
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROBOTOUILLE: AN ASYNCHRONOUS PLANNING
BENCHMARK FOR LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective asynchronous planning, or the ability to efficiently reason and plan over
states and actions that must happen in parallel or sequentially, is essential for
agents that must account for time delays, reason over diverse long-horizon tasks,
and collaborate with other agents. While large language model (LLM) agents
show promise in high-level task planning, current benchmarks focus primarily on
short-horizon tasks and do not evaluate such asynchronous planning capabilities.
We introduce ROBOTOUILLE, a challenging benchmark environment designed to
test LLM agents’ ability to handle asynchronous, long-horizon, and multi-agent
scenarios. These datasets capture increasingly complex planning challenges that go
beyond existing benchmarks, particularly in their requirement for agents to manage
overlapping tasks, interruptions, and collaboration. Our results show that ReAct
(gpt4-o) achieves 47% on synchronous tasks but only 11% on asynchronous
tasks, highlighting significant room for improvement. We further analyze failure
modes, demonstrating the need for LLM agents to better incorporate long-horizon
feedback and self-audit their reasoning during task execution.

1 INTRODUCTION
Large language models (LLMs) have demonstrated impressive reasoning and task planning capabili-
ties in short-horizon single-agent environments with clearly defined sequential tasks (Yao et al., 2022;
2023b; Shinn et al., 2023); however, decision-making in the real world introduces a more intricate
array of challenges. Consider an assistant that helps you with cooking a recipe. It must be able to
handle (1) time delays such as boiling spaghetti, which takes time to complete. An efficient agent
would move onto other steps instead of waiting for the spaghetti to fully cook. It should also handle
(2) diverse long-horizon tasks that require the assistant to satisfy multiple objectives and reason
about dependencies between different actions. Finally, the assistant should handle (3) multiple agents
by coordinating with others or distributing tasks based on each agent’s capability. To tackle these
challenges, an agent must be capable of asynchronous planning, or the ability to efficiently reason
and plan over states and actions that must happen in parallel or sequentially. With this capability, an
agent can coordinate time delays, break down long horizon tasks into subtasks, and efficiently assign
subtasks to multiple agents.

To improve asynchronous planning capability, we are interested in a benchmark (Table 1) that
stress tests LLM agents using time delays. AsyncHow Lin et al. (2024) benchmarks asynchronous
planning but does not use an interactive environment, lacking support for closed-loop planning agents.
ALFWorld (Shridhar et al., 2021), WebShop (Yao et al., 2023a) and PlanBench (Valmeekam et al.,
2023b) offer long-horizon diverse tasks (up to 50, 48 and 90 steps respectively) but evaluate with a
single agent and no time delays. VirtualHome (Puig et al., 2018) offers long-horizon (up to 96 steps)
and multi-agent tasks with procedural generation for extra diversity but also lacks time delays.

To address these gaps, we introduce ROBOTOUILLE, a simulator for cooking diverse recipes designed
to stress test LLM agents (Figure 1). ROBOTOUILLE tests asynchronous planning through tasks that
take time like cooking meat for burgers or sandwiches or filling up a pot with water to cook soup. Its
fully customizable JSON backend allows for the addition of new states, actions, and goals simplifying
the creation of diverse long-horizon tasks. Finally, ROBOTOUILLE supports turn-based and real-time
multi-agent execution either locally or on the network.

In addition, we provide 3 datasets to test LLM agents’ synchronous, asynchronous, and multi-agent
planning capabilities. We implement 3 baselines for benchmarking the synchronous and asynchronous

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of ROBOTOUILLE along with examples of our synchronous and asynchronous
benchmarks. ROBOTOUILLE takes a domain and problem JSON to procedurally generate an envi-
ronment for an LLM agent to plan in. In the synchronous benchmark, the order that the burger is
assembled has minimal impact in the efficiency of the plan. In the asynchronous benchmark, ordering
matters due to time delays; leaving the patty to cook before cutting the lettuce is more efficient than
leaving the patty to cook after cutting the lettuce.

datasets and provide analyses on the failure modes to provide insights for future work. Our hope is
for the research community to engage with ROBOTOUILLE to create an ecosystem of environments
and methods that increase the diversity of our testbed and the capabilities of LLM agents.

Our key contributions include the following

1. We present a new environment, ROBOTOUILLE, for stress testing LLM agents’ ability to
perform asynchronous planning to handle time delays, diverse long-horizon tasks, and
multi-agent.

2. We curate 3 datasets for synchronous, asynchronous, and multi-agent settings, each contain-
ing 10 unique tasks each with 10 procedurally generated instances.

3. We implement various LLM baselines, evaluate them on the synchronous and asynchronous
datasets, and provide quantitative and qualitative analyses on failure modes.

2 ROBOTOUILLE

We formalize ROBOTOUILLE tasks as an MDP with time-delayed effects, M =< S,A, T ,R >.
Each state s ∈ S is s = (ŝt, Ht) where ŝt represents observable state elements like objects or
predicates such as iscut(lettuce1), or "lettuce1 is cut", and on(lettuce1,table2),
or "lettuce1 is on table2", and Ht is a set of timer variables h ∈ Ht each created by actions
with a countdown function h(x) = d−(x−i) where d is a delay constant and i is the timer’s activation
step. Action a ∈ A is a grounded action such as move(robot1, table1, table2), or "Move
robot1 from table1 to table2" that may introduce new timers h. Actions have preconditions
over state predicates which must be met to be valid. For a given state s and action a, the transition
function T : S ×A → S returns the next state s′ = (ŝt+1, Ht+1) if a is valid or the current state s
if a is invalid. For a valid action step, ŝt+1 = ŝt ∪ {predicates(h)|h ∈ Ht, h(t) = 0} to removes
expired timers and Ht+1 = (Ht − {h|h(t) = 0}) ∪ {h|a adds delay} to update active timers. The
reward function R : S → {0, 1} defines the goal of a given task where for goal state sg, r(sg) = 1.
We provide a complexity analysis between synchronous and asynchronous settings in Appendix A.10.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Benchmark High-Level
Actions Multi-agent Procedural

Level Generation
Time

Delays Number of Tasks Longest Plan
Horizon

ALFWorld (Shridhar et al., 2021) ✓ ✗ ✗ ✗ 3827 50
CuisineWorld (Gong et al., 2023) ✓ ✓ ✓ ✗ 33 11

MiniWoB++ (Liu et al., 2018) ✓ ✗ ✗ ✗ 40 13
Overcooked-AI (Carroll et al., 2020) ✗ ✓ ✗ ✓ 1 100
PlanBench (Valmeekam et al., 2023b) ✓ ✗ ✓ ✗ 885 48

τ -bench (Yao et al., 2024) ✓ ✗ ✓ ✗ 165 30
WebArena (Zhou et al., 2024) ✓ ✗ ✓ ✗ 812 30
WebShop (Yao et al., 2023a) ✓ ✗ ✗ ✗ 12087 90

AgentBench (Liu et al., 2023d) ✓ ✓ ✗ ✗ 8 35
ARA (Kinniment et al., 2024) ✓ ✗ ✗ ✗ 12 4
AsyncHow (Lin et al., 2024) ✓ ✗ ✗ ✓ 1600 9

MAgIC (Xu et al., 2023) ✓ ✓ ✗ ✗ 5 20
T-Eval (Chen et al., 2024) ✓ ✓ ✗ ✗ 23305 19

MLAgentBench (Huang et al., 2024) ✓ ✗ ✗ ✗ 13 50
GAIA (Mialon et al., 2023) ✓ ✗ ✗ ✗ 466 45

VirtualHome (Puig et al., 2018) ✓ ✓ ✓ ✗ 2821 96

ROBOTOUILLE (Ours) ✓ ✓ ✓ ✓ 30 82

Table 1: Comparison between ROBOTOUILLE and other benchmarks. See Appendix A.1 for more
details.

Domain and Problem JSONs ROBOTOUILLE uses JSONs to fully describe a task M using a domain
D =< OD,PD,AD > and problems P =< OP , IP ,GP >, inspired by PDDL (Aeronautiques
et al., 1998) and described in Figure 2 (a-b). Domain D defines the possible states and actions of an
environment with object types OD, predicate definition PD and action definitions AD. Problem P
grounds the domain definitions with objects OP , initial state predicates IP , and goal GP . In addition,
PD, AD and GP have language representations for an LLM agent.

Action Effects We adopt immediate effects from PDDL, where T (s, a) = s′ and s′ results from
predicates being added or removed due to a. To extend actions beyond immediate effects, we
introduce special effects, which are custom code blocks that allow for complex interactions, such as
delayed effects in cooking where predicates are added after a delay. Figure 2 (c) shows an example
of a special effect for the cook action. A conditional effect applies the iscooking predicate if an
item i1 is on station s1 and removes it otherwise. In addition, a delayed effect is nested that adds
predicate iscooked(i1) after a delay specified in the problem JSON (see Appendix A.2).

Language Goal Language goals are inherently ambiguous and many states may satisfy them.
For example, in Figure 2 (d), the goal Make lettuce cheese sandwich on table lacks
information about which ingredients or tables to use (in the case where there are multiple) and doesn’t
specify whether the lettuce is above or below the cheese. We created a flexible goal specification
system that captures a combinatorial number of goal states that may satisfy a vague language goal.
In this example, by specifying that (1) one bread slice must be directly on the table, (2) another is
somewhere at the table while being clear on top and (3) lettuce and cheese must be somewhere at the
table, we fully capture all possible outcomes that satisfy the language goal.

Procedural Generation ROBOTOUILLE provides procedural generation which works off an existing
problem JSON. To ensure that goals can be satisfied, the problem JSON should contain the minimum
number of objects that satisfy the goal. The procedural generator shuffles existing objects and
adds new objects which allows for stress testing on diverse environments with varying language
descriptions and optimal paths to the goal.

Multi-agent ROBOTOUILLE supports multi-agent environments by simply adding more players into
the problem JSON. These environments can be either turn-based, where an LLM agent controls a
single agent at a time, or real-time, where an LLM agent controls all agents simultaneously. We
additionally implement networked multi-agent to allow data-collection of human-human play and
evaluating agents against humans.

3 DATASET DETAILS

In this section we discuss the contents of the synchronous and asynchronous datasets and their differ-
ences. We provide discussion of the in-context example tasks and multi-agent dataset in Appendix A.4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

"predicate_defs": [{
"name": "istable",
"param_types": ["station"],
"language_descriptors": {

"0": "{0} is a table"
}},{
"name": "item_on",
"param_types": ["item", "station"],
"language_descriptors": {
"0": "{0} is directly on top of {1}",
"1":

"{1} has {0} directly on top of it"↪→
}},...]

(a) Predicate Definitions

"sfx": [{
"type": "conditional",
"param": "i1",
"conditions": [{
"predicate": "item_on",
"params": ["i1", "s1"],
"is_true": true

}],
"fx": [{
"predicate": "iscooking",
"params": ["i1"],
"is_true": true

}],
"sfx": [{
"type": "delayed",
"param": "i1",
"fx": [{

"predicate": "iscooked",
"params": ["i1"],
"is_true": true

}, {
"predicate": "iscooking",
"params": ["i1"],
"is_true": false

}],
"sfx": []

}]
}]

(c) Nested special effects for ’cook’ action

"name": "move",
"precons": [{
"predicate": "loc",
"params": ["p1", "s1"],
"is_true": true

}, ...],
"immediate_fx": [{

"predicate": "loc",
"params": ["p1", "s2"],
"is_true": true

}, {
"predicate": "loc",
"params": ["p1", "s1"],
"is_true": false

}, ...],
"sfx": [],
"language_description":

"Move {p1} from {s1} to {s2}"↪→

(b) Action Definitions

"goal_description":
"Make lettuce cheese sandwich on table",↪→

"goal": [{
"predicate": "item_on",
"args": ["bread", "table"],
"ids": [1, 2]

}, {
"predicate": "item_at",
"args": ["lettuce", "table"],
"ids": [3, 2]

}, {
"predicate": "item_at",
"args": ["cheese", "table"],
"ids": [4, 2]

}, {
"predicate": "item_at",
"args": ["bread", "table"],
"ids": [5, 2]

}, {
"predicate": "clear",
"args": ["bread"],
"ids": [5]

}]

(d) Goal Description

Figure 2: ROBOTOUILLE uses domain and problem JSONs to define the MDP and language descrip-
tion of an environment and tasks using (a) predicate definitions, (b) action definitions, (c) special
action effects and (d) goal definitions. See Appendix A.2 for other JSONs used.

