
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Sampling On Metric Graphs

Anonymous authors
Paper under double-blind review

Abstract

Metric graphs are structures obtained by associating edges in a standard graph
with segments of the real line and gluing these segments at the vertices of the
graph. The resulting structure has a natural metric that allows for the study of
differential operators and stochastic processes on the graph. Brownian motions in
these domains have been extensively studied theoretically using their generators.
However, less work has been done on practical algorithms for simulating these
processes. We introduce the first algorithm for simulating Brownian motions on
metric graphs through a timestep splitting Euler-Maruyama-based discretization
of their corresponding stochastic differential equation. By applying this scheme
to Langevin diffusions on metric graphs, we also obtain the first algorithm for
sampling on metric graphs. We provide theoretical guarantees on the number
of timestep splittings required for the algorithm to converge to the underlying
stochastic process. We also show that the exit probabilities of the simulated par-
ticle converge to the vertex-edge jump probabilities of the underlying stochastic
differential equation as the timestep goes to zero. Finally, since this method is
highly parallelizable, we provide fast, memory-aware implementations of our al-
gorithm in the form of a custom CUDA kernel that is up to ∼8000x faster than a
GPU implementation using PyTorch. We corroborate our theoretical results with
numerical experiments applying our implementation to star metric graphs. In
terms of accuracy and efficiency, our scheme significantly outperforms a baseline
finite volume scheme.

1 Introduction

Metric graphs, also known as quantum graphs (Kuchment, 2004), are geometric structures formed
by gluing together one-dimensional segments of the real line at the vertices of an underlying
graph, inheriting both the combinatorial topology of a graph and the smooth geometry of a real
line. These objects have emerged as powerful tools for modeling complex systems in diverse fields,
including physics, biology, and network theory. For instance, they are used to model nanoscale
materials like carbon nanostructures (Amovilli et al., 2004), vascular networks (Carlson, 2006),
nerve impulse transmission (Nicaise, 1985), acoustics (Cacciapuoti et al., 2006), and traffic flow
on road networks (Garavello & Piccoli, 2006). Specific applications for vascular networks include
solving diffusion PDEs like the Fokker-Planck equation to simulate blood flow dynamics, drug
delivery, or nutrient transport in the brain. In the case of road networks, applications include
traffic flow simulations which involve solving conservation law PDEs. A common theme that we
explore in this work is that these applications involve numerically solving a diffusion PDE, which
can be done stochastically using sampling methods. We refer the reader to (Kuchment, 2002) for
a comprehensive survey of the applications of quantum graphs. From a theoretical standpoint,
the underlying metric structure of metric graphs allows for the analysis of differential operators
(Mugnolo, 2014; Erbar et al., 2022) and stochastic processes (Freidlin & Sheu, 2000), enabling
the study of phenomena such as diffusion, wave propagation, and random motion on networked
domains.
Brownian motions on metric graphs, a canonical example of such stochastic processes, have been
extensively studied theoretically through their infinitesimal generators (Kostrykin et al., 2007;
2010; Kostrykin & Schrader, 2006; Aleandri et al., 2020). However, practical algorithms for simu-
lating these processes – essential for numerical studies and real-world applications – have remained
underdeveloped. This gap is particularly consequential in modern computational statistics and ma-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

chine learning, where efficient sampling methods on complex geometries are indispensable (Byrne
& Girolami, 2013; Betancourt, 2017). For example, Langevin diffusions (Roberts & Tweedie, 1996),
a class of stochastic differential equations (SDEs) central to sampling from high-dimensional dis-
tributions, have seen widespread adoption in Bayesian inference (Girolami & Calderhead, 2011)
and molecular dynamics (Leimkuhler & Matthews, 2015). Extending these methods to metric
graphs could unlock new applications in networked systems, such as diffusive transport in den-
dritic networks in neuroscience (Bressloff, 2014).
Despite progress in understanding the theory of SDEs on metric graphs (Freidlin & Sheu, 2000) –
including vertex transition rules, Feller properties, and large deviation asymptotics – the numerical
simulation of these processes has been largely unexplored. Existing numerical work on metric
graphs has focused primarily on solving partial differential equations using finite element methods
(Kravitz, 2022). Some of these methods, such as finite volume schemes, struggle to stably scale to
finer meshes without requiring prohibitively smaller timesteps (LeVeque, 2002) and are also less
amenable to parallelization on modern hardware (GPUs) compared to Monte Carlo methods.
In this work, we bridge this gap by introducing the first algorithm (Algorithm 1) for simulating
Brownian motions and Langevin diffusions on metric graphs. Our approach leverages a timestep
splitting Euler-Maruyama discretization of the underlying SDE, which simultaneously resolves evo-
lution along edges and transitions at vertices. We provide theoretical guarantees on this scheme’s
runtimes and consistency with the underlying SDE as the timestep approaches zero.
An important computational insight is the algorithm’s parallelizability and well-suitedness to
current modern GPU architectures. We implement it as a custom memory-aware CUDA kernel
with Python bindings, enabling fast GPU-accelerated simulations that scale to large particle counts
while effectively utilizing hardware capabilities. This implementation advances the practical utility
of metric graph analyses and provides a first step toward computationally efficient stochastic
simulations of these domains in high-performance computing environments. Furthermore, we
demonstrate that our method significantly outperforms a baseline finite volume scheme in both
accuracy and computational efficiency.

1.1 Outline

In Section 1.2, we summarize our contributions. In Section 2, we provide the necessary background
on metric graphs and Brownian motions on metric graphs. In Section 3, we present our main
algorithm for simulating a Brownian motion on a metric graph with implementation details in
Section 3.1. In Section 4, we present numerical results on star metric graphs with drifts driven by
linear and quadratic potentials.

1.2 Contributions

• We propose Algorithm 1, a timestep splitting Euler-Maruyama based discretization of the
SDE of the Brownian motion, which is the first algorithm that we know of for simulating
a Brownian motion and sampling on a metric graph.

