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ABSTRACT

Effective asynchronous planning, or the ability to efficiently reason and plan over
states and actions that must happen in parallel or sequentially, is essential for
agents that must account for time delays, reason over diverse long-horizon tasks,
and collaborate with other agents. While large language model (LLM) agents
show promise in high-level task planning, current benchmarks focus primarily on
short-horizon tasks and do not evaluate such asynchronous planning capabilities.
We introduce ROBOTOUILLE, a challenging benchmark environment designed to
test LLM agents’ ability to handle asynchronous, long-horizon, and multi-agent
scenarios. These datasets capture increasingly complex planning challenges that go
beyond existing benchmarks, particularly in their requirement for agents to manage
overlapping tasks, interruptions, and collaboration. Our results show that ReAct
(gpt4-o) achieves 47% on synchronous tasks but only 11% on asynchronous
tasks, highlighting significant room for improvement. We further analyze failure
modes, demonstrating the need for LLM agents to better incorporate long-horizon
feedback and self-audit their reasoning during task execution.

1 INTRODUCTION
Large language models (LLMs) have demonstrated impressive reasoning and task planning capabili-
ties in short-horizon single-agent environments with clearly defined sequential tasks (Yao et al., 2022;
2023b; Shinn et al., 2023); however, decision-making in the real world introduces a more intricate
array of challenges. Consider an assistant that helps you with cooking a recipe. It must be able to
handle (1) time delays such as boiling spaghetti, which takes time to complete. An efficient agent
would move onto other steps instead of waiting for the spaghetti to fully cook. It should also handle
(2) diverse long-horizon tasks that require the assistant to satisfy multiple objectives and reason
about dependencies between different actions. Finally, the assistant should handle (3) multiple agents
by coordinating with others or distributing tasks based on each agent’s capability. To tackle these
challenges, an agent must be capable of asynchronous planning, or the ability to efficiently reason
and plan over states and actions that must happen in parallel or sequentially. With this capability, an
agent can coordinate time delays, break down long horizon tasks into subtasks, and efficiently assign
subtasks to multiple agents.

To improve asynchronous planning capability, we are interested in a benchmark (Table 1) that
stress tests LLM agents using time delays. AsyncHow Lin et al. (2024) benchmarks asynchronous
planning but does not use an interactive environment, lacking support for closed-loop planning agents.
ALFWorld (Shridhar et al., 2021), WebShop (Yao et al., 2023a) and PlanBench (Valmeekam et al.,
2023b) offer long-horizon diverse tasks (up to 50, 48 and 90 steps respectively) but evaluate with a
single agent and no time delays. VirtualHome (Puig et al., 2018) offers long-horizon (up to 96 steps)
and multi-agent tasks with procedural generation for extra diversity but also lacks time delays.

To address these gaps, we introduce ROBOTOUILLE, a simulator for cooking diverse recipes designed
to stress test LLM agents (Figure 1). ROBOTOUILLE tests asynchronous planning through tasks that
take time like cooking meat for burgers or sandwiches or filling up a pot with water to cook soup. Its
fully customizable JSON backend allows for the addition of new states, actions, and goals simplifying
the creation of diverse long-horizon tasks. Finally, ROBOTOUILLE supports turn-based and real-time
multi-agent execution either locally or on the network.

In addition, we provide 3 datasets to test LLM agents’ synchronous, asynchronous, and multi-agent
planning capabilities. We implement 3 baselines for benchmarking the synchronous and asynchronous
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Figure 1: Overview of ROBOTOUILLE along with examples of our synchronous and asynchronous
benchmarks. ROBOTOUILLE takes a domain and problem JSON to procedurally generate an envi-
ronment for an LLM agent to plan in. In the synchronous benchmark, the order that the burger is
assembled has minimal impact in the efficiency of the plan. In the asynchronous benchmark, ordering
matters due to time delays; leaving the patty to cook before cutting the lettuce is more efficient than
leaving the patty to cook after cutting the lettuce.

datasets and provide analyses on the failure modes to provide insights for future work. Our hope is
for the research community to engage with ROBOTOUILLE to create an ecosystem of environments
and methods that increase the diversity of our testbed and the capabilities of LLM agents.

Our key contributions include the following

1. We present a new environment, ROBOTOUILLE, for stress testing LLM agents’ ability to
perform asynchronous planning to handle time delays, diverse long-horizon tasks, and
multi-agent.

2. We curate 3 datasets for synchronous, asynchronous, and multi-agent settings, each contain-
ing 10 unique tasks each with 10 procedurally generated instances.

3. We implement various LLM baselines, evaluate them on the synchronous and asynchronous
datasets, and provide quantitative and qualitative analyses on failure modes.

2 ROBOTOUILLE

We formalize ROBOTOUILLE tasks as an MDP with time-delayed effects, M =< S,A, T ,R >.
Each state s ∈ S is s = (ŝt, Ht) where ŝt represents observable state elements like objects or
predicates such as iscut(lettuce1), or "lettuce1 is cut", and on(lettuce1,table2),
or "lettuce1 is on table2", and Ht is a set of timer variables h ∈ Ht each created by actions
with a countdown function h(x) = d−(x−i) where d is a delay constant and i is the timer’s activation
step. Action a ∈ A is a grounded action such as move(robot1, table1, table2), or "Move
robot1 from table1 to table2" that may introduce new timers h. Actions have preconditions
over state predicates which must be met to be valid. For a given state s and action a, the transition
function T : S ×A → S returns the next state s′ = (ŝt+1, Ht+1) if a is valid or the current state s
if a is invalid. For a valid action step, ŝt+1 = ŝt ∪ {predicates(h)|h ∈ Ht, h(t) = 0} to removes
expired timers and Ht+1 = (Ht − {h|h(t) = 0}) ∪ {h|a adds delay} to update active timers. The
reward function R : S → {0, 1} defines the goal of a given task where for goal state sg, r(sg) = 1.
We provide a complexity analysis between synchronous and asynchronous settings in Appendix A.10.
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Benchmark High-Level
Actions Multi-agent Procedural

Level Generation
Time

Delays Number of Tasks Longest Plan
Horizon

ALFWorld (Shridhar et al., 2021) ✓ ✗ ✗ ✗ 3827 50
CuisineWorld (Gong et al., 2023) ✓ ✓ ✓ ✗ 33 11

MiniWoB++ (Liu et al., 2018) ✓ ✗ ✗ ✗ 40 13
Overcooked-AI (Carroll et al., 2020) ✗ ✓ ✗ ✓ 1 100
PlanBench (Valmeekam et al., 2023b) ✓ ✗ ✓ ✗ 885 48

τ -bench (Yao et al., 2024) ✓ ✗ ✓ ✗ 165 30
WebArena (Zhou et al., 2024) ✓ ✗ ✓ ✗ 812 30
WebShop (Yao et al., 2023a) ✓ ✗ ✗ ✗ 12087 90

AgentBench (Liu et al., 2023d) ✓ ✓ ✗ ✗ 8 35
ARA (Kinniment et al., 2024) ✓ ✗ ✗ ✗ 12 4
AsyncHow (Lin et al., 2024) ✓ ✗ ✗ ✓ 1600 9

MAgIC (Xu et al., 2023) ✓ ✓ ✗ ✗ 5 20
T-Eval (Chen et al., 2024) ✓ ✓ ✗ ✗ 23305 19

MLAgentBench (Huang et al., 2024) ✓ ✗ ✗ ✗ 13 50
GAIA (Mialon et al., 2023) ✓ ✗ ✗ ✗ 466 45

VirtualHome (Puig et al., 2018) ✓ ✓ ✓ ✗ 2821 96

ROBOTOUILLE (Ours) ✓ ✓ ✓ ✓ 30 82

Table 1: Comparison between ROBOTOUILLE and other benchmarks. See Appendix A.1 for more
details.

Domain and Problem JSONs ROBOTOUILLE uses JSONs to fully describe a task M using a domain
D =< OD,PD,AD > and problems P =< OP , IP ,GP >, inspired by PDDL (Aeronautiques
et al., 1998) and described in Figure 2 (a-b). Domain D defines the possible states and actions of an
environment with object types OD, predicate definition PD and action definitions AD. Problem P
grounds the domain definitions with objects OP , initial state predicates IP , and goal GP . In addition,
PD, AD and GP have language representations for an LLM agent.

Action Effects We adopt immediate effects from PDDL, where T (s, a) = s′ and s′ results from
predicates being added or removed due to a. To extend actions beyond immediate effects, we
introduce special effects, which are custom code blocks that allow for complex interactions, such as
delayed effects in cooking where predicates are added after a delay. Figure 2 (c) shows an example
of a special effect for the cook action. A conditional effect applies the iscooking predicate if an
item i1 is on station s1 and removes it otherwise. In addition, a delayed effect is nested that adds
predicate iscooked(i1) after a delay specified in the problem JSON (see Appendix A.2).

Language Goal Language goals are inherently ambiguous and many states may satisfy them.
For example, in Figure 2 (d), the goal Make lettuce cheese sandwich on table lacks
information about which ingredients or tables to use (in the case where there are multiple) and doesn’t
specify whether the lettuce is above or below the cheese. We created a flexible goal specification
system that captures a combinatorial number of goal states that may satisfy a vague language goal.
In this example, by specifying that (1) one bread slice must be directly on the table, (2) another is
somewhere at the table while being clear on top and (3) lettuce and cheese must be somewhere at the
table, we fully capture all possible outcomes that satisfy the language goal.

Procedural Generation ROBOTOUILLE provides procedural generation which works off an existing
problem JSON. To ensure that goals can be satisfied, the problem JSON should contain the minimum
number of objects that satisfy the goal. The procedural generator shuffles existing objects and
adds new objects which allows for stress testing on diverse environments with varying language
descriptions and optimal paths to the goal.

Multi-agent ROBOTOUILLE supports multi-agent environments by simply adding more players into
the problem JSON. These environments can be either turn-based, where an LLM agent controls a
single agent at a time, or real-time, where an LLM agent controls all agents simultaneously. We
additionally implement networked multi-agent to allow data-collection of human-human play and
evaluating agents against humans.

3 DATASET DETAILS

In this section we discuss the contents of the synchronous and asynchronous datasets and their differ-
ences. We provide discussion of the in-context example tasks and multi-agent dataset in Appendix A.4.
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"predicate_defs": [{
"name": "istable",
"param_types": ["station"],
"language_descriptors": {

"0": "{0} is a table"
}},{
"name": "item_on",
"param_types": ["item", "station"],
"language_descriptors": {
"0": "{0} is directly on top of {1}",
"1":

"{1} has {0} directly on top of it"↪→
}},...]

(a) Predicate Definitions

"sfx": [{
"type": "conditional",
"param": "i1",
"conditions": [{
"predicate": "item_on",
"params": ["i1", "s1"],
"is_true": true

}],
"fx": [{
"predicate": "iscooking",
"params": ["i1"],
"is_true": true

}],
"sfx": [{
"type": "delayed",
"param": "i1",
"fx": [{

"predicate": "iscooked",
"params": ["i1"],
"is_true": true

}, {
"predicate": "iscooking",
"params": ["i1"],
"is_true": false

}],
"sfx": []

}]
}]

(c) Nested special effects for ’cook’ action

"name": "move",
"precons": [{
"predicate": "loc",
"params": ["p1", "s1"],
"is_true": true

}, ...],
"immediate_fx": [{

"predicate": "loc",
"params": ["p1", "s2"],
"is_true": true

}, {
"predicate": "loc",
"params": ["p1", "s1"],
"is_true": false

}, ...],
"sfx": [],
"language_description":

"Move {p1} from {s1} to {s2}"↪→

(b) Action Definitions

"goal_description":
"Make lettuce cheese sandwich on table",↪→

"goal": [{
"predicate": "item_on",
"args": ["bread", "table"],
"ids": [1, 2]

}, {
"predicate": "item_at",
"args": ["lettuce", "table"],
"ids": [3, 2]

}, {
"predicate": "item_at",
"args": ["cheese", "table"],
"ids": [4, 2]

}, {
"predicate": "item_at",
"args": ["bread", "table"],
"ids": [5, 2]

}, {
"predicate": "clear",
"args": ["bread"],
"ids": [5]

}]

(d) Goal Description

Figure 2: ROBOTOUILLE uses domain and problem JSONs to define the MDP and language descrip-
tion of an environment and tasks using (a) predicate definitions, (b) action definitions, (c) special
action effects and (d) goal definitions. See Appendix A.2 for other JSONs used.