Each dataset contains 10 unique tasks and has 10 procedurally generated instances. Table 3 and
Appendix A.7 include visual representations of the tasks and dependency graphs respectively.

Synchronous Dataset This dataset consists of tasks involving assembling sandwiches and burgers
with ingredients that may need to be cut. Any ingredients that can be cooked are initialized as cooked.
Tasks 1 to 3 involve assembling sandwiches of increasing difficulty where Task 1 only involves
assembling and Task 2 and 3 involve cutting ingredients. Tasks 4 to 7 involve assembling burgers
which differ from sandwiches in that the burger buns have ordering constraints with distinct buns
that go on the top and the bottom. Unlike other tasks, Task 6 enforces a strict ordering constraint on
the placement of all ingredients. Finally, Tasks 8 to 10 involve the preparation of 2 recipes which
increase in difficulty from identical sandwiches, identical burgers, and finally a sandwich and burger
with different ingredients.

Asynchronous Dataset This dataset consists of tasks including sandwiches and burgers from before
but also fried recipes and soup. Unlike the synchronous dataset, ingredients that can be cooked are
initialized as uncooked; this allows for asynchronous planning. Tasks 1 to 3 use the same ingredients
as those in the synchronous setting except for an added ingredient which must be cooked or fried.
Tasks 4 and 5 involve making a burger and a fried recipe; Task 4 includes french fries which requires

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

cutting a potato then frying while Task 5 includes fried onions which is the same process with an
onion. Tasks 6 to 7 introduce a new recipe, soup, which involves filling a pot with water from a
sink, boiling the water, putting ingredients inside, and finally serving in a bowl. Of these subtasks,
filling a pot with water and boiling the water are steps that can be done asynchronously with other
tasks. Finally, Tasks 8 to 10 involve making soup along with increasing numbers of sandwiches and
burgers.

4 EXPERIMENTS
4.1 BASELINES

We evaluate LLMs on ROBOTOUILLE using the following baselines: I/O, I/O CoT, and ReAct.
I/O takes as input the initial state, including valid actions and goal, and outputs an plan directly.
I/O CoT (Wei et al., 2023) also takes as input the initial state but outputs a plan with chain of
thought before each action that estimates the resulting state. Instead of outputting the entire plan,
ReAct (Yao et al., 2022) outputs reasoning and the next action given the current state, and receives
the next state before repeating. We use an ablated version of ReAct that only keeps the reasoning
and action of the previous timestep in context (along with the base prompt and in-context examples);
the improved performance and cost-effectiveness is detailed in Appendix A.8. Each baseline receives
a single in-context example on a training example excluded from the testing set. We use temperature
0.7 for all models. All prompts are included in Appendix A.3.

4.2 RESULTS AND ANALYSIS

4.2.1 OVERALL RESULTS

• The best baseline, gpt4-o ReAct, only achieves 47% on the synchronous dataset and 11% on
the asynchronous dataset. See Sec 4.2.2.

• Dominant failure modes on the asynchronous dataset are similar to those in the synchronous dataset
indicating that simple LLM failures are inhibiting asynchronous planning. See Sec 4.2.3.

• Further investigations on the low asynchronous performance reveal that better feedback incorpo-
ration and reliable self-verification are crucial future work directions to boost performance. See
Sec 4.2.4.

4.2.2 SUCCESS AND OPTIMALITY

Question 1. How successful are baselines?

Table 2 shows the success rates of various LLMs baselines on the synchronous and asynchronous
datasets. Table 3 shows the task-specific success rates of baselines using gpt4-o. Success rate is
determined by reaching the goal within 1.5 times the optimal number of steps for the given instance.
Baselines exceeding this step limit are terminated.

Among all the LLM baselines, ReAct with the gpt4-o model performs the best on the syn-
chronous and asynchronous datasets. I/O performs worst for most LLMs while I/O CoT improves
performance.

When considering task-specific success over gpt4-o baselines, ReAct generally achieves higher
performance per task. While we list the horizon length as a crude difficulty metric, it is evident that
success rate is not solely dependent on it. We investigate this further in Appendix A.9. We also
investigate different agent failure modes in more depth in Section 4.2.3.

Synchronous (%) Asynchronous (%)

I/O I/O CoT ReAct I/O I/O CoT ReAct

gpt4-o 4.00 14.0 47.0 1.00 1.00 11.0
gpt-4o-mini 4.00 10.0 11.0 0.00 1.00 0.00
gemini-1.5-flash 0.00 13.0 0.00 0.00 0.00 0.00
claude-3-haiku 1.00 2.00 2.00 0.00 0.00 0.00

Table 2: Success rates of state-of-the-art LLMs on the synchronous and asynchronous datasets.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

I/O I/O ReAct Horizon
CoT Length

Synchronous (%)

[1] 20.0 40.0 70.0 10

[2] 0.00 20.0 80.0 14

[3] 10.0 30.0 80.0 24

[4] 0.00 10.0 40.0 10

[5] 0.00 0.00 60.0 15

[6] 10.0 20.0 20.0 23

[7] 0.00 0.00 50.0 36

[8] 0.00 10.0 30.0 44

[9] 0.00 10.0 20.0 63

[10] 0.00 0.00 20.0 57

Total 4.00 14.0 47.0

Asynchronous (%)

[1] 10.0 0.00 20.0 21

[2] 0.00 0.00 30.0 27

[3] 0.00 0.00 40.0 37

[4] 0.00 0.00 10.0 42

[5] 0.00 10.0 0.00 46

[6] 0.00 0.00 10.0 19

[7] 0.00 0.00 0.00 42

[8] 0.00 0.00 0.00 46

[9] 0.00 0.00 0.00 68

[10] 0.00 0.00 0.00 82

Total 1.00 1.00 11.0

Table 3: gpt4-o performance on the synchronous and asynchronous datasets.

Question 2. How close to optimal are successes?

Fig. 3 shows a histogram of the binned optimality rates on the successful runs of gpt4-o ReAct
on the synchronous and asynchronous datasets. Optimality rate is ∥τ̂∥

∥τ∗∥ where ∥τ̂∥ is the number of
steps taken by an agent and ∥τ∗∥ is the number of steps taken by an optimal planner.

For the synchronous dataset, 55.3% of successful attempts are optimal compared to the asynchronous
dataset where only 9.1% of successful attempts are optimal. We expect this since the order that tasks
are done in the synchronous setting does not affect optimality compared to the asynchronous setting.
We also see for the asynchronous dataset that 63.6% of successful attempts are suboptimal in the
(1, 1.25] bucket. We qualitatively observe that while the LLM agent usually prioritizes asynchronous
subtasks, suboptimal runs were due to inefficient actions, such as waiting while cooking. We further
investigate the agent’s subtask prioritization in Section 4.2.4.

Question 3. How far off are failures from the goal?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Histogram of the optimality rate for gpt4-o ReAct successes on the synchronous and
asynchronous datasets. The 1 bin includes attempts that were optimal. Attempts between (1, 1.5] are
suboptimal but classified as successful. Attempts greater than an optimality rate of 1.5 are classified
as failures.

Figure 4: Histogram of the normalized steps to go for gpt4-o ReAct failures on the synchronous
and asynchronous datasets. The 0 to 0.5 bucket includes attempts that were making progress towards
the goal while the 0.5 to 1 bucket includes attempts that made little to no progress towards the goal.
Buckets greater than 1 includes attempts that traversed further away from the goal.

Fig. 4 shows a histogram of the binned normalized steps to go on the failed runs of gpt4-o ReAct
on the synchronous and asynchronous datasets. Steps to go is ∥τ∗

left∥
∥τ∗∥ where ∥τ∗left∥ are the optimal

number of steps left to reach the goal from the final state in a failed run and normalization factor
∥τ∗∥ is the optimal number of steps to reach the goal from the initial state.

For the asynchronous dataset, about 58.6% of failures are in the (0.5, 1.0] bucket which show that
most attempts made little to no progress towards the goal. We also see this on the synchronous
dataset, with 41.5% of failures in the (0.5, 1.0] bucket. We show quantitative results on gpt4-o
ReAct’s ineffective at failure recovery in Section 4.2.3 suggesting that failures on the asynchronous
dataset are mainly due to little progress being made. In contrast, we see 45.3% failures on the
synchronous dataset from (1.0,∞) which show that most attempts make progress away from the goal.
The asynchronous dataset only has 25.3% failures from (1.0,∞). We present qualitatively annotated
failures in Section 4.2.3 that suggest failures on the synchronous dataset are due to misunderstanding
the goal.

4.2.3 FAILURE MODE ANALYSIS

Question 4. What are the dominant failure modes?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Nested pie chart of gpt4-o ReAct failure modes capturing uncertainties in the MDP. The
main categories are on the outer circle representing the uncertainty in the state space (S), action space
(A), transition function (T), or reward/goal (G). The subcategories on the inner circle represent the
dominant cause of failure and are described further in Appendix A.11.

Fig. 5 shows a nested piechart that captures failure modes of gpt4-o ReAct on the synchronous
and asynchronous datasets. We define our failure modes in terms of uncertainty over the MDP of the
environment. The 4 main failure categories include uncertainty in the state (S), actions (A), transition
function (T) and the goal (G). For a detailed description of the subcategories and dataset annotation,
see Appendix A.11.

For the synchronous failures, uncertainty in the goal accounts for the majority at 64.1% followed
by uncertainty in the transition function at 32.1%. Goal failures could be due to (1) an incorrect
understanding at the start of the plan or (2) a mistake during plan execution, such as using an
ingredient without cutting it, which is incorrectly believed to satisfy the goal. We observe that case
(1) occurs 28.3% of the time under Bad Start; the LLM agent restates goals incorrectly for complex
tasks with strict ordering dependencies like Task 6 or tasks with many diverse ingredients like Task
10 which we show in Appendix A.13. We observe that case (2) occurs 35.8% of the time under the
remaining subcategories; although the LLM agent starts with a correct goal, it misunderstand the
goal during execution by choosing the wrong action. For transition failures, violating the ‘one item
at a station’ rule accounts for the majority of failures at 24.5%. We qualitatively observe that the
agent attempts to use cutting stations for ingredient preparation while other items occupy the station;
however, we also observe that once the agent has recovered from this failure it is unlikely to repeat it
which we show in Appendix A.14.

For the asynchronous failures, the inverse is true with uncertainty in the transition function accounting
for 56.8% of failures and uncertainty in the goal accounting for 34.1% of failures. Similar to the
synchronous failures, violating the ‘one item at a station’ rule dominates failures at 53.4%. This is
due to the increased number of stations in the asynchronous setting compared to the synchronous
setting which increases the potential number of recoveries necessary. In the synchronous setting,
which only uses the cutting board station, an agent may need to recover once from violating the ’one
item at a station’ rule. In the asynchronous setting, which uses stoves, fryers, and sinks, an agent, in
the worst case, may need to recover from violating rules on each station in a task.

We point out that while we designed the synchronous and asynchronous datasets to test different
capabilities of LLM agents, we mainly observe similar transition failures in both settings. This
demonstrates the need to improve LLM agents at following environment constraints to improve their
decision-making ability. We investigate this further in Section 4.2.4.

Question 5. How effective are failure recoveries?

Fig. 6 shows a histogram of the repeated transitions of gpt4-o ReAct runs on the synchronous and
asynchronous datasets. We use repeated transitions as a proxy for measuring ReAct’s effectiveness
at recovering from failure.

In both the synchronous and asynchronous datasets, we see that the majority of successes have 0
repeated transitions; few successes have repeated transitions but successfully recover. For failures, the
asynchronous dataset’s lower and upper quartiles are 103.1% and 55.8% larger than the synchronous

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Histogram of the repeated transitions of gpt4-o ReAct runs on the synchronous and
asynchronous datasets. The median and quartiles of the asynchronous dataset are generally higher
than those of the synchronous dataset, indicating higher repeated transitions.

dataset’s quartiles. This means that failures on the asynchronous dataset are expected to have higher
repeated transitions; this ineffectiveness at recovery aligns with the transition failures being dominant
for the asynchronous setting in Fig. 5. Similarly, since the synchronous dataset has lower quartiles
than the asynchronous dataset, we expect to see less repeated transitions which suggests less transition
failures.