• We show in Theorem 2 that the number of time-step splittings in Algorithm 1 is finite
with high probability. Additionally, we show in Corollary 1 that the exit probabilities of
the simulated particle using this algorithm converge to the vertex-edge jump probabilities
of the underlying SDE as the timestep goes to zero.

• We provide a fast, memory-aware implementation of Algorithm 1 for GPUs in the form
of a custom CUDA kernel with Python bindings and show significant speedups (up to
∼8000x faster) over a GPU implementation using PyTorch (Paszke et al., 2019).

• We corroborate our theoretical results with numerical experiments using our implemen-
tation on star metric graphs and significantly outperform a baseline finite volume scheme
both in terms of accuracy (Figure 3) and speed (Figure 4).

The code for our implementation is uploaded as part of the supplementary material.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 Background
2.1 Metric Graphs

In this section, we provide some formal background on metric graphs.
Definition 1 (Metric Graph). Let G = (V, E, l) be an n-node, m-edge, connected, oriented graph.
We associate the line segment (0, le) with each edge e ∈ E. We identify the endpoints of the
interval 0 and le with the corresponding vertices of the edge, which we denote einit and eterm. The
union of open metric edges associated with G is defined as Γo := {(e, x) | e ∈ E, x ∈ (0, le)}, and
the union of closed metric edges as Γc := {(e, x) | e ∈ E, x ∈ [0, le]}. The metric graph associated
with G is defined as Γ := V ∪ Γo.

Additionally, we allow edges to be semi-infinite, i.e., le = ∞. In this case, the terminal vertex of
these edges is a vertex at infinity, and the intervals corresponding to these edges are [0,∞).

Figure 1: An example metric graph Γ and its associated spaces.

We also define a special case of metric graphs called star metric graphs where the graph has a
single vertex and all edges are semi-infinite. The remainder of this paper will focus on star metric
graphs, though all results extend to general metric graphs.
Definition 2 (Star Metric Graph). A star metric graph is a metric graph with a single vertex v,
and all edges in E are semi-infinite and have length le =∞.

We define the set of edges incident to a vertex v ∈ V as
E (v) := {e ∈ E | einit = v or eterm = v} .

2.1.1 Function Spaces on Metric Graphs

The metric structure of each edge combined with the discrete graph metric on G leads to a natural
definition of the distance d : Γ× Γ→ R+ between two points on the metric graph. For x, y ∈ Γ,
let G̃ =

(
Ṽ , Ẽ, l̃

)
be the discrete graph obtained by adding two new vertices x and y to G and

splitting the edges on which they lie appropriately. Then we define the distance d (x, y) as the
length of the shortest path between x and y in G̃. This metric allows us to define the space Ck (Γ)
as the space of functions on Γ that are k times continuously differentiable.
In addition to the global metric structure of Γ, the metric structure on each edge allows us to
define a broader class of continuous functions by considering continuity restricted to the edges.
For a function f : Γ→ R (and also for functions f : Γc → R), we define fe : [0, le]→ R to be the
restriction of f to the closed edge e. We similarly define the restriction to open edges for functions
f : Γo → R.
We define the function space Ck (Γo) as the space of functions on Γ whose restriction to each
open edge (0, le) is k times continuously differentiable. Note that this can be naturally extended
to functions on Γc by extending the restrictions to have values at the endpoints of the edges as:
fe (0) := limx→0+ fe (x) and fe (le) := limx→l−

e
fe (x). By a slight abuse of notation, we will also

allow the use of fe (einit) = fe (0) and fe (eterm) = fe (le) to denote these endpoint values.
A useful observation is to note that by identification of the vertices, for two edges e, e′ ∈ E that
share a vertex v ∈ V such that einit = e′

init = v, we have for f ∈ C (Γ) that
fe (0) = fe′ (0) .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Similar results hold for different combinations of initial and terminal vertices of the edges. However,
this is not the case for functions in Ck (Γc) or Ck (Γo). Specifically, for f ∈ Ck (Γc), it need not be
the case that f

(j)
e (0) = f

(j)
e′ (0) for edges e, e′ ∈ E that share an initial vertex v ∈ V , where f

(j)
e

denotes the j-th derivative of fe.
Finally, for notational convenience, we define the notion of an inward derivative along an edge at
a vertex that is independent of the orientation of the edge.
Definition 3. Let f ∈ C1 (Γ). We define the inward derivative of f at a vertex v ∈ V along an
edge e ∈ E incident to v as

∂ef (v) :=
{
−∂fe

∂x (0) if einit = v,
∂fe

∂x (le) if eterm = v.

Note that flipping the orientation of edge e does not change the sign of the inward derivative. See
Figure 2 for a visual depiction of the inward derivative.

e1

e2

e3

fe1

∆x

∆y ∂e1f(v) = ∆y

∆x

v

Figure 2: Visual depiction of the inward derivative ∂e1f (v) along an edge e1 at a vertex v. Its
sign is independent of the orientation of the edge.

2.2 Brownian motions on Metric Graphs

Brownian motions on metric graphs are extensively studied in (Kostrykin et al., 2012). A Brownian
motion on a metric graph is generated by the standard second-order generator of the Brownian
motion restricted to each open edge, along with specific boundary conditions at the vertices known
as gluing conditions.
Let µ ∈ C1 (Γc) and σ ∈ C1 (Γ) be functions that denote drift and diffusion coefficients respectively.
The generator L of a Brownian motion on the metric graph applied to a function f ∈ C2 (Γ) is
given by

(Lf)e = Lefe for all e ∈ E (1)
where Le is the generator of a Brownian motion on the open edge e:

Lefe(x) := ∂fe(x)
∂x

µe(x) + 1
2σ2

e(x)∂2fe(x)
∂x2 . (2)

The domain of L is restricted to functions f ∈ C2 (Γ) that satisfy a set of gluing boundary
conditions at each vertex v ∈ V . (Kostrykin et al., 2012) shows that a class of gluing conditions
called the Wentzell boundary conditions characterizes all possible Brownian motions. The Wentzell
boundary conditions for f ∈ C2 (Γ) are given by

avf(v)−
∑

e∈E(v)

bve∂ef (v) + 1
2cvf ′′(v) = 0 for all v ∈ V (3)

where av ∈ [0, 1), bve ∈ [0, 1] , cv ∈ [0, 1] are constants that satisfy

av +
∑

e∈E(v)

bve + cv = 1 for all v ∈ V. (4)

