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Abstract. Head and neck cancer poses major challenges for precision
oncology, where accurate tumor segmentation and reliable survival pre-
diction are essential yet remain difficult due to heterogeneous morphology
and multi-center variability in PET/CT. We introduce HM-VNet, a uni-
fied multimodal framework designed to address these challenges through
end-to-end learning. For segmentation, HM-VNet integrates hierarchical
Transformer-based encoding with multimodal fusion to achieve robust
delineation of both primary tumors and metastatic lymph nodes. For
survival prediction, a deep cross-modal fusion network combines imag-
ing, clinical, and radiomic features, further guided by anatomical pri-
ors derived from segmentation results. Comprehensive evaluation on the
HECKTOR 2025 Challenge confirms that HM-VNet consistently out-
performs state-of-the-art approaches, demonstrating strong effectiveness
and promising clinical relevance in advancing automated multimodal in-
telligence for head and neck cancer management. Our source code is avail-
able at |https: //github.com/Wu-beining/HM-VNet. (Team: HDUMedATI)
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1 Introduction

Head and neck cancer (HNC) is one of the most prevalent malignancies globally,
encompassing various subtypes, including nasopharyngeal carcinoma, laryngeal
carcinoma, and oral squamous cell carcinoma. Each year, hundreds of thousands
of new cases are diagnosed. The high incidence and mortality not only pose sig-
nificant threats to patients’ health and quality of life but also place considerable
strain on public healthcare systems. In recent years, with the rapid advance-
ment of molecular imaging, positron emission tomography/computed tomogra-
phy (PET/CT) using fluorodeoxyglucose (FDG) has become a cornerstone in
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clinical practice. This multimodal imaging technique provides high-resolution
anatomical data from CT while simultaneously revealing tumor metabolic ac-
tivity through PET, combining structural and functional information [I].

Despite the rich complementary anatomical and functional information pro-
vided by PET/CT, its clinical application still faces two critical challenges. First,
accurate target delineation is essential for radiotherapy and personalized treat-
ment, but it remains heavily reliant on manual annotation. The indistinct and
heterogeneous boundaries of primary tumors and metastatic lymph nodes make
manual contouring both labor-intensive and time-consuming, with significant
inter-observer variability [2]. This issue is further exacerbated in multi-center
studies, where differences in acquisition protocols and image quality increase
inconsistencies . Second, survival prediction plays a crucial role in guiding per-
sonalized treatment strategies, but it is inherently complex and multifactorial.
Imaging biomarkers, clinical indices, and demographic variables all influence
recurrence-free survival (RFS). Extracting meaningful prognostic features from
noisy, heterogeneous data and constructing robust risk prediction models re-
mains a significant challenge in both clinical practice and research.

To advance progress in this field, the International Conference on Medical
Image Computing and Computer Assisted Intervention organized the HECK-
TOR challenge [10], using a large-scale, multi-center, and standardized PET/CT
dataset to define two core tasks: (1) fully automated segmentation of head and
neck tumors and lymph nodes, and (2) RFS prediction based on multimodal
data. Building upon this foundation, this study addresses the two core tasks of
HECKTOR 2025 by proposing a series of advanced automated analysis methods,
which are systematically evaluated on the challenge dataset, thereby validating
their effectiveness and translational potential in real-world clinical applications.
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Fig. 1: The proposed end-to-end multimodal analysis framework. (a) Task 1: 3D
Swin Transformer-based PET/CT tumor segmentation. (b) Task 2: Survival risk
prediction by fusing radiomic and clinical features.



Title Suppressed Due to Excessive Length 3

2 Method for Task 1

2.1 Task 1 Overall Architecture

To address the morphological diversity, indistinct boundaries, and inter-center
heterogeneity of primary tumors (GTVp) and metastatic lymph nodes (GTVn) in
PET/CT, we propose the Hierarchical Multimodal Vision Network (HM-VNet),
an end-to-end 3D segmentation framework. As illustrated in Fig. a)7 HM-VNet
is composed of three key components: (1)Multimodal feature fusion mod-
ule, which jointly encodes PET and CT images at the input stage; (2)Hierar-
chical Transformer encoder, which extracts deep semantic representations
across multiple resolutions; (3)Convolutional decoder, which restores spatial
details through skip connections and generates the final segmentation masks.