4.2.4 FOLLOW-UP INVESTIGATION

From the previous experiments, we conclude that LLM agents struggle in the asynchronous dataset
due to simple failures that arise in the synchronous dataset. In order to have a better understanding
of how to improve LLM agent capabilities on asynchronous planning, we look into asynchronous
subtask prioritization and boosting performance.

Question 6. Does asynchronous subtask prioritization affect performance?

Efficient asynchronous planning requires prioritizing subtasks that can be performed asynchronously.
We investigate how success rate changes with asynchronous task prioritization to understand the
impact of asynchronous planning on the results. Our hypothesis is that prioritizing asynchronous
subtasks leads to higher success rates because the planned trajectory is shorter and reaches the goal
within the maximum step limit. We find that the success rate conditioned on prioritization is 16%
compared to 6% without, supporting that prioritization achieves higher success rate. An agent should
be capable of auditing its own reasoning and plan to ensure that its prioritization correctly targets
asynchronous subtasks. We discuss methods for reliable self-verification in Section 5.

Question 7. Would asynchronous performance improve by increasing priors over the transition
function?

The dominant failures of gpt4-o ReAct on the asynchronous dataset were transition failures. We
investigate how we can improve performance by increasing the priors over the transition function.
We create an augmented method, ReAct + Prior, that prompts ReAct with more details about
the rules of ROBOTOUILLE. See Appendix A.3 for differences in prompting.

Fig. 7 shows nested pie charts of the failure modes on Tasks 1 to 3 of the asynchronous dataset from
the gpt4-o ReAct experiments in Table 3 and from gpt4-o ReAct + Prior.

We observe a statistically insignificant change in performance, where the success rate for gpt4-o
ReAct is 0.30± 0.085 and gpt4-o ReAct + Prior is 0.40± 0.050. We also observe failures
relating to violating the ’one item at station’ rule decrease from 38.1% for gpt4-o ReAct (8
failures) to 22.2% for gpt4-o ReAct + Prior (4 failures) accounting for a 50% decrease in
these transition failures. While this shows that increasing priors over rules decreases transition failures
as expected, overall performance did not improve due to other failures that arose. We note that state
failures increase from 23.8% for gpt4-o ReAct (5 failures) to 38.9% for gpt4-o ReAct +
Prior (7 failures). These failures are due to misunderstandings with the state description provided;
specifically, the agent assumes that meat on a stove always implies it is cooked. Augmenting ReAct
+ Prior over state priors would presumably improve performance but is impractical because it

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Nested pie chart of failure modes capturing uncertainties in the MDP of gpt4-o ReAct
+ Prior on Tasks 1 to 3 (30 problems) of the asynchronous dataset using gpt4-o ReAct and
gpt4-o ReAct + Prior.

requires excessive effort from a domain-expert and wouldn’t generalize to new domains. We discuss
methods for incorporating state feedback in Section 5.

5 DISCUSSION
In this paper we propose a new benchmark, ROBOTOUILLE, for stress testing LLM agents on
synchronous, asynchronous, and multi-agent settings. We evaluate state-of-the-art LLMs and expose
their dominant failure modes are similar across synchronous and asynchronous settings. We perform
follow-up studies to bring up performance and uncover the need for improvements in LLM agents
that we discuss below.

Feedback Incorporation A general method to incorporate long-horizon planning feedback in LLM
agents is to include all interactions in the context history. This works well for models with large
context windows or near-infinite attention mechanisms (Liu et al., 2023b; Munkhdalai et al., 2024),
but LLMs often struggle with long-contexts (Liu et al., 2023c). An alternative is RAG (Lewis et al.,
2021), yet this shifts the complexity to retrieval. As explored in Section 4.2.4, a promising approach is
for the agent to summarize interactions into facts to reduce uncertainty and strengthen priors. It should
also reason about future states to avoid myopic behaviors, as shown qualitatively in Appendix A.12.
Another underexplored yet effective approach is finetuning LLM agents (Chen et al., 2023) with
methods such as TD learning and value propogation (Putta et al., 2024; Gehring et al., 2024).

Self-Verification An LLM agent should be able to audit but LLMs are unreliable at self-verification
(Valmeekam et al., 2023a). Other approaches use LLMs to create a representation for external
planners (Liu et al., 2023a; Guan et al., 2023) or finetune on planning datasets (Pallagani et al., 2022;
Lehnert et al., 2024) but these methods are difficult to debug and lack guarantees respectively. One
approach is to combine code-use with language (Wang et al., 2024); reasoning in language and
verifying understanding with code and APIs would allow us stronger guarantees that are easier to
debug.

Real-World Application To effectively deploy LLM agents on real-world agents, the cost and
inference time of LLMs must be brought down to make them affordable and quick. This is especially
problematic for long-horizon task planning since cost and inference time increases as context grows.
These system must also be evaluated with real humans; one future direction for Robotouille is serving
as an online platform to test agents with humans through collaboration.

REFERENCES

Constructions Aeronautiques, Adele Howe, et al. Pddl| the planning domain definition language.
Technical Report, Tech. Rep., 1998.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances. 2022. URL
https://arxiv.org/abs/2204.01691.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(16):17682–17690, March 2024. ISSN 2159-5399. doi: 10.
1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38i16.29720.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-ai coordination. 2020. URL
https://arxiv.org/abs/1910.05789.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fireact:
Toward language agent fine-tuning, 2023. URL https://arxiv.org/abs/2310.05915.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utilization
capability of large language models step by step. 2024. URL https://arxiv.org/abs/
2312.14033.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
Rlef: Grounding code llms in execution feedback with reinforcement learning, 2024. URL
https://arxiv.org/abs/2410.02089.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng Gao. Mindagent: Emergent
gaming interaction. 2023. URL https://arxiv.org/abs/2309.09971.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning,
2023. URL https://arxiv.org/abs/2305.14909.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation. 2024. URL https://arxiv.org/abs/2310.
03302.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. 2022. URL https://arxiv.org/abs/2207.
05608.

Megan Kinniment, Lucas Jun Koba Sato, Haoxing Du, Brian Goodrich, Max Hasin, Lawrence Chan,
Luke Harold Miles, Tao R. Lin, Hjalmar Wijk, Joel Burget, Aaron Ho, Elizabeth Barnes, and
Paul Christiano. Evaluating language-model agents on realistic autonomous tasks. 2024. URL
https://arxiv.org/abs/2312.11671.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping,
2024. URL https://arxiv.org/abs/2402.14083.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. 2023. URL
https://arxiv.org/abs/2209.07753.

11

https://arxiv.org/abs/2204.01691
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/1910.05789
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2312.14033
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2309.09971
https://arxiv.org/abs/2305.14909
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2312.11671
https://arxiv.org/abs/2402.14083
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2209.07753

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, and Janet B.
Pierrehumbert. Graph-enhanced large language models in asynchronous plan reasoning. 2024.
URL https://arxiv.org/abs/2402.02805.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+p: Empowering large language models with optimal planning proficiency. 2023a. URL
https://arxiv.org/abs/2304.11477.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018. URL https://arxiv.
org/abs/1802.08802.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023b. URL https://arxiv.org/abs/2310.01889.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023c. URL
https://arxiv.org/abs/2307.03172.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. 2023d. URL https://arxiv.org/abs/2308.
03688.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. 2024. URL https://arxiv.org/abs/2401.13178.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.
12983.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404.07143.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav
Srivastava, Francesco Fabiano, and Andrea Loreggia. Plansformer: Generating symbolic plans
using transformers, 2022. URL https://arxiv.org/abs/2212.08681.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. 2018. URL https://arxiv.
org/abs/1806.07011.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024. URL
https://arxiv.org/abs/2408.07199.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. 2021.
URL https://arxiv.org/abs/2010.03768.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. 2022. URL https://arxiv.org/abs/2209.11302.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. 2023.
URL https://arxiv.org/abs/2212.04088.

12

https://arxiv.org/abs/2402.02805
https://arxiv.org/abs/2304.11477
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2401.13178
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2212.08681
https://arxiv.org/abs/1806.07011
https://arxiv.org/abs/1806.07011
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2212.04088

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans?, 2023a. URL https://arxiv.org/abs/
2310.08118.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. Planbench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. 2023b. URL https://arxiv.org/abs/2206.10498.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents, 2024. URL https://arxiv.org/abs/
2402.01030.

Yuqing Wang and Yun Zhao. Tram: Benchmarking temporal reasoning for large language models.
2024. URL https://arxiv.org/abs/2310.00835.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong
Cheng, Wei Chen, Yun Xiong, and Dongsheng Li. Can graph learning improve task planning?
2024. URL https://arxiv.org/abs/2405.19119.

Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See Kiong Ng, and Jiashi
Feng. Magic: Investigation of large language model powered multi-agent in cognition, adaptability,
rationality and collaboration. 2023. URL https://arxiv.org/abs/2311.08562.

Zhun Yang, Adam Ishay, and Joohyung Lee. Coupling large language models with logic programming
for robust and general reasoning from text. 2023. URL https://arxiv.org/abs/2307.
07696.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. 2023a. URL https://arxiv.
org/abs/2207.01206.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023b.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. 2024. URL https://arxiv.org/abs/
2406.12045.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Fed-
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke,
and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with language.
2022. URL https://arxiv.org/abs/2204.00598.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. 2024. URL https://arxiv.org/abs/
2307.13854.

13

https://arxiv.org/abs/2310.08118
https://arxiv.org/abs/2310.08118
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2310.00835
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2405.19119
https://arxiv.org/abs/2311.08562
https://arxiv.org/abs/2307.07696
https://arxiv.org/abs/2307.07696
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORKS

In this section we will focus on our desiderata for LLM assistants and how ROBOTOUILLE is different
from other related works (Table 1).

Asynchronous Planning Many benchmarks evaluate the task planning abilities of LLM agents
(Shridhar et al., 2021; Gong et al., 2023; Liu et al., 2018; Valmeekam et al., 2023b; Yao et al., 2024;
Zhou et al., 2024; Yao et al., 2023a) but few test the ability to plan asynchronously. Existing work
relevant to asynchronous planning evaluate LLM capabilities on temporal logic (Wang & Zhao, 2024)
or use graph-based techniques (Wu et al., 2024); (Besta et al., 2024)) but do not focus on it. (Lin
et al., 2024) proposes the Plan Like a Graph technique and a benchmark AsyncHow that focuses on
asynchronous planning but makes a strong assumption that infinite agents exist. (Carroll et al., 2020)
proposes a benchmark, Overcooked-AI, that involves cooking onion soup which has time delays but
has limited tasks and focuses on lower-level planning without LLM agents. ROBOTOUILLE has a
dataset focused on asynchronous planning that involves actions including cooking, frying, filling a
pot with water, and boiling water.

Diverse Long-Horizon Task Planning There is vast amount of work that use LLMs to plan (Ahn
et al., 2022; Huang et al., 2022; Zeng et al., 2022; Liang et al., 2023; Singh et al., 2022; Song et al.,
2023; Yang et al., 2023; Song et al., 2023) but they tend to evaluate on short-horizon tasks with
limited diversity in tasks. We present the number of tasks, longest plan horizon, and procedural
generation capability of various benchmarks in Table 1 to capture these axes. Notable LLM agent
benchmarks that capture these axes include PlanBench (Valmeekam et al., 2023b), WebShop (Yao
et al., 2023a), and VirtualHome (Puig et al., 2018). ROBOTOUILLE provides a focused set of diverse
long-horizon tasks that can be procedurally generated.

Multi-agent Planning LLM agent benchmarks like (Liu et al., 2023d; Xu et al., 2023; Ma et al., 2024;
Gong et al., 2023) evaluate multi-agent interactions but do not involve time delays. OvercookedAI
(Carroll et al., 2020), while not an LLM agent benchmark, incorporates time delays which brings
the complexity of asynchronous planning to multi-agent settings. ROBOTOUILLE provides a multi-
agent dataset for 2-4 agents, a choice between turn-based or realtime planning, and incorporates
asynchronous tasks for added complexity.