In this paper, we will consider the case where av = 0, cv = 0, which are often referred to as the
standard boundary conditions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 4 (Standard Boundary Conditions). f ∈ C2 (Γ) satisfies the standard boundary con-
ditions if ∑

e∈E(v)

bve∂ef (v) = 0 for all v ∈ V. (5)

where bve ∈ [0, 1] are constants that satisfy∑
e∈E(v)

bve = 1 for all v ∈ V. (6)

For convenience, we define the simplex

∆v :=
{

x ∈ RE(v) | xe ∈ [0, 1] and 1T x = 1
}

and note that bv ∈ ∆v defines a vertex-edge jump probability distribution at each vertex v ∈ V .
The Brownian motion generated by the generator with standard boundary conditions is conserva-
tive, and an extensive analysis of the stochastic properties is provided in (Freidlin & Sheu, 2000).
In particular, (Freidlin & Sheu, 2000) derives an SDE for this Brownian motion and characterizes
the behavior of the process at the vertices of the metric graph. As a first simplification, we only
need to characterize the stochastic process’s behavior at a single vertex since this is a local prop-
erty that can be extended to other vertices. Effectively, we only need to consider the behavior of
the process on star metric graphs. We restate the main results of (Freidlin & Sheu, 2000) in the
following theorem.
Theorem 1 (Lemma 2.2 and Corollary 2.4 in (Freidlin & Sheu, 2000)). Let Xt = (et, xt) be a
Brownian motion on a star metric graph Γ with standard boundary conditions. There exists a
1-dimensional Brownian motion Wt and a local time process lt adapted to the filtration generated
by Xt such that

dxt = µet
(xt) dt + σet

(xt) dWt + dlt. (7)
Moreover, the local time process lt is a continuous, non-decreasing process that only increases when
the particle is at the vertex, i.e., xt = 0.
Let τδ := inf {t ≥ 0 : xt = δ} be the first time the process exits a ball of radius δ centered at the
vertex (assume X0 = v). The discrete edge process et is characterized by the following transition
probabilities,

lim
δ→0

P [eτδ
= i] = bvi for all i ∈ E (v) . (8)

3 Timestep Splitting Euler-Maruyama Scheme for Metric Graphs

In this section, we present our main algorithm, an Euler-Maruyama-based method for simulating
Brownian motion on a metric graph via timestep splitting. First, we recall the standard Euler-
Maruyama discretization for a particle on the real line R with the update rule

Xk+1 = Xk + µ (Xk) ∆t + σ (Xk) Wk+1
√

∆t, (9)
where Wk are i.i.d. standard normal random variables. Note that (9) is a first-order finite difference
approximation with timestep ∆t of the SDE

dXt = µ (Xt) dt + σ (Xt) dWt, (10)
where Wt is a standard Brownian motion.
We extend the Euler-Maruyama method to simulate Brownian motions on a metric graph Γ.
The main challenge in implementing a discretization scheme for the SDE (7) is to handle the case
when the particle crosses a vertex in one Euler-Maruyama step in a way that is consistent with the
underlying Brownian motion. To tackle this scenario, we propose a timestep splitting approach
that first performs a partial Euler-Maruyama step so that the particle is exactly at the vertex
and then chooses a new edge based on the vertex-edge jump probabilities bv. Following this, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

complete the remaining Euler-Maruyama step using the drift and diffusion coefficients of the new
edge.
A complication that arises is that the remaining step could also result in a vertex crossing. A
recursive application of the timestep splitting approach allows us to handle multiple vertex cross-
ings in a single time step. The detailed algorithm in the case of a single vertex is described in
Algorithm 1. A visual depiction of the algorithm is shown in Figure 5.

Algorithm 1 Timestep Splitting Euler-Maruyama Algorithm for Metric Graphs
Require: Star metric graph Γ = (V, E, l) (star graph so V = {v} is a singleton and all edges

are semi-infinite, with einit = v ∀e ∈ E), drift function µ : Γc → R, diffusion function
σ : Γ→ R+, edge-vertex jump probabilities bv ∈ ∆E .

1: procedure EM-Step(e, X, ∆t) ▷ (e, X) ∈ Γ, ∆t is the time to simulate
2: M ← 0. ▷ Number of vertex crossings
3: if X ̸= 0 then ▷ Particle is not at the vertex
4: Sample W ∼ N (0, 1).
5: X̃ ← X + µe (X) ∆t + σe (X)

√
∆tW .

6: if X̃ < 0 then ▷ Particle hits vertex
7: Solve X + αµe (X) ∆t + σe (X)

√
α∆tW = 0 for α.

8: Sample ẽ from E (v) according to bv.
9: e← ẽ.

10: X ← 0.
11: ∆t← (1− α)∆t.
12: else
13: return

(
e, X̃

)
.

14: while ∆t > 0 do ▷ Particle is at vertex
15: M ←M + 1.
16: Sample W ∼ N (0, 1).
17: X̃ ← X̃1 + µe (0) ∆t + σe (0)

√
∆t |W |.

18: if X̃ < 0 then ▷ Particle hits vertex again
19: Sample ẽ from E (v) according to bv.
20: e← ẽ.
21: α← W 2σ2

e(0)
µ2

e(0)∆t .
22: ∆t← (1− α)∆t.
23: else
24: return

(
e, X̃

)
.

A possible issue with the algorithm is that the number of timestep splittings required to simulate
a single step of the Brownian motion is not guaranteed to be finite. This could lead to an infinite
runtime for simulating a finite timestep. However, we rigorously establish in Theorem 2 that this
scenario does not arise, ensuring that the algorithm terminates in a finite number of steps with
high probability.
Theorem 2 (Finite vertex crossings with high probability). Let M be the number of vertex
crossings the particle makes in a single Euler-Maruyama step starting from the vertex, as computed
in Algorithm 1 with input (e, 0). Then for all k > 0, we have

P [M ≤ k] ≥ 1− e− (k−γ)2
4k

where γ is defined as the following dimensionless quantity:

γ := ∆t · max
e∈E(v)

µ2
e(v)

σ2
e(v) .

