential In the case of quadratic potentials, the drift is given by pue, (z) = —10-i-x
for i € {1,2,3,4,5}. The steady-state densities in this case are Gaussians centered at the vertex
with variance inversely proportional to 4. We can use a similar argument as above to compute
the normalizing constant, and we obtain the following expression for the steady state density on

each edge

pi(x) = Bexp (—2/%372) for x € [0, 0], (12)

where the normalizing constant B if given by

[2
B:i

T
i v

We run Algorithm [I]in parallel for multiple particles over multiple timesteps. We measure the error
in the particles’ density (after sufficient simulation time) with respect to the analytical steady-
state density. As a baseline, we compare this with the density obtained by solving the Fokker-
Planck equation using a Finite Volume Method (FVM) scheme. Numerical results are presented
in Figure [3] and runtime comparisons between different implementations are in Figure @] Further
details are provided in the appendix.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we presented a novel Euler-Maruyama-based algorithm for simulating Brownian
motions on metric graphs. Our algorithm uses a timestep splitting approach that allows us to
handle vertex crossings in a way that is consistent with the underlying Brownian motion. We
rigorously established that the number of vertex crossings is finite with high probability and that
the exit probabilities of the simulated particle converge to the vertex-edge jump probabilities of
the SDE as the timestep goes to zero. We also provided a fast, parallelized, memory-aware imple-
mentation in CUDA that takes advantage of the architecture of modern GPUs. We demonstrated
the effectiveness of our algorithm through numerical experiments on a simple star metric graph
with linear and quadratic potentials.

Promising future directions include developing higher-order variants of timestep splitting algo-
rithms like Algorithm [I] for simulating Brownian motions on metric graphs. Further, bringing
existing sampling algorithms inspired by optimization perspectives (Chewi, 2023) like proximal
sampling (Liang & Chen, 2022), mirror Langevin (Hsieh et al., [2018]), and the Metropolis-adjusted
Langevin algorithm (Xifara et all 2014) to the domain of metric graphs would serve as an inter-
esting research direction. On the theoretical side, developing non-asymptotic convergence rates

Under review as a conference paper at ICLR 2026

L2 Error vs Steady State Density, Linear potential L2 Error vs Steady State Density, Quadratic potential
107t \
107!
N —— FVM Scheme (best error) =
g —e— Algorithm 1, At=1.0e-06 [
w —e— Algorithm 1, At=1.0e-05 ui 10
3) g : N
—e— Algorithm 1, At=1.0e-04
—— FVM Scheme (best error)
—e— Algorithm 1, At=1.0e-06
—eo— Algorithm 1, At=1.0e-05
1073{ —e— Algorithm 1, At=1.0e-04
10 10° 10° 107 108 104 10° 10° 107 108

Number of particles Number of particles

Figure 3: Error in density estimation for linear and quadratic potentials. The FVM scheme
directly solves the Fokker-Planck equation to obtain the steady-state density. We compare the
best case error (over discretization parameters) of this scheme with the error obtained by running
Algorithm [I] for multiple particle counts and values of the timestep. We estimate the density
using a simple histogram with a bin size equal to the discretization of the FVM scheme. The
error is computed as the empirical L2 distance between the estimated density and the analytical
steady-state density. We observe that Algorithm [I] results in significantly lower error compared to
the FVM scheme for the same level of spatial and time discretizations.

Normalized runtimes, Linear potential Normalized runtimes, Quadratic potential
102{ —— FVM scheme (PyTorch, best time) , —— FVM scheme (PyTorch, best time)
mmm Algorithm 1 (PyTorch, torch.compile) 10% Algorithm 1 (PyTorch, torch.compile)
mm Algorithm 1 (Custom CUDA kernel) mmm Algorithm 1 (Custom CUDA kernel)

10!

,_.
o
3

Normalized runtime per step

Normalized runtime per step
=
=)
L

,_.
o
&

1073

1074
104 10° 108 107 108 10% 10° 10° 107 108
Number of particles Number of particles

,_.
o
IS

Figure 4: Normalized runtimes per step, aggregated over different discretization parameters for
Algorithm [1] for linear and quadratic potentials compared with the best runtime for the FVM
scheme. We observe that the FVM scheme has a significantly higher runtime compared to Algo-
rithm [I] for the same level of spatial and time discretizations. Additionally, our custom CUDA
kernel for Algorithm [I} is significantly faster (up to ~8000x speedup) than the PyTorch imple-
mentation (speedups indicated on the bars). We observe slightly higher runtimes for the linear
potential, which is expected due to the increased likelihood of vertex crossings per timestep. All
experiments were run on an NVIDIA RTX A6000 GPU.

for these algorithms is a potential avenue for future work. Finally, extending the optimized CUDA
implementation to accommodate interacting systems by exploiting shared memory and other ar-
chitectural features of GPUs is another promising direction.