A.2 ADDITIONAL ROBOTOUILLE JSONS

To provide flexibility in task and environment creation, a JSON is used to define the problem. The
size of the grid used can be specified, and positions of objects in the item can be specified using
coordinates. Predicates that are specific to an item can also be specified. In conjunction with the
flexible goal creation described in Section 2, objects in the environment can be given specific ids, if
the goal must be satisfied for specific objects. Additionally, if the environment requires a different
number of cuts to complete cutting, or a different cook time, these values can be configured in the
JSON.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

"width": 3,
"height": 3,
"config": {

"num_cuts": {
"lettuce": 3,
"default": 3

},
"cook_time": {

"patty": 3,
"default": 3

}},
"stations": [{

"name": "board",
"x": 0,
"y": 1,
"id": "A"

}],
"items": [{

"name": "lettuce",
"x": 0,
"y": 1,
"stack-level": 0,
"predicates": ["iscuttable"],
"id": "a"

}],
"players": [{

"name": "robot",
"x": 0,
"y": 0,
"direction": [0, 1]

}],
"goal_description": "Cut the lettuce on the board until it is cut",
"goal": [{

"predicate": "iscut",
"args": ["lettuce"],
"ids": ["a"]

}]

Figure 8: Environment JSON for a lettuce cutting task.

Adding objects to the environment is also simple. To add a new object, the necessary predicates
for that object can be added to the domain JSON, and its corresponding image can be added to the
rendering JSON. If there are different images for the object depending on the predicates that are true
in the environment, these can also be specified. The images can also be scaled or offset using the
rendering JSON.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

"player": {
"robot": {

"front": "robot_front.png",
"back": "robot_back.png",
"left": "robot_left.png",
"right": "robot_right.png"

}},
"floor": "floorkitchen.png",
"item": {

"constants": {
"STATION_ITEM_OFFSET" : 0.25,
"X_SCALE_FACTOR": 0.125,
"Y_SCALE_FACTOR": 0.75

},
"entities": {

"chicken": {
"assets": {

"default": "chicken.png",
"cooked": {

"asset": "cookedchicken.png",
"predicates": ["iscooked"]

},
"fried": {

"asset": "friedchicken.png",
"predicates": ["isfried"]

}
},
"constants": {}

}, ...}},
"station": {

"constants": {},
"entities": {

"fryer": {
"assets": {

"default": "fryer.png"
},
"constants": {}

},...}}

Figure 9: Rendering JSON.

To specify what button to press for each action, we use an input JSON. If the action requires a mouse
click, we can specify where the player needs to click to perform the action. If the action requires a
key press, we specify which button to press for which action, and where the player needs to be to
perform the action.

"mouse_click_actions": [{
"name": "move",
"input_instructions": {

"button": "left",
"click_on": "s2"

}},...],
"keyboard_actions": [{

"name": "cook",
"input_instructions": {

"key": "e",
"at": "s1"

}},...]

Figure 10: Input JSON.

A.3 PROMPTS

We use the following instructions for the I/O, I/O CoT, and ReAct baselines in both the syn-
chronous and asynchronous datasets. Each method is few-shot prompted with an example optimal
trajectory on a task unique to the dataset being evaluated on. Notably, the asynchronous example
involves a time delay. We ensured that prompt formatting in both datasets was consistent. ReAct

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

example observations are omitted to make experiments cheaper and because we did not note a major
difference in performance during preliminary testing.

I/O Prompt

You must propose a plan given an observation and valid actions.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in the previous interaction

Always format your response as follows:
Plan: ...

where:
- 'Plan' is the sequence of actions you propose to take in the
↪→ environment to reach the goal
- The actions should be formatted exactly as they are in the
↪→ environment description
- Do not include any numbering or bullet points for the actions

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold other objects, e.g. a pot
↪→ or a pan
- Meal: A mixture of ingredients contained within a Container

The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container can hold multiple Items
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically, it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot of boiling water containing prepared ingredients
↪→ served in a bowl.

The actions you can take in the environment are as follows:
- Move {p1} from {s1} to {s2} | Moves Player {p1} from Station
↪→ {s1} to Station {s2}
- Pick up {i1/c1} from {s1} using {p1} | Picks up Item {i1} or
↪→ Container {c1} from Station {s1} using Player {p1}
- Place {i1/c1} on {s1} using {p1} | Places Item {i1} or
↪→ Container {c1} on Station {s1} using Player {p1}
- Stack {i1} on top of {i2} using {p1} | Stacks Item {i1} on
↪→ top of Item {i2} using Player {p1}
- Unstack {i1} from {i2} using {p1} | Unstacks Item {i1} from
↪→ Item {i2} using Player {p1}
- Cook {i1} on {s1} using {p1} | Cooks Item {i1} on Station
↪→ {s1} using Player {p1} (fully cooks over 3 timesteps, not
↪→ immediate)
- Cut {i1} on {s1} using {p1} | Cuts Item {i1} on Station {s1}
↪→ using Player {p1} (must cut 3 times in succession, not
↪→ immediate)
- Fry {i1} on {s1} using {p1} | Fries Item {i1} on Station {s1}
↪→ using Player {p1} (fully fries over 3 timesteps, not
↪→ immediate)
- Fill {c1} with water from {s1} using {p1} | Fills Container
↪→ {c1} with water from Station {s1} using Player {p1}
- Boil {c1}'s contents on {s1} using {p1} | Boils the contents
↪→ of Container {c1} on Station {s1} using Player {p1} (fully
↪→ boils over 3 timesteps, not immediate)
- Add {i1} into {c1} using {p1} | Adds Item {i1} into Container
↪→ {c1} using Player {p1}
- Fill {c1} with {c2}'s contents using {p1} | Fills Container
↪→ {c1} with the contents of Container {c2} using Player {p1}
- Do nothing | Takes no action, consumes 1 timestep

I/O Synchronous Example

Interaction 1

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Station stove1:
stove1 is a stove
stove1 is occupied by robot1
stove1 has bread2
stove1 has bread2 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has onion1
fryer1 has onion1 directly on top of it
fryer1 has no players at it

Station table2:
table2 is a table
table2 has nothing on it
table2 has no players at it

Station board2:
board2 is a cutting board
board2 has bottombun1
board2 has bottombun1 directly on top of it
board2 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has cheese1
sink3 has cheese1 directly on top of it
sink3 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has nothing on it
fryer2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

lettuce1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at stove1
bread2 is directly on top of stove1
bread2 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at fryer1
onion1 is directly on top of fryer1
onion1 has nothing above it

Item bottombun1:
bottombun1 is a bottom bun
bottombun1 is at board2
bottombun1 is directly on top of board2
bottombun1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item cheese1:
cheese1 is a cheese slice
cheese1 is at sink3
cheese1 is directly on top of sink3
cheese1 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at stove1
robot1 is holding nothing

Valid Actions:
Move robot1 from stove1 to table1
Move robot1 from stove1 to board1
Move robot1 from stove1 to sink1
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to table2
Move robot1 from stove1 to board2
Move robot1 from stove1 to table3
Move robot1 from stove1 to sink2
Move robot1 from stove1 to sink3
Move robot1 from stove1 to sink4
Move robot1 from stove1 to fryer2
Pick up bread2 from stove1 using robot1
Do nothing

Goal: Prepare a onion cheese sandwich on a table

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Plan:
Move robot1 from stove1 to board1
Pick up lettuce1 from board1 using robot1
Move robot1 from board1 to table3
Place lettuce1 on table3 using robot1
Move robot1 from table3 to fryer1
Pick up onion1 from fryer1 using robot1
Move robot1 from fryer1 to board1
Place onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Pick up onion1 from board1 using robot1
Move robot1 from board1 to table1
Stack onion1 on top of bread1 using robot1
Move robot1 from table1 to sink3
Pick up cheese1 from sink3 using robot1
Move robot1 from sink3 to table1
Stack cheese1 on top of onion1 using robot1
Move robot1 from table1 to stove1
Pick up bread2 from stove1 using robot1
Move robot1 from stove1 to table1
Stack bread2 on top of cheese1 using robot1

I/O Asynchronous Example

Interaction 1

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station table2:
table2 is a table
table2 is occupied by robot1
table2 has chicken1
table2 has chicken1 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has nothing on it
fryer1 has no players at it

Station table3:
table3 is a table
table3 has nothing on it

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

table3 has no players at it

Station stove1:
stove1 is a stove
stove1 has nothing on it
stove1 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has onion1
sink3 has onion1 directly on top of it
sink3 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has bread2
fryer2 has bread2 directly on top of it
fryer2 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station board2:
board2 is a cutting board
board2 has nothing on it
board2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item chicken1:
chicken1 is a chicken breast
chicken1 can be cooked on a stove
chicken1 is at table2
chicken1 is directly on top of table2
chicken1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item onion1:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at sink3
onion1 is directly on top of sink3
onion1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at fryer2
bread2 is directly on top of fryer2
bread2 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at table2
robot1 is holding nothing

Valid Actions:
Move robot1 from table2 to table1
Move robot1 from table2 to board1
Move robot1 from table2 to sink1
Move robot1 from table2 to fryer1
Move robot1 from table2 to table3
Move robot1 from table2 to stove1
Move robot1 from table2 to sink2
Move robot1 from table2 to sink3
Move robot1 from table2 to fryer2
Move robot1 from table2 to sink4
Move robot1 from table2 to board2
Pick up chicken1 from table2 using robot1
Do nothing

Goal: Prepare an onion chicken sandwich on a table

Plan:
Pick up chicken1 from table2 using robot1
Move robot1 from table2 to stove1
Place chicken1 on stove1 using robot1
Cook chicken1 on stove1 using robot1
Move robot1 from stove1 to sink4
Pick up onion2 from sink4 using robot1
Move robot1 from sink4 to board2
Place onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Pick up onion2 from board2 using robot1
Move robot1 from board2 to table1
Stack onion2 on top of bread1 using robot1
Move robot1 from table1 to stove1
Pick up chicken1 from stove1 using robot1
Move robot1 from stove1 to table1
Stack chicken1 on top of onion2 using robot1
Move robot1 from table1 to fryer2
Pick up bread2 from fryer2 using robot1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Move robot1 from fryer2 to table1
Stack bread2 on top of chicken1 using robot1

I/O CoT Prompt

You must propose a plan given an observation and valid actions.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in the previous interaction

Always format your response as follows:
Action: ...
Next State Changes: ...
Action: ...
Next State Changes: ...
...

where:
- 'Action' is the action you propose to take in the last state
↪→ to reach the goal
- The action should be formatted exactly as they are in the
↪→ environment description
- 'Next State' is the state after the action is taken
- The state can be a summary of the changes in the environment
↪→ after the action is taken

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold other objects, e.g. a pot
↪→ or a pan
- Meal: A mixture of ingredients contained within a Container

The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container can hold multiple Items
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot of boiling water containing prepared ingredients
↪→ served in a bowl.

