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Abstract

In recent years, numerous studies have demonstrated the close connec-
tion between neural networks’ generalization performance and their ability
to learn low-dimensional representations of data. However, the theoreti-
cal foundation linking low-dimensional representations to generalization re-
mains underexplored. In this work, we propose a theoretical framework to
analyze this relationship from the perspective of interpolation and convex
combinations. We argue that lower-dimensional representations increase
the likelihood of new samples being expressed as convex combinations of
the training set, thereby enhancing interpolation probability. We derive
a generalization error upper bound under the interpolation regime, which
becomes tighter as the dimensionality of the representation decreases. Fur-
thermore, we investigate how the structure of the manifold affects interpo-
lation probability by examining the volume of the convex hull formed by
the manifold. Our theoretical and experimental results show that larger
convex hull volumes are associated with higher interpolation probabilities.
Additionally, we explore the impact of training data volume on interpola-
tion, finding a significant power-law relationship between increased data
volume, convex hull volume and interpolation probability. Overall, this
study highlights the critical role of low-dimensional representations in im-
proving the generalization performance of neural networks, supported by
both theoretical insights and experimental evidence.

1 Introduction

Neural networks have achieved remarkable success across various tasks, often outperforming
humans in domains like natural language processing and computer vision (Devlin et al., 2018;
Brown et al., 2020; Raffel et al., 2020; Yang et al., 2019; Liu et al., 2019; He et al., 2022).
However, understanding the generalization capabilities of these models remains an open
problem. Current theories fail to explain how large-scale data and models contribute to this
generalization, leading to an overemphasis on increasing data and model size without clear
theoretical backing.
Recent studies have revealed several phenomena relevant to generalization in neural net-
works. For instance, models with flatter minima often generalize better (Hochreiter &
Schmidhuber, 1997; Mulayoff & Michaeli, 2020; Baldassi et al., 2021), and networks tend
to perform better in interpolation tasks, where test samples lie within the convex hull of
the training data (Barnard & Wessels, 1992; Haley & Soloway, 1992). Additionally, there
is growing evidence that neural networks compress input data into low-dimensional repre-
sentations, which appears to improve generalization (Ansuini et al., 2019; Recanatesi et al.,
2019).
Despite these insights, there is still no unified framework to explain why low-dimensional
representations correlate with better generalization. Furthermore, the connection between
interpolation probability and low-dimensional representation has not been thoroughly ex-
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plored. This study aims to bridge this gap by proposing a theoretical framework that links
low-dimensional representations, interpolation probability and generalization error.
We hypothesize that lower-dimensional representations increase the likelihood of new sam-
ples being represented as convex combinations of the training set, resulting in a higher
interpolation probability. This, in turn, tightens the generalization error bound. Through
both theoretical derivation and empirical validation, we demonstrate that neural networks
improve generalization by learning low-dimensional representation manifolds.
The structure of this paper is as follows: Section 2 reviews related work on neural network
generalization. Section 3 introduces the relevant background knowledge for this research.
Section 4 experimentally analyzes how the embedding dimension, manifold structure, and
interpolation probability change during the training process of neural networks. Section 5
proves that in the interpolation regime, there exists an upper bound on the generalization
error of neural networks, which decreases as the data dimension decreases. Section 6 theo-
retically discusses the relationship between dimension and interpolation probability. Section
7 theoretically examines the relationship between manifold structure (primarily the volume
of convex hull formed by the manifold) and interpolation probability. Finally, Section 8
explores the impact of data volume on interpolation probability from both theoretical and
experimental perspectives.
Our key contributions are as follows:

• We empirically show that during training, neural networks reduce the dimension-
ality of their representations while increasing interpolation probability, leading to
improved generalization performance.

• We provide a theoretical framework that demonstrates how low-dimensional repre-
sentations increase interpolation probability, which in turn leads to tighter general-
ization error bounds in the interpolation regime.

• We explore how the structure of the representation manifold, particularly the volume
of the convex hull, influences interpolation probability, and we show that increased
training data expands this volume, enhancing generalization.

Figure 1: Theoretical Framework. By learning low-dimensional representations, neural
networks can achieve a more compact embedding distribution, which in turn results in a
loss landscape with lower Lipschitz constants around the learned parameters. In the inter-
polation regime, this compactness of the embeddings, combined with the reduced Lipschitz
constant, contributes to a tighter upper bound on the generalization error, enhancing the
model’s ability to generalize effectively.