Each dataset contains 10 unique tasks and has 10 procedurally generated instances. Table 3 and
Appendix A.7 include visual representations of the tasks and dependency graphs respectively.

Synchronous Dataset This dataset consists of tasks involving assembling sandwiches and burgers
with ingredients that may need to be cut. Any ingredients that can be cooked are initialized as cooked.
Tasks 1 to 3 involve assembling sandwiches of increasing difficulty where Task 1 only involves
assembling and Task 2 and 3 involve cutting ingredients. Tasks 4 to 7 involve assembling burgers
which differ from sandwiches in that the burger buns have ordering constraints with distinct buns
that go on the top and the bottom. Unlike other tasks, Task 6 enforces a strict ordering constraint on
the placement of all ingredients. Finally, Tasks 8 to 10 involve the preparation of 2 recipes which
increase in difficulty from identical sandwiches, identical burgers, and finally a sandwich and burger
with different ingredients.

Asynchronous Dataset This dataset consists of tasks including sandwiches and burgers from before
but also fried recipes and soup. Unlike the synchronous dataset, ingredients that can be cooked are
initialized as uncooked; this allows for asynchronous planning. Tasks 1 to 3 use the same ingredients
as those in the synchronous setting except for an added ingredient which must be cooked or fried.
Tasks 4 and 5 involve making a burger and a fried recipe; Task 4 includes french fries which requires
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cutting a potato then frying while Task 5 includes fried onions which is the same process with an
onion. Tasks 6 to 7 introduce a new recipe, soup, which involves filling a pot with water from a
sink, boiling the water, putting ingredients inside, and finally serving in a bowl. Of these subtasks,
filling a pot with water and boiling the water are steps that can be done asynchronously with other
tasks. Finally, Tasks 8 to 10 involve making soup along with increasing numbers of sandwiches and
burgers.

4 EXPERIMENTS
4.1 BASELINES

We evaluate LLMs on ROBOTOUILLE using the following baselines: I/O, I/O CoT, and ReAct.
I/O takes as input the initial state, including valid actions and goal, and outputs an plan directly.
I/O CoT (Wei et al., 2023) also takes as input the initial state but outputs a plan with chain of
thought before each action that estimates the resulting state. Instead of outputting the entire plan,
ReAct (Yao et al., 2022) outputs reasoning and the next action given the current state, and receives
the next state before repeating. We use an ablated version of ReAct that only keeps the reasoning
and action of the previous timestep in context (along with the base prompt and in-context examples);
the improved performance and cost-effectiveness is detailed in Appendix A.8. Each baseline receives
a single in-context example on a training example excluded from the testing set. We use temperature
0.7 for all models. All prompts are included in Appendix A.3.

4.2 RESULTS AND ANALYSIS

4.2.1 OVERALL RESULTS

• The best baseline, gpt4-o ReAct, only achieves 47% on the synchronous dataset and 11% on
the asynchronous dataset. See Sec 4.2.2.

• Dominant failure modes on the asynchronous dataset are similar to those in the synchronous dataset
indicating that simple LLM failures are inhibiting asynchronous planning. See Sec 4.2.3.

• Further investigations on the low asynchronous performance reveal that better feedback incorpo-
ration and reliable self-verification are crucial future work directions to boost performance. See
Sec 4.2.4.

4.2.2 SUCCESS AND OPTIMALITY

Question 1. How successful are baselines?

Table 2 shows the success rates of various LLMs baselines on the synchronous and asynchronous
datasets. Table 3 shows the task-specific success rates of baselines using gpt4-o. Success rate is
determined by reaching the goal within 1.5 times the optimal number of steps for the given instance.
Baselines exceeding this step limit are terminated.

Among all the LLM baselines, ReAct with the gpt4-o model performs the best on the syn-
chronous and asynchronous datasets. I/O performs worst for most LLMs while I/O CoT improves
performance.

When considering task-specific success over gpt4-o baselines, ReAct generally achieves higher
performance per task. While we list the horizon length as a crude difficulty metric, it is evident that
success rate is not solely dependent on it. We investigate this further in Appendix A.9. We also
investigate different agent failure modes in more depth in Section 4.2.3.

Synchronous (%) Asynchronous (%)

I/O I/O CoT ReAct I/O I/O CoT ReAct

gpt4-o 4.00 14.0 47.0 1.00 1.00 11.0
gpt-4o-mini 4.00 10.0 11.0 0.00 1.00 0.00
gemini-1.5-flash 0.00 13.0 0.00 0.00 0.00 0.00
claude-3-haiku 1.00 2.00 2.00 0.00 0.00 0.00

Table 2: Success rates of state-of-the-art LLMs on the synchronous and asynchronous datasets.
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I/O I/O ReAct Horizon
CoT Length

Synchronous (%)

[1] 20.0 40.0 70.0 10

[2] 0.00 20.0 80.0 14

[3] 10.0 30.0 80.0 24

[4] 0.00 10.0 40.0 10

[5] 0.00 0.00 60.0 15

[6] 10.0 20.0 20.0 23

[7] 0.00 0.00 50.0 36

[8] 0.00 10.0 30.0 44

[9] 0.00 10.0 20.0 63

[10] 0.00 0.00 20.0 57

Total 4.00 14.0 47.0

Asynchronous (%)

[1] 10.0 0.00 20.0 21

[2] 0.00 0.00 30.0 27

[3] 0.00 0.00 40.0 37

[4] 0.00 0.00 10.0 42

[5] 0.00 10.0 0.00 46

[6] 0.00 0.00 10.0 19

[7] 0.00 0.00 0.00 42

[8] 0.00 0.00 0.00 46

[9] 0.00 0.00 0.00 68

[10] 0.00 0.00 0.00 82

Total 1.00 1.00 11.0

Table 3: gpt4-o performance on the synchronous and asynchronous datasets.

Question 2. How close to optimal are successes?

Fig. 3 shows a histogram of the binned optimality rates on the successful runs of gpt4-o ReAct
on the synchronous and asynchronous datasets. Optimality rate is ∥τ̂∥

∥τ∗∥ where ∥τ̂∥ is the number of
steps taken by an agent and ∥τ∗∥ is the number of steps taken by an optimal planner.

For the synchronous dataset, 55.3% of successful attempts are optimal compared to the asynchronous
dataset where only 9.1% of successful attempts are optimal. We expect this since the order that tasks
are done in the synchronous setting does not affect optimality compared to the asynchronous setting.
We also see for the asynchronous dataset that 63.6% of successful attempts are suboptimal in the
(1, 1.25] bucket. We qualitatively observe that while the LLM agent usually prioritizes asynchronous
subtasks, suboptimal runs were due to inefficient actions, such as waiting while cooking. We further
investigate the agent’s subtask prioritization in Section 4.2.4.

Question 3. How far off are failures from the goal?
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Figure 3: Histogram of the optimality rate for gpt4-o ReAct successes on the synchronous and
asynchronous datasets. The 1 bin includes attempts that were optimal. Attempts between (1, 1.5] are
suboptimal but classified as successful. Attempts greater than an optimality rate of 1.5 are classified
as failures.

Figure 4: Histogram of the normalized steps to go for gpt4-o ReAct failures on the synchronous
and asynchronous datasets. The 0 to 0.5 bucket includes attempts that were making progress towards
the goal while the 0.5 to 1 bucket includes attempts that made little to no progress towards the goal.
Buckets greater than 1 includes attempts that traversed further away from the goal.

Fig. 4 shows a histogram of the binned normalized steps to go on the failed runs of gpt4-o ReAct
on the synchronous and asynchronous datasets. Steps to go is ∥τ∗

left∥
∥τ∗∥ where ∥τ∗left∥ are the optimal

number of steps left to reach the goal from the final state in a failed run and normalization factor
∥τ∗∥ is the optimal number of steps to reach the goal from the initial state.

For the asynchronous dataset, about 58.6% of failures are in the (0.5, 1.0] bucket which show that
most attempts made little to no progress towards the goal. We also see this on the synchronous
dataset, with 41.5% of failures in the (0.5, 1.0] bucket. We show quantitative results on gpt4-o
ReAct’s ineffective at failure recovery in Section 4.2.3 suggesting that failures on the asynchronous
dataset are mainly due to little progress being made. In contrast, we see 45.3% failures on the
synchronous dataset from (1.0,∞) which show that most attempts make progress away from the goal.
The asynchronous dataset only has 25.3% failures from (1.0,∞). We present qualitatively annotated
failures in Section 4.2.3 that suggest failures on the synchronous dataset are due to misunderstanding
the goal.

4.2.3 FAILURE MODE ANALYSIS

Question 4. What are the dominant failure modes?

7
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Figure 5: Nested pie chart of gpt4-o ReAct failure modes capturing uncertainties in the MDP. The
main categories are on the outer circle representing the uncertainty in the state space (S), action space
(A), transition function (T), or reward/goal (G). The subcategories on the inner circle represent the
dominant cause of failure and are described further in Appendix A.11.

Fig. 5 shows a nested piechart that captures failure modes of gpt4-o ReAct on the synchronous
and asynchronous datasets. We define our failure modes in terms of uncertainty over the MDP of the
environment. The 4 main failure categories include uncertainty in the state (S), actions (A), transition
function (T) and the goal (G). For a detailed description of the subcategories and dataset annotation,
see Appendix A.11.

For the synchronous failures, uncertainty in the goal accounts for the majority at 64.1% followed
by uncertainty in the transition function at 32.1%. Goal failures could be due to (1) an incorrect
understanding at the start of the plan or (2) a mistake during plan execution, such as using an
ingredient without cutting it, which is incorrectly believed to satisfy the goal. We observe that case
(1) occurs 28.3% of the time under Bad Start; the LLM agent restates goals incorrectly for complex
tasks with strict ordering dependencies like Task 6 or tasks with many diverse ingredients like Task
10 which we show in Appendix A.13. We observe that case (2) occurs 35.8% of the time under the
remaining subcategories; although the LLM agent starts with a correct goal, it misunderstand the
goal during execution by choosing the wrong action. For transition failures, violating the ‘one item
at a station’ rule accounts for the majority of failures at 24.5%. We qualitatively observe that the
agent attempts to use cutting stations for ingredient preparation while other items occupy the station;
however, we also observe that once the agent has recovered from this failure it is unlikely to repeat it
which we show in Appendix A.14.

For the asynchronous failures, the inverse is true with uncertainty in the transition function accounting
for 56.8% of failures and uncertainty in the goal accounting for 34.1% of failures. Similar to the
synchronous failures, violating the ‘one item at a station’ rule dominates failures at 53.4%. This is
due to the increased number of stations in the asynchronous setting compared to the synchronous
setting which increases the potential number of recoveries necessary. In the synchronous setting,
which only uses the cutting board station, an agent may need to recover once from violating the ’one
item at a station’ rule. In the asynchronous setting, which uses stoves, fryers, and sinks, an agent, in
the worst case, may need to recover from violating rules on each station in a task.

We point out that while we designed the synchronous and asynchronous datasets to test different
capabilities of LLM agents, we mainly observe similar transition failures in both settings. This
demonstrates the need to improve LLM agents at following environment constraints to improve their
decision-making ability. We investigate this further in Section 4.2.4.

Question 5. How effective are failure recoveries?

Fig. 6 shows a histogram of the repeated transitions of gpt4-o ReAct runs on the synchronous and
asynchronous datasets. We use repeated transitions as a proxy for measuring ReAct’s effectiveness
at recovering from failure.

In both the synchronous and asynchronous datasets, we see that the majority of successes have 0
repeated transitions; few successes have repeated transitions but successfully recover. For failures, the
asynchronous dataset’s lower and upper quartiles are 103.1% and 55.8% larger than the synchronous
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Figure 6: Histogram of the repeated transitions of gpt4-o ReAct runs on the synchronous and
asynchronous datasets. The median and quartiles of the asynchronous dataset are generally higher
than those of the synchronous dataset, indicating higher repeated transitions.

dataset’s quartiles. This means that failures on the asynchronous dataset are expected to have higher
repeated transitions; this ineffectiveness at recovery aligns with the transition failures being dominant
for the asynchronous setting in Fig. 5. Similarly, since the synchronous dataset has lower quartiles
than the asynchronous dataset, we expect to see less repeated transitions which suggests less transition
failures.