The actions you can take in the environment are as follows:
- Move {p1} from {s1} to {s2} | Moves Player {p1} from Station
↪→ {s1} to Station {s2}
- Pick up {i1/c1} from {s1} using {p1} | Picks up Item {i1} or
↪→ Container {c1} from Station {s1} using Player {p1}
- Place {i1/c1} on {s1} using {p1} | Places Item {i1} or
↪→ Container {c1} on Station {s1} using Player {p1}
- Stack {i1} on top of {i2} using {p1} | Stacks Item {i1} on
↪→ top of Item {i2} using Player {p1}
- Unstack {i1} from {i2} using {p1} | Unstacks Item {i1} from
↪→ Item {i2} using Player {p1}
- Cook {i1} on {s1} using {p1} | Cooks Item {i1} on Station
↪→ {s1} using Player {p1} (fully cooks over 3 timesteps, not
↪→ immediate)
- Cut {i1} on {s1} using {p1} | Cuts Item {i1} on Station {s1}
↪→ using Player {p1} (must cut 3 times in succession, not
↪→ immediate)
- Fry {i1} on {s1} using {p1} | Fries Item {i1} on Station {s1}
↪→ using Player {p1} (fully fries over 3 timesteps, not
↪→ immediate)
- Fill {c1} with water from {s1} using {p1} | Fills Container
↪→ {c1} with water from Station {s1} using Player {p1}
- Boil {c1}'s contents on {s1} using {p1} | Boils the contents
↪→ of Container {c1} on Station {s1} using Player {p1} (fully
↪→ boils over 3 timesteps, not immediate)
- Add {i1} into {c1} using {p1} | Adds Item {i1} into Container
↪→ {c1} using Player {p1}
- Fill {c1} with {c2}'s contents using {p1} | Fills Container
↪→ {c1} with the contents of Container {c2} using Player {p1}
- Do nothing | Takes no action, consumes 1 timestep

I/O CoT Synchronous Example

Interaction 1

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station stove1:
stove1 is a stove
stove1 is occupied by robot1
stove1 has bread2
stove1 has bread2 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has onion1
fryer1 has onion1 directly on top of it
fryer1 has no players at it

Station table2:
table2 is a table
table2 has nothing on it
table2 has no players at it

Station board2:
board2 is a cutting board
board2 has bottombun1
board2 has bottombun1 directly on top of it
board2 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has cheese1
sink3 has cheese1 directly on top of it
sink3 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has nothing on it
fryer2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at stove1
bread2 is directly on top of stove1
bread2 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at fryer1
onion1 is directly on top of fryer1
onion1 has nothing above it

Item bottombun1:
bottombun1 is a bottom bun
bottombun1 is at board2
bottombun1 is directly on top of board2
bottombun1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item cheese1:
cheese1 is a cheese slice
cheese1 is at sink3
cheese1 is directly on top of sink3
cheese1 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at stove1
robot1 is holding nothing

Valid Actions:
Move robot1 from stove1 to table1
Move robot1 from stove1 to board1
Move robot1 from stove1 to sink1
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to table2
Move robot1 from stove1 to board2
Move robot1 from stove1 to table3
Move robot1 from stove1 to sink2
Move robot1 from stove1 to sink3

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Move robot1 from stove1 to sink4
Move robot1 from stove1 to fryer2
Pick up bread2 from stove1 using robot1
Do nothing

Goal: Prepare a onion cheese sandwich on a table

Action: Move robot1 from stove1 to board1
Next State Change: robot1 is at board1, robot1 is not at stove1
Action: Pick up lettuce1 from board1 using robot1
Next State Change: lettuce1 is held by robot1, lettuce1 is not at

↪→ board1
Action: Move robot1 from board1 to table3
Next State Change: robot1 is at table3, robot1 is not at board1
Action: Place lettuce1 on table3 using robot1
Next State Change: lettuce1 is at table3, lettuce1 is not held by

↪→ robot1
Action: Move robot1 from table3 to fryer1
Next State Change: robot1 is at fryer1, robot1 is not at table3
Action: Pick up onion1 from fryer1 using robot1
Next State Change: onion1 is held by robot1, onion1 is not at fryer1
Action: Move robot1 from fryer1 to board1
Next State Change: robot1 is at board1, robot1 is not at fryer1
Action: Place onion1 on board1 using robot1
Next State Change: onion1 is on board1, onion1 is not held by robot1
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 is being cut (2)
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 is being cut (1)
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 has been cut
Action: Pick up onion1 from board1 using robot1
Next State Change: onion1 is held by robot1, onion1 is not at board1
Action: Move robot1 from board1 to table1
Next State Change: robot1 is at table1, robot1 is not at board1
Action: Stack onion1 on top of bread1 using robot1
Next State Change: onion1 is atop bread1, onion1 is not held by

↪→ robot1
Action: Move robot1 from table1 to sink3
Next State Change: robot1 is at sink3, robot1 is not at table1
Action: Pick up cheese1 from sink3 using robot1
Next State Change: cheese1 is held by robot1, cheese1 is not at

↪→ sink3
Action: Move robot1 from sink3 to table1
Next State Change: robot1 is at table1, robot1 is not at sink3
Action: Stack cheese1 on top of onion1 using robot1
Next State Change: cheese1 is atop onion1, cheese1 is not held by

↪→ robot1
Action: Move robot1 from table1 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table1
Action: Pick up bread2 from stove1 using robot1
Next State Change: bread2 is held by robot1, bread2 is not at stove1
Action: Move robot1 from stove1 to table1
Next State Change: robot1 is at table1, robot1 is not at stove1
Action: Stack bread2 on top of cheese1 using robot1
Next State Change: bread2 is atop cheese1, bread2 is not held by

↪→ robot1. Goal achieved!

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

I/O CoT Asynchronous Example

Interaction 1

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station table2:
table2 is a table
table2 is occupied by robot1
table2 has chicken1
table2 has chicken1 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has nothing on it
fryer1 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station stove1:
stove1 is a stove
stove1 has nothing on it
stove1 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has onion1
sink3 has onion1 directly on top of it
sink3 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has bread2
fryer2 has bread2 directly on top of it
fryer2 has no players at it

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station board2:
board2 is a cutting board
board2 has nothing on it
board2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item chicken1:
chicken1 is a chicken breast
chicken1 can be cooked on a stove
chicken1 is at table2
chicken1 is directly on top of table2
chicken1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at sink3
onion1 is directly on top of sink3
onion1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at fryer2
bread2 is directly on top of fryer2
bread2 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at table2
robot1 is holding nothing

Valid Actions:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Move robot1 from table2 to table1
Move robot1 from table2 to board1
Move robot1 from table2 to sink1
Move robot1 from table2 to fryer1
Move robot1 from table2 to table3
Move robot1 from table2 to stove1
Move robot1 from table2 to sink2
Move robot1 from table2 to sink3
Move robot1 from table2 to fryer2
Move robot1 from table2 to sink4
Move robot1 from table2 to board2
Pick up chicken1 from table2 using robot1
Do nothing

Goal: Prepare an onion chicken sandwich on a table

Action: Pick up chicken1 from table2 using robot1
Next State Change: chicken1 is held by robot1, chicken1 is not at

↪→ table2
Action: Move robot1 from table2 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table2
Action: Place chicken1 on stove1 using robot1
Next State Change: chicken1 is at stove1, chicken1 is not held by

↪→ robot1
Action: Cook chicken1 on stove1 using robot1
Next State Change: chicken1 has started to cook
Action: Move robot1 from stove1 to sink4
Next State Change: chicken1 is cooking (3), robot1 is at sink4,

↪→ robot1 is not at stove1
Action: Pick up onion2 from sink4 using robot1
Next State Change: chicken1 is cooking (2), onion2 is held by

↪→ robot1, onion2 is not at sink4
Action: Move robot1 from sink4 to board2
Next State Change: chicken1 is cooking (1), robot1 is at board2,

↪→ robot1 is not at sink4
Action: Place onion2 on board2 using robot1
Next State Change: chicken1 is cooked, onion2 is on board2, onion2

↪→ is not held by robot1
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is being cut (2)
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is being cut (1)
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is cut
Action: Pick up onion2 from board2 using robot1
Next State Change: onion2 is held by robot1, onion2 is not on board2
Action: Move robot1 from board2 to table1
Next State Change: robot1 is at table1, robot1 is not at board2
Action: Stack onion2 on top of bread1 using robot1
Next State Change: onion2 is atop bread1, onion2 is not held by

↪→ robot1
Action: Move robot1 from table1 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table1
Action: Pick up chicken1 from stove1 using robot1
Next State Change: chicken1 is held by robot1, chicken1 is not at

↪→ stove1
Action: Move robot1 from stove1 to table1
Next State Change: robot1 is at table1, robot1 is not at stove1
Action: Stack chicken1 on top of onion2 using robot1
Next State Change: chicken1 is atop onion2, chicken1 is not held by

↪→ robot1
Action: Move robot1 from table1 to fryer2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Next State Change: robot1 is at fryer2, robot1 is not at table1
Action: Pick up bread2 from fryer2 using robot1
Next State Change: bread2 is held by robot1, bread2 is not at fryer2
Action: Move robot1 from fryer2 to table1
Next State Change: robot1 is at table1, robot1 is not at fryer2
Action: Stack bread2 on top of chicken1 using robot1
Next State Change: bread2 is atop chicken1, bread2 is not held by

↪→ robot1. Goal achieved!

ReAct Prompt

You must propose an action given the current observation and valid
↪→ actions and the last reasoning and action taken in the
↪→ environment.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in a previous interaction (not included in the history)
- This feedback is automated and shows if the action is either
↪→ syntactically incorrect or does not exist in the valid
↪→ actions list
- This feedback does not check for semantic correctness and
↪→ should neither reinforce nor discourage the current strategy

Always format your response as follows:
Reasoning: ...
Action: ...

where:
- 'Reasoning' includes reasoning about the action you will
↪→ propose to take next
- Incorporate the past reasoning and action into your current
↪→ reasoning
- Include a complete step by step action plan to the goal to
↪→ justify the next action you'll propose to take
- 'Action' is the action you propose to take in the environment
- This action should be formatted exactly as it is in the
↪→ environment description
- This should be the first action in the plan you created in
↪→ the Reasoning section

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold meals, e.g. a pot or a pan
- Meal: A mixture of ingredients contained within a Container

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container must contain a Meal to have items added to it
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically, it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot is first filled with water, then boiled while
↪→ ingredients are added, then served in a bowl when ready.

ReAct + Prior (appended to ReAct

It is *important* to follow these rules before proposing an action:
- A Player can pick up a single Item at a time
- This means that you should not attempt to pick up an Item

↪→ if you are already holding one
- An Item must be placed on a Station to perform an action on it
- This means that you cannot perform an action on an Item

↪→ while holding it or if it is stacked on another Item at a
↪→ Station

- This also means that you must perform an action on an Item
↪→ at a Station for state changes to occur (e.g. cooking)
- A Station must contain a single Item to perform an action on
↪→ it

- This means that you can only bring an Item to a Station if
↪→ it is already empty
- Items can be stacked on top of one another
- This means that Items are stacked on top of Items

In addition, do not blindly follow these rules; think about how
↪→ your actions will affect future actions since your plan may
require you to break rules in the future to achieve the goal.

ReAct Synchronous Example

Interaction 1

Observation:
...

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 has lettuce1 on it and board2
↪→ has bottombun1 on it. The board must be empty before I can
↪→ cut onion1 on it. I will move robot1 from stove1 to board1.

Action: Move robot1 from stove1 to board1

Interaction 2

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 has lettuce1 on it and board2
↪→ has bottombun1 on it. The board must be empty before I can
↪→ cut onion1 on it. Since robot1 is at board1, I will pick up
↪→ lettuce1 from board1 using robot1 and move it elsewhere.

Action: Pick up lettuce1 from board1 using robot1

Interaction 3

Observation:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. Since robot1 is holding lettuce1 after clearing
↪→ board1, I must move the lettuce to another location. table3
↪→ is empty, so I will move robot1 from board1 to table3 to
↪→ place lettuce1 on it.

Action: Move robot1 from board1 to table3

Interaction 4

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. Since robot1 is holding lettuce1 and can only
↪→ hold one item at a time, I will place lettuce1 on table3
↪→ because it is empty and we are using neither table3 nor
↪→ lettuce1 for the sandwich.

Action: Place lettuce1 on table3 using robot1

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Interaction 5

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. I will move robot1 from table3 to fryer1 to pick
↪→ up onion1.

Action: Move robot1 from table3 to fryer1

Interaction 6

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since robot1 is at fryer1, I will use it
↪→ to pick up onion1 to cut at board1.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Action: Pick up onion1 from fryer1 using robot1

Interaction 7

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since robot1 is at fryer1 and holding
↪→ onion1, I will move it to board1 to place and begin cutting
↪→ the onion.

Action: Move robot1 from fryer1 to board1

Interaction 8

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

↪→ bottombun1 on it. Since robot1 is at board1 and holding
↪→ onion1, I will place onion1 on board1 to begin cutting it.

Action: Place onion1 on board1 using robot1

Interaction 9

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.

Action: Cut onion1 on board1 using robot1

Interaction 10

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Action: Cut onion1 on board1 using robot1

Interaction 11

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.

Action: Cut onion1 on board1 using robot1

Interaction 12

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to pick up onion1.

Action: Pick up onion1 from board1 using robot1

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Interaction 13

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is holding onion1
↪→ and bread1 is on table1, I will move robot1 to table1 to
↪→ stack onion1 on top of bread1.