2 Related Works

Interpolation and Extrapolation in Neural Networks: For neural networks, inter-
polation refers to test samples falling within the convex hull of training samples, while ex-
trapolation refers to test samples lying outside this convex hull. Generally, neural networks
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tend to exhibit better generalization performance when performing interpolation (Barnard
& Wessels, 1992; Haley & Soloway, 1992). Recent work highlights that interpolation proba-
bility is related to the amount of data constituting the convex hull and the dimensionality of
the data (Bárány & Füredi, 1988; Balestriero et al., 2021). Given that the data processed by
models are typically high-dimensional and often insufficient in quantity to meet theoretical
requirements, interpolation probabilities are theoretically quite low (Balestriero et al., 2021).
Thus, it is believed that neural networks are likely always performing extrapolation.
Low-dimensional Representation of Neural Network: Numerous studies indicate
that neural networks compress data, and this compression capability is closely linked to
their generalization performance (Yu et al., 2024; Dai et al., 2023; Chen et al., 2022; Chan
et al., 2022). The intrinsic dimension can quantify the dimensionality of the manifold where
a discrete set of points resides, serving as a measure of manifold complexity. By comparing
the differences in intrinsic dimension between raw data and its representations, we can char-
acterize the extent of compression achieved by the neural network. Research shows that as
data progresses through each layer from raw input to the embedding manifold, the intrinsic
dimension of the embedding manifold consistently decreases, reflecting ongoing compression
of the data (Ansuini et al., 2019; Recanatesi et al., 2019). Furthermore, lower-dimensional
representations often correlate with better generalization performance (Ansuini et al., 2019).
While there is widespread recognition of the importance of low-dimensional representations
for enhancing generalization, a theoretical explanation for why low-dimensional representa-
tions tend to perform better has yet to be established.

3 Preliminaries and Technical Background

3.1 Convex Hull and Interpolation

Definition 1. Convex Hull: Given a set of points X = {x1, x2, . . . , xn} ⊂ Rd, the convex
hull of X is defined as:

Conv(X) =

{
n∑

i=1

λixi

∣∣∣∣∣λi ≥ 0,

n∑
i=1

λi = 1

}
. (1)

This represents the smallest convex set containing X.
Definition 2. Volume of a Convex Hull: Let S = {x1, x2, . . . , xm} ⊂ Rn be a finite set
of points in n-dimensional Euclidean space. The volume of the convex hull, λn(Conv(S)),
can be computed using Lebesgue integration as:

λn(Conv(S)) =
∫
Rn

χConv(S)(x) dλn(x), (2)

where χConv(S)(x) is the characteristic function of the convex hull Conv(S), defined as:

χConv(S)(x) =

{
1, if x ∈ Conv(S),
0, otherwise. (3)

Thus, the volume λn(Conv(S)) is the n-dimensional Lebesgue measure of the set Conv(S),
which generalizes the concept of the volume of a convex polytope.
Definition 3. Interpolation Probability: Let X be a d-dimensional random vector and
X1, X2, ... be independent copies of X. For each θ ∈ Rd and positive integer n, define

pn,X(θ) := R(θ ∈ Conv{X1, ..., Xn}), (4)
where Conv A := {

∑m
i=1 λixi|m ≥ 1, xi ∈ A, λi ≥ 0,

∑m
i=1 λi = 1} denotes the convex hull

of a set A ⊂ Rd.

In this work, we will focus on the relationship between the convex hull volume and interpola-
tion probability. However, the dimensionality also affects the convex hull volume, so we need
to better understand the interplay between these three factors. Using the high-dimensional
sphere as an example, the following theorem illustrates how the volume of a geometric body
changes as the dimension increases.
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Theorem 3.1 (Volume of a d-dimensional unit sphere). Let Sd denote the unit sphere in
Rd+1, that is, the set of points in Rd+1 that are at a distance of 1 from the origin. The
volume Vd of the d-dimensional unit sphere is given by:

Vd =
πd/2

Γ
(
d
2 + 1

) (5)

where Γ(x) is the Gamma function, which generalizes the factorial function, such that Γ(n) =
(n− 1)! for positive integers n.
Asymptotic behavior:

• For small dimensions, Vd increases with d, reaching a maximum at a certain dimen-
sion (approximately around d = 5 to d = 9).