4.2.4 FOLLOW-UP INVESTIGATION

From the previous experiments, we conclude that LLM agents struggle in the asynchronous dataset
due to simple failures that arise in the synchronous dataset. In order to have a better understanding
of how to improve LLM agent capabilities on asynchronous planning, we look into asynchronous
subtask prioritization and boosting performance.

Question 6. Does asynchronous subtask prioritization affect performance?

Efficient asynchronous planning requires prioritizing subtasks that can be performed asynchronously.
We investigate how success rate changes with asynchronous task prioritization to understand the
impact of asynchronous planning on the results. Our hypothesis is that prioritizing asynchronous
subtasks leads to higher success rates because the planned trajectory is shorter and reaches the goal
within the maximum step limit. We find that the success rate conditioned on prioritization is 16%
compared to 6% without, supporting that prioritization achieves higher success rate. An agent should
be capable of auditing its own reasoning and plan to ensure that its prioritization correctly targets
asynchronous subtasks. We discuss methods for reliable self-verification in Section 5.

Question 7. Would asynchronous performance improve by increasing priors over the transition
function?

The dominant failures of gpt4-o ReAct on the asynchronous dataset were transition failures. We
investigate how we can improve performance by increasing the priors over the transition function.
We create an augmented method, ReAct + Prior, that prompts ReAct with more details about
the rules of ROBOTOUILLE. See Appendix A.3 for differences in prompting.

Fig. 7 shows nested pie charts of the failure modes on Tasks 1 to 3 of the asynchronous dataset from
the gpt4-o ReAct experiments in Table 3 and from gpt4-o ReAct + Prior.

We observe a statistically insignificant change in performance, where the success rate for gpt4-o
ReAct is 0.30± 0.085 and gpt4-o ReAct + Prior is 0.40± 0.050. We also observe failures
relating to violating the ’one item at station’ rule decrease from 38.1% for gpt4-o ReAct (8
failures) to 22.2% for gpt4-o ReAct + Prior (4 failures) accounting for a 50% decrease in
these transition failures. While this shows that increasing priors over rules decreases transition failures
as expected, overall performance did not improve due to other failures that arose. We note that state
failures increase from 23.8% for gpt4-o ReAct (5 failures) to 38.9% for gpt4-o ReAct +
Prior (7 failures). These failures are due to misunderstandings with the state description provided;
specifically, the agent assumes that meat on a stove always implies it is cooked. Augmenting ReAct
+ Prior over state priors would presumably improve performance but is impractical because it
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Figure 7: Nested pie chart of failure modes capturing uncertainties in the MDP of gpt4-o ReAct
+ Prior on Tasks 1 to 3 (30 problems) of the asynchronous dataset using gpt4-o ReAct and
gpt4-o ReAct + Prior.

requires excessive effort from a domain-expert and wouldn’t generalize to new domains. We discuss
methods for incorporating state feedback in Section 5.

5 DISCUSSION
In this paper we propose a new benchmark, ROBOTOUILLE, for stress testing LLM agents on
synchronous, asynchronous, and multi-agent settings. We evaluate state-of-the-art LLMs and expose
their dominant failure modes are similar across synchronous and asynchronous settings. We perform
follow-up studies to bring up performance and uncover the need for improvements in LLM agents
that we discuss below.

Feedback Incorporation A general method to incorporate long-horizon planning feedback in LLM
agents is to include all interactions in the context history. This works well for models with large
context windows or near-infinite attention mechanisms (Liu et al., 2023b; Munkhdalai et al., 2024),
but LLMs often struggle with long-contexts (Liu et al., 2023c). An alternative is RAG (Lewis et al.,
2021), yet this shifts the complexity to retrieval. As explored in Section 4.2.4, a promising approach is
for the agent to summarize interactions into facts to reduce uncertainty and strengthen priors. It should
also reason about future states to avoid myopic behaviors, as shown qualitatively in Appendix A.12.
Another underexplored yet effective approach is finetuning LLM agents (Chen et al., 2023) with
methods such as TD learning and value propogation (Putta et al., 2024; Gehring et al., 2024).

Self-Verification An LLM agent should be able to audit but LLMs are unreliable at self-verification
(Valmeekam et al., 2023a). Other approaches use LLMs to create a representation for external
planners (Liu et al., 2023a; Guan et al., 2023) or finetune on planning datasets (Pallagani et al., 2022;
Lehnert et al., 2024) but these methods are difficult to debug and lack guarantees respectively. One
approach is to combine code-use with language (Wang et al., 2024); reasoning in language and
verifying understanding with code and APIs would allow us stronger guarantees that are easier to
debug.

Real-World Application To effectively deploy LLM agents on real-world agents, the cost and
inference time of LLMs must be brought down to make them affordable and quick. This is especially
problematic for long-horizon task planning since cost and inference time increases as context grows.
These system must also be evaluated with real humans; one future direction for Robotouille is serving
as an online platform to test agents with humans through collaboration.
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A APPENDIX

A.1 RELATED WORKS

In this section we will focus on our desiderata for LLM assistants and how ROBOTOUILLE is different
from other related works (Table 1).

Asynchronous Planning Many benchmarks evaluate the task planning abilities of LLM agents
(Shridhar et al., 2021; Gong et al., 2023; Liu et al., 2018; Valmeekam et al., 2023b; Yao et al., 2024;
Zhou et al., 2024; Yao et al., 2023a) but few test the ability to plan asynchronously. Existing work
relevant to asynchronous planning evaluate LLM capabilities on temporal logic (Wang & Zhao, 2024)
or use graph-based techniques (Wu et al., 2024); (Besta et al., 2024)) but do not focus on it. (Lin
et al., 2024) proposes the Plan Like a Graph technique and a benchmark AsyncHow that focuses on
asynchronous planning but makes a strong assumption that infinite agents exist. (Carroll et al., 2020)
proposes a benchmark, Overcooked-AI, that involves cooking onion soup which has time delays but
has limited tasks and focuses on lower-level planning without LLM agents. ROBOTOUILLE has a
dataset focused on asynchronous planning that involves actions including cooking, frying, filling a
pot with water, and boiling water.

Diverse Long-Horizon Task Planning There is vast amount of work that use LLMs to plan (Ahn
et al., 2022; Huang et al., 2022; Zeng et al., 2022; Liang et al., 2023; Singh et al., 2022; Song et al.,
2023; Yang et al., 2023; Song et al., 2023) but they tend to evaluate on short-horizon tasks with
limited diversity in tasks. We present the number of tasks, longest plan horizon, and procedural
generation capability of various benchmarks in Table 1 to capture these axes. Notable LLM agent
benchmarks that capture these axes include PlanBench (Valmeekam et al., 2023b), WebShop (Yao
et al., 2023a), and VirtualHome (Puig et al., 2018). ROBOTOUILLE provides a focused set of diverse
long-horizon tasks that can be procedurally generated.

Multi-agent Planning LLM agent benchmarks like (Liu et al., 2023d; Xu et al., 2023; Ma et al., 2024;
Gong et al., 2023) evaluate multi-agent interactions but do not involve time delays. OvercookedAI
(Carroll et al., 2020), while not an LLM agent benchmark, incorporates time delays which brings
the complexity of asynchronous planning to multi-agent settings. ROBOTOUILLE provides a multi-
agent dataset for 2-4 agents, a choice between turn-based or realtime planning, and incorporates
asynchronous tasks for added complexity.

A.2 ADDITIONAL ROBOTOUILLE JSONS

To provide flexibility in task and environment creation, a JSON is used to define the problem. The
size of the grid used can be specified, and positions of objects in the item can be specified using
coordinates. Predicates that are specific to an item can also be specified. In conjunction with the
flexible goal creation described in Section 2, objects in the environment can be given specific ids, if
the goal must be satisfied for specific objects. Additionally, if the environment requires a different
number of cuts to complete cutting, or a different cook time, these values can be configured in the
JSON.
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"width": 3,
"height": 3,
"config": {

"num_cuts": {
"lettuce": 3,
"default": 3

},
"cook_time": {

"patty": 3,
"default": 3

}},
"stations": [{

"name": "board",
"x": 0,
"y": 1,
"id": "A"

}],
"items": [{

"name": "lettuce",
"x": 0,
"y": 1,
"stack-level": 0,
"predicates": ["iscuttable"],
"id": "a"

}],
"players": [{

"name": "robot",
"x": 0,
"y": 0,
"direction": [0, 1]

}],
"goal_description": "Cut the lettuce on the board until it is cut",
"goal": [{

"predicate": "iscut",
"args": ["lettuce"],
"ids": ["a"]

}]

Figure 8: Environment JSON for a lettuce cutting task.

Adding objects to the environment is also simple. To add a new object, the necessary predicates
for that object can be added to the domain JSON, and its corresponding image can be added to the
rendering JSON. If there are different images for the object depending on the predicates that are true
in the environment, these can also be specified. The images can also be scaled or offset using the
rendering JSON.
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"player": {
"robot": {

"front": "robot_front.png",
"back": "robot_back.png",
"left": "robot_left.png",
"right": "robot_right.png"

}},
"floor": "floorkitchen.png",
"item": {

"constants": {
"STATION_ITEM_OFFSET" : 0.25,
"X_SCALE_FACTOR": 0.125,
"Y_SCALE_FACTOR": 0.75

},
"entities": {

"chicken": {
"assets": {

"default": "chicken.png",
"cooked": {

"asset": "cookedchicken.png",
"predicates": ["iscooked"]

},
"fried": {

"asset": "friedchicken.png",
"predicates": ["isfried"]

}
},
"constants": {}

}, ...}},
"station": {

"constants": {},
"entities": {

"fryer": {
"assets": {

"default": "fryer.png"
},
"constants": {}

},...}}

Figure 9: Rendering JSON.

To specify what button to press for each action, we use an input JSON. If the action requires a mouse
click, we can specify where the player needs to click to perform the action. If the action requires a
key press, we specify which button to press for which action, and where the player needs to be to
perform the action.

"mouse_click_actions": [{
"name": "move",
"input_instructions": {

"button": "left",
"click_on": "s2"

}},...],
"keyboard_actions": [{

"name": "cook",
"input_instructions": {

"key": "e",
"at": "s1"

}},...]

Figure 10: Input JSON.

A.3 PROMPTS

We use the following instructions for the I/O, I/O CoT, and ReAct baselines in both the syn-
chronous and asynchronous datasets. Each method is few-shot prompted with an example optimal
trajectory on a task unique to the dataset being evaluated on. Notably, the asynchronous example
involves a time delay. We ensured that prompt formatting in both datasets was consistent. ReAct
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example observations are omitted to make experiments cheaper and because we did not note a major
difference in performance during preliminary testing.

I/O Prompt

You must propose a plan given an observation and valid actions.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in the previous interaction

Always format your response as follows:
Plan: ...

where:
- 'Plan' is the sequence of actions you propose to take in the
↪→ environment to reach the goal
- The actions should be formatted exactly as they are in the
↪→ environment description
- Do not include any numbering or bullet points for the actions

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold other objects, e.g. a pot
↪→ or a pan
- Meal: A mixture of ingredients contained within a Container

The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container can hold multiple Items
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically, it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot of boiling water containing prepared ingredients
↪→ served in a bowl.