Action: Move robot1 from board1 to table1

Interaction 14

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is holding onion1
↪→ and at table1 and bread1 is on table1, I will use robot1 to
↪→ to stack onion1 on top of bread1.

Action: Stack onion1 on top of bread1 using robot1

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Interaction 15

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 on sink3. I must
↪→ pick up cheese1 and stack it on top of onion1. Since robot1
↪→ is at table1 and cheese1 is on sink3, I will move robot1 to
↪→ sink3 to pick up cheese1.

Action: Move robot1 from table1 to sink3

Interaction 16

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

3. The third ingredient is cheese. I see cheese1 on sink3. I must
↪→ pick up cheese1 and stack it on top of onion1. Since robot1
↪→ is at sink3 and cheese1 is on sink3, I will use robot1 to
↪→ pick up cheese1.

Action: Pick up cheese1 from sink3 using robot1

Interaction 17

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 held by robot1. I
↪→ must stack cheese1 on top of onion1. Since robot1 is at
↪→ sink3 and cheese1 is held by robot1, I will move robot1 to
↪→ table1 to stack cheese1 on top of onion1.

Action: Move robot1 from sink3 to table1

Interaction 18

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 held by robot1. I
↪→ must stack cheese1 on top of onion1. Since robot1 is at
↪→ table1 and cheese1 is held by robot1, I will use robot1 to
↪→ stack cheese1 on top of onion1.

Action: Stack cheese1 on top of onion1 using robot1

Interaction 19

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 on stove1. Since
↪→ robot1 is at table1 and bread2 is on stove1, I will move
↪→ robot1 to stove1 to pick up bread2.

Action: Move robot1 from table1 to stove1

Interaction 20

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 on stove1. Since
↪→ robot1 is at table1 and bread2 is on stove1, I will move
↪→ robot1 to stove1 to pick up bread2.

Action: Pick up bread2 from stove1 using robot1

Interaction 21

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 held by robot1. I
↪→ must stack bread2 on top of cheese1. Since robot1 is holding
↪→ bread2 and cheese1 is at table1, I will move robot1 to
↪→ table1 to stack bread2 on top of cheese1.

Action: Move robot1 from stove1 to table1

Interaction 22

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 held by robot1. I
↪→ must stack bread2 on top of cheese1. Since robot1 is at
↪→ table1 and bread2 is held by robot1, I will use robot1 to
↪→ stack bread2 on top of cheese1.

Action: Stack bread2 on top of cheese1 using robot1

ReAct Asynchronous Example

Interaction 1

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I see chicken1 on
↪→ table2. I must pick it up and place it on a stove to cook it.

Action: Pick up chicken1 from table2 using robot1

Interaction 2

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I am holding chicken1. I
↪→ must place it on a stove to cook it. I see stove1 is empty.
↪→ Thus, I will move to stove1.

Action: Move robot1 from table2 to stove1

Interaction 3

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I am holding chicken1. I
↪→ must place it on a stove to cook it. I am at stove1 which is
↪→ empty. I will place chicken1 on stove1.

Action: Place chicken1 on stove1 using robot1

Interaction 4

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is on stove1. I
↪→ must cook it before I can stack it on the sandwich.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Action: Cook chicken1 on stove1 using robot1

Interaction 5

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on sink4. I must cut an onion fully before I can stack it on
↪→ top of bread1. onion1 and onion2 can be cut on a cutting
↪→ board. I will move to sink4 to pick up onion2.

Action: Move robot1 from stove1 to sink4

Interaction 6

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on sink4. I must cut an onion fully before I can stack it on
↪→ top of bread1. onion1 and onion2 can be cut on a cutting
↪→ board. I will pickup onion2 from sink4 to cut it.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Action: Pick up onion2 from sink4 using robot1

Interaction 7

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. I must cut an onion fully before I can stack
↪→ it on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has nothing on it.
↪→ I will move to board2 to cut onion2.

Action: Move robot1 from sink4 to board2

Interaction 8

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. I must cut an onion fully before I can stack
↪→ it on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has nothing on it.
↪→ Since I am at board2, I will place onion2 on it to cut it.

Action: Place onion2 on board2 using robot1

Interaction 9

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 10

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will continue to cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 11

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will continue to cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 12

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. onion2 has already been cut and is on board2. I
↪→ will pick up onion2 from board2 to stack it on top of bread1.

Action: Pick up onion2 from board2 using robot1

Interaction 13

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. Since onion2 has already been cut, I will
↪→ stack it on bread1 to build the sandwich. Since bread1 is on
↪→ table1, I will move from board2 to table1 to stack onion2 on
↪→ top of bread1.

Action: Move robot1 from board2 to table1

Interaction 14

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. Since onion2 has already been cut and I am
↪→ at table1 where bread1 currently is, I will stack onion2 on
↪→ bread1 to build the sandwich.

Action: Stack onion2 on top of bread1 using robot1

Interaction 15

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 cooked and at
↪→ stove1. I will move to stove1 to pick up chicken1 and then
↪→ stack it on top of onion2.

Action: Move robot1 from table1 to stove1

Interaction 16

Observation: ...

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am at stove1 where chicken1
↪→ has been cooked. I will pick up chicken1 and then stack it
↪→ on top of onion2.

Action: Pick up chicken1 from stove1 using robot1

Interaction 17

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and is held by robot1.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am holding chicken1 and must
↪→ stack it on onion2. onion2 is at table1 so I will move from
↪→ stove1 to table1 to stack chicken1 on top of onion2.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Action: Move robot1 from stove1 to table1

Interaction 18

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and is held by robot1.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am holding chicken1 and am at
↪→ table1 where onion2 is. I will stack chicken1 on top of
↪→ onion2 to continue building the sandwich.

Action: Stack chicken1 on top of onion2 using robot1

Interaction 19

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I see bread2 on fryer2. I will
↪→ move from table1 to fryer2 to pick up bread2 and stack it on
↪→ top of chicken1 to complete the sandwich.

Action: Move robot1 from table1 to fryer2

Interaction 20

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I see bread2 on fryer2. Since I
↪→ am at fryer2, I will pick up bread2 and stack it on top of
↪→ chicken1 to complete the sandwich.

Action: Pick up bread2 from fryer2 using robot1

Interaction 21

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I am holding bread2 and must
↪→ stack bread2 on chicken1. Since I am at fryer2, I will move
↪→ from fryer2 to table1 to stack bread2 on top of chicken1 to
↪→ complete the sandwich.

Action: Move robot1 from fryer2 to table1

Interaction 22

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

5. The fourth ingredient is bread. I am holding bread2 and must
↪→ stack bread2 on chicken1. Since I am at table1, I will stack
↪→ bread2 on top of chicken1 to complete the sandwich.

Action: Stack bread2 on top of chicken1 using robot1

A.4 ADDITIONAL DATASET DETAILS

Multiagent Dataset This dataset consists of tasks designed to test the LLM agent’s multiagent
capabilities. Robotouille’s multiagent capabilities test the agent’s ability to collaborate, and is more
difficult because it includes tasks where agents may potentially interfere with one another, and share
resources with one another.

Tasks 1 - 3: Burgers The first 3 tasks involve cooking and assembling a burger with increasing levels
of difficulty. In Task 1, the agents need to chop lettuce, and cook a patty, before assembling the burger
with the patty, lettuce, a bottom bun, and a top bun. In Task 2, the complexity is increased with an
additional ingredient, a tomato, that needs to be cut and stacked onto the burger. In Task 3, lettuce
needs to be cut, a chicken needs to be fried, and an onion needs to be cut first before it is fried. This
adds a level of complexity because one of the ingredients, the onion, needs to be both cut and fried.

Tasks 4 - 6: Sandwiches Tasks 4 - 6 involve making sandwiches. Unlike the tasks which only involve
a single agent, sandwiches in multiagent environments are more complex than burgers because there
is ambiguity in the stack ordering. In burgers, the bottom bun needs to be at the bottom, while in
sandwiches, a piece of bread can be used as either the bottom bread or the top bread. This is complex
because the agents need to collaborate and share the resources, and they need to agree on which
bread to use as the top bread and the bottom bread. Task 4 involves cutting a lettuce and cooking
a chicken before assembling the sandwich. Task 5 involves one more ingredient, a tomato, which
also needs to be cut. Task 6 is a double stacked lettuce chicken sandwich. Unlike the previous tasks,
Task 6 enforces a strict ordering on the placement of the ingredients, meaning that the agents need to
collaborate and properly agree on the order of the ingredients.

Task 7: Soup Task 7 involves cooking soup. This involves filling a pot of water, boiling a water,
adding three ingredients into the soup: a cut onion, a potato, and a cut tomato, before serving the
soup in a bowl. This task is complex because it involves multiple complex actions, including cutting,
filling the pot, and boiling the water.

Tasks 8 - 10: Multiple Recipes Tasks 8 - 10 involve the agents making multiple recipes. Task
8 involves 2 different recipes, a tomato cheese patty burger, and a onion chicken sandwich. This
task is difficult for multiple agents because the 2 recipes both require an ingredient to be cut and an
ingredient to be cooked. Task 9 involves making 2 identical lettuce cheeseburgers. Having 2 identical
recipes is more complex than having 2 different recipes because the agents need to agree on which
ingredient should be used in which burger. Finally, Task 10 involves making 2 different soups, a
potato tomato chicken soup, and a potato cheese onion soup. Soups are the most complex recipes
because it involves multiple complex actions. Furthermore, once an ingredient has been added to a
soup, it cannot be removed. This forces the agents to properly plan for which ingredient should go
into which soup.

A.5 RELATED WORKS TABLE DATA

For each benchmark in (Table 1), we explain how the number of tasks and longest horizon plans were
calculated.

A.5.1 ALFWORLD

ALFWorld consists of 3827 different tasks consisting of 3,553 train tasks, 140 seen tasks, and 134
unseen tasks from the ALFRED dataset.

The longest horizon plan is 50 steps since 50 is the max number of steps per episode in ALFWorld.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

A.5.2 CUISINEWORLD

CuisineWorld consist of 33 unique dishes which represent the tasks.

The longest horizon plan is 11 steps since Figure 2 of CuisineWorld indicates the dish distribution
over the number of steps.

A.5.3 MINIWOB++

MiniWoB++ consist of 40 tasks since 40 tasks are filtered out of 80 total tasks from the MiniWoB
benchmark.

The longest horizon plan is 13 steps since Table 1 indicates that 13 is the maximum number of steps
needed for a perfect policy to complete the task.

A.5.4 OVERCOOKED-AI

Overcooked-AI consists of 1 task since onion soup is the only dish in the environment.

The longest horizon plan is 100 steps since 100 is the max number of timesteps that planning methods
are evaluated on.

A.5.5 PLANBENCH

PlanBench consist of 885 tasks consisting of 600 tasks from Blocksworld domain and 285 tasks from
the Logistics domain.

The longest horizon plan is 48 steps since Figure 3 in PlanBench indicates that 48 is the longest
optimal plan length from both the Blocksworld and Logistics problem sets.

A.5.6 τ -BENCH

τ -bench consist of 165 tasks consisting of 115 tasks from the τ -retail benchmark and 50 tasks from
the τ -airline benchmark.

The longest horizon plan is 30 steps since 30 is the max number of actions per task in τ -bench.

A.5.7 WEBARENA

WebArena consist of 812 long-horizon web-based tasks.

The longest horizon plan is 30 steps since 30 is the max number of state transitions in WebArena.

A.5.8 WEBSHOP

WebShop consist of 12087 crowd-sourced text instructions which represent tasks.

The longest horizon plan is 90 steps since 90 is the max number of state visited in Table 2 of WebShop.

A.5.9 AGENTBENCH

AgentBench consist of 8 environments which represent tasks.

The longest horizon plan is 35 steps since 35 is the largest number of average turns according to table
3 in AgentBench.

A.5.10 ARA

ARA consists if 12 real-world tasks.

The longest horizon plan is 4 steps after counting the number of steps in the description of each task
in Table 1 of ARA.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

A.5.11 ASYNCHOW

AsyncHow consists of 1600 high-quality instances for real-life tasks.

The longest horizon plan is 9+ steps after checking Figure 5 of AsyncHow.

A.6 MAGIC

MAgIC consists of 5 games which represent tasks.