• For large dimensions, Vd decreases rapidly and approaches zero as d → ∞.

3.2 Intrinsic dimension and Ambient Dimension

Let P ⊂ RN represent a set of sample points. We assume that these points lie on a low-
dimensional manifold M ⊂ RN , where N is the ambient dimension of the space. The
ambient dimension dim(RN ) = N refers to the dimension of the surrounding space, while
the intrinsic dimension dim(M) = d ≪ N refers to the dimension of the manifold on which
the data lies. In essence, the intrinsic dimension quantifies the complexity of the underlying
structure of the data.

3.3 Estimation of the intrinsic dimension

To estimate the intrinsic dimension of a manifold, we employ the Maximum Likelihood Es-
timation (MLE) method proposed by Levina et al. (Levina & Bickel, 2004). This technique
relies on the distances between neighboring points in the dataset to compute the manifold’s
intrinsic dimension.
The intrinsic dimension m̂k(x) at a point x can be estimated as follows:

m̂k(x) = [
1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)
]−1, (6)

where Tj(x) denotes the Euclidean distance from point x to its jth nearest neighbor. By av-
eraging these local estimates across all samples, we obtain a global estimate for the intrinsic
dimension:

m̄k =
1

n

n∑
i=1

m̂k(xi), (7)

The parameter k controls the number of neighbors considered when estimating the dimension.
A smaller k focuses on a more local perspective, while a larger k captures a more global
view of the manifold. By varying k , we can derive a more comprehensive understanding of
the manifold’s intrinsic dimension.

4 Experiment Results of Dimensional and Structural Analysis

In this experiment, we evaluate a 5-layer Multi-Layer Perceptron (MLP) model trained on
the MNIST dataset and report findings on three critical metrics: the intrinsic dimension of
embeddings, convex hull volume, and interpolation probability. The embeddings used in this
analysis are taken from the output of the third layer’s linear transformation. The convex
hull volume provides a geometric characterization of the manifold structure, encapsulating
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Figure 2: Learning dynamics of Neural Network on MNIST. (A) Train and test
accuracy curves show rapid convergence to high accuracy. (B) Intrinsic dimension decreases
sharply in the early epochs, stabilizing as training progresses. (C) Convex hull volume
initially drops, followed by a gradual increase, indicating changes in the embedding structure.
(D) Interpolation probability remains low early in training but begins to rise gradually once
the intrinsic dimension decreases to a certain level.

the distributional shape of the data. Additional results for various model architectures on
other datasets are provided in the appendix.
As shown in Figure 2, intrinsic dimension decreases rapidly in the early stages of training
and stabilizes midway, suggesting that the model quickly captures lower-dimensional repre-
sentations before entering a phase of fine-tuning. For the convex hull volume, it initially
decreases rapidly and then rises again. The initial decrease is primarily due to the reduction
in intrinsic dimension, while the subsequent increase occurs when the embedding dimension
remains relatively stable, indicating that the structure of the embedding manifold continues
to adjust during this phase. In terms of interpolation probability, it starts at zero due to the
initially high intrinsic dimension. Later, as both the intrinsic dimension and the manifold
structure evolve, the interpolation probability begins to gradually increase.
The above results demonstrate the complex changes in the embedding manifold during the
learning process of neural networks, highlighting the close relationship between intrinsic
dimension, convex hull volume, interpolation probability and the model’s generalization
performance. Next, we will further explore, from a theoretical perspective, how these factors
influence generalization performance.

5 Existence of Generalization Error Bound in the
Interpolation Regime and the Impact of Dimension

In this section, we primarily prove that in the interpolation regime, an upper bound on the
generalization error exists, and this upper bound is related to the dimension of the input
data. The smaller the dimension, the lower the upper bound on the error.
Theorem 5.1. Let ℓ(y, x, θ) be a loss function that is Lipschitz continuous with respect to
both x ∈ Rd and y ∈ Rk, with Lipschitz constant L. Assume that the input data x and output
data y are bounded such that ∥x − x′∥ ≤ Dx and ∥y − y′∥ ≤ Dy for all x, x′ and y, y′. Let
L̂(θ,D) be the empirical loss over a dataset D = {(xi, yi)}ni=1, and let L(θ) be the expected
loss over the data distribution v. Then, for any ϵ > 0, the following bound holds:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
. (8)
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Furthermore, if the Lipschitz constant L and the data diameters Dx and Dy scale with the
dimension d as L = CL

√
d and Dx = Cx

√
d, while Dy is constant, then the bound becomes:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2d2

)
, (9)

where C = CL(Cx+Cy/
√
d) and for large d, C ≈ CLCx. This shows that the generalization

error bound becomes tighter as the dimension d decrease.