The actions you can take in the environment are as follows:
- Move {p1} from {s1} to {s2} | Moves Player {p1} from Station
↪→ {s1} to Station {s2}
- Pick up {i1/c1} from {s1} using {p1} | Picks up Item {i1} or
↪→ Container {c1} from Station {s1} using Player {p1}
- Place {i1/c1} on {s1} using {p1} | Places Item {i1} or
↪→ Container {c1} on Station {s1} using Player {p1}
- Stack {i1} on top of {i2} using {p1} | Stacks Item {i1} on
↪→ top of Item {i2} using Player {p1}
- Unstack {i1} from {i2} using {p1} | Unstacks Item {i1} from
↪→ Item {i2} using Player {p1}
- Cook {i1} on {s1} using {p1} | Cooks Item {i1} on Station
↪→ {s1} using Player {p1} (fully cooks over 3 timesteps, not
↪→ immediate)
- Cut {i1} on {s1} using {p1} | Cuts Item {i1} on Station {s1}
↪→ using Player {p1} (must cut 3 times in succession, not
↪→ immediate)
- Fry {i1} on {s1} using {p1} | Fries Item {i1} on Station {s1}
↪→ using Player {p1} (fully fries over 3 timesteps, not
↪→ immediate)
- Fill {c1} with water from {s1} using {p1} | Fills Container
↪→ {c1} with water from Station {s1} using Player {p1}
- Boil {c1}'s contents on {s1} using {p1} | Boils the contents
↪→ of Container {c1} on Station {s1} using Player {p1} (fully
↪→ boils over 3 timesteps, not immediate)
- Add {i1} into {c1} using {p1} | Adds Item {i1} into Container
↪→ {c1} using Player {p1}
- Fill {c1} with {c2}'s contents using {p1} | Fills Container
↪→ {c1} with the contents of Container {c2} using Player {p1}
- Do nothing | Takes no action, consumes 1 timestep

I/O Synchronous Example

Interaction 1
---------------

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it
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Station stove1:
stove1 is a stove
stove1 is occupied by robot1
stove1 has bread2
stove1 has bread2 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has onion1
fryer1 has onion1 directly on top of it
fryer1 has no players at it

Station table2:
table2 is a table
table2 has nothing on it
table2 has no players at it

Station board2:
board2 is a cutting board
board2 has bottombun1
board2 has bottombun1 directly on top of it
board2 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has cheese1
sink3 has cheese1 directly on top of it
sink3 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has nothing on it
fryer2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
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lettuce1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at stove1
bread2 is directly on top of stove1
bread2 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at fryer1
onion1 is directly on top of fryer1
onion1 has nothing above it

Item bottombun1:
bottombun1 is a bottom bun
bottombun1 is at board2
bottombun1 is directly on top of board2
bottombun1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item cheese1:
cheese1 is a cheese slice
cheese1 is at sink3
cheese1 is directly on top of sink3
cheese1 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at stove1
robot1 is holding nothing

Valid Actions:
Move robot1 from stove1 to table1
Move robot1 from stove1 to board1
Move robot1 from stove1 to sink1
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to table2
Move robot1 from stove1 to board2
Move robot1 from stove1 to table3
Move robot1 from stove1 to sink2
Move robot1 from stove1 to sink3
Move robot1 from stove1 to sink4
Move robot1 from stove1 to fryer2
Pick up bread2 from stove1 using robot1
Do nothing

Goal: Prepare a onion cheese sandwich on a table
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Plan:
Move robot1 from stove1 to board1
Pick up lettuce1 from board1 using robot1
Move robot1 from board1 to table3
Place lettuce1 on table3 using robot1
Move robot1 from table3 to fryer1
Pick up onion1 from fryer1 using robot1
Move robot1 from fryer1 to board1
Place onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Cut onion1 on board1 using robot1
Pick up onion1 from board1 using robot1
Move robot1 from board1 to table1
Stack onion1 on top of bread1 using robot1
Move robot1 from table1 to sink3
Pick up cheese1 from sink3 using robot1
Move robot1 from sink3 to table1
Stack cheese1 on top of onion1 using robot1
Move robot1 from table1 to stove1
Pick up bread2 from stove1 using robot1
Move robot1 from stove1 to table1
Stack bread2 on top of cheese1 using robot1

I/O Asynchronous Example

Interaction 1
---------------

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station table2:
table2 is a table
table2 is occupied by robot1
table2 has chicken1
table2 has chicken1 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has nothing on it
fryer1 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
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table3 has no players at it

Station stove1:
stove1 is a stove
stove1 has nothing on it
stove1 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has onion1
sink3 has onion1 directly on top of it
sink3 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has bread2
fryer2 has bread2 directly on top of it
fryer2 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station board2:
board2 is a cutting board
board2 has nothing on it
board2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item chicken1:
chicken1 is a chicken breast
chicken1 can be cooked on a stove
chicken1 is at table2
chicken1 is directly on top of table2
chicken1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item onion1:
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onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at sink3
onion1 is directly on top of sink3
onion1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at fryer2
bread2 is directly on top of fryer2
bread2 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at table2
robot1 is holding nothing

Valid Actions:
Move robot1 from table2 to table1
Move robot1 from table2 to board1
Move robot1 from table2 to sink1
Move robot1 from table2 to fryer1
Move robot1 from table2 to table3
Move robot1 from table2 to stove1
Move robot1 from table2 to sink2
Move robot1 from table2 to sink3
Move robot1 from table2 to fryer2
Move robot1 from table2 to sink4
Move robot1 from table2 to board2
Pick up chicken1 from table2 using robot1
Do nothing

Goal: Prepare an onion chicken sandwich on a table

Plan:
Pick up chicken1 from table2 using robot1
Move robot1 from table2 to stove1
Place chicken1 on stove1 using robot1
Cook chicken1 on stove1 using robot1
Move robot1 from stove1 to sink4
Pick up onion2 from sink4 using robot1
Move robot1 from sink4 to board2
Place onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Cut onion2 on board2 using robot1
Pick up onion2 from board2 using robot1
Move robot1 from board2 to table1
Stack onion2 on top of bread1 using robot1
Move robot1 from table1 to stove1
Pick up chicken1 from stove1 using robot1
Move robot1 from stove1 to table1
Stack chicken1 on top of onion2 using robot1
Move robot1 from table1 to fryer2
Pick up bread2 from fryer2 using robot1
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Move robot1 from fryer2 to table1
Stack bread2 on top of chicken1 using robot1

I/O CoT Prompt

You must propose a plan given an observation and valid actions.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in the previous interaction

Always format your response as follows:
Action: ...
Next State Changes: ...
Action: ...
Next State Changes: ...
...

where:
- 'Action' is the action you propose to take in the last state
↪→ to reach the goal
- The action should be formatted exactly as they are in the
↪→ environment description
- 'Next State' is the state after the action is taken
- The state can be a summary of the changes in the environment
↪→ after the action is taken

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold other objects, e.g. a pot
↪→ or a pan
- Meal: A mixture of ingredients contained within a Container

The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container can hold multiple Items
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically,
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it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot of boiling water containing prepared ingredients
↪→ served in a bowl.

The actions you can take in the environment are as follows:
- Move {p1} from {s1} to {s2} | Moves Player {p1} from Station
↪→ {s1} to Station {s2}
- Pick up {i1/c1} from {s1} using {p1} | Picks up Item {i1} or
↪→ Container {c1} from Station {s1} using Player {p1}
- Place {i1/c1} on {s1} using {p1} | Places Item {i1} or
↪→ Container {c1} on Station {s1} using Player {p1}
- Stack {i1} on top of {i2} using {p1} | Stacks Item {i1} on
↪→ top of Item {i2} using Player {p1}
- Unstack {i1} from {i2} using {p1} | Unstacks Item {i1} from
↪→ Item {i2} using Player {p1}
- Cook {i1} on {s1} using {p1} | Cooks Item {i1} on Station
↪→ {s1} using Player {p1} (fully cooks over 3 timesteps, not
↪→ immediate)
- Cut {i1} on {s1} using {p1} | Cuts Item {i1} on Station {s1}
↪→ using Player {p1} (must cut 3 times in succession, not
↪→ immediate)
- Fry {i1} on {s1} using {p1} | Fries Item {i1} on Station {s1}
↪→ using Player {p1} (fully fries over 3 timesteps, not
↪→ immediate)
- Fill {c1} with water from {s1} using {p1} | Fills Container
↪→ {c1} with water from Station {s1} using Player {p1}
- Boil {c1}'s contents on {s1} using {p1} | Boils the contents
↪→ of Container {c1} on Station {s1} using Player {p1} (fully
↪→ boils over 3 timesteps, not immediate)
- Add {i1} into {c1} using {p1} | Adds Item {i1} into Container
↪→ {c1} using Player {p1}
- Fill {c1} with {c2}'s contents using {p1} | Fills Container
↪→ {c1} with the contents of Container {c2} using Player {p1}
- Do nothing | Takes no action, consumes 1 timestep

I/O CoT Synchronous Example

Interaction 1
---------------

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
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board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station stove1:
stove1 is a stove
stove1 is occupied by robot1
stove1 has bread2
stove1 has bread2 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has onion1
fryer1 has onion1 directly on top of it
fryer1 has no players at it

Station table2:
table2 is a table
table2 has nothing on it
table2 has no players at it

Station board2:
board2 is a cutting board
board2 has bottombun1
board2 has bottombun1 directly on top of it
board2 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has cheese1
sink3 has cheese1 directly on top of it
sink3 has no players at it

Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has nothing on it
fryer2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
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bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at stove1
bread2 is directly on top of stove1
bread2 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at fryer1
onion1 is directly on top of fryer1
onion1 has nothing above it

Item bottombun1:
bottombun1 is a bottom bun
bottombun1 is at board2
bottombun1 is directly on top of board2
bottombun1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item cheese1:
cheese1 is a cheese slice
cheese1 is at sink3
cheese1 is directly on top of sink3
cheese1 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at stove1
robot1 is holding nothing

Valid Actions:
Move robot1 from stove1 to table1
Move robot1 from stove1 to board1
Move robot1 from stove1 to sink1
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to table2
Move robot1 from stove1 to board2
Move robot1 from stove1 to table3
Move robot1 from stove1 to sink2
Move robot1 from stove1 to sink3
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Move robot1 from stove1 to sink4
Move robot1 from stove1 to fryer2
Pick up bread2 from stove1 using robot1
Do nothing

Goal: Prepare a onion cheese sandwich on a table

Action: Move robot1 from stove1 to board1
Next State Change: robot1 is at board1, robot1 is not at stove1
Action: Pick up lettuce1 from board1 using robot1
Next State Change: lettuce1 is held by robot1, lettuce1 is not at

↪→ board1
Action: Move robot1 from board1 to table3
Next State Change: robot1 is at table3, robot1 is not at board1
Action: Place lettuce1 on table3 using robot1
Next State Change: lettuce1 is at table3, lettuce1 is not held by

↪→ robot1
Action: Move robot1 from table3 to fryer1
Next State Change: robot1 is at fryer1, robot1 is not at table3
Action: Pick up onion1 from fryer1 using robot1
Next State Change: onion1 is held by robot1, onion1 is not at fryer1
Action: Move robot1 from fryer1 to board1
Next State Change: robot1 is at board1, robot1 is not at fryer1
Action: Place onion1 on board1 using robot1
Next State Change: onion1 is on board1, onion1 is not held by robot1
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 is being cut (2)
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 is being cut (1)
Action: Cut onion1 on board1 using robot1
Next State Change: onion1 has been cut
Action: Pick up onion1 from board1 using robot1
Next State Change: onion1 is held by robot1, onion1 is not at board1
Action: Move robot1 from board1 to table1
Next State Change: robot1 is at table1, robot1 is not at board1
Action: Stack onion1 on top of bread1 using robot1
Next State Change: onion1 is atop bread1, onion1 is not held by

↪→ robot1
Action: Move robot1 from table1 to sink3
Next State Change: robot1 is at sink3, robot1 is not at table1
Action: Pick up cheese1 from sink3 using robot1
Next State Change: cheese1 is held by robot1, cheese1 is not at

↪→ sink3
Action: Move robot1 from sink3 to table1
Next State Change: robot1 is at table1, robot1 is not at sink3
Action: Stack cheese1 on top of onion1 using robot1
Next State Change: cheese1 is atop onion1, cheese1 is not held by

↪→ robot1
Action: Move robot1 from table1 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table1
Action: Pick up bread2 from stove1 using robot1
Next State Change: bread2 is held by robot1, bread2 is not at stove1
Action: Move robot1 from stove1 to table1
Next State Change: robot1 is at table1, robot1 is not at stove1
Action: Stack bread2 on top of cheese1 using robot1
Next State Change: bread2 is atop cheese1, bread2 is not held by

↪→ robot1. Goal achieved!
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I/O CoT Asynchronous Example

Interaction 1
---------------

Observation:
Station table1:
table1 is a table
table1 has bread1
table1 has bread1 directly on top of it
table1 has no players at it

Station board1:
board1 is a cutting board
board1 has lettuce1
board1 has lettuce1 directly on top of it
board1 has no players at it

Station sink1:
sink1 is a sink
sink1 has nothing on it
sink1 has no players at it

Station table2:
table2 is a table
table2 is occupied by robot1
table2 has chicken1
table2 has chicken1 directly on top of it

Station fryer1:
fryer1 is a fryer
fryer1 has nothing on it
fryer1 has no players at it

Station table3:
table3 is a table
table3 has nothing on it
table3 has no players at it

Station stove1:
stove1 is a stove
stove1 has nothing on it
stove1 has no players at it