In addition to the above, we also show that the exit probabilities of the simulated particle using
this partial stepping algorithm converge to the vertex-edge jump probabilities of the SDE as the
timestep goes to zero. Intuitively, this is because the number of vertex crossings approaches 1 as
the timestep goes to zero. We formalize this in Theorem 3 and Corollary 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 3 (Number of crossings is 1 with high probability). Let M be the number of vertex
crossings the particle makes in a single Euler-Maruyama step starting from the vertex, as computed
in Algorithm 1 with input (e, 0). Let γ be defined as in Theorem 2. Then,

P [M = 1] ≥ Ω
(
e−γ

)
.

As a consequence, we can choose

∆t ≤ O

 1
maxe∈E(v)

µ2
e(v)

σ2
e(v)

log
(

1
1− δ

)
to ensure that P [M = 1] ≥ 1− δ.
Corollary 1 (Jump probabilities converge to bv). Let (ẽ, X) be the output of the procedure in
Algorithm 1 with timestep ∆t and input (e, 0). Then,

lim
∆t→0

P [ẽ = i] = bvi for all i ∈ E (v) .

Proofs of Theorem 2, Theorem 3, and Corollary 1 can be found in Section A.2.

3.1 Fast, Parallelized, Memory-Aware Implementation in CUDA

The standard Euler-Maruyama discretization lends itself to a fast, parallelized implementation on
GPUs because each particle can be simulated independently. Previous works have explored the use
of GPUs for algorithms like Markov Chain Monte Carlo and Gibbs sampling in Euclidean spaces
(Sountsov et al., 2024; Quiroz et al., 2015; Terenin et al., 2019). Our Algorithm 1 enjoys similar
computational benefits, and we can leverage the parallelism of GPUs to simulate a large number
of particles in parallel on metric graphs. Further, this algorithm works particularly well with
GPUs’ exact architecture, where the balance between memory transfers and compute operations
significantly impacts practical performance.
We provide a brief overview of the architectural details of GPUs that are relevant to our imple-
mentation; further details can be found in the CUDA programming guide (Nvidia, 2011). A GPU
consists of thousands of CUDA cores that can independently execute threads of computation in
parallel. Along with a large number of compute units, the GPU also has a hierarchy of memory
that the cores can access. The hierarchy stems from a fundamental trade-off between memory
size, latency, and bandwidth. The fastest memory is the register memory, which is local to each
thread and is used to store intermediate results. The next level of memory is the shared memory,
which is shared between a local group of threads. The global memory is the largest and slowest
memory, but it is accessible by all threads.
Achieving high performance on GPUs requires optimizing memory accesses so that the threads can
maximize the utilization of the compute units. A significant advantage of Monte Carlo methods,
like the standard Unadjusted Langevin Algorithm (ULA) as well as our Algorithm 1, is that they
lend themselves to highly optimized memory access patterns. Specifically, since each particle
simulation is completely independent, we can assign each thread to simulate a single particle.
This allows the particle’s state to remain in register memory over multiple timesteps, which is
the fastest memory available. Consequently, the compute units can operate at peak utilization
without being bottlenecked by memory accesses. Slower transfers to and from global memory are
only required when evaluating ensemble statistics, such as histogram averages. We implement
our algorithm in CUDA to take advantage of these architectural features. Specifically, we provide
CUDA kernels for running multiple timesteps of Algorithm 1 for multiple particles in parallel. We
also provide a CUDA kernel for computing empirical histograms of these particles, which allows
us to measure the error between their density and the steady-state density. We present detailed
numerical experiments in Section 4. CUDA kernel source code can be found in Section A.4.

4 Numerical Experiments
We consider a simple star metric graph with 5 edges and 1 vertex. For simplicity, we choose
constant diffusion σe(x) = σ for all edges e ∈ E. We choose the vertex-edge jump probabilities
to be uniform, i.e., bvi = 1

5 . We consider two cases of drift, driven by a linear potential and by a
quadratic potential.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Linear Potential In the case of linear potentials, each edge has constant drift towards the vertex
with varying magnitudes given by µei

(x) = −10 · i for i ∈ {1, 2, 3, 4, 5}. This drift corresponds
to a linear potential with constant diffusion along each edge, which is equivalent to the Ornstein-
Uhlenbeck (Ornstein, 1930) process on each edge, but edges interact through the gluing boundary
conditions. The steady-state distributions ρi on each edge are exponential with means inversely
proportional to µi

D .

ρi(x) = B exp
(
−µi

D
x
)

for x ∈ [0,∞] , (11)

where B is a normalization constant. Note that all edges have the same normalizing constant due
to the continuity of the density at the vertex. Since the drift on each edge is constant and inward,
it is not continuous at the vertex. Therefore, the gluing boundary condition (which is effectively a
flux balance condition) also has a term involving the densities at the vertex. Specifically, the flux
balance condition at the vertex is given by∑

e∈E

µiρi(0) = D
∑
e∈E

∂iρi (0) .

This condition is satisfied by the densities defined in (11) for all choices of B. Finally, the nor-
malizing constant can be computed by setting the total mass to 1. We obtain B = D∑

i

1
µi

.

Quadratic Potential In the case of quadratic potentials, the drift is given by µei(x) = −10 ·i ·x
for i ∈ {1, 2, 3, 4, 5}. The steady-state densities in this case are Gaussians centered at the vertex
with variance inversely proportional to µi

D . We can use a similar argument as above to compute
the normalizing constant, and we obtain the following expression for the steady state density on
each edge

ρi(x) = B exp
(
− µi

2D
x2
)

for x ∈ [0,∞] , (12)

where the normalizing constant B if given by

B =

√
2

Dπ∑
i

1√
µi

.