Under review as a conference paper at ICLR 2026

REFERENCES

Michele Aleandri, Matteo Colangeli, and Davide Gabrielli. A combinatorial representation for the
invariant measure of diffusion processes on metric graphs. arXiv preprint arXiv:2002.00654,
2020.

Claudio Amovilli, Frederik E Leys, and Norman H March. Electronic energy spectrum of two-
dimensional solids and a chain of ¢ atoms from a quantum network model. Journal of mathe-
matical chemistry, 36:93-112, 2004.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiw:1701.02434, 2017.

Paul C Bressloff. Stochastic processes in cell biology, volume 41. Springer, 2014.

Simon Byrne and Mark Girolami. Geodesic monte carlo on embedded manifolds. Scandinavian
Journal of Statistics, 40(4):825-845, 2013.

Carmela Cacciapuoti, Rodolfo Figari, and Andrea Posilicano. Point interactions in acoustics:
One-dimensional models. Journal of mathematical physics, 47(6), 2006.

Robert Carlson. Linear network models related to blood flow. Contemporary Mathematics, 415:
65-80, 2006.

George Casella. L.; berger, rl statistical inference, 2001.

Sinho Chewi. An optimization perspective on log-concave sampling and beyond. PhD thesis,
Massachusetts Institute of Technology, 2023.

Matthias Erbar, Dominik Forkert, Jan Maas, and Delio Mugnolo. Gradient flow formulation of
diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous
Media, 17(5):687, 2022. ISSN 1556-1801, 1556-181X. doi: 10.3934/nhm.2022023. URL https:
//www.aimsciences.org/article/doi/10.3934/nhm.2022023/

Mark Freidlin and Shuenn-Jyi Sheu. Diffusion processes on graphs: stochastic differential equa-
tions, large deviation principle. Probability Theory and Related Fields, 116(2):181-220, Febru-
ary 2000. ISSN 1432-2064. doi: 10.1007/PL00008726. URL https://doi.org/10.1007/
PLO0008726.

Mauro Garavello and Benedetto Piccoli. Traffic flow on a road network using the aw-rascle model.
Communications in Partial Differential Equations, 31(2):243-275, 2006.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123—
214, 2011.

Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored langevin dynamics. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Vadim Kostrykin and Robert Schrader. Laplacians on Metric Graphs: Eigenvalues, Resolvents
and Semigroups, January 2006. URL http://arxiv.org/abs/math-ph/0601041. arXiv:math-
ph/0601041.

Vadim Kostrykin, Jurgen Potthoff, and Robert Schrader. Heat kernels on metric graphs and a
trace formula, January 2007. URL http://arxiv.org/abs/math-ph/0701009. arXiv:math-
ph/0701009.

Vadim Kostrykin, Jurgen Potthoff, and Robert Schrader. Brownian Motions on Metric Graphs:
Feller Brownian Motions on Intervals Revisited, August 2010. URL https://arxiv.org/abs/
1008.3761v2.

Vadim Kostrykin, Jiirgen Potthoff, and Robert Schrader. Brownian Motions on Metric Graphs.
Journal of Mathematical Physics, 53(9):095206, September 2012. ISSN 0022-2488, 1089-7658.
doi: 10.1063/1.4714661. URL http://arxiv.org/abs/1102.4937. arXiv:1102.4937 [math)].

https://www.aimsciences.org/article/doi/10.3934/nhm.2022023
https://www.aimsciences.org/article/doi/10.3934/nhm.2022023
https://doi.org/10.1007/PL00008726
https://doi.org/10.1007/PL00008726
http://arxiv.org/abs/math-ph/0601041
http://arxiv.org/abs/math-ph/0701009
https://arxiv.org/abs/1008.3761v2
https://arxiv.org/abs/1008.3761v2
http://arxiv.org/abs/1102.4937

Under review as a conference paper at ICLR 2026

Hannah Kravitz. Metric Graphs: Numerical Methods, Localization, and the Spread of Epidemics.
Ph.D., The University of Arizona, United States — Arizona, 2022. URLhttps://www.proquest.
com/docview/2708229288/abstract/7AEES8B405BEA4340PQ/1. ISBN: 9798841733942.

P Kuchment. Graph models of wave propagation in thin structures, waves random media 12.
R1-R2/, 2002.