Station sink2:
sink2 is a sink
sink2 has potato1
sink2 has potato1 directly on top of it
sink2 has no players at it

Station sink3:
sink3 is a sink
sink3 has onion1
sink3 has onion1 directly on top of it
sink3 has no players at it

Station fryer2:
fryer2 is a fryer
fryer2 has bread2
fryer2 has bread2 directly on top of it
fryer2 has no players at it
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Station sink4:
sink4 is a sink
sink4 has onion2
sink4 has onion2 directly on top of it
sink4 has no players at it

Station board2:
board2 is a cutting board
board2 has nothing on it
board2 has no players at it

Item bread1:
bread1 is a bread slice
bread1 is at table1
bread1 is directly on top of table1
bread1 has nothing above it

Item lettuce1:
lettuce1 is a head of lettuce
lettuce1 can be cut on a cutting board
lettuce1 is at board1
lettuce1 is directly on top of board1
lettuce1 has nothing above it

Item chicken1:
chicken1 is a chicken breast
chicken1 can be cooked on a stove
chicken1 is at table2
chicken1 is directly on top of table2
chicken1 has nothing above it

Item potato1:
potato1 is a potato
potato1 is at sink2
potato1 is directly on top of sink2
potato1 has nothing above it

Item onion1:
onion1 is an onion
onion1 can be cut on a cutting board
onion1 is at sink3
onion1 is directly on top of sink3
onion1 has nothing above it

Item bread2:
bread2 is a bread slice
bread2 is at fryer2
bread2 is directly on top of fryer2
bread2 has nothing above it

Item onion2:
onion2 is an onion
onion2 can be cut on a cutting board
onion2 is at sink4
onion2 is directly on top of sink4
onion2 has nothing above it

Player robot1:
robot1 is a robot
robot1 is at table2
robot1 is holding nothing

Valid Actions:
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Move robot1 from table2 to table1
Move robot1 from table2 to board1
Move robot1 from table2 to sink1
Move robot1 from table2 to fryer1
Move robot1 from table2 to table3
Move robot1 from table2 to stove1
Move robot1 from table2 to sink2
Move robot1 from table2 to sink3
Move robot1 from table2 to fryer2
Move robot1 from table2 to sink4
Move robot1 from table2 to board2
Pick up chicken1 from table2 using robot1
Do nothing

Goal: Prepare an onion chicken sandwich on a table

Action: Pick up chicken1 from table2 using robot1
Next State Change: chicken1 is held by robot1, chicken1 is not at

↪→ table2
Action: Move robot1 from table2 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table2
Action: Place chicken1 on stove1 using robot1
Next State Change: chicken1 is at stove1, chicken1 is not held by

↪→ robot1
Action: Cook chicken1 on stove1 using robot1
Next State Change: chicken1 has started to cook
Action: Move robot1 from stove1 to sink4
Next State Change: chicken1 is cooking (3), robot1 is at sink4,

↪→ robot1 is not at stove1
Action: Pick up onion2 from sink4 using robot1
Next State Change: chicken1 is cooking (2), onion2 is held by

↪→ robot1, onion2 is not at sink4
Action: Move robot1 from sink4 to board2
Next State Change: chicken1 is cooking (1), robot1 is at board2,

↪→ robot1 is not at sink4
Action: Place onion2 on board2 using robot1
Next State Change: chicken1 is cooked, onion2 is on board2, onion2

↪→ is not held by robot1
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is being cut (2)
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is being cut (1)
Action: Cut onion2 on board2 using robot1
Next State Change: onion2 is cut
Action: Pick up onion2 from board2 using robot1
Next State Change: onion2 is held by robot1, onion2 is not on board2
Action: Move robot1 from board2 to table1
Next State Change: robot1 is at table1, robot1 is not at board2
Action: Stack onion2 on top of bread1 using robot1
Next State Change: onion2 is atop bread1, onion2 is not held by

↪→ robot1
Action: Move robot1 from table1 to stove1
Next State Change: robot1 is at stove1, robot1 is not at table1
Action: Pick up chicken1 from stove1 using robot1
Next State Change: chicken1 is held by robot1, chicken1 is not at

↪→ stove1
Action: Move robot1 from stove1 to table1
Next State Change: robot1 is at table1, robot1 is not at stove1
Action: Stack chicken1 on top of onion2 using robot1
Next State Change: chicken1 is atop onion2, chicken1 is not held by

↪→ robot1
Action: Move robot1 from table1 to fryer2
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Next State Change: robot1 is at fryer2, robot1 is not at table1
Action: Pick up bread2 from fryer2 using robot1
Next State Change: bread2 is held by robot1, bread2 is not at fryer2
Action: Move robot1 from fryer2 to table1
Next State Change: robot1 is at table1, robot1 is not at fryer2
Action: Stack bread2 on top of chicken1 using robot1
Next State Change: bread2 is atop chicken1, bread2 is not held by

↪→ robot1. Goal achieved!

ReAct Prompt

You must propose an action given the current observation and valid
↪→ actions and the last reasoning and action taken in the
↪→ environment.

You will receive the initial state and the goal as follows:
Optional[Error Feedback: ...]
Observation: ...
Valid Actions: ...

where
- 'Observation' contains state information about objects in the
↪→ environment and the goal
- 'Valid Actions' is the list of actions you can take in the
↪→ current state
- 'Error Feedback' includes feedback about an invalid action
↪→ taken in a previous interaction (not included in the history)
- This feedback is automated and shows if the action is either
↪→ syntactically incorrect or does not exist in the valid
↪→ actions list
- This feedback does not check for semantic correctness and
↪→ should neither reinforce nor discourage the current strategy

Always format your response as follows:
Reasoning: ...
Action: ...

where:
- 'Reasoning' includes reasoning about the action you will
↪→ propose to take next
- Incorporate the past reasoning and action into your current
↪→ reasoning
- Include a complete step by step action plan to the goal to
↪→ justify the next action you'll propose to take
- 'Action' is the action you propose to take in the environment
- This action should be formatted exactly as it is in the
↪→ environment description
- This should be the first action in the plan you created in
↪→ the Reasoning section

Below is a description of the environment:
You are a robot in a kitchen environment. The objects in the

↪→ kitchen and your goal are described in the Observation. The
↪→ various types of objects in the kitchen include
- Station: A location in the kitchen where you can perform
↪→ special actions, e.g. cooking or cutting
- Item: An object that can be picked up and potentially used in
↪→ a Station
- Player: Robots, including you, that are present in the kitchen
- Container: An object that can hold meals, e.g. a pot or a pan
- Meal: A mixture of ingredients contained within a Container
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The rules of the environment are as follows:
- A Player can only hold a single Item at a time
- An Item must be placed on a Station to perform an action on it
- A Station must contain a single Item to perform an action on
↪→ it
- Items can only be stacked on top of one another
- A Container must contain a Meal to have items added to it
- A Meal can be transferred between Containers

The goal of this environment is to satisfy a human's request, such
↪→ as 'make me a hamburger'. These goals are intentionally
↪→ underspecified so common sense reasoning is required to
↪→ complete them. Specifically, it is important to consider
- the minimal ingredients required to satisfy the request
- any preparation steps for the ingredients like cooking,
↪→ cutting, etc.

When the goal is achieved or a time limit is reached, the
↪→ environment will end.

Follow this recipe guide to learn how to make food in Robotouille:
Sandwich - A slice of bread, stacked on prepared ingredients,
↪→ stacked on another slice of bread.
Hamburger - A bottom bun, stacked on prepared ingredients,
↪→ stacked on a top bun.
Soup - A pot is first filled with water, then boiled while
↪→ ingredients are added, then served in a bowl when ready.

ReAct + Prior (appended to ReAct

It is *important* to follow these rules before proposing an action:
- A Player can pick up a single Item at a time
- This means that you should not attempt to pick up an Item

↪→ if you are already holding one
- An Item must be placed on a Station to perform an action on it
- This means that you cannot perform an action on an Item

↪→ while holding it or if it is stacked on another Item at a
↪→ Station

- This also means that you must perform an action on an Item
↪→ at a Station for state changes to occur (e.g. cooking)
- A Station must contain a single Item to perform an action on
↪→ it

- This means that you can only bring an Item to a Station if
↪→ it is already empty
- Items can be stacked on top of one another
- This means that Items are stacked on top of Items

In addition, do not blindly follow these rules; think about how
↪→ your actions will affect future actions since your plan may
require you to break rules in the future to achieve the goal.

ReAct Synchronous Example

Interaction 1
---------------

Observation:
...
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Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 has lettuce1 on it and board2
↪→ has bottombun1 on it. The board must be empty before I can
↪→ cut onion1 on it. I will move robot1 from stove1 to board1.

Action: Move robot1 from stove1 to board1

Interaction 2
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 has lettuce1 on it and board2
↪→ has bottombun1 on it. The board must be empty before I can
↪→ cut onion1 on it. Since robot1 is at board1, I will pick up
↪→ lettuce1 from board1 using robot1 and move it elsewhere.

Action: Pick up lettuce1 from board1 using robot1

Interaction 3
---------------

Observation:
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...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. Since robot1 is holding lettuce1 after clearing
↪→ board1, I must move the lettuce to another location. table3
↪→ is empty, so I will move robot1 from board1 to table3 to
↪→ place lettuce1 on it.

Action: Move robot1 from board1 to table3

Interaction 4
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. Since robot1 is holding lettuce1 and can only
↪→ hold one item at a time, I will place lettuce1 on table3
↪→ because it is empty and we are using neither table3 nor
↪→ lettuce1 for the sandwich.

Action: Place lettuce1 on table3 using robot1
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Interaction 5
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since board1 is empty, I will use it to
↪→ cut onion1. I will move robot1 from table3 to fryer1 to pick
↪→ up onion1.

Action: Move robot1 from table3 to fryer1

Interaction 6
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on fryer1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since robot1 is at fryer1, I will use it
↪→ to pick up onion1 to cut at board1.
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Action: Pick up onion1 from fryer1 using robot1

Interaction 7
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
↪→ bottombun1 on it. Since robot1 is at fryer1 and holding
↪→ onion1, I will move it to board1 to place and begin cutting
↪→ the onion.

Action: Move robot1 from fryer1 to board1

Interaction 8
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 and onion2 can be cut on a
↪→ cutting board. I see board1 is empty and board2 has
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↪→ bottombun1 on it. Since robot1 is at board1 and holding
↪→ onion1, I will place onion1 on board1 to begin cutting it.

Action: Place onion1 on board1 using robot1

Interaction 9
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.

Action: Cut onion1 on board1 using robot1

Interaction 10
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.
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Action: Cut onion1 on board1 using robot1

Interaction 11
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to cut onion1.

Action: Cut onion1 on board1 using robot1

Interaction 12
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 on board1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is at board1 and
↪→ onion1 is on board1, I will use robot1 to pick up onion1.

Action: Pick up onion1 from board1 using robot1
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Interaction 13
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is holding onion1
↪→ and bread1 is on table1, I will move robot1 to table1 to
↪→ stack onion1 on top of bread1.

Action: Move robot1 from board1 to table1

Interaction 14
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 held by robot1 and
↪→ onion2 on sink4. I must cut an onion fully before I can
↪→ stack it on top of bread1. onion1 is fully cut and ready to
↪→ be stacked on top of bread1. Since robot1 is holding onion1
↪→ and at table1 and bread1 is on table1, I will use robot1 to
↪→ to stack onion1 on top of bread1.

Action: Stack onion1 on top of bread1 using robot1
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Interaction 15
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 on sink3. I must
↪→ pick up cheese1 and stack it on top of onion1. Since robot1
↪→ is at table1 and cheese1 is on sink3, I will move robot1 to
↪→ sink3 to pick up cheese1.

Action: Move robot1 from table1 to sink3

Interaction 16
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.
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3. The third ingredient is cheese. I see cheese1 on sink3. I must
↪→ pick up cheese1 and stack it on top of onion1. Since robot1
↪→ is at sink3 and cheese1 is on sink3, I will use robot1 to
↪→ pick up cheese1.

Action: Pick up cheese1 from sink3 using robot1

Interaction 17
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 held by robot1. I
↪→ must stack cheese1 on top of onion1. Since robot1 is at
↪→ sink3 and cheese1 is held by robot1, I will move robot1 to
↪→ table1 to stack cheese1 on top of onion1.