We run Algorithm 1 in parallel for multiple particles over multiple timesteps. We measure the error
in the particles’ density (after sufficient simulation time) with respect to the analytical steady-
state density. As a baseline, we compare this with the density obtained by solving the Fokker-
Planck equation using a Finite Volume Method (FVM) scheme. Numerical results are presented
in Figure 3, and runtime comparisons between different implementations are in Figure 4. Further
details are provided in the appendix.

5 Conclusion, Limitations and Future Work
In this paper, we presented a novel Euler-Maruyama-based algorithm for simulating Brownian
motions on metric graphs. Our algorithm uses a timestep splitting approach that allows us to
handle vertex crossings in a way that is consistent with the underlying Brownian motion. We
rigorously established that the number of vertex crossings is finite with high probability and that
the exit probabilities of the simulated particle converge to the vertex-edge jump probabilities of
the SDE as the timestep goes to zero. We also provided a fast, parallelized, memory-aware imple-
mentation in CUDA that takes advantage of the architecture of modern GPUs. We demonstrated
the effectiveness of our algorithm through numerical experiments on a simple star metric graph
with linear and quadratic potentials.
Promising future directions include developing higher-order variants of timestep splitting algo-
rithms like Algorithm 1 for simulating Brownian motions on metric graphs. Further, bringing
existing sampling algorithms inspired by optimization perspectives (Chewi, 2023) like proximal
sampling (Liang & Chen, 2022), mirror Langevin (Hsieh et al., 2018), and the Metropolis-adjusted
Langevin algorithm (Xifara et al., 2014) to the domain of metric graphs would serve as an inter-
esting research direction. On the theoretical side, developing non-asymptotic convergence rates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

104 105 106 107 108

Number of particles

10 1

L2
 E

rro
r

L2 Error vs Steady State Density, Linear potential

FVM Scheme (best error)
Algorithm 1, t=1.0e-06
Algorithm 1, t=1.0e-05
Algorithm 1, t=1.0e-04

104 105 106 107 108

Number of particles

10 3

10 2

10 1

L2
 E

rro
r

L2 Error vs Steady State Density, Quadratic potential

FVM Scheme (best error)
Algorithm 1, t=1.0e-06
Algorithm 1, t=1.0e-05
Algorithm 1, t=1.0e-04

Figure 3: Error in density estimation for linear and quadratic potentials. The FVM scheme
directly solves the Fokker-Planck equation to obtain the steady-state density. We compare the
best case error (over discretization parameters) of this scheme with the error obtained by running
Algorithm 1 for multiple particle counts and values of the timestep. We estimate the density
using a simple histogram with a bin size equal to the discretization of the FVM scheme. The
error is computed as the empirical L2 distance between the estimated density and the analytical
steady-state density. We observe that Algorithm 1 results in significantly lower error compared to
the FVM scheme for the same level of spatial and time discretizations.

104 105 106 107 108

Number of particles

10 4

10 3

10 2

10 1

100

101

102

No
rm

al
ize

d
ru

nt
im

e
pe

r s
te

p

6988.99x
3125.57x

1205.49x

383.94x

896.11x

Normalized runtimes, Linear potential
FVM scheme (PyTorch, best time)
Algorithm 1 (PyTorch, torch.compile)
Algorithm 1 (Custom CUDA kernel)

104 105 106 107 108

Number of particles

10 4

10 3

10 2

10 1

100

101

102

No
rm

al
ize

d
ru

nt
im

e
pe

r s
te

p

8074.39x
4225.01x

1185.96x

275.96x

1636.13x

Normalized runtimes, Quadratic potential
FVM scheme (PyTorch, best time)
Algorithm 1 (PyTorch, torch.compile)
Algorithm 1 (Custom CUDA kernel)

Figure 4: Normalized runtimes per step, aggregated over different discretization parameters for
Algorithm 1 for linear and quadratic potentials compared with the best runtime for the FVM
scheme. We observe that the FVM scheme has a significantly higher runtime compared to Algo-
rithm 1 for the same level of spatial and time discretizations. Additionally, our custom CUDA
kernel for Algorithm 1 is significantly faster (up to ∼8000x speedup) than the PyTorch imple-
mentation (speedups indicated on the bars). We observe slightly higher runtimes for the linear
potential, which is expected due to the increased likelihood of vertex crossings per timestep. All
experiments were run on an NVIDIA RTX A6000 GPU.
for these algorithms is a potential avenue for future work. Finally, extending the optimized CUDA
implementation to accommodate interacting systems by exploiting shared memory and other ar-
chitectural features of GPUs is another promising direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Michele Aleandri, Matteo Colangeli, and Davide Gabrielli. A combinatorial representation for the

invariant measure of diffusion processes on metric graphs. arXiv preprint arXiv:2002.00654,
2020.

Claudio Amovilli, Frederik E Leys, and Norman H March. Electronic energy spectrum of two-
dimensional solids and a chain of c atoms from a quantum network model. Journal of mathe-
matical chemistry, 36:93–112, 2004.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiv:1701.02434, 2017.

Paul C Bressloff. Stochastic processes in cell biology, volume 41. Springer, 2014.

Simon Byrne and Mark Girolami. Geodesic monte carlo on embedded manifolds. Scandinavian
Journal of Statistics, 40(4):825–845, 2013.

Carmela Cacciapuoti, Rodolfo Figari, and Andrea Posilicano. Point interactions in acoustics:
One-dimensional models. Journal of mathematical physics, 47(6), 2006.

Robert Carlson. Linear network models related to blood flow. Contemporary Mathematics, 415:
65–80, 2006.

George Casella. L.; berger, rl statistical inference, 2001.

Sinho Chewi. An optimization perspective on log-concave sampling and beyond. PhD thesis,
Massachusetts Institute of Technology, 2023.

Matthias Erbar, Dominik Forkert, Jan Maas, and Delio Mugnolo. Gradient flow formulation of
diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous
Media, 17(5):687, 2022. ISSN 1556-1801, 1556-181X. doi: 10.3934/nhm.2022023. URL https:
//www.aimsciences.org/article/doi/10.3934/nhm.2022023.