Peter Kuchment. Quantum graphs: I. Some basic structures. Waves in Random Media,
14(1):5107-S128, January 2004. ISSN 0959-7174, 1361-6676. doi: 10.1088/0959-7174/
14/1/014. URL http://www.informaworld.com/openurl?genre=article&doi=10.1088/
0959-7174/14/1/014&magic=crossref | | D404A21C5BB053405B1A640AFFD44AE3.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of statistics, pp. 1302-1338, 2000.

Ben Leimkuhler and Charles Matthews. Molecular dynamics. Interdisciplinary applied mathemat-
ics, 39(1), 2015.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge uni-
versity press, 2002.

Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling. arXiv preprint
arXiv:2202.15975, 2022.

Delio Mugnolo. Semigroup methods for evolution equations on networks, volume 20. Springer,
2014.

Serge Nicaise. Some results on spectral theory over networks, applied to nerve impulse transmis-
sion. In Polynomes Orthogonauz et Applications: Proceedings of the Laguerre Symposium held
at Bar-le-Duc, October 15-18, 1984, pp. 532—-541. Springer, 1985.

CUDA Nvidia. Nvidia cuda ¢ programming guide. Nvidia Corporation, 120(18):8, 2011.

Leonard Salomon Ornstein. On the theory of the brownian motion. Physical review, 36:823-841,
1930.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-

tive style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Matias Quiroz, Mattias Villani, and Robert Kohn. Scalable mcme for large data problems using
data subsampling and the difference estimator. 2015.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. 1996.

Pavel Sountsov, Colin Carroll, and Matthew D Hoffman. Running markov chain monte carlo on
modern hardware and software. arXiv preprint arXiv:2411.04260, 2024.

Alexander Terenin, Shawfeng Dong, and David Draper. Gpu-accelerated gibbs sampling: a case
study of the horseshoe probit model. Statistics and computing, 29:301-310, 2019.

Tatiana Xifara, Chris Sherlock, Samuel Livingstone, Simon Byrne, and Mark Girolami. Langevin
diffusions and the metropolis-adjusted langevin algorithm. Statistics & Probability Letters, 91:
14-19, 2014.

https://www.proquest.com/docview/2708229288/abstract/7AEE8B405BEA4340PQ/1
https://www.proquest.com/docview/2708229288/abstract/7AEE8B405BEA4340PQ/1
http://www.informaworld.com/openurl?genre=article&doi=10.1088/0959-7174/14/1/014&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1088/0959-7174/14/1/014&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 VISuAL REPRESENTATION OF ALGORITHM [l

1. Particle on edge e
Partial EM step
2. Find a < 1 such that

Xy + pe @At + o . WivVaAt
is at the vertex v

3 * Jump to new edge
: O ’ with distribution b,

Remainder of EM step
(if vertex hit again, repeat 2)

Figure 5: Four stages of one iteration of the timestep splitting Euler-Maruyama algorithm. The
particle starts by taking a standard Euler-Maruyama step on the edge it is currently on. If it
crosses the vertex, the standard step is split into a partial step until it hits the vertex. Then, it
samples a new edge from the vertex-edge jump probabilities and continues the remainder of the
partial step on the new edge. If it crosses the vertex again, it repeats the process. This timestep
splitting process continues until the particle no longer crosses the vertex in a partial step.

Under review as a conference paper at ICLR 2026

A.2 PROOFS OF THEOREMS
A.2.1 FINITE VERTEX CROSSINGS WITH HIGH PROBABILITY

Proof of Theorem[3 Let I for k > 0 be iid variables that take values in £ (v) according to the
distribution b,. Let Wy ~ N (0, 1) for k > 0. We define the following sequence of random variables:

o7, (v)
ks
p7, (v)

hi :=hp_1 —

where hqg := At.

Define the stopping time 7 := inf {k > 0: hj, < 0}. First, observe that M = 7. To see this, note
2

that after one iteration of the loop in Algorithm we have At = At — ZQ (Z; W2, If At' <0, then
Iy

M =1, and if A¢’ > 0, then we continue the loop with A#’ in place of At. By induction, we see

that M = 7. We can define the following upper-bounding sequence by considering the worst case

over all possible choices of I,

~ ~ h ~
i, = hje—y — —2W2, where ho = hg = At
Y

We can solve the recursion for Ek to get
- 1&
hie = ho <1— ZW?))
7=

By construction, hi > hy for all Kk > 0. We define a similar stopping time for ﬁ, as 7 =
inf{k >0:h, < 0}. Clearly, hy < hy =— 7T > 7. Now, observe that Zle Wf = X% is a

chi-squared random variable with k degrees of freedom. We have,
1 ~
hO(l_,YXi) <0 << X%ZV — 7<k = 7<k.
Therefore,
PIM<k=Plr<kl>P[F<kl>P[x;>1].