We will assume all games will have 3 players and the same number of rounds as indicated in Table 3
of magic (1 round for Chameleon, 2 for Undercover, and 5 for Cost Sharing, Prisoner’s Dilemma,
and Public Good).

Calculations of longest plan with regards to steps:

Chameleon: (3 clues given out to participants + 3 accusations/votes from participants + 1 guess for
the final word if the chameleon is correctly identified) * 1 round = 7 steps

Undercover: (3 people are assigned groups + 3 clues are given from participants + 3 votes from
participants) * 2 rounds = 18 steps

Cost Sharing: 3 parties get allocation of money + (1 negotiation phase + 1 fairness check) * 5 rounds
= 13 steps

Prisoner’s Dilemma: 3 decisions from participants * 5 rounds = 15 steps

Public Good: (3 decisions from participants + 1 redistribution of money) * 5 rounds = 20 steps

Therefore, Public Good has the longest horizon plan with 20 steps.

A.6.1 T-EVAL

T-Eval consists of 23305 tasks according to Table 2 in T-Eval.

The longest horizon plan is 19 steps based on Figure 5b in T-Eval.

A.6.2 MLAGENTBENCH

MLAgentBench consists of 13 ML tasks from diverse domains ranging in difficulty and recency.

The longest horizon plan is 50 steps based on Figure 7 in MLAgentBench which describes the
distribution of numbers of steps used by agents.

A.6.3 GAIA

GAIA consists of 466 carefully crafted and human annotated questions.

The longest horizon plan is around 45 steps based on Figure 3 in GAIA which describes the distribu-
tion of numbers of steps taken and tools used to answer the 466 questions.

A.6.4 VIRTUALHOME

VirtualHome consists of 2821 programs which represent tasks.

The longest horizon plan is 96 steps after examining all the activities in VirtualHome’s Activity
Knowledge base and finding the longest.

A.7 TASK DEPENDENCY GRAPHS

In general, the ordering of ingredients for task dependency graphs does not matter unless specified.
For soups, though the task dependency graphs imply a certain order, vegetables can be added to the
pot as long as the pot contains water. In addition, all items are placed on the table.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

A.7.1 SYNCHRONOUS GRAPHS

Figure 11: Task 1 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a cheese sandwich on a table."

Figure 12: Task 2 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a lettuce sandwich on a table."

Figure 13: Task 3 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a sandwich with lettuce and tomato on a table."

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Figure 14: Task 4 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a hamburger on a table."

Figure 15: Task 5 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a cheeseburger on a table."

Figure 16: Task 6 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a double cheeseburger on a table which contains two patties and two cheese slices interleaved (starting
with a patty)." This graph also contains the constraint that it needs to be in this exact order.

Figure 17: Task 7 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a lettuce tomato cheeseburger on a table."

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Figure 18: Task 8 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
two lettuce chicken sandwiches on separate tables."

Figure 19: Task 9 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
two lettuce tomato burgers on separate tables."

Figure 20: Task 10 for the synchronous dataset in Table 3. The language goal for this graph is
"Prepare a burger with cheese and onions on one table and a chicken sandwich with lettuce and
tomato on another table."

A.7.2 ASYNCHRONOUS GRAPHS

Figure 21: Task 1 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a cheese chicken sandwich on a table."

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Figure 22: Task 2 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a lettuce chicken sandwich on a table."

Figure 23: Task 3 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a fried chicken sandwich with lettuce and tomato on a table".

Figure 24: Task 4 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a tomato burger and fries on separate tables."

Figure 25: Task 5 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare an onion cheese burger and fried onion rings on separate tables."

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Figure 26: Task 6 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
potato soup with a whole potato and serve into a bowl on a table."

Figure 27: Task 7 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
onion soup with 3 cut onions and serve into a bowl on a table."

Figure 28: Task 8 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
tomato soup with a whole tomato served into a bowl on a table and a lettuce chicken sandwich on
another table."

Figure 29: Task 9 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
soup with a cut tomato and cut onion served into a bowl on a table and two chicken sandwiches on
other tables."

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Figure 30: Task 10 for the asynchronous dataset in Table 3. The language goal for this graph is
"Make soup with a whole onion and potato served into a bowl, a burger with lettuce and fried onion
rings, and an onion chicken sandwich all on separate tables."

A.7.3 MULTI-AGENT GRAPHS

Figure 31: Task 1 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
burger on a table."

Figure 32: Task 2 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
tomato burger on a table."

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

Figure 33: Task 3 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
fried onion fried chicken burger on a table."

Figure 34: Task 4 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
chicken sandwich on a table."

Figure 35: Task 5 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
tomato fried chicken sandwich on a table."

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

Figure 36: Task 6 for the multi-agent dataset. The language goal for this graph is "Prepare a double
lettuce chicken sandwich on a table which contains two chicken patties and two lettuce leaves
interleaved (starting with a patty)." This graph also contains the constraint that it needs to be in this
exact order.

Figure 37: Task 7 for the multi-agent dataset. The language goal for this graph is "Prepare a onion
potato tomato soup on a table."

Figure 38: Task 8 for the multi-agent dataset. The language goal for this graph is "Prepare a tomato
cheeseburger on one table and a onion chicken sandwich on another table."

Figure 39: Task 9 for the multi-agent dataset. The language goal for this graph is "Prepare two lettuce
cheeseburgers on separate tables."

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Figure 40: Task 10 for the multi-agent dataset. The language goal for this graph is "Prepare a soup
with potato, tomato, and chicken on one table and a soup with potato, cheese, and onion on another
table."

A.8 REACT ABLATIONS

ReAct in its original form can grow very expensive in cost on long horizon tasks due to the increasing
context size. We sought to perform early ablations of ReAct to find a cost-effective variant whose
performance is relatively the same. We first ablated on the types of feedback from feedback at
all ("no-history") to ablating away components of the feedback from the last time step (where
"last-obs-reasoning-action" represents the last timestep with all feedback, "last-reasoning-action"
represents the last timestep with only the reasoning and action, and "last-action" represents the last
timestep with only the last action. Next, we tested two different types of reasoning; one where
we simply prompt ReAct to reason about the given information and another where we make it
provide a plan in its sequence before outputting a single action (which we’ve termed "mpc" after
Model Predictive Control). From these ablations on a small subset of data, we determined that
"last-reasoning-action-mpc" was the best performing and inexpensive as shown in Table 4.

Experiment Accuracy Average Steps Cost
no-history 1/9 29.11 $2.11
no-history-mpc 1/9 28.66 $2.70
last-action 1/9 29.55 $2.35
last-action-mpc 2/9 26.66 $2.92
last-reasoning-action 1/9 28.88 $2.46
last-reasoning-action-mpc 3/9 28.33 $2.64
last-obs-reasoning-action 2/9 26.77 $3.02
last-obs-reasoning-action-mpc 3/9 23.88 $2.93

Table 4: Performance comparison on different ablations of ReAct. The variant using "last-reasoning-
action" and "mpc" is tied for best performing but wins in terms of cost.

A.9 DIFFERENCES IN HORIZON PERFORMANCE

In Table 3 we observe that horizon length does not necessarily correlate with success. The main
confounding variable is the quality of few-shot examples. Each dataset provides a single optimal
few-shot example from a training task excluded from the testing set. This example is insufficient when
the LLM agent makes a mistake because it has not seen examples of incorporating state feedback to
recover from failure. The LLM agent, therefore, acts in an open-loop manner.

In the synchronous dataset, Task 5 is more complex than Task 4, yet it has a higher success rate. This
is because Task 5 is more aligned to the few-shot example, sharing a common sub-trajectory (i.e.
stacking cheese). This similarity allows ReAct to stay within the distribution of the example, leading
to fewer mistakes. In contrast, Task 4 deviates more from the example, resulting in ReAct making
mistakes it cannot recover from.

Similarly, in the asynchronous dataset, we also observe that Task 1 < Task 2 < Task 3 despite having
increasing complexity. Task 2 and 3 are more aligned to the few-shot example, sharing common
sub-trajectories (i.e. cutting veggies) so we expect the two to perform at least as well as Task 1. We

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

also expect some variance since we run our models with a temperature of 0.7; Tasks 2 and 3 are
within standard error (30.0 ± 13.8 for Task 2 versus 40.0 ± 14.8 for Task 3) so they perform similarly.

A.10 WHY IS ASYNCHRONOUS HARDER THAN SYNCHRONOUS?

The complexity of search for synchronous and asynchronous given the MDP in Section 2 is:

1. Synchronous Case (d = 0): No delays, so the planner operates in O(|S|+ |A|)
2. Asynchronous Case (d > 0): Each delay expands the effective state space, yielding O(|S|×

(d+ 1)n + |A|) complexity, where n is the number of timers

Hence the expanded state space requires both a conventional planner or a LLM based planner to
reason over a larger range of delayed effects.

A.11 FAILURE MODE TAXONOMY DETAILS

Markov Decision Process To categorise the failure modes, we used the Markov Decision Process
(MDP), where there are 4 main failure modes:

1. State failures

2. Action failures

3. Transition Function failures

4. Goal failures

We chose to use the MDP because LLMs know the MDP of the real world very well, but struggle to
learn and understand the MDP of new enviornments, such as Robotouille. In using the MDP as a
system to categorise failures, we are better able to see how the LLM bridges its knowledge of the real
world to its understanding of new environments.

State Failures A failure is categorised as a state failure when the agent misunderstands predicates
in the state, and fails as a result of this misunderstanding. For example, when preparing a chicken
cheese sandwich, the LLM agent may mistake the chicken to be already cooked, when it is not. Even
though the predicates are true in the state, the agent misinterprets the predicates, causing it to take the
wrong action and preventing it from achieving the goal successfully.� �

Item chicken2:
chicken2 is a chicken breast
chicken2 can be cooked on a stove
chicken2 is at stove4
chicken2 is directly on top of stove4
chicken2 has nothing above it

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus,
↪→ I will stack the ingredients from bottom to top as
↪→ follows: table -> bottom bun -> chicken -> cheese ->
↪→ bread.

1. First, I will leave chicken1 cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is the bottom bun. I see bottombun1 on
↪→ table3 with chicken1 on top of it. I will leave
↪→ bottombun1 in place since it is already in the correct
↪→ position.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

3. The second ingredient is chicken. I see chicken1 stacked on
↪→ bottombun1. Since chicken1 is already stacked on
↪→ bottombun1, I will leave it in place.

4. The third ingredient is cheese. I see cheese1 on table3.
↪→ Since cheese1 is directly on top of chicken1, I will
↪→ leave it in place.

5. The fourth ingredient is bread. I see bread2 on table3 and
↪→ bread1 held by robot1. I need to stack bread1 on top of
↪→ cheese1 to complete the sandwich.

Action: Stack bread1 on top of cheese1 using robot1� �
Listing 1: Example of a State failure: 0_cheese_ chicken_ sandwich_ 252

Action failures A failure is categorised by an action failure when the agent exceeds the number of
steps and fails to complete the environment because it repeatedly tries to take an invalid action. Even
thought the valid actions are listed to the agent at each step, the agent may ignore the prompt and try
to take another invalid action repeatedly. For example, when making potato soup, the agent tries to
"transfer" the soup in the pot into a bowl it is currently holding, although the correct action in the
environment is to pick up the pot and "pour" the soup into the bowl.� �

Valid Actions:
Move robot1 from stove1 to sink1
Move robot1 from stove1 to table1
Move robot1 from stove1 to table2
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to board1
Move robot1 from stove1 to fryer2
Move robot1 from stove1 to stove2
Move robot1 from stove1 to table3
Do nothing

Goal: Make potato soup with a whole potato and serve into a
↪→ bowl on a table.

ACTION PROPOSAL RESPONSE

Reasoning: The goal is to make potato soup with a whole potato
↪→ and serve it into a bowl on a table. The steps required
↪→ to achieve this goal are:

1. Fill pot1 with water (done).
2. Boil the water in pot1 (done).
3. Add potato1 to the boiling water in pot1 (done).
4. Serve the soup into bowl1 on a table.

Currently, potato1 has been added to boiling water in pot1,
↪→ and pot1 is at stove1. I am holding bowl1 which is empty
↪→ . The next step is to transfer the soup from pot1 to
↪→ bowl1. Since I am already at stove1, I will transfer the
↪→ soup from pot1 to bowl1.