Mark Freidlin and Shuenn-Jyi Sheu. Diffusion processes on graphs: stochastic differential equa-
tions, large deviation principle. Probability Theory and Related Fields, 116(2):181–220, Febru-
ary 2000. ISSN 1432-2064. doi: 10.1007/PL00008726. URL https://doi.org/10.1007/
PL00008726.

Mauro Garavello and Benedetto Piccoli. Traffic flow on a road network using the aw–rascle model.
Communications in Partial Differential Equations, 31(2):243–275, 2006.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–
214, 2011.

Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored langevin dynamics. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Vadim Kostrykin and Robert Schrader. Laplacians on Metric Graphs: Eigenvalues, Resolvents
and Semigroups, January 2006. URL http://arxiv.org/abs/math-ph/0601041. arXiv:math-
ph/0601041.

Vadim Kostrykin, Jurgen Potthoff, and Robert Schrader. Heat kernels on metric graphs and a
trace formula, January 2007. URL http://arxiv.org/abs/math-ph/0701009. arXiv:math-
ph/0701009.

Vadim Kostrykin, Jurgen Potthoff, and Robert Schrader. Brownian Motions on Metric Graphs:
Feller Brownian Motions on Intervals Revisited, August 2010. URL https://arxiv.org/abs/
1008.3761v2.

Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader. Brownian Motions on Metric Graphs.
Journal of Mathematical Physics, 53(9):095206, September 2012. ISSN 0022-2488, 1089-7658.
doi: 10.1063/1.4714661. URL http://arxiv.org/abs/1102.4937. arXiv:1102.4937 [math].

10

https://www.aimsciences.org/article/doi/10.3934/nhm.2022023
https://www.aimsciences.org/article/doi/10.3934/nhm.2022023
https://doi.org/10.1007/PL00008726
https://doi.org/10.1007/PL00008726
http://arxiv.org/abs/math-ph/0601041
http://arxiv.org/abs/math-ph/0701009
https://arxiv.org/abs/1008.3761v2
https://arxiv.org/abs/1008.3761v2
http://arxiv.org/abs/1102.4937

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hannah Kravitz. Metric Graphs: Numerical Methods, Localization, and the Spread of Epidemics.
Ph.D., The University of Arizona, United States – Arizona, 2022. URL https://www.proquest.
com/docview/2708229288/abstract/7AEE8B405BEA4340PQ/1. ISBN: 9798841733942.

P Kuchment. Graph models of wave propagation in thin structures, waves random media 12.
R1-R24, 2002.

Peter Kuchment. Quantum graphs: I. Some basic structures. Waves in Random Media,
14(1):S107–S128, January 2004. ISSN 0959-7174, 1361-6676. doi: 10.1088/0959-7174/
14/1/014. URL http://www.informaworld.com/openurl?genre=article&doi=10.1088/
0959-7174/14/1/014&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of statistics, pp. 1302–1338, 2000.

Ben Leimkuhler and Charles Matthews. Molecular dynamics. Interdisciplinary applied mathemat-
ics, 39(1), 2015.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge uni-
versity press, 2002.

Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling. arXiv preprint
arXiv:2202.13975, 2022.

Delio Mugnolo. Semigroup methods for evolution equations on networks, volume 20. Springer,
2014.

Serge Nicaise. Some results on spectral theory over networks, applied to nerve impulse transmis-
sion. In Polynômes Orthogonaux et Applications: Proceedings of the Laguerre Symposium held
at Bar-le-Duc, October 15–18, 1984, pp. 532–541. Springer, 1985.

CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Corporation, 120(18):8, 2011.

Leonard Salomon Ornstein. On the theory of the brownian motion. Physical review, 36:823–841,
1930.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Matias Quiroz, Mattias Villani, and Robert Kohn. Scalable mcmc for large data problems using
data subsampling and the difference estimator. 2015.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. 1996.

Pavel Sountsov, Colin Carroll, and Matthew D Hoffman. Running markov chain monte carlo on
modern hardware and software. arXiv preprint arXiv:2411.04260, 2024.

Alexander Terenin, Shawfeng Dong, and David Draper. Gpu-accelerated gibbs sampling: a case
study of the horseshoe probit model. Statistics and computing, 29:301–310, 2019.

Tatiana Xifara, Chris Sherlock, Samuel Livingstone, Simon Byrne, and Mark Girolami. Langevin
diffusions and the metropolis-adjusted langevin algorithm. Statistics & Probability Letters, 91:
14–19, 2014.

11

https://www.proquest.com/docview/2708229288/abstract/7AEE8B405BEA4340PQ/1
https://www.proquest.com/docview/2708229288/abstract/7AEE8B405BEA4340PQ/1
http://www.informaworld.com/openurl?genre=article&doi=10.1088/0959-7174/14/1/014&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1088/0959-7174/14/1/014&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A Appendix

A.1 Visual Representation of Algorithm 1

1.
v (e, Xt)

Particle on edge e

2.
v

α ∆t
(1− α) ∆t

Partial EM step

Find α < 1 such that
Xt + µe α∆t + σeWt

√
α∆t

is at the vertex v

3.
v

Jump to new edge
with distribution bv

4.
v

(ẽ, Xt+∆t)
(1− α) ∆t Remainder of EM step

(if vertex hit again, repeat 2)

Figure 5: Four stages of one iteration of the timestep splitting Euler-Maruyama algorithm. The
particle starts by taking a standard Euler-Maruyama step on the edge it is currently on. If it
crosses the vertex, the standard step is split into a partial step until it hits the vertex. Then, it
samples a new edge from the vertex-edge jump probabilities and continues the remainder of the
partial step on the new edge. If it crosses the vertex again, it repeats the process. This timestep
splitting process continues until the particle no longer crosses the vertex in a partial step.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 Proofs of Theorems

A.2.1 Finite Vertex Crossings with High Probability

Proof of Theorem 2. Let Ik for k > 0 be iid variables that take values in E (v) according to the
distribution bv. Let Wk ∼ N (0, 1) for k > 0. We define the following sequence of random variables:

hk := hk−1 −
σ2

Ik
(v)

µ2
Ik

(v)W 2
k ,

where h0 := ∆t.
Define the stopping time τ := inf {k > 0 : hk ≤ 0}. First, observe that M = τ . To see this, note
that after one iteration of the loop in Algorithm 1, we have ∆t′ = ∆t− σ2

I1 (v)
µ2

I1
(v) W 2

1 . If ∆t′ ≤ 0, then
M = 1, and if ∆t′ > 0, then we continue the loop with ∆t′ in place of ∆t. By induction, we see
that M = τ . We can define the following upper-bounding sequence by considering the worst case
over all possible choices of Ik,

h̃k := h̃k−1 −
h0

γ
W 2

k , where h̃0 = h0 = ∆t.