To control the tail of 7, we use the following bound from Lemma 1 in Section 4.1 of (Laurent &
Massart,, 2000)),

We have,
P[ngk—wﬁ} <e®
— 14@[;@ 21%2\/@} <e?
By setting = = (kllz)z, we get
_(k—y)?

Pxi>n]>21-e =
This completes the proof. O

A.2.2 NUMBER OF CROSSINGS IS 1 WITH HIGH PROBABILITY

Proof of Theorem[3 We use the same notation defined in the proof of Theorem [2}
First, observe that M =1 —- ng > .
So, we have P[M = 1] <P[W > 7].

Under review as a conference paper at ICLR 2026

Since W7 is a standard normal random variable, we have

PWE>A]=P[Wi] > Al =2(1-2(/7)),
where @ is the CDF of the standard normal distribution.
We use a standard lower bound on the CDF (Casellal 2001) of the normal distribution to get

1= () = Cexp (—1)
— P[M =1]>Cexp (—%) > Q(e_'y).

This completes the proof.

A.2.3 JumpP PROBABILITIES CONVERGE TO b,

Proof of Corollary[l, Clearly, if M = 1, then € = i with probability b,;, since € is sampled from
the distribution b, once. By noting that v — 0 as At — 0, we can apply Theorem [3| to conclude
that P[M = 1] — 1 as At — 0. This completes the proof. O

A.3 BASELINE FINITE VOLUME SCHEME

We provide a brief overview of the Finite Volume Method (FVM) scheme for solving the Fokker-
Planck equation on metric graphs. On each edge e € E, we discretize the Fokker-Planck equation
using a standard FVM scheme; see (LeVequel 2002)) for details. We use an upwinding scheme to
discretize the drift term and a central difference scheme to discretize the diffusion term. We use
a first-order explicit Euler scheme to discretize the time derivative.

We now provide details of the flux balance condition at the vertex. Denote the density of the cell
adjacent to the vertex on edge i by p;. To mimic the gluing boundary conditions, we use a flux
distribution at the vertex that is proportional to the jump probabilities b,. Specifically, let Fj;
be the flux from edge i to edge j at the vertex. We decompose the flux into a drift and diffusion
component.

Drift Component Since we use an upwinding scheme to discretize the drift term, the drift
component of the flux from edge i to edge j is zero if the drift u;(v) is away from the vertex on
edge i. If the drift is towards the vertex, then the drift component of the flux is given by

by

FEM = p3(0)pi [bus m—5—
! D st Dok

Note that the drift flux is distributed to all target edges, proportional to the jump probabilities.
The density from the source is normalized by the jump probability to account for the fact that
the density is distributed to all target edges.

Intuitively, the jump probability can be interpreted as the relative “cross-sectional areas” of the
edges at the vertex. The density is the linear density of the particles on the edge. When computing
fluxes across different edges, we need to account for the relative “cross-sectional areas” of the edges
at the vertex. Hence, we normalize by the appropriate jump probabilities.

Diffusion Component The diffusion component of the flux is given by

F_diffusion _ U(U) pl/bm — pj/b”j b,
4 2 Ax v

A similar normalization is applied to the density terms to account for the relative “cross-sectional
areas” of the edges at the vertex.

The total flux into the cells at the vertex on each edge is the sum of all the incoming drift and
diffusion components from every other edge.

Under review as a conference paper at ICLR 2026

A.4 CUDA KERNELS

We present source code for our CUDA kernels for running Algorithm [I] for multiple particles over
multiple timesteps. Python bindings and other code can be found in the uploaded supplementary
material.

#include <curand_kernel .h>

#define TOL 1le—10f
#define MAXITERATIONS_PER_STEP 100
#define STEPSPER KERNEL 1000

extern "C” {

__device__ float device.dV (int edge_index, float x) {
// gradient of quadratic potential
return 10.0f % (edge-index 4+ 1.0f) * x;

}

__device__. float solve_quadratic(float A, float B, float C) {
// Numerically stable solution to quadratic equation
if (A= 0.0f) {
return —C / B;

float discriminant = sqrtf(fmaxf(B * B — 4.0f x A « C, 0.0f));
if (B> 0.0f) {
return (—B — discriminant) / (2.0f % A);
} else {
return (2.0f « C) / (—B + discriminant);
}
}