Action: Move robot1 from sink3 to table1

Interaction 18
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.
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2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 held by robot1. I
↪→ must stack cheese1 on top of onion1. Since robot1 is at
↪→ table1 and cheese1 is held by robot1, I will use robot1 to
↪→ stack cheese1 on top of onion1.

Action: Stack cheese1 on top of onion1 using robot1

Interaction 19
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 on stove1. Since
↪→ robot1 is at table1 and bread2 is on stove1, I will move
↪→ robot1 to stove1 to pick up bread2.

Action: Move robot1 from table1 to stove1

Interaction 20
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table
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Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 on stove1. Since
↪→ robot1 is at table1 and bread2 is on stove1, I will move
↪→ robot1 to stove1 to pick up bread2.

Action: Pick up bread2 from stove1 using robot1

Interaction 21
---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 held by robot1. I
↪→ must stack bread2 on top of cheese1. Since robot1 is holding
↪→ bread2 and cheese1 is at table1, I will move robot1 to
↪→ table1 to stack bread2 on top of cheese1.

Action: Move robot1 from stove1 to table1

Interaction 22
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---------------

Observation:
...

Valid Actions:
...

Goal: Prepare a onion cheese sandwich on a table

Reasoning: The goal is to make an onion cheese sandwich on a table.
↪→ I need ingredients stacked from bottom to top: table ->
↪→ bread -> onion -> cheese -> bread

1. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on stove2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

2. The second ingredient is onion. I see onion1 stacked on bread1.
↪→ onion1 is fully cut. I will leave it in place since it is
↪→ already in the correct position.

3. The third ingredient is cheese. I see cheese1 stacked on onion1.
↪→ I will leave it in place since it is already in the correct
↪→ position.

4. The fourth ingredient is bread. I see bread2 held by robot1. I
↪→ must stack bread2 on top of cheese1. Since robot1 is at
↪→ table1 and bread2 is held by robot1, I will use robot1 to
↪→ stack bread2 on top of cheese1.

Action: Stack bread2 on top of cheese1 using robot1

ReAct Asynchronous Example

Interaction 1
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I see chicken1 on
↪→ table2. I must pick it up and place it on a stove to cook it.

Action: Pick up chicken1 from table2 using robot1

Interaction 2
---------------
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Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I am holding chicken1. I
↪→ must place it on a stove to cook it. I see stove1 is empty.
↪→ Thus, I will move to stove1.

Action: Move robot1 from table2 to stove1

Interaction 3
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. I am holding chicken1. I
↪→ must place it on a stove to cook it. I am at stove1 which is
↪→ empty. I will place chicken1 on stove1.

Action: Place chicken1 on stove1 using robot1

Interaction 4
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is on stove1. I
↪→ must cook it before I can stack it on the sandwich.
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Action: Cook chicken1 on stove1 using robot1

Interaction 5
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on sink4. I must cut an onion fully before I can stack it on
↪→ top of bread1. onion1 and onion2 can be cut on a cutting
↪→ board. I will move to sink4 to pick up onion2.

Action: Move robot1 from stove1 to sink4

Interaction 6
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on sink4. I must cut an onion fully before I can stack it on
↪→ top of bread1. onion1 and onion2 can be cut on a cutting
↪→ board. I will pickup onion2 from sink4 to cut it.
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Action: Pick up onion2 from sink4 using robot1

Interaction 7
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooking on stove1. Thus, I will leave it in place.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. I must cut an onion fully before I can stack
↪→ it on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has nothing on it.
↪→ I will move to board2 to cut onion2.

Action: Move robot1 from sink4 to board2

Interaction 8
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. I must cut an onion fully before I can stack
↪→ it on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has nothing on it.
↪→ Since I am at board2, I will place onion2 on it to cut it.

Action: Place onion2 on board2 using robot1

Interaction 9
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 10
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.
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2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will continue to cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 11
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. I must cut an onion fully before I can stack it
↪→ on top of bread1. onion2 can be cut on a cutting board. I
↪→ see board1 has lettuce1 on it and board2 has onion2 on it.
↪→ Since I am at board2, I will continue to cut onion2.

Action: Cut onion2 on board2 using robot1

Interaction 12
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.
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1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and onion2
↪→ on board2. onion2 has already been cut and is on board2. I
↪→ will pick up onion2 from board2 to stack it on top of bread1.

Action: Pick up onion2 from board2 using robot1

Interaction 13
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. Since onion2 has already been cut, I will
↪→ stack it on bread1 to build the sandwich. Since bread1 is on
↪→ table1, I will move from board2 to table1 to stack onion2 on
↪→ top of bread1.

Action: Move robot1 from board2 to table1

Interaction 14
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table
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Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion1 on sink3 and am
↪→ holding onion2. Since onion2 has already been cut and I am
↪→ at table1 where bread1 currently is, I will stack onion2 on
↪→ bread1 to build the sandwich.

Action: Stack onion2 on top of bread1 using robot1

Interaction 15
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 cooked and at
↪→ stove1. I will move to stove1 to pick up chicken1 and then
↪→ stack it on top of onion2.

Action: Move robot1 from table1 to stove1

Interaction 16
---------------

Observation: ...

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 has already
↪→ been cooked and is at stove1. Thus, I will leave it in place
↪→ until I am ready to stack it on the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am at stove1 where chicken1
↪→ has been cooked. I will pick up chicken1 and then stack it
↪→ on top of onion2.

Action: Pick up chicken1 from stove1 using robot1

Interaction 17
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and is held by robot1.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am holding chicken1 and must
↪→ stack it on onion2. onion2 is at table1 so I will move from
↪→ stove1 to table1 to stack chicken1 on top of onion2.
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Action: Move robot1 from stove1 to table1

Interaction 18
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and is held by robot1.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I am holding chicken1 and am at
↪→ table1 where onion2 is. I will stack chicken1 on top of
↪→ onion2 to continue building the sandwich.

Action: Stack chicken1 on top of onion2 using robot1

Interaction 19
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.
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3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I see bread2 on fryer2. I will
↪→ move from table1 to fryer2 to pick up bread2 and stack it on
↪→ top of chicken1 to complete the sandwich.

Action: Move robot1 from table1 to fryer2

Interaction 20
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I see bread2 on fryer2. Since I
↪→ am at fryer2, I will pick up bread2 and stack it on top of
↪→ chicken1 to complete the sandwich.

Action: Pick up bread2 from fryer2 using robot1

Interaction 21
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table
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Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.

5. The fourth ingredient is bread. I am holding bread2 and must
↪→ stack bread2 on chicken1. Since I am at fryer2, I will move
↪→ from fryer2 to table1 to stack bread2 on top of chicken1 to
↪→ complete the sandwich.

Action: Move robot1 from fryer2 to table1

Interaction 22
---------------

Observation: ...

Valid Actions: ...

Goal: Prepare an onion chicken sandwich on a table

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus, I

will stack the ingredients from bottom to top as follows: table ->
↪→ bread -> onion -> chicken -> bread.

1. First I will leave the chicken cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is bread. I see bread1 on table1 and bread2
↪→ on fryer2. Since bread1 is on top of a table, it will serve
↪→ as the base of the sandwich. I will leave it in place since
↪→ it is already in the correct position.

3. The second ingredient is onion. I see onion2 stacked on bread1.
↪→ Since onion2 is already stacked on bread1, I will leave it
↪→ in place and move to the next step.

4. The third ingredient is chicken. I see chicken1 stacked on
↪→ onion2. Since chicken1 is already stacked on onion2, I will
↪→ leave it in place and move to the next step.
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5. The fourth ingredient is bread. I am holding bread2 and must
↪→ stack bread2 on chicken1. Since I am at table1, I will stack
↪→ bread2 on top of chicken1 to complete the sandwich.

Action: Stack bread2 on top of chicken1 using robot1

A.4 ADDITIONAL DATASET DETAILS

Multiagent Dataset This dataset consists of tasks designed to test the LLM agent’s multiagent
capabilities. Robotouille’s multiagent capabilities test the agent’s ability to collaborate, and is more
difficult because it includes tasks where agents may potentially interfere with one another, and share
resources with one another.

Tasks 1 - 3: Burgers The first 3 tasks involve cooking and assembling a burger with increasing levels
of difficulty. In Task 1, the agents need to chop lettuce, and cook a patty, before assembling the burger
with the patty, lettuce, a bottom bun, and a top bun. In Task 2, the complexity is increased with an
additional ingredient, a tomato, that needs to be cut and stacked onto the burger. In Task 3, lettuce
needs to be cut, a chicken needs to be fried, and an onion needs to be cut first before it is fried. This
adds a level of complexity because one of the ingredients, the onion, needs to be both cut and fried.

Tasks 4 - 6: Sandwiches Tasks 4 - 6 involve making sandwiches. Unlike the tasks which only involve
a single agent, sandwiches in multiagent environments are more complex than burgers because there
is ambiguity in the stack ordering. In burgers, the bottom bun needs to be at the bottom, while in
sandwiches, a piece of bread can be used as either the bottom bread or the top bread. This is complex
because the agents need to collaborate and share the resources, and they need to agree on which
bread to use as the top bread and the bottom bread. Task 4 involves cutting a lettuce and cooking
a chicken before assembling the sandwich. Task 5 involves one more ingredient, a tomato, which
also needs to be cut. Task 6 is a double stacked lettuce chicken sandwich. Unlike the previous tasks,
Task 6 enforces a strict ordering on the placement of the ingredients, meaning that the agents need to
collaborate and properly agree on the order of the ingredients.

Task 7: Soup Task 7 involves cooking soup. This involves filling a pot of water, boiling a water,
adding three ingredients into the soup: a cut onion, a potato, and a cut tomato, before serving the
soup in a bowl. This task is complex because it involves multiple complex actions, including cutting,
filling the pot, and boiling the water.

Tasks 8 - 10: Multiple Recipes Tasks 8 - 10 involve the agents making multiple recipes. Task
8 involves 2 different recipes, a tomato cheese patty burger, and a onion chicken sandwich. This
task is difficult for multiple agents because the 2 recipes both require an ingredient to be cut and an
ingredient to be cooked. Task 9 involves making 2 identical lettuce cheeseburgers. Having 2 identical
recipes is more complex than having 2 different recipes because the agents need to agree on which
ingredient should be used in which burger. Finally, Task 10 involves making 2 different soups, a
potato tomato chicken soup, and a potato cheese onion soup. Soups are the most complex recipes
because it involves multiple complex actions. Furthermore, once an ingredient has been added to a
soup, it cannot be removed. This forces the agents to properly plan for which ingredient should go
into which soup.

A.5 RELATED WORKS TABLE DATA

For each benchmark in (Table 1), we explain how the number of tasks and longest horizon plans were
calculated.

A.5.1 ALFWORLD

ALFWorld consists of 3827 different tasks consisting of 3,553 train tasks, 140 seen tasks, and 134
unseen tasks from the ALFRED dataset.

The longest horizon plan is 50 steps since 50 is the max number of steps per episode in ALFWorld.
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A.5.2 CUISINEWORLD

CuisineWorld consist of 33 unique dishes which represent the tasks.

The longest horizon plan is 11 steps since Figure 2 of CuisineWorld indicates the dish distribution
over the number of steps.

A.5.3 MINIWOB++

MiniWoB++ consist of 40 tasks since 40 tasks are filtered out of 80 total tasks from the MiniWoB
benchmark.

The longest horizon plan is 13 steps since Table 1 indicates that 13 is the maximum number of steps
needed for a perfect policy to complete the task.

A.5.4 OVERCOOKED-AI

Overcooked-AI consists of 1 task since onion soup is the only dish in the environment.

The longest horizon plan is 100 steps since 100 is the max number of timesteps that planning methods
are evaluated on.

A.5.5 PLANBENCH

PlanBench consist of 885 tasks consisting of 600 tasks from Blocksworld domain and 285 tasks from
the Logistics domain.

The longest horizon plan is 48 steps since Figure 3 in PlanBench indicates that 48 is the longest
optimal plan length from both the Blocksworld and Logistics problem sets.

A.5.6 τ -BENCH

τ -bench consist of 165 tasks consisting of 115 tasks from the τ -retail benchmark and 50 tasks from
the τ -airline benchmark.

The longest horizon plan is 30 steps since 30 is the max number of actions per task in τ -bench.

A.5.7 WEBARENA

WebArena consist of 812 long-horizon web-based tasks.

The longest horizon plan is 30 steps since 30 is the max number of state transitions in WebArena.

A.5.8 WEBSHOP

WebShop consist of 12087 crowd-sourced text instructions which represent tasks.