We can solve the recursion for h̃k to get

h̃k = h0

(
1− 1

γ

k∑
i=1

W 2
i

)
.

By construction, h̃k ≥ hk for all k ≥ 0. We define a similar stopping time for h̃, as τ̃ :=
inf
{

k > 0 : h̃k ≤ 0
}

. Clearly, hk ≤ h̃k =⇒ τ̃ ≥ τ . Now, observe that
∑k

i=1 W 2
i = χ2

k is a
chi-squared random variable with k degrees of freedom. We have,

h0

(
1− 1

γ
χ2

k

)
≤ 0 ⇐⇒ χ2

k ≥ γ =⇒ τ̃ ≤ k =⇒ τ ≤ k.

Therefore,
P [M ≤ k] = P [τ ≤ k] ≥ P [τ̃ ≤ k] ≥ P

[
χ2

k ≥ γ
]

.

To control the tail of χ2
k, we use the following bound from Lemma 1 in Section 4.1 of (Laurent &

Massart, 2000),

P
[
k − χ2

k ≥ 2
√

kx
]
≤ e−x.

We have,

P
[
χ2

k ≤ k − 2
√

kx
]
≤ e−x

=⇒ 1− P
[
χ2

k ≥ k − 2
√

kx
]
≤ e−x.

By setting x = (k−γ)2

4k , we get

P
[
χ2

k ≥ γ
]
≥ 1− e− (k−γ)2

4k .

This completes the proof.

A.2.2 Number of Crossings is 1 with High Probability

Proof of Theorem 3. We use the same notation defined in the proof of Theorem 2.
First, observe that M = 1 =⇒ W 2

1 ≥ γ.
So, we have P [M = 1] ≤ P

[
W 2

1 ≥ γ
]
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Since W1 is a standard normal random variable, we have

P
[
W 2

1 ≥ γ
]

= P [|W1| ≥
√

γ] = 2 (1− Φ (√γ)) ,

where Φ is the CDF of the standard normal distribution.
We use a standard lower bound on the CDF (Casella, 2001) of the normal distribution to get

1− Φ (√γ) ≥ C exp
(
−γ

2

)
=⇒ P [M = 1] ≥ C exp

(
−γ

2

)
≥ Ω

(
e−γ

)
.

This completes the proof.

A.2.3 Jump Probabilities Converge to bv

Proof of Corollary 1. Clearly, if M = 1, then ẽ = i with probability bvi, since ẽ is sampled from
the distribution bv once. By noting that γ → 0 as ∆t → 0, we can apply Theorem 3 to conclude
that P [M = 1]→ 1 as ∆t→ 0. This completes the proof.

A.3 Baseline Finite Volume Scheme

We provide a brief overview of the Finite Volume Method (FVM) scheme for solving the Fokker-
Planck equation on metric graphs. On each edge e ∈ E, we discretize the Fokker-Planck equation
using a standard FVM scheme; see (LeVeque, 2002) for details. We use an upwinding scheme to
discretize the drift term and a central difference scheme to discretize the diffusion term. We use
a first-order explicit Euler scheme to discretize the time derivative.
We now provide details of the flux balance condition at the vertex. Denote the density of the cell
adjacent to the vertex on edge i by ρi. To mimic the gluing boundary conditions, we use a flux
distribution at the vertex that is proportional to the jump probabilities bv. Specifically, let Fij

be the flux from edge i to edge j at the vertex. We decompose the flux into a drift and diffusion
component.

Drift Component Since we use an upwinding scheme to discretize the drift term, the drift
component of the flux from edge i to edge j is zero if the drift µi(v) is away from the vertex on
edge i. If the drift is towards the vertex, then the drift component of the flux is given by

F drift
ij = µi(v)ρi/bvi

bvj∑
k ̸=i bvk

.

Note that the drift flux is distributed to all target edges, proportional to the jump probabilities.
The density from the source is normalized by the jump probability to account for the fact that
the density is distributed to all target edges.
Intuitively, the jump probability can be interpreted as the relative “cross-sectional areas” of the
edges at the vertex. The density is the linear density of the particles on the edge. When computing
fluxes across different edges, we need to account for the relative “cross-sectional areas” of the edges
at the vertex. Hence, we normalize by the appropriate jump probabilities.

Diffusion Component The diffusion component of the flux is given by

F diffusion
ij = σ(v)

2

(
ρi/bvi − ρj/bvj

∆x

)
bvj

A similar normalization is applied to the density terms to account for the relative “cross-sectional
areas” of the edges at the vertex.
The total flux into the cells at the vertex on each edge is the sum of all the incoming drift and
diffusion components from every other edge.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 CUDA Kernels

We present source code for our CUDA kernels for running Algorithm 1 for multiple particles over
multiple timesteps. Python bindings and other code can be found in the uploaded supplementary
material.