2.2 Data Preprocessing and Augmentation

To harmonize data from multiple centers and optimize network inputs, we de-
veloped a multi-stage preprocessing pipeline. PET, CT, and label images were
resampled to an isotropic resolution of 1 mm? using SimpleITK, with spline
interpolation applied to PET and CT images, and nearest-neighbor interpola-
tion used for label maps. An automated PET-based ROI localization strategy
identified the head-and-neck center, from which a fixed volume of 200 x 200
x 310 voxels was cropped to minimize computational overhead. The cropped
volumes were then reoriented to the standard RAS coordinate system, with CT
Hounsfield Units clipped to the range [-250, 250] and normalized to [0, 1], while
PET images were standardized using Z-score normalization. To enhance model
generalization and robustness against multi-center domain shifts, data augmen-
tation techniques, including random scaling, elastic deformations, and intensity
perturbations, were applied during training.

2.3 Multimodal Feature Fusion and Embedding

PET and CT images provide highly complementary information: PET reflects
the metabolic activity of tumors, whereas CT offerFs a clear depiction of sur-
rounding anatomical structures. To fully exploit this complementarity, we de-
signed a shallow feature fusion module. Concretely, the input PET and CT vol-
umes are first processed independently through modality-specific convolutional
stems. Each stem consists of two 3 x 3 x 3 convolutional layers, followed by
instance normalization and GELU activation, enabling preliminary feature ex-
traction and distribution adaptation while capturing low-level edges and texture
patterns characteristic of each modality. Subsequently, the modality-specific fea-
ture maps are concatenated along the channel dimension, yielding a fused feature
tensor that serves as the input to the downstream Transformer encoder. In this
way, the module achieves an effective integration of metabolic and anatomical
representations, laying the foundation for robust multimodal learning:

£§7 = Stemer(X9T), P = Stemppr(XFET),  fy = Concat[f§T, f7ET),

(1)
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where XCT and XPET denote the normalized CT and PET volumes.

2.4 Hierarchical Vision Transformer Encoder

The core of HM-VNet is a hierarchical encoder that combines the strengths of
Swin Transformer and V-Net for efficient and effective 3D spatial modeling. Or-
ganized into four stages, the encoder progressively halves spatial resolution while
doubling channel dimensionality. This process constructs multi-scale feature rep-
resentations, capturing both fine-grained local details and global semantic con-
texts. Within each stage, conventional convolutional operations are replaced by
3D Swin Transformer modules, whose key mechanisms are as follows:

1. Window-based Multi-head Self-Attention (W-MSA). Attention com-
putation is restricted to non-overlapping local 3D windows, which substan-
tially reduces computational complexity. This design allows the model to
efficiently capture fine structural details within high-resolution 3D volumes,
such as tumor interiors and boundary variations. For each 3D window w, the
input token matrix X,, € RM °xd undergoes self-attention:

Q = XwWQ7 K = XwWK7 V = XUJWV7
T

(2)

Attn(X,,) = Softmax (Q\I/z

2. Shifted Window-based Multi-head Self-Attention (SW-MSA). To
facilitate information exchange across adjacent windows, the window par-
titioning is cyclically shifted between consecutive Transformer layers. This
mechanism enables the aggregation of broader contextual information, ex-
tending the receptive field beyond local windows to effectively capture global
dependencies. Such capability is particularly critical in distinguishing metabol-
ically active tumor regions from inflammatory or physiologically active tis-
sues with similar uptake patterns.

+ Brel) V.

Through this hierarchical design, the encoder simultaneously captures global
semantics,which include spatial relationships between tumors and adjacent or-
gans in the deeper, low-resolution feature maps, while preserving precise bound-
ary details in the shallower, high-resolution representations. This synergy equips
HM-VNet with robust and fine-grained segmentation performance when dealing
with complex multimodal head-and-neck imaging data.