The longest horizon plan is 90 steps since 90 is the max number of state visited in Table 2 of WebShop.

A.5.9 AGENTBENCH

AgentBench consist of 8 environments which represent tasks.

The longest horizon plan is 35 steps since 35 is the largest number of average turns according to table
3 in AgentBench.

A.5.10 ARA

ARA consists if 12 real-world tasks.

The longest horizon plan is 4 steps after counting the number of steps in the description of each task
in Table 1 of ARA.
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A.5.11 ASYNCHOW

AsyncHow consists of 1600 high-quality instances for real-life tasks.

The longest horizon plan is 9+ steps after checking Figure 5 of AsyncHow.

A.6 MAGIC

MAgIC consists of 5 games which represent tasks.

We will assume all games will have 3 players and the same number of rounds as indicated in Table 3
of magic (1 round for Chameleon, 2 for Undercover, and 5 for Cost Sharing, Prisoner’s Dilemma,
and Public Good).

Calculations of longest plan with regards to steps:

Chameleon: (3 clues given out to participants + 3 accusations/votes from participants + 1 guess for
the final word if the chameleon is correctly identified) * 1 round = 7 steps

Undercover: (3 people are assigned groups + 3 clues are given from participants + 3 votes from
participants) * 2 rounds = 18 steps

Cost Sharing: 3 parties get allocation of money + (1 negotiation phase + 1 fairness check) * 5 rounds
= 13 steps

Prisoner’s Dilemma: 3 decisions from participants * 5 rounds = 15 steps

Public Good: (3 decisions from participants + 1 redistribution of money) * 5 rounds = 20 steps

Therefore, Public Good has the longest horizon plan with 20 steps.

A.6.1 T-EVAL

T-Eval consists of 23305 tasks according to Table 2 in T-Eval.

The longest horizon plan is 19 steps based on Figure 5b in T-Eval.

A.6.2 MLAGENTBENCH

MLAgentBench consists of 13 ML tasks from diverse domains ranging in difficulty and recency.

The longest horizon plan is 50 steps based on Figure 7 in MLAgentBench which describes the
distribution of numbers of steps used by agents.

A.6.3 GAIA

GAIA consists of 466 carefully crafted and human annotated questions.

The longest horizon plan is around 45 steps based on Figure 3 in GAIA which describes the distribu-
tion of numbers of steps taken and tools used to answer the 466 questions.

A.6.4 VIRTUALHOME

VirtualHome consists of 2821 programs which represent tasks.

The longest horizon plan is 96 steps after examining all the activities in VirtualHome’s Activity
Knowledge base and finding the longest.

A.7 TASK DEPENDENCY GRAPHS

In general, the ordering of ingredients for task dependency graphs does not matter unless specified.
For soups, though the task dependency graphs imply a certain order, vegetables can be added to the
pot as long as the pot contains water. In addition, all items are placed on the table.
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A.7.1 SYNCHRONOUS GRAPHS

Figure 11: Task 1 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a cheese sandwich on a table."

Figure 12: Task 2 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a lettuce sandwich on a table."

Figure 13: Task 3 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a sandwich with lettuce and tomato on a table."
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Figure 14: Task 4 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a hamburger on a table."

Figure 15: Task 5 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a cheeseburger on a table."

Figure 16: Task 6 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a double cheeseburger on a table which contains two patties and two cheese slices interleaved (starting
with a patty)." This graph also contains the constraint that it needs to be in this exact order.

Figure 17: Task 7 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
a lettuce tomato cheeseburger on a table."
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Figure 18: Task 8 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
two lettuce chicken sandwiches on separate tables."

Figure 19: Task 9 for the synchronous dataset in Table 3. The language goal for this graph is "Prepare
two lettuce tomato burgers on separate tables."

Figure 20: Task 10 for the synchronous dataset in Table 3. The language goal for this graph is
"Prepare a burger with cheese and onions on one table and a chicken sandwich with lettuce and
tomato on another table."

A.7.2 ASYNCHRONOUS GRAPHS

Figure 21: Task 1 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a cheese chicken sandwich on a table."
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Figure 22: Task 2 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a lettuce chicken sandwich on a table."

Figure 23: Task 3 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a fried chicken sandwich with lettuce and tomato on a table".

Figure 24: Task 4 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare a tomato burger and fries on separate tables."

Figure 25: Task 5 for the asynchronous dataset in Table 3. The language goal for this graph is
"Prepare an onion cheese burger and fried onion rings on separate tables."

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Figure 26: Task 6 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
potato soup with a whole potato and serve into a bowl on a table."

Figure 27: Task 7 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
onion soup with 3 cut onions and serve into a bowl on a table."

Figure 28: Task 8 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
tomato soup with a whole tomato served into a bowl on a table and a lettuce chicken sandwich on
another table."

Figure 29: Task 9 for the asynchronous dataset in Table 3. The language goal for this graph is "Make
soup with a cut tomato and cut onion served into a bowl on a table and two chicken sandwiches on
other tables."
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Figure 30: Task 10 for the asynchronous dataset in Table 3. The language goal for this graph is
"Make soup with a whole onion and potato served into a bowl, a burger with lettuce and fried onion
rings, and an onion chicken sandwich all on separate tables."

A.7.3 MULTI-AGENT GRAPHS

Figure 31: Task 1 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
burger on a table."

Figure 32: Task 2 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
tomato burger on a table."
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Figure 33: Task 3 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
fried onion fried chicken burger on a table."

Figure 34: Task 4 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
chicken sandwich on a table."

Figure 35: Task 5 for the multi-agent dataset. The language goal for this graph is "Prepare a lettuce
tomato fried chicken sandwich on a table."
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Figure 36: Task 6 for the multi-agent dataset. The language goal for this graph is "Prepare a double
lettuce chicken sandwich on a table which contains two chicken patties and two lettuce leaves
interleaved (starting with a patty)." This graph also contains the constraint that it needs to be in this
exact order.

Figure 37: Task 7 for the multi-agent dataset. The language goal for this graph is "Prepare a onion
potato tomato soup on a table."

Figure 38: Task 8 for the multi-agent dataset. The language goal for this graph is "Prepare a tomato
cheeseburger on one table and a onion chicken sandwich on another table."

Figure 39: Task 9 for the multi-agent dataset. The language goal for this graph is "Prepare two lettuce
cheeseburgers on separate tables."
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Figure 40: Task 10 for the multi-agent dataset. The language goal for this graph is "Prepare a soup
with potato, tomato, and chicken on one table and a soup with potato, cheese, and onion on another
table."

A.8 REACT ABLATIONS

ReAct in its original form can grow very expensive in cost on long horizon tasks due to the increasing
context size. We sought to perform early ablations of ReAct to find a cost-effective variant whose
performance is relatively the same. We first ablated on the types of feedback from feedback at
all ("no-history") to ablating away components of the feedback from the last time step (where
"last-obs-reasoning-action" represents the last timestep with all feedback, "last-reasoning-action"
represents the last timestep with only the reasoning and action, and "last-action" represents the last
timestep with only the last action. Next, we tested two different types of reasoning; one where
we simply prompt ReAct to reason about the given information and another where we make it
provide a plan in its sequence before outputting a single action (which we’ve termed "mpc" after
Model Predictive Control). From these ablations on a small subset of data, we determined that
"last-reasoning-action-mpc" was the best performing and inexpensive as shown in Table 4.

Experiment Accuracy Average Steps Cost
no-history 1/9 29.11 $2.11
no-history-mpc 1/9 28.66 $2.70
last-action 1/9 29.55 $2.35
last-action-mpc 2/9 26.66 $2.92
last-reasoning-action 1/9 28.88 $2.46
last-reasoning-action-mpc 3/9 28.33 $2.64
last-obs-reasoning-action 2/9 26.77 $3.02
last-obs-reasoning-action-mpc 3/9 23.88 $2.93

Table 4: Performance comparison on different ablations of ReAct. The variant using "last-reasoning-
action" and "mpc" is tied for best performing but wins in terms of cost.

A.9 DIFFERENCES IN HORIZON PERFORMANCE

In Table 3 we observe that horizon length does not necessarily correlate with success. The main
confounding variable is the quality of few-shot examples. Each dataset provides a single optimal
few-shot example from a training task excluded from the testing set. This example is insufficient when
the LLM agent makes a mistake because it has not seen examples of incorporating state feedback to
recover from failure. The LLM agent, therefore, acts in an open-loop manner.

In the synchronous dataset, Task 5 is more complex than Task 4, yet it has a higher success rate. This
is because Task 5 is more aligned to the few-shot example, sharing a common sub-trajectory (i.e.
stacking cheese). This similarity allows ReAct to stay within the distribution of the example, leading
to fewer mistakes. In contrast, Task 4 deviates more from the example, resulting in ReAct making
mistakes it cannot recover from.

Similarly, in the asynchronous dataset, we also observe that Task 1 < Task 2 < Task 3 despite having
increasing complexity. Task 2 and 3 are more aligned to the few-shot example, sharing common
sub-trajectories (i.e. cutting veggies) so we expect the two to perform at least as well as Task 1. We
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also expect some variance since we run our models with a temperature of 0.7; Tasks 2 and 3 are
within standard error (30.0 ± 13.8 for Task 2 versus 40.0 ± 14.8 for Task 3) so they perform similarly.

A.10 WHY IS ASYNCHRONOUS HARDER THAN SYNCHRONOUS?

The complexity of search for synchronous and asynchronous given the MDP in Section 2 is:

1. Synchronous Case (d = 0): No delays, so the planner operates in O(|S|+ |A|)
2. Asynchronous Case (d > 0): Each delay expands the effective state space, yielding O(|S|×

(d+ 1)n + |A|) complexity, where n is the number of timers

Hence the expanded state space requires both a conventional planner or a LLM based planner to
reason over a larger range of delayed effects.

A.11 FAILURE MODE TAXONOMY DETAILS

Markov Decision Process To categorise the failure modes, we used the Markov Decision Process
(MDP), where there are 4 main failure modes:

1. State failures

2. Action failures

3. Transition Function failures

4. Goal failures

We chose to use the MDP because LLMs know the MDP of the real world very well, but struggle to
learn and understand the MDP of new enviornments, such as Robotouille. In using the MDP as a
system to categorise failures, we are better able to see how the LLM bridges its knowledge of the real
world to its understanding of new environments.

State Failures A failure is categorised as a state failure when the agent misunderstands predicates
in the state, and fails as a result of this misunderstanding. For example, when preparing a chicken
cheese sandwich, the LLM agent may mistake the chicken to be already cooked, when it is not. Even
though the predicates are true in the state, the agent misinterprets the predicates, causing it to take the
wrong action and preventing it from achieving the goal successfully.� �

Item chicken2:
chicken2 is a chicken breast
chicken2 can be cooked on a stove
chicken2 is at stove4
chicken2 is directly on top of stove4
chicken2 has nothing above it

Reasoning: The goal is to make an onion chicken sandwich on a
↪→ table. I can cook chicken while doing other tasks. Thus,
↪→ I will stack the ingredients from bottom to top as
↪→ follows: table -> bottom bun -> chicken -> cheese ->
↪→ bread.

1. First, I will leave chicken1 cooking. chicken1 is already
↪→ cooked and in the sandwich.

2. The first ingredient is the bottom bun. I see bottombun1 on
↪→ table3 with chicken1 on top of it. I will leave
↪→ bottombun1 in place since it is already in the correct
↪→ position.
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3. The second ingredient is chicken. I see chicken1 stacked on
↪→ bottombun1. Since chicken1 is already stacked on
↪→ bottombun1, I will leave it in place.

4. The third ingredient is cheese. I see cheese1 on table3.
↪→ Since cheese1 is directly on top of chicken1, I will
↪→ leave it in place.

5. The fourth ingredient is bread. I see bread2 on table3 and
↪→ bread1 held by robot1. I need to stack bread1 on top of
↪→ cheese1 to complete the sandwich.