#include <curand kerne l . h>

#define TOL 1e−10 f
#define MAX ITERATIONS PER STEP 100
#define STEPS PER KERNEL 1000

extern ”C” {
d e v i c e f loat device dV (int edge index , f loat x) {
// g rad i en t o f quadra t i c p o t e n t i a l
return 10 .0 f ∗ (edge index + 1 .0 f) ∗ x ;

}

d e v i c e f loat s o l v e q u a d r a t i c (f loat A, f loat B, f loat C) {
// Numerica l ly s t a b l e s o l u t i o n to quadra t i c equat ion
i f (A == 0.0 f) {

return −C / B;
}
f loat d i s c r im inant = s q r t f (fmaxf (B ∗ B − 4.0 f ∗ A ∗ C, 0 .0 f)) ;
i f (B > 0 .0 f) {

return (−B − di s c r im inant) / (2 . 0 f ∗ A) ;
} else {

return (2 . 0 f ∗ C) / (−B + di s c r im inant) ;
}

}

g l o b a l void
l a n g e v i n m u l t i s t e p k e r n e l (int ∗ edges , f loat ∗ p o s i t i o n s , int ∗bounces ,

int ∗ bounce ins tances , const f loat ∗ edge l engths ,
const f loat ∗ jump weights , const f loat base dt ,
const f loat sigma , const int num edges ,
const int num part i c l e s , curandState ∗ s t a t e s) {

const int t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (t i d >= num part i c l e s)

return ;

int edge = edges [t i d] ;
f loat x = p o s i t i o n s [t i d] ;
int bounce count = bounces [t i d] ;
int bounce ins tance = bounce in s tance s [t i d] ;
curandState l o c a l s t a t e = s t a t e s [t i d] ;

i f (edge < 0 | | edge >= num edges) {
p r i n t f (” I n v a l i d i n i t i a l edge %d f o r p a r t i c l e %d\n” , edge , t i d) ;
edge = 0 ;

}

for (int s tep = 0 ; s tep < STEPS PER KERNEL; ++step) {
f loat dt = base dt ;
int i t e r a t i o n s = 0 ;

while (dt > 0 .0 f && i t e r a t i o n s++ < MAX ITERATIONS PER STEP) {
f loat w = curand normal(& l o c a l s t a t e) ;
i f (x == 0.0 f)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

w = f a b s f (w) ;

f loat d r i f t = −device dV (edge , x) ;
f loat s q r t d t = s q r t f (dt) ;
f loat x next = x + dt ∗ d r i f t + sigma ∗ s q r t d t ∗ w;
f loat c u r r e n t l e n g t h = edge l eng th s [edge] ;

i f (c u r r e n t l e n g t h <= 0.0 f) {
p r i n t f (” I n v a l i d edge l ength %f f o r edge %d\n” , cu r r en t l eng th , edge) ;
c u r r e n t l e n g t h = 1 .0 f ;

}

i f (x next > 0 .0 f && x next <= c u r r e n t l e n g t h) {
// no bounce
x = x next ;
dt = 0 .0 f ;

} else i f (x next > c u r r e n t l e n g t h) {
// a l s o no bounce
x = 2 .0 f ∗ c u r r e n t l e n g t h − x next ;
dt = 0 .0 f ;

} else {
// x nex t < 0.0 f −− bounce
i f (x != 0 .0 f) {

// f i r s t bounce
bounce ins tance++;

}
bounce count++;

f loat a = d r i f t ∗ dt ;
f loat b = sigma ∗ s q r t d t ∗ w;
f loat s q r t a l p h a = s o l v e q u a d r a t i c (a , b , x) ;
f loat alpha = s q r t a l p h a ∗ s q r t a l p h a ;

dt ∗= (1 . 0 f − alpha) ;
f loat rand va l = curand uniform(& l o c a l s t a t e) ;
int new edge = 0 ;
while (new edge < num edges − 1 && rand va l > jump weights [new edge]) {

new edge++;
}

i f (new edge < 0 | | new edge >= num edges) {
p r i n t f (” I n v a l i d new edge %d , clamping to 0\n” , new edge) ;
new edge = 0 ;

}

edge = new edge ;
x = 0 .0 f ;

}
}

}

edges [t i d] = edge ;
p o s i t i o n s [t i d] = x ;
bounces [t i d] = bounce count ;
bounce in s tance s [t i d] = bounce ins tance ;
s t a t e s [t i d] = l o c a l s t a t e ;

}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

g l o b a l void s e t u p k e r n e l (curandState ∗ s t a t e s , unsigned long long seed ,
int num par t i c l e s) {

int t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (t i d >= num part i c l e s)

return ;
c u r a n d i n i t (seed + tid , 0 , 0 , &s t a t e s [t i d]) ;

}

// his togram ke rne l
g l o b a l void compute h i s togram kerne l (const int ∗ edges ,

const f loat ∗ p o s i t i o n s ,
const f loat ∗ edge l engths ,
int ∗ histograms , int num bins ,
int num edges , int num par t i c l e s) {

const int t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (t i d >= num part i c l e s)

return ;

const int edge = edges [t i d] ;
const f loat pos = p o s i t i o n s [t i d] ;

// Va l ida t e input
i f (edge < 0 | | edge >= num edges)

return ;
const f loat l ength = edge l eng th s [edge] ;
i f (pos < 0 .0 f | | pos > l ength)

return ;

// Ca l cu l a t e normal ized p o s i t i o n [0 , 1]
const f loat normal i zed pos = pos / l ength ;

// Determine b in index
int bin = (int) (normal i zed pos ∗ num bins) ;
bin = max(0 , min (bin , num bins − 1)) ; // Clamp to v a l i d range

// Atomic increment us ing 2D index ing : [edge] [b in]
atomicAdd(&histograms [edge ∗ num bins + bin] , 1) ;

}
}

17

	Introduction
	Outline
	Contributions

	Background
	Metric Graphs
	Function Spaces on Metric Graphs

	Brownian motions on Metric Graphs

	Timestep Splitting Euler-Maruyama Scheme for Metric Graphs
	Fast, Parallelized, Memory-Aware Implementation in CUDA

	Numerical Experiments
	Conclusion, Limitations and Future Work
	Appendix
	Visual Representation of alg:eulermaruyamametricgraphbothsplit
	Proofs of Theorems
	Finite Vertex Crossings with High Probability
	Number of Crossings is 1 with High Probability
	Jump Probabilities Converge to bv

	Baseline Finite Volume Scheme
	CUDA Kernels