Theorem 5.1 emphasizes the impact of the Lipschitz constant of the loss function and the di-
ameter of the data distribution on generalization performance. A smaller Lipschitz constant
for the loss function indicates that changes in model parameters will not lead to significant
fluctuations in the loss value, which aligns with the definition of flat minima. Therefore,
this theorem explains why flat minima often exhibit better generalization performance.
In terms of data distribution, under the interpolation regime, the distribution is bounded,
but it is worth further exploring the diameter of the data distribution. The diameter reflects
the maximum distance between samples in the space, and a smaller diameter indicates a
more compact data distribution. Compactness can be understood as the degree of concen-
tration in the data distribution, allowing the model to capture data features more effectively.
However, as the diameter of the data distribution decreases, the model’s sensitivity to in-
put perturbations may increase, leading to a larger Lipschitz constant for the loss function.
This is because a compact embedding distribution can amplify the effects of small changes,
causing the model to respond more sharply to these perturbations, which in turn affects the
smoothness of the loss function and the model’s generalization performance.
Additionally, this theory highlights the impact of data dimensionality on generalization
performance. However, since the dimensionality of the original data is usually fixed, the
theorem applies more to the model’s representation of the original data. This theorem can
explain why models with lower-dimensional embeddings tend to generalize better.

6 Impact of Manifold Dimension on Interpolation Probability

The analysis of Theorem 5.1 is based on the assumption of interpolation. Therefore, we
aim to identify the factors that influence interpolation probability. In this section, we will
analyze the relationship between dimension and interpolation probability
Theorem 6.1 ((Bárány & Füredi, 1988)). Given a d-dimensional dataset X ≜ x1, ..., xN

with i.i.d. samples uniformly drawn from a hyperball, the probability that a new sample x is
in the interpolation regime exhibits the following asymptotic behavior:

limd→∞p(x ∈ Conv(X)) =

{
1 ⇔ N > d−12d/2

0 ⇔ N < d−12d/2
(10)

Theorem 6.2 ((Kabluchko & Zaporozhets, 2020)). Let X consist of N i.i.d. d-dimensional
samples from N(0, Id) with N ≥ d+1, then for every σ ≥ 0 the probability that a new sample
x ∼ N(0, σ2Id) is in extrapolation regime is given by

p(x /∈ Conv(X)) = 2(bN,d−1(σ
2) + bN,d−3(σ

2) + …) (11)

with

bn,k(σ
2) = (

n
k
)gk(−

σ2

1 + kσ2
)gn−k(

σ2

1 + kσ2
), gn(r) =

1√
2π

∫ ∞

−∞
Φn(

√
rx)e−x2/2dx (12)

where
√
r = i

√
−r if r < 0 and bN,k = 0 for k /∈ {0, 1,…, N}.

Theorem 6.1 indicates that as dimensionality increases, the convex hull struggles to cover the
entire data space, causing a significant drop in interpolation probability. In high-dimensional
spaces, maintaining a high interpolation probability requires an exponential increase in data
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size. In contrast, in low-dimensional spaces, data points are denser, making it easier for the
convex hull to cover new samples, resulting in a higher interpolation probability.
Theorem 6.2 quantitatively describes the probability of extrapolation in high-dimensional
spaces. As dimensionality increases, the likelihood of extrapolation rises, and interpolation
probability decreases.

Figure 3: Interpolation Probability Estimation of Data on Hypersphere of Differ-
ent Dimensions. As the dimension of the hypersphere increases, with a constant amount
of data forming the convex hull, the probability that a new sample falls within the convex
hull continuously decreases.

We also verified the relationship between interpolation probability and dimension by gener-
ating data distributed on hypersphere of different dimensions. The ambient dimension of
the data was fixed at 10, with an intrinsic dimension (dimension of hypersphere) ranging
from 1 to 9. For each intrinsic dimension, we generated 1000 samples, randomly selected 100
samples to construct the convex hull, and used the remaining 900 samples to calculate the
interpolation probability. As shown in Figure 3, the interpolation probability significantly
decreases as the intrinsic dimension of the samples increases.