2.5 Post-processing Strategy

To refine the raw segmentation outputs and enforce clinical plausibility, we im-
plemented a sequential post-processing pipeline. First, the network’s softmax
probabilities were converted into a binary mask using a threshold of 0.7. A 3D
morphological closing operation was then applied to fill small internal holes and
smooth the lesion contours. Subsequently, we performed a connected component
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analysis to remove noise. Any component with a volume smaller than 50 mm?

was discarded as an artifact. Based on clinical priors, we retained only the three
largest components, designating the largest as the GTVp. Finally, we applied
an anatomical correction rule: any remaining lesion component whose centroid
was more than 150 mm away from the GTVp’s centroid was removed, thereby
eliminating anatomically implausible false positives.

2.6 Segmentation Decoder and Loss Function

The decoder is designed symmetrically to the encoder and employs transposed
convolutions to restore the spatial resolution of feature maps progressively. To
fully integrate multi-scale information and compensate for detail loss introduced
during downsampling, skip connections are incorporated at each stage, concate-
nating high-frequency encoder features with the corresponding upsampled de-
coder features. This strategy substantially improves boundary precision in the
segmentation outputs. The final prediction layer consists of a 1 x 1 x 1 convo-
lution, which compresses channel dimensions and maps the features into three
classes, background, GTVp, and GTVn. A Softmax activation is then applied to
produce voxel-wise class probability distributions.

For model optimization, we adopt a weighted combination of Dice loss and
cross-entropy loss as the training objective:

2 Z DPi,cYic + e 1 2
Dicec = e Lpice =1 — 5 » Dice,,
ZiEQ pi,c + Zieﬁ yi,c + 9 ce 3 ;
L 3)
Low = _ﬁ Z Z Yi,c logpi,m Liotal =ALDice + (1 - /\)‘CCEa A =0.5.
€82 c=0

where Lpic. encourages accurate volumetric overlap, Lcog penalizes voxel-level
misclassification, and A is a balancing coefficient. This composite loss leverages
the complementary strengths of both terms, enabling robust optimization in the
presence of class imbalance and heterogeneous tumor morphology.

3 Method for Task 2

3.1 Task 2 Overall Architecture

For Task 2, we propose a deep multimodal fusion network to enable precise
prediction of patient survival risk. As illustrated in Fig. [I[b), The framework
consists of three parallel branches that separately encode CT/PET imaging data,
electronic health records (EHR), and radiomic features derived from Task 1
segmentation results. The outputs of these branches are integrated within a
cross-modal fusion module and subsequently passed into the ICARE survival
prediction model, thereby forming an end-to-end analysis pipeline.
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3.2 Imaging and Clinical Branches

The imaging branch takes registered CT and PET volumes as inputs, Xcp €
REXWXD and Xppr € REXWXD  which are concatenated along the chan-
nel dimension to form dual-channel 3D data Xi,, = Concat(Xcr, Xpgr) €
R2XHXWXD - A 3D ResNet-18 serves as the feature encoder, learning hierarchi-
cal representations ranging from low-level textures to high-level semantics while
alleviating gradient vanishing issues through residual connections. To obtain a
global imaging representation, the classification head of ResNet-18 is removed,
and the output of its final average pooling layer is the feature vector:

fimg = FReSNet—IS (Ximg) S R512. (4)

The clinical branch encodes structured patient variables. Continuous vari-
ables are normalized to yield Xigrm = = Xeincone—it ¢ RM while categor-
ical variables are transformed into one-hot encodings to obtain Xg{;ﬁ}}gfsc
OneHot(Xlin-disc) € RP where P is the total dimension after one-hot encod-
ing. These two representations are concatenated into a unified vector X, =
Concat(Xnerm — xXonehot ) ¢ RM+P which is then passed through a multi-layer

perceptron (MLP) consisting of fully connected layers, ReL.U activation, batch
normalization, and dropout.This operation can be symbolized as:

.fclin = MLPL(XCUH> € IR327 (5)

where MLP/, represents a multi-layer perceptron with L-layer hidden layers. The
final output is a 32-dimensional embedding vector that unifies heterogeneous
clinical factors while capturing their latent associations:

3.3 Multi-mask Generation Module

To better characterize tumor heterogeneity and mitigate segmentation errors,
we construct a multi-scale mask ensemble based on Task 1 lesion masks. The
ensemble includes original lesions and bounding boxes, SUV-threshold-refined
variants, as well as morphologically expanded or shell-derived masks, yielding a
total of 11 variants. For each mask, 93 radiomic features F,q(M;, Xn0da1) € R??
are extracted from both CT and PET using pyradiomics, supplemented with
handcrafted indicators such as the number of tumors and lymph nodes. This
process produces a 2048-dimensional feature vector capturing diverse radiomic
and morphological descriptors,which can be expressed as:

11
frad = Concat <U Concat (Fl'ad(Mia XCT)7 Frad(Miy XPET)) ) fmanual) € RQ(MS.
=1
(6)

3.4 Cross-modal Feature Fusion Module

The fusion module concatenates the 512-dimensional imaging representation
with the 32-dimensional clinical embedding to form a 544-dimensional vector,
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which is then combined with the 2048-dimensional radiomic features. This com-
posite feature vector is passed through a deep MLP that learns nonlinear, high-
order cross-modal interactions. The output is a 256-dimensional integrated rep-
resentation, serving as the unified input for survival prediction. The specific
formula can be expressed as follows:

5124-32 544
fimg—clin = Conca’t(fimgv fclin) eER TR =R ;
5444-2048 2592
-fcombined = Concat(fimg—clin’ frad) eER + =R ) (7>

g = ReLU(thtfl + bt)a 90 = fcombinedv ffused = quse-outh + bfuse-outu

where W, € RFe*Fi-1 b, € RF* are the weight and bias of the t-th layer,
respectively, and Wgse-out € RZ7ET beiceous € R?°0 are the weight and bias
of the fuse-layer, respectively.

3.5 Prediction Model

For risk prediction, we construct a binary-weighted ICARE model designed to
mitigate overfitting under limited sample conditions. Unlike conventional models
that assign continuous weights, our approach restricts each feature weight to
either +1 or —1, indicating whether the feature promotes or suppresses risk.
The modeling process consists of four steps:

1. Feature preprocessing. Pearson correlation coefficients are computed to
detect highly correlated variables. If correlation exceeds a threshold, one
redundant variable is randomly discarded to reduce collinearity.

2. Univariate consistency evaluation. For each retained feature xi, Harrell’s
Concordance Index (C-index) is used to assess its concordance with survival
outcomes y. Features with predictive power exceeding a minimum threshold
|ci] > cmin are preserved, where |¢;| = max{1l — ¢;, ¢;}.

3. Binary weighting. Based on the concordance direction, each feature is
assigned a binary weight (+1 or —1), where s; = +1if ¢; > 0.5, and s; = —1
otherwise, ensuring both interpretability and robustness.

4. Risk scoring. At prediction time, all input features are standardized via
Z-score normalization. The weighted average is then computed to yield the
individual risk score for each patient as follows:

1

where z; denotes the standardized value of the input feature.

To further improve stability and generalization, we employ a bagging strategy
in which multiple independent binary-weighted models are trained on bootstrap
samples of the original dataset. In inference, their outputs are aggregated by
median voting. This ensemble method reduces uncertainty from data sampling
and feature selection, substantially enhancing prediction robustness.
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3.6 Loss Function

The overall training objective combines two complementary components:
Liotal = EDeepHit + - EContrastivea a=0.1 (9)

The DeepHit loss serves as the primary optimization objective, enhancing the
model’s ability to rank patients by survival risk. It consists of two parts: (1)
a likelihood term, inspired by the Cox model, which maximizes the probabil-
ity that patients with events are assigned higher risks than those still at risk,
and (2) a ranking term, which penalizes incorrect patient pair orderings, such
as when a patient with shorter survival is predicted to have a lower risk. This
loss supervises the outputs of the risk prediction head. In contrast, the Survival
Contrastive loss acts as an auxiliary regularizer, refining the feature space by
using contrastive learning to bring together patients with similar survival out-
comes (e.g., comparable survival times with recurrence) and separate those with
markedly different outcomes. This encourages the network to learn more dis-
criminative multimodal representations, improving the stability and robustness
of inputs for the downstream ICARE survival prediction model.