Action: Stack bread1 on top of cheese1 using robot1� �
Listing 1: Example of a State failure: 0_cheese_ chicken_ sandwich_ 252

Action failures A failure is categorised by an action failure when the agent exceeds the number of
steps and fails to complete the environment because it repeatedly tries to take an invalid action. Even
thought the valid actions are listed to the agent at each step, the agent may ignore the prompt and try
to take another invalid action repeatedly. For example, when making potato soup, the agent tries to
"transfer" the soup in the pot into a bowl it is currently holding, although the correct action in the
environment is to pick up the pot and "pour" the soup into the bowl.� �

Valid Actions:
Move robot1 from stove1 to sink1
Move robot1 from stove1 to table1
Move robot1 from stove1 to table2
Move robot1 from stove1 to fryer1
Move robot1 from stove1 to board1
Move robot1 from stove1 to fryer2
Move robot1 from stove1 to stove2
Move robot1 from stove1 to table3
Do nothing

Goal: Make potato soup with a whole potato and serve into a
↪→ bowl on a table.

ACTION PROPOSAL RESPONSE
--------------------

Reasoning: The goal is to make potato soup with a whole potato
↪→ and serve it into a bowl on a table. The steps required
↪→ to achieve this goal are:

1. Fill pot1 with water (done).
2. Boil the water in pot1 (done).
3. Add potato1 to the boiling water in pot1 (done).
4. Serve the soup into bowl1 on a table.

Currently, potato1 has been added to boiling water in pot1,
↪→ and pot1 is at stove1. I am holding bowl1 which is empty
↪→ . The next step is to transfer the soup from pot1 to
↪→ bowl1. Since I am already at stove1, I will transfer the
↪→ soup from pot1 to bowl1.

Action: Transfer water1 and potato1 from pot1 to bowl1 using
↪→ robot1

ACTION PROPOSAL PROMPT
--------------------
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Error Feedback: The action 'Transfer water1 and potato1 from
↪→ pot1 to bowl1 using robot1' is not valid. Please provide
↪→ a valid action.� �

Listing 2: Example of an Action failure: 5_ potato_ soup_ 126

Transition Function failure A failure is categorised as a transition function failure when the agent
violates a rule, even though the rules are included in the prompt to the agent. When the agent tries to
plan for and perform actions that break the rule, if it is unable to recover, it will repeat transitions,
causing it to exceed the number of steps and fail to complete the task in the environment. For example,
one of the rules in the environment is that "A Station must contain a single Item to perform an action
on it". When trying to prepare an onion soup, the agent may try to cut multiple onions together on a
single cutting board at the same time. While this is possible in the real world, it is not allowed in our
environment. This misunderstanding of the transition failure causes the agent to run out of steps.� �

Reasoning: The goal is to make onion soup with 3 cut onions
↪→ and serve it into a bowl on a table. The steps to
↪→ achieve this goal are as follows:

1. Gather and cut the onions.
2. Place the cut onions into a pot with water.
3. Boil the pot with the onions.
4. Serve the soup into a bowl on a table.

Currently, I am holding onion1 and need to cut it. Since I am
↪→ at board1, I will stack onion1 on top of onion2 to cut
↪→ it on the cutting board.

Action: Stack onion1 on top of onion2 using robot1� �
Listing 3: Example of an Transition Function failure: 6_ onion_ soup_ 126

Goal failure A failure is categorised as a goal failure when the agent fails due to a misunderstanding
of the goal, even though the goal is specified to the agent. This may mean that the agent stacks the
ingredients in the wrong order, fail to prepare the ingredients before assembling the recipe, or include
ingredients not included in the recipe. For example, when preparing a cheese chicken sandwich, the
agent may fail to cook the chicken before assembling the sandwich.� �

Reasoning: The goal is to make a cheese chicken sandwich on a
↪→ table. The ingredients need to be stacked from bottom to
↪→ top as follows: table -> bread -> chicken -> cheese ->
↪→ bread.

Given the current state:
1. I am holding chicken1 at table3.
2. The base of the sandwich includes bread2 and bottombun1 and

↪→ is already correctly stacked on table3.
3. The next step is to stack the chicken on top of the

↪→ existing bottom bun and bread combination.
4. After the chicken, I will need to stack cheese, which is on

↪→ stove3.
5. The final ingredient is the top bun, which is not

↪→ explicitly mentioned but can be assumed to be the
↪→ topmost bread slice.

Therefore, the immediate action will be to stack chicken1 on
↪→ top of bottombun1, which is already at table3.� �

Listing 4: Example of an Goal failure: 0_ cheese_ chicken_ sandwich_ 252
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Prioritising Failure Modes Sometimes, the agent may fail due to multiple reasons. For example,
it may violate rules and also misunderstand the goal. In such cases, we choose the failure
mode that ultimately contributes to the goal. If it ultimately tries to perform actions based on
a misunderstanding of the state, causing it to fail, we classify it as a state failure. If it repeats
transitions due to a misunderstanding of the valid actions in the state, we classify it as an action failure.

The dominant failure modes in the datasets are transition function failures and goal failures, and there
are multiple environments where the agent seemingly fails to understand both the transition function
and the goal. In this case, we refer to the following tiebreaker. If the agent misunderstands the goal
but also violates rules, we find the reason why the agent failed. In the case it violates a rule and is
unable to recover, we classify it as a transition function failure because it was unable to ultimately
make any progress towards the goal, whether it was accurate or not. If the agent was able to recover
but failed due to a misunderstanding of the goal, we classify it as a goal failure.

Another situation that is unclear is when the agent fails to prepare the ingredients before assembling the
recipe. This could either be due to a misunderstanding of the state, or because of a misunderstanding
of the goal. If the agent reasons that the ingredients is already prepared when it is not, it is classified
as a state failure. However, if the agent does not reason about preparing the ingredient at all, then it is
classified as a goal failure.

A.12 QUALITATIVE PLANNING FAILURE EXAMPLE

To gain more insight into why LLM agents are unable to efficiently complete asynchronous tasks
successfully, we created a new baseline by repeating the rules to the agent before every action.
However, this caused the agent to sometimes be even more inefficient, as it naively tries to follow
rules without proper planning.

In this example, the agent needs to cook a chicken on a stove, but all the stoves are currently occupied.
It first follows the rule "A Station must contain a single Item to perform an action on it" and picks up
the item from the stove. Then, it follows the rule "A Player can only hold a single Item at a time".
Since it is currently holding the item it does not need, and it wants to cook the chicken, it places the
item back onto the stove to free its hands. This causes the agent to repeatedly pick up the item from
the stove and place it back onto the stove. (Fig. 41)� �

Reasoning: The goal is to make a cheese chicken sandwich on a
↪→ table. The sandwich will be stacked in the following
↪→ order: table -> bread -> chicken -> cheese -> bread.

1. The first ingredient, bread1, is already on table2 and will
↪→ serve as the base for the sandwich. I will leave it in
↪→ place.

2. The second ingredient is chicken. I see chicken1 on table3.
↪→ I must cook chicken1 before stacking it on bread1.
↪→ stove4 currently has bread3 on it, which is not needed
↪→ for the sandwich. I will pick up bread3 from stove4 to
↪→ make space for cooking chicken1.

Action: Pick up bread3 from stove4 using robot1

...

Reasoning: The goal is to prepare a cheese chicken sandwich on
↪→ a table. To achieve this, I need to stack the
↪→ ingredients from bottom to top as follows: table ->
↪→ bread -> chicken -> cheese -> bread.
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Figure 41: 0_ cheese_ chicken_ sandwich_ 84: All stoves are occupied, and agent naively follows
rules, causing it to repeat transitions

1. The first ingredient, bread1, is already on table2 and will
↪→ serve as the base for the sandwich. I will leave it in
↪→ place.

2. The second ingredient is chicken. I see chicken1 on table3.
↪→ I must cook chicken1 before stacking it on bread1.
↪→ stove4 is currently empty, so I will place bread3 there
↪→ to free up my hands.

Action: Place bread3 on stove4 using robot1� �
Listing 5: Log for 0_ cheese_ chicken_ sandwich_ 84

A.13 QUALITATIVE BAD START FAILURES

5_ double_ cheeseburger_ 42 In this task, the agent misunderstands the goal from its very first line
of reasoning. The goal is to make a double cheeseburger on a table, with a bottom bun, cooked patty,
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cheese, cooked patty, cheese, and a top bun, stacked in that order. However, the agent misunderstands
the goal and does not include all of the ingredients, causing it to fail to complete the task.� �

Reasoning: The goal is to make a double cheeseburger on a
↪→ table with the following stack: table -> patty -> cheese
↪→ -> patty -> cheese.

1. The first ingredient is a patty. I see patty1 on board1 and
↪→ patty2 on table2. Since board1 is a cutting board and
↪→ not a table, I will use patty2 on table2 as the base for
↪→ the burger. I will move robot1 to table2 to pick up
↪→ patty2.

Action: Move robot1 from table1 to table2� �
Listing 6: 5_ double_ cheeseburger_ 42

9_ onion_ cheese_ burger_ and_ lettuce_ tomato_ chicken_ sandwich_ 168 In this task, the agent
correctly understands the ingredients needed for the two recipes and the order in which they should
be stacked, but misunderstands the preparation of the ingredients, and does not register that it needs
to first cut the onion, lettuce, and tomato. Thus, it does not include these preparations in its reasoning,
and ultimately fails to complete the task.� �

Reasoning: The goal has two parts: prepare a burger with
↪→ cheese and onions on one table, and a chicken sandwich
↪→ with lettuce and tomato on another table.

For the burger with cheese and onions:
1. Bottom bun: bottombun1 on table1.
2. Onion: onion1 on table3.
3. Cheese: cheese1 on table2.
4. Patty: patty1 on fryer1.
5. Top bun: topbun1 on board1.

For the chicken sandwich with lettuce and tomato:
1. Bread: bread1 held by robot1 and bread2 on table4.
2. Chicken: chicken1 on table8.
3. Lettuce: lettuce1 on table5 or lettuce2 on table6.
4. Tomato: tomato1 on sink1.

Steps:
1. Move bread1 (held by robot1) to table4 to combine with

↪→ bread2.
2. Stack bread1 on top of bread2 to complete the bread part of

↪→ the chicken sandwich.
3. Move robot1 to table8 to pick up chicken1.
4. Move robot1 to table4 to stack chicken1 on the bread.
5. Move robot1 to table5 or table6 to pick up lettuce1 or

↪→ lettuce2.
6. Move robot1 to table4 to stack lettuce on the chicken.
7. Move robot1 to sink1 to pick up tomato1.
8. Move robot1 to table4 to stack tomato1 on the lettuce.

For the burger:
1. Move robot1 to table2 to pick up cheese1.
2. Move robot1 to table1 to stack cheese1 on bottombun1.
3. Move robot1 to table3 to pick up onion1.
4. Move robot1 to table1 to stack onion1 on cheese1.
5. Move robot1 to fryer1 to pick up patty1.
6. Move robot1 to table1 to stack patty1 on onion1.
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7. Move robot1 to board1 to pick up topbun1.
8. Move robot1 to table1 to stack topbun1 on patty1.

Action: Stack bread1 on top of bread2 using robot1� �
Listing 7: 9_ onion_ cheese_ burger_ and_ lettuce_ tomato_ chicken_ sandwich_ 168

A.14 TRANSITION FAILURE RECOVERY ANALYSIS

In this section, we annotated for the transition failures on the synchronous and asynchronous datasets
whether (1) the LLM agent recovers from a failure and (2) whether it repeats its mistake after
recovering.

A mistake occurs when the agent violates a rule at a certain station for a specific action. When the
agent makes a mistake, there are 4 cases:

1. The agent violates a rule and is unable to recover
2. The agent violates a rule at a station for a specific action, but is able to recover. After recovery,

they do not make any more mistakes; they do not repeat the mistake after recovering.
3. The agent violates a rule at a station, recovers, but is later repeats the mistake by trying to

perform the same action at the same type of station. In this case, they repeat the mistake
after recovering.

4. The agent violates a rule at a station, recovers, and does not repeat the mistake by trying to
violate the same rule for the same action at the same type of action. However, they violate
the same rule for a different action at a different type of station. In this case, we say that
they do not repeat their mistake.

On the synchronous dataset, the transition failures account for 32.1% (17) of the total failures. Of
these failures, 58.8% (10) recovered from the mistake. Of the failures that recovered from their
mistake, 90% (9) did not repeat the same mistake.

On the asynchronous dataset, the transition failures account for 58.5% (52) of the total failures. Of
these failures, 40.4% (21) recovered from the mistake. Of the failures that recovered from their
mistake, 57.1% (12) did not repeat the same mistake.

In the case where the agent is able to recover from a mistake, the agent may still fail to complete
the task because they recovery process took too long and exhausted the step limit. Then, this failure
would be categorised as a Transition Function failure.
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