7 Impact of Manifold Structure on Interpolation Probability

In this section, we will explore the relationship between manifold structure and interpolation
probability, focusing on the volume of convex hull formed by the manifold.
Proposition 1 (Relationship between Convex Hull Volume and Interpolation Probability).
Let M ⊆ Rn be a compact convex set, and let µ be a probability measure on Rn with density
function f(x) satisfying f(x) ≥ c > 0 for all x ∈ M and f(x) = 0 for x /∈ M . Suppose
N ≥ n+ 1 points x1, x2, . . . , xN are independently sampled from M according to µ, and let
C = Conv(x1, x2, . . . , xN ) be the convex hull of these points. Then, the probability that a
newly sampled point from M falls inside C is given by

µ(C) =

∫
C

f(x) dλ(x) ≥ c · Vol(C). (13)

Thus, the probability µ(C) that a new point falls inside C increases as the volume Vol(C)
increases.
We further validate the relationship between convex hull volume and interpolation probabil-
ity through experiments. We repeatedly generated three types of two-dimensional random
datasets, each distributed across different manifold shapes. For each dataset, we computed
the convex hull volume and the corresponding interpolation probability. As illustrated in
Figure 4, when the manifold shape is held constant, a larger convex hull volume is associated
with a higher interpolation probability. Interestingly, we observed notable differences in in-
terpolation probability even when the convex hull volumes were similar. For example, the
interpolation probabilities for the triangle and the circle were comparable, yet the convex
hull volume of the triangle was significantly smaller than that of the circle. This suggests
that while convex hull volume provides some insight into changes in manifold structure and
correlates with interpolation probability, future work should aim for a more comprehensive
analysis that considers multiple aspects of manifold geometry.
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Figure 4: Influence on Interplolation Probability of Manifold Volume. The top
row shows the relationship between convex hull volume and interpolation probability for
three different shapes: square, triangle, and circle. A positive correlation is observed, where
larger volumes lead to higher interpolation probabilities. The bottom row provides specific
examples corresponding to each shape, with convex hulls formed by training data (blue dots)
and test data (pink crosses).

8 Impact of Data Volume on Interpolation Probability

In the previous analysis, we primarily focused on the impact of the manifold’s dimensionality
and structure on interpolation probability under a fixed data regime. However, it is well
understood that, with the same model architecture, increasing the size of the training data
often leads to better performance. Therefore, we aim to theoretically explore how larger
datasets affect interpolation probability.
Proposition 2 ((Hayakawa et al., 2023)). For an arbitrary d-dimensional random vector
X with E [x] = 0 and P(x ̸= 0) > 0, we have

0 < Pd+1,X < Pd+2,X < ... < Pn,X < ... → 1. (14)

The conclusion still holds if we only assume pn,X > 0 for some n instead of E [X] = 0

This proposition highlights that as the number of data points n increases, the interpolation
probability Pn,X rises monotonically and approaches 1. This means that with a sufficiently
large dataset, new samples are almost always interpolated within the convex hull of the
existing data. Importantly, the result holds even if we only assume a positive interpolation
probability for some finite n, making it applicable to a wide range of distributions.
We further validated this proposition through experiments. Specifically, we generated data
of the same dimensionality and constructed their convex hulls, calculating the corresponding
convex hull volume and interpolation probability for different data sizes. Our experimental
results in Figure 5 show that as the data size increases, both the interpolation probability
and convex hull volume grow steadily, and the rate of increase follows an approximate power
law with respect to data size.
This behavior is consistent with various scaling laws observed in deep learning, such as the
relationship between model performance and the increase in data size and model parameters
(Kaplan et al., 2020; Gordon et al., 2021). In these scaling laws, although larger datasets
can improve model generalization, the benefits exhibit diminishing returns. This aligns
with our observation of the convex hull volume expansion: as data size grows, the expansion
of the convex hull volume saturates, and the gains in interpolation probability gradually
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Figure 5: The effect of data volume on interpolation probability and convex hull
volume. The left plot shows that interpolation probability increases as the data volume
grows, following a scaling law, where larger datasets improve interpolation capabilities. The
right plot demonstrates that the convex hull volume also scales with data volume, though
at a slower rate compared to the rise in interpolation probability.

diminish. These findings provide a geometric interpretation of how larger datasets contribute
to improved model generalization.