4 Experiments

4.1 Dataset

We utilized the HECKTOR 2025 Challenge dataset, which comprises registered
PET/CT scans from 700 head and neck cancer patients across 10 centers. Fol-
lowing the official 8:2 training-testing split, our model was trained using the
provided expert annotations and evaluated on the hidden test set by the chal-
lenge organizers. The dataset provides ground-truth masks for GTVp and GTVn
segmentation, alongside comprehensive clinical metadata including TNM stag-
ing, demographic information, and RFS outcomes for the prediction task.

4.2 Experimental Setup

All experiments were conducted on a server equipped with an NVIDIA 5090
GPU (32 GB memory). The models were implemented in PyTorch, with data
preprocessing, augmentation, and network construction facilitated by MONAIL

For Task 1: HM-VNet was trained end-to-end using the AdamW optimizer
for 1000 epochs, with an initial learning rate of 1 x 104, A cosine annealing
schedule was employed for dynamic adjustment, and the batch size was set to 2.

For Task 2: AdamW was also used, training the feature extractor in 5
iterations of 10 epochs each, with an initial learning rate of 1 x 10~3 adjusted
via ReduceLROnPlateau. The batch size was set to 8. To ensure reproducibility,
a global random seed of 42 was fixed, and five-fold stratified cross-validation was
performed on the training set.
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4.3 Evaluation Metrics

Following the official guidelines, model performance was evaluated for both tasks.
For Task1, we used the mean Dice Similarity Coefficient (DSC) for GTVp, along-
side the Aggregated Dice (DSC,ge) and Aggregated F1-Score for GTVn. For
Task2, the Concordance Index (C-index) served as the sole evaluation metric.

4.4 Experimental Results

Segmentation Task. We benchmarked HM-VNet against a wide range of state-
of-the-art 3D segmentation models from distinct architectural families. The com-
parison included CNN-based approaches such as SegResNet [6], Transformer-
based architectures like SwinUNETR [5], and a variety of advanced hybrid mod-
els, namely Restormer [12], H-Denseformer [1I], MMCA-Net [13], MICFormer
[4], H2ASeg [8], and AIMERS [7].

Table 1: Performance comparison of different advanced segmentation models on
the HECKTOR 2025 validation set. Best: highlighted. Second-best: underlined.

Method GTVp GTVn GTVn
Mean Dice Aggregated Dice Aggregated F1-Score

SegResNet [6] 0.6621 0.7181 0.5297
SwinUNETR [5] 0.6673 0.7053 0.1713
Restormer [12] 0.6589 0.7024 0.3439
MICFormer [4] 0.6521 0.6802 0.2157
H-Denseformer [I1]  0.6453 0.6826 0.4050
MMCA-Net [13] 0.6437 0.6671 0.2507
H2ASeg [8] 0.5824 0.6855 0.4756
AIMERS [7] 0.5250 0.5110 0.3849
Ours 0.6833 0.7452 0.4544

1. Comparison with baseline models: For GTVp segmentation, HM-VNet
achieved a mean Dice score of 0.6833, significantly outperforming both the
CNN-based SegResNet (0.6621) and the Transformer-based SwinUNETR
(0.6673). This demonstrates the effectiveness of our hierarchical Transformer
architecture with multimodal fusion in capturing the complex morphology
of primary tumors. In the more challenging task of GTVn segmentation, the
advantage of HM-VNet is even more pronounced, reaching an aggregated
Dice of 0.7452, which is substantially higher than SegResNet (0.7181) and
SwinUNETR (0.7053). These results highlight our model’s superior ability
to localize and segment small, spatially dispersed metastatic lymph nodes.