__global__ void
langevin_multi_step_kernel (int xedges, float xpositions, int xbounces,
int xbounce_instances, const float xedge_lengths
const float xjump_weights, const float base_dt,
const float sigma, const int num_edges,
const int num_particles, curandState xstates) {
const int tid = blockldx.x * blockDim.x + threadldx.x;
if (tid >= num_particles)
return;

int edge = edges[tid];

float x = positions[tid];

int bounce_count = bounces[tid];

int bounce_instance bounce_instances [tid |;
curandState local_state = states[tid];

if (edge < 0 || edge >= num_edges) {
printf(”Invalid-initial -edge-%d-for-particle -%d\n”, edge, tid);
edge = 0;

}

for (int step = 0; step < STEPSPERKERNEL; ++step) {
float dt = base_dt;
int iterations = 0;

while (dt > 0.0f && iterations++ < MAXITERATIONS PERSTEP) ({
float w = curand_normal(&local_state);
if (x = 0.0f)

Under review as a conference paper at ICLR 2026

w = fabsf (w);

float drift = —device_-dV (edge, x);

float sqrt_dt = sqrtf(dt);

float x_next = x + dt * drift + sigma * sqrt_dt * w;
float current_length = edge_lengths[edge];

if (current_length <= 0.0f) {
printf(”Invalid-edge-length-%f-for-edge -%d\n”, current_length , edge);
current_length = 1.0f;

}

if (x_next > 0.0f && x_next <= current_length) {
// mo bounce
X = x_next;
dt = 0.0f;
} else if (x_next > current_length) {
// also mno bounce

x = 2.0f x current_length — x_next;
dt = 0.0f;
} else {

// xz_next < 0.0f — bounce
if (x!= 0.0f) {
// first bounce
bounce_instance-++;

}

bounce_count—++;

float a = drift * dt;

float b = sigma * sqrt_dt * w;

float sqrt_alpha = solve_quadratic(a, b, x);
float alpha = sqrt_-alpha * sqrt_alpha;

dt *= (1.0f — alpha);

float rand_-val = curand_uniform(&local_state);
int new_edge = 0;
while (new_edge < num_edges — 1 && rand_val > jump_weights[new_edge]) {
new_edge++;
}
if (new_edge < 0 || new_edge >= num_edges) {
printf(”Invalid -new_edge-%d, - clamping-to-0\n”, new_edge);
new_edge = 0;
}
edge = new_edge;
x = 0.0f;
}
}
}
edges[tid] = edge;
positions [tid] = x;
bounces[tid] = bounce_count;
bounce_instances [tid] = bounce_instance;
states [tid] = local_state;

Under review as a conference paper at ICLR 2026

__global__ void setup_kernel(curandState xstates , unsigned long long seed,
int num_particles) {
int tid = blockldx.x % blockDim.x 4+ threadldx.x;
if (tid >= num_particles)
return;
curand_init (seed 4+ tid, 0, 0, &states[tid]);

}

// histogram kernel
__global__ void compute_histogram_kernel (const int xedges,
const float =xpositions,
const float xedge_lengths,
int xhistograms, int num_bins,
int num_edges, int num_particles) {
const int tid = blockldx.x * blockDim.x 4+ threadldx.x;
if (tid >= num_particles)
return;

const int edge = edges[tid];
const float pos = positions[tid];

// Validate input
if (edge < 0 || edge >= num_edges)
return;
const float length = edge_lengths[edge];
if (pos < 0.0f || pos > length)
return;

// Calculate normalized position [0,1]
const float normalized_pos = pos / length;

// Determine bin index
int bin = (int)(normalized_pos % num_bins);
bin = max(0, min(bin, num_bins — 1)); // Clamp to wvalid range

// Atomic increment wusing 2D indexing: [edge][bin
atomicAdd(&histograms [edge * num_bins + bin], 1);

)

i

	Introduction
	Outline
	Contributions

	Background
	Metric Graphs
	Function Spaces on Metric Graphs

	Brownian motions on Metric Graphs

	Timestep Splitting Euler-Maruyama Scheme for Metric Graphs
	Fast, Parallelized, Memory-Aware Implementation in CUDA

	Numerical Experiments
	Conclusion, Limitations and Future Work
	Appendix
	Visual Representation of alg:eulermaruyamametricgraphbothsplit
	Proofs of Theorems
	Finite Vertex Crossings with High Probability
	Number of Crossings is 1 with High Probability
	Jump Probabilities Converge to bv

	Baseline Finite Volume Scheme
	CUDA Kernels