9 Discussion and Conclusion

This paper introduces a novel framework that connects low-dimensional representations
and interpolation probabilities to the generalization capabilities of neural networks. Our
approach also integrates manifold structure (convex hull volume) into a unified theoreti-
cal explanation for generalization, supported by both empirical validation and theoretical
proofs.
The key contributions are: (1) A theoretical framework that links interpolation, manifold
geometry and generalization, offering new insights into why low-dimensional, compact rep-
resentations lead to improved generalization. (2) Empirical results demonstrating the re-
lationship between Intrinsic dimension, convex hull volume, interpolation probability and
generalization. (3) Theoretical exploration of scaling laws showing how increasing data
volume affects interpolation probability.
However, the framework has certain limitations. Simplified assumptions about uniform
data distribution and stable manifold structures may not fully capture the complexity of
real-world datasets (Cooper & Green, 2017; Majeed, 2019), and the evolution of neural
network embedding manifolds is also far more dynamic and intricate than such assumptions
suggest (Kunin et al., 2020). Moreover, the focus on interpolation might overlook scenarios
where extrapolation is required for robust generalization, particularly in tasks involving out-
of-distribution data (Liu et al., 2021; Li et al., 2024). The experiments, primarily on MNIST
and Cifar10, should also be extended to more complex datasets for broader validation.
Moreover, while convex hull volume offers valuable insights into how manifold structure
influences interpolation probabilities, it assumes a relatively stable manifold structure. In
practice, however, manifold structures evolve continuously throughout the learning process
(Birdal et al., 2021; Magai & Ayzenberg, 2022), rendering convex hull volume an incomplete
metric. To fully capture the dynamic nature of representation manifolds during neural
network training, a more comprehensive structural quantification method is needed. Such
a method should also be interpretable, providing insights into both how and why these
structural changes contribute to improved generalization performance.
Future work should address these limitations by considering more realistic data distributions
and validating the results on larger, more diverse datasets. Additionally, exploring how dif-
ferent neural network architectures influence manifold learning and interpolation probability
could further enhance the model’s generalization capabilities.
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A Supplementary Analysis of Learning Dynamics

To verify the generalizability of the results in Section 4, we also analyzed multiple model
architectures (e.g., AlexNet, VGG16) across different datasets (e.g., CIFAR10, MNIST), as
shown in Figure 6. The findings generally align with the theoretical trends discussed in the
main text: as training progresses, classification performance improves, the intrinsic dimen-
sion of embeddings decreases, the convex hull volume first drops and then gradually rises,
and interpolation probability increases. However, different datasets and model architectures
introduce some subtle variations. For instance, when training CIFAR10 with AlexNet, we
observed that after an initial decrease, the intrinsic dimension begins to rise again, which
may be related to AlexNet’s relatively poor performance on CIFAR10 and warrants fur-
ther investigation. Additionally, in the convex hull volume estimation, occasional abrupt
changes were noted, suggesting that the current convex hull estimation algorithms may have
limitations in high-dimensional spaces. Therefore, developing more accurate and efficient
algorithms for estimating convex hull volume in high-dimensional spaces is a key area for
future work.

Figure 6: Supplementary Analysis of Learning Dynamics. We conducted training on
CIFAR10 using both AlexNet and VGG16. The trends in intrinsic dimension, convex hull
volume, and interpolation probability during the training process remained largely consistent
across both models.

B Proof of Theorem 5.1

Definitions Empirical Loss:

L̂(θ,D) =
1

n

n∑
i=1

ℓ(yi, xi, θ),

where D = {(xi, yi)}ni=1 is the dataset.
Expected Loss:

L(θ) = E(x,y)∼v[ℓ(y, x, θ)],
where v is the data distribution.
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Objective Our goal is to bound the probability:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
.

Step 1: McDiarmid’s Inequality McDiarmid’s inequality states that if X1, X2, . . . , Xn

are independent random variables taking values in a set A, and the function f : An → R
satisfies the bounded differences condition:

sup
x1,...,xn,x′

i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci,

then for all ϵ > 0:
P (f(X)− E[f(X)] ≥ ϵ) ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.