2. Comparison with advanced hybrid architectures: For GTVp segmen-
tation, HM-VNet again achieved the best performance, with a mean Dice
of 0.6833, surpassing Restormer (0.6589) and H-Denseformer (0.6453). For
the more challenging GTVn segmentation, HM-VNet attained an aggregated
Dice of 0.7452, markedly outperforming Restormer (0.7024) and MICFormer
(0.6802). Furthermore, in the lesion-level F1 score, HM-VNet achieved 0.4544,
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slightly lower than H2ASeg (0.4756), but significantly higher than MIC-
Former (0.2157) and MMCA-Net (0.2507), demonstrating superior overall
segmentation accuracy and robustness.

3. Lesion-level detection performance analysis: At the lesion level, Seg-
ResNet (0.5297) achieved the highest aggregated F1 score for GTVn, likely
due to its strong capability in local feature extraction. Our HM-VNet (0.4544)
and H2ASeg (0.4756) followed closely, both performing competitively and
clearly outperforming other Transformer-based methods such as SwinUNETR,
(0.1713) and MICFormer (0.2157). These results confirm that HM-VNet
maintains strong competitiveness in accurately detecting lymph node lesions.

Survival Prediction Task. For Task 2, our proposed method was systemati-
cally benchmarked against a spectrum of established survival prediction models,
which represent two distinct methodological paradigms. The first paradigm en-
compasses traditional statistical and machine learning baselines, featuring the
seminal Cox Proportional-Hazards (CoxPH [I0]) model, which is the field’s
gold standard and ICARE, [I0]a robust model for feature selection in high-
dimensional data. The second paradigm consists of advanced deep learning ap-
proaches, including DeepHit [10] and MTLR [I0], which respectively reformulate
survival analysis as discrete-time and multi-task problems, alongside contempo-
rary multimodal frameworks including HMT [3] and Lyn’s [9].

Table 2: Performance comparison of different survival prediction models on the
HECKTOR 2025 validation set. Best: highlighted. Second-best: underlined.

Method C-index
CoxPH [1I0] 0.6073 4+ 0.0637
DeepHit [10] 0.5457 + 0.0674
MTLR [10] 0.5877 4+ 0.0900
ICARE [10] 0.6705 4 0.0608
HMT [3] 0.5688 4+ 0.0840
Lyn’s [9] 0.6032 4+ 0.0869
‘W/O Taskl ~ 0.6826 £0.0578
Ours 0.7045 + 0.0568

1. Comparison with traditional baselines: Our model achieved a C-index
of 0.6826, significantly outperforming the classical CoxPH model (0.6073)
and surpassing the strong modern machine learning method ICARE (0.6705).
This remarkable result vividly demonstrates the capability of our end-to-end
deep learning framework to capture complex and nonlinear survival-related
patterns from heterogeneous data, thereby breaking through the perfor-
mance bottleneck of traditional approaches.

2. Comparison with deep learning baselines: When compared with a
range of advanced deep learning methods, our model likewise exhibited a
marked advantage. Its C-index of 0.6826 was substantially higher than Deep-
Hit (0.5457), MTLR (0.5877), HMT (0.5688), and Lyn’s model (0.6032).
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These findings strongly validate the superiority of our unique model archi-
tecture in multimodal data fusion, representation learning, and downstream
risk prediction, relative to other state-of-the-art deep learning approaches.

3. Incorporating segmentation-derived features: To further enhance sur-
vival prediction performance, we integrated segmentation results obtained
from the Task 1 model into the Task 2 framework. Experimental results re-
vealed that with this additional auxiliary information, the C-index improved
further to 0.7045 + 0.0568. This result clearly demonstrates that spatial lo-
calization and anatomical priors derived from segmentation can effectively
regularize feature learning, thereby enhancing both the reliability of survival
prediction and its overall clinical relevance.

5 Conclusion

We proposed HM-VNet, a hierarchical multimodal framework that jointly tackles
tumor segmentation and survival prediction in head and neck cancer. By cou-
pling hierarchical multimodal encoding with cross-modal fusion, our approach
achieves robust performance across heterogeneous clinical data. Results on the
HECKTOR benchmark confirm its clear advantage over existing methods, un-
derscoring strong potential for real-world clinical translation. This work moves
a step closer to reliable multimodal intelligence for precision oncology.
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