Action: Transfer water1 and potato1 from pot1 to bowl1 using
↪→ robot1

ACTION PROPOSAL PROMPT

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

Error Feedback: The action 'Transfer water1 and potato1 from
↪→ pot1 to bowl1 using robot1' is not valid. Please provide
↪→ a valid action.� �

Listing 2: Example of an Action failure: 5_ potato_ soup_ 126

Transition Function failure A failure is categorised as a transition function failure when the agent
violates a rule, even though the rules are included in the prompt to the agent. When the agent tries to
plan for and perform actions that break the rule, if it is unable to recover, it will repeat transitions,
causing it to exceed the number of steps and fail to complete the task in the environment. For example,
one of the rules in the environment is that "A Station must contain a single Item to perform an action
on it". When trying to prepare an onion soup, the agent may try to cut multiple onions together on a
single cutting board at the same time. While this is possible in the real world, it is not allowed in our
environment. This misunderstanding of the transition failure causes the agent to run out of steps.� �

Reasoning: The goal is to make onion soup with 3 cut onions
↪→ and serve it into a bowl on a table. The steps to
↪→ achieve this goal are as follows:

1. Gather and cut the onions.
2. Place the cut onions into a pot with water.
3. Boil the pot with the onions.
4. Serve the soup into a bowl on a table.

Currently, I am holding onion1 and need to cut it. Since I am
↪→ at board1, I will stack onion1 on top of onion2 to cut
↪→ it on the cutting board.

Action: Stack onion1 on top of onion2 using robot1� �
Listing 3: Example of an Transition Function failure: 6_ onion_ soup_ 126

Goal failure A failure is categorised as a goal failure when the agent fails due to a misunderstanding
of the goal, even though the goal is specified to the agent. This may mean that the agent stacks the
ingredients in the wrong order, fail to prepare the ingredients before assembling the recipe, or include
ingredients not included in the recipe. For example, when preparing a cheese chicken sandwich, the
agent may fail to cook the chicken before assembling the sandwich.� �

Reasoning: The goal is to make a cheese chicken sandwich on a
↪→ table. The ingredients need to be stacked from bottom to
↪→ top as follows: table -> bread -> chicken -> cheese ->
↪→ bread.

Given the current state:
1. I am holding chicken1 at table3.
2. The base of the sandwich includes bread2 and bottombun1 and

↪→ is already correctly stacked on table3.
3. The next step is to stack the chicken on top of the

↪→ existing bottom bun and bread combination.
4. After the chicken, I will need to stack cheese, which is on

↪→ stove3.
5. The final ingredient is the top bun, which is not

↪→ explicitly mentioned but can be assumed to be the
↪→ topmost bread slice.

Therefore, the immediate action will be to stack chicken1 on
↪→ top of bottombun1, which is already at table3.� �

Listing 4: Example of an Goal failure: 0_ cheese_ chicken_ sandwich_ 252

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

Prioritising Failure Modes Sometimes, the agent may fail due to multiple reasons. For example,
it may violate rules and also misunderstand the goal. In such cases, we choose the failure
mode that ultimately contributes to the goal. If it ultimately tries to perform actions based on
a misunderstanding of the state, causing it to fail, we classify it as a state failure. If it repeats
transitions due to a misunderstanding of the valid actions in the state, we classify it as an action failure.

The dominant failure modes in the datasets are transition function failures and goal failures, and there
are multiple environments where the agent seemingly fails to understand both the transition function
and the goal. In this case, we refer to the following tiebreaker. If the agent misunderstands the goal
but also violates rules, we find the reason why the agent failed. In the case it violates a rule and is
unable to recover, we classify it as a transition function failure because it was unable to ultimately
make any progress towards the goal, whether it was accurate or not. If the agent was able to recover
but failed due to a misunderstanding of the goal, we classify it as a goal failure.

Another situation that is unclear is when the agent fails to prepare the ingredients before assembling the
recipe. This could either be due to a misunderstanding of the state, or because of a misunderstanding
of the goal. If the agent reasons that the ingredients is already prepared when it is not, it is classified
as a state failure. However, if the agent does not reason about preparing the ingredient at all, then it is
classified as a goal failure.

A.12 QUALITATIVE PLANNING FAILURE EXAMPLE

To gain more insight into why LLM agents are unable to efficiently complete asynchronous tasks
successfully, we created a new baseline by repeating the rules to the agent before every action.
However, this caused the agent to sometimes be even more inefficient, as it naively tries to follow
rules without proper planning.

In this example, the agent needs to cook a chicken on a stove, but all the stoves are currently occupied.
It first follows the rule "A Station must contain a single Item to perform an action on it" and picks up
the item from the stove. Then, it follows the rule "A Player can only hold a single Item at a time".
Since it is currently holding the item it does not need, and it wants to cook the chicken, it places the
item back onto the stove to free its hands. This causes the agent to repeatedly pick up the item from
the stove and place it back onto the stove. (Fig. 41)� �

Reasoning: The goal is to make a cheese chicken sandwich on a
↪→ table. The sandwich will be stacked in the following
↪→ order: table -> bread -> chicken -> cheese -> bread.

1. The first ingredient, bread1, is already on table2 and will
↪→ serve as the base for the sandwich. I will leave it in
↪→ place.

2. The second ingredient is chicken. I see chicken1 on table3.
↪→ I must cook chicken1 before stacking it on bread1.
↪→ stove4 currently has bread3 on it, which is not needed
↪→ for the sandwich. I will pick up bread3 from stove4 to
↪→ make space for cooking chicken1.

Action: Pick up bread3 from stove4 using robot1

...

Reasoning: The goal is to prepare a cheese chicken sandwich on
↪→ a table. To achieve this, I need to stack the
↪→ ingredients from bottom to top as follows: table ->
↪→ bread -> chicken -> cheese -> bread.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

Figure 41: 0_ cheese_ chicken_ sandwich_ 84: All stoves are occupied, and agent naively follows
rules, causing it to repeat transitions

1. The first ingredient, bread1, is already on table2 and will
↪→ serve as the base for the sandwich. I will leave it in
↪→ place.

2. The second ingredient is chicken. I see chicken1 on table3.
↪→ I must cook chicken1 before stacking it on bread1.
↪→ stove4 is currently empty, so I will place bread3 there
↪→ to free up my hands.

Action: Place bread3 on stove4 using robot1� �
Listing 5: Log for 0_ cheese_ chicken_ sandwich_ 84

A.13 QUALITATIVE BAD START FAILURES

5_ double_ cheeseburger_ 42 In this task, the agent misunderstands the goal from its very first line
of reasoning. The goal is to make a double cheeseburger on a table, with a bottom bun, cooked patty,

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

cheese, cooked patty, cheese, and a top bun, stacked in that order. However, the agent misunderstands
the goal and does not include all of the ingredients, causing it to fail to complete the task.� �

Reasoning: The goal is to make a double cheeseburger on a
↪→ table with the following stack: table -> patty -> cheese
↪→ -> patty -> cheese.

1. The first ingredient is a patty. I see patty1 on board1 and
↪→ patty2 on table2. Since board1 is a cutting board and
↪→ not a table, I will use patty2 on table2 as the base for
↪→ the burger. I will move robot1 to table2 to pick up
↪→ patty2.

Action: Move robot1 from table1 to table2� �
Listing 6: 5_ double_ cheeseburger_ 42

9_ onion_ cheese_ burger_ and_ lettuce_ tomato_ chicken_ sandwich_ 168 In this task, the agent
correctly understands the ingredients needed for the two recipes and the order in which they should
be stacked, but misunderstands the preparation of the ingredients, and does not register that it needs
to first cut the onion, lettuce, and tomato. Thus, it does not include these preparations in its reasoning,
and ultimately fails to complete the task.� �

Reasoning: The goal has two parts: prepare a burger with
↪→ cheese and onions on one table, and a chicken sandwich
↪→ with lettuce and tomato on another table.

For the burger with cheese and onions:
1. Bottom bun: bottombun1 on table1.
2. Onion: onion1 on table3.
3. Cheese: cheese1 on table2.
4. Patty: patty1 on fryer1.
5. Top bun: topbun1 on board1.

For the chicken sandwich with lettuce and tomato:
1. Bread: bread1 held by robot1 and bread2 on table4.
2. Chicken: chicken1 on table8.
3. Lettuce: lettuce1 on table5 or lettuce2 on table6.
4. Tomato: tomato1 on sink1.

Steps:
1. Move bread1 (held by robot1) to table4 to combine with

↪→ bread2.
2. Stack bread1 on top of bread2 to complete the bread part of

↪→ the chicken sandwich.
3. Move robot1 to table8 to pick up chicken1.
4. Move robot1 to table4 to stack chicken1 on the bread.
5. Move robot1 to table5 or table6 to pick up lettuce1 or

↪→ lettuce2.
6. Move robot1 to table4 to stack lettuce on the chicken.
7. Move robot1 to sink1 to pick up tomato1.
8. Move robot1 to table4 to stack tomato1 on the lettuce.

For the burger:
1. Move robot1 to table2 to pick up cheese1.
2. Move robot1 to table1 to stack cheese1 on bottombun1.
3. Move robot1 to table3 to pick up onion1.
4. Move robot1 to table1 to stack onion1 on cheese1.
5. Move robot1 to fryer1 to pick up patty1.
6. Move robot1 to table1 to stack patty1 on onion1.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

7. Move robot1 to board1 to pick up topbun1.
8. Move robot1 to table1 to stack topbun1 on patty1.

Action: Stack bread1 on top of bread2 using robot1� �
Listing 7: 9_ onion_ cheese_ burger_ and_ lettuce_ tomato_ chicken_ sandwich_ 168

A.14 TRANSITION FAILURE RECOVERY ANALYSIS

In this section, we annotated for the transition failures on the synchronous and asynchronous datasets
whether (1) the LLM agent recovers from a failure and (2) whether it repeats its mistake after
recovering.

A mistake occurs when the agent violates a rule at a certain station for a specific action. When the
agent makes a mistake, there are 4 cases:

1. The agent violates a rule and is unable to recover
2. The agent violates a rule at a station for a specific action, but is able to recover. After recovery,

they do not make any more mistakes; they do not repeat the mistake after recovering.
3. The agent violates a rule at a station, recovers, but is later repeats the mistake by trying to

perform the same action at the same type of station. In this case, they repeat the mistake
after recovering.

4. The agent violates a rule at a station, recovers, and does not repeat the mistake by trying to
violate the same rule for the same action at the same type of action. However, they violate
the same rule for a different action at a different type of station. In this case, we say that
they do not repeat their mistake.

On the synchronous dataset, the transition failures account for 32.1% (17) of the total failures. Of
these failures, 58.8% (10) recovered from the mistake. Of the failures that recovered from their
mistake, 90% (9) did not repeat the same mistake.

On the asynchronous dataset, the transition failures account for 58.5% (52) of the total failures. Of
these failures, 40.4% (21) recovered from the mistake. Of the failures that recovered from their
mistake, 57.1% (12) did not repeat the same mistake.

In the case where the agent is able to recover from a mistake, the agent may still fail to complete
the task because they recovery process took too long and exhausted the step limit. Then, this failure
would be categorised as a Transition Function failure.

75

	Introduction
	Robotouille
	Dataset Details
	Experiments
	Baselines
	Results and Analysis
	Overall Results
	Success and Optimality
	Failure Mode Analysis
	Follow-Up Investigation

	Discussion
	Appendix
	Related Works
	Additional Robotouille JSONs
	Prompts
	Additional Dataset Details
	Related Works Table Data
	ALFWorld
	CuisineWorld
	MiniWoB++
	Overcooked-AI
	PlanBench
	-bench
	WebArena
	WebShop
	AgentBench
	ARA
	AsyncHow

	MAgIC
	T-Eval
	MLAgentBench
	GAIA
	VirtualHome

	Task Dependency Graphs
	Synchronous Graphs
	Asynchronous Graphs
	Multi-Agent Graphs

	ReAct Ablations
	Differences in Horizon Performance
	Why is asynchronous harder than synchronous?
	Failure Mode Taxonomy Details
	Qualitative Planning Failure Example
	Qualitative Bad Start Failures
	Transition Failure Recovery Analysis