Step 2: Bounded Differences Condition We need to verify the bounded differences
condition for the empirical loss function L̂(θ,D) when one sample (xi, yi) is replaced by
another (x′

i, y
′
i).

Define:
∆i =

∣∣∣L̂(θ,D)− L̂(θ,D′
i)
∣∣∣ ,

where D′
i is the dataset D with the i-th sample replaced by (x′

i, y
′
i).

Compute ∆i:

∆i =

∣∣∣∣ 1n (ℓ(yi, xi, θ)− ℓ(y′i, x
′
i, θ))

∣∣∣∣ .
Step 3: Applying Lipschitz Continuity By the Lipschitz continuity of ℓ, we have:

|ℓ(yi, xi, θ)− ℓ(y′i, x
′
i, θ)| ≤ L (∥xi − x′

i∥+ ∥yi − y′i∥) .

Therefore,
∆i ≤

L

n
(∥xi − x′

i∥+ ∥yi − y′i∥) .

Using the boundedness of the data:
∥xi − x′

i∥ ≤ Dx, ∥yi − y′i∥ ≤ Dy,

so we have:
∆i ≤

L

n
(Dx +Dy) = ci.

Step 4: Calculating the Sum of c2i Since ci =
L
n (Dx +Dy) for all i, we have:

n∑
i=1

c2i = nc2i = n

(
L

n
(Dx +Dy)

)2

=
L2(Dx +Dy)

2

n
.

Step 5: Applying McDiarmid’s Inequality Applying McDiarmid’s inequality:

P
(
L̂(θ,D)− E[L̂(θ,D)] ≥ ϵ

)
≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
= exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

Similarly, for the lower tail:

P
(
L̂(θ,D)− E[L̂(θ,D)] ≤ −ϵ

)
≤ exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

Combining both tails:

P
(∣∣∣L̂(θ,D)− E[L̂(θ,D)]

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.
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Step 6: Connecting to Expected Loss Since samples are independent and identically
distributed (i.i.d.) from distribution v, we have:

E[L̂(θ,D)] = L(θ).

Therefore:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

This proves the first part of the theorem.

Step 7: Dependence on Dimension d Assume the following scaling with dimension d:
1. Lipschitz Constant L:

L = CL

√
d,

where CL is a constant independent of d.
2. Data Diameter Dx:

Dx = Cx

√
d,

where Cx is a constant.
3. Data Diameter Dy: For simplicity, assume Dy is constant (i.e., the dimension of y does
not grow with d).

Step 8: Substituting into the Bound Compute the denominator in the exponent:

L2(Dx +Dy)
2 = (CL

√
d)2(Cx

√
d+Dy)

2 = C2
Ld(Cx

√
d+Dy)

2.

For large d, Cx

√
d dominates Dy, so:

Cx

√
d+Dy ≈ Cx

√
d.

Thus,
L2(Dx +Dy)

2 ≈ C2
Ld(Cx

√
d)2 = C2

Ld(C
2
xd) = C2

LC
2
xd

2.

Therefore, the bound becomes:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2
LC

2
xd

2

)
.

Let C = CLCx, so:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2d2

)
.

This proves the second part of the theorem.

Conclusion The bound on the generalization error becomes tighter as the dimension
d decreases, specifically due to the d2 term in the denominator of the exponent. This
indicates that in lower-dimensional spaces, fewer samples n are required to ensure that the
empirical loss L̂(θ,D) closely approximates the expected loss L(θ). Therefore, reducing the
dimensionality of the input data can significantly improve generalization performance and
reduce the risk of overfitting, highlighting the importance of low-dimensional representation
for generalization.
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C Proof of Proposition 1

The probability that a newly sampled point x ∈ M falls inside the convex hull C =
Conv(x1, x2, . . . , xN ) is expressed as

µ(C) =

∫
C

f(x) dλ(x).

Given that f(x) ≥ c > 0 for all x ∈ C, we derive

µ(C) =

∫
C

f(x) dλ(x) ≥
∫
C

c dλ(x) = c · Vol(C).

This inequality indicates that the probability µ(C) of a newly sampled point falling within
the convex hull C increases with the volume Vol(C). The compactness of M ensures the
validity of these properties, especially as the number of sampled points increases, leading to
greater coverage in M .
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