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Abstract

Existing visual token pruning methods target prompt alignment and visual preser-
vation with static strategies, overlooking the varying relative importance of these
objectives across tasks, which leads to inconsistent performance. To address this,
we derive the first closed-form error bound for visual token pruning based on the
Hausdorff distance, uniformly characterizing the contributions of both objectives.
Moreover, leveraging e-covering theory, we reveal an intrinsic trade-off between
these objectives and quantify their optimal attainment levels under a fixed budget.
To practically handle this trade-off, we propose Multi-Objective Balanced Cov-
ering (MoB), which reformulates visual token pruning as a bi-objective covering
problem. In this framework, the attainment trade-off reduces to budget allocation
via greedy radius trading. MoB offers a provable performance bound and linear
scalability with respect to the number of input visual tokens, enabling adaptation
to challenging pruning scenarios. Extensive experiments show that MoB preserves
96.4% of performance for LLaVA-1.5-7B using only 11.1% of the original visual
tokens and accelerates LLaVA-Next-7B by 1.3-1.5x with negligible performance
loss. Additionally, evaluations on Qwen2-VL and Video-LLaVA confirm that MoB
integrates seamlessly into advanced MLLMs and diverse vision-language tasks.
The code is available at https://github. com/YChenL/MoB|

1 Introduction

Multimodal large language models (MLLMs) have shown impressive performance across a variety of
vision-language tasks, including visual understanding [30, 127 [20]], visual question answering [40,
16}, 137]], and visual-language reasoning [9, 47, 45]]. Since visual data exhibits much higher spatial
redundancy than language, MLLMs are typically required to encode visual inputs as numerous tokens,
resulting in substantial computational overhead.

To address this issue, visual token pruning methods are proposed to accelerate MLLMs by selecting
representative subsets of visual tokens. Most pruning methods focus on two distinct objectives: Visual
Preservation (VP) [6,8]159,/46], which retains tokens by minimizing redundancy or maximizing visual
salience, and Prompt Alignment (PA) [58} 151} 48], which selects tokens most relevant to the prompt.
Recently, several multi-objective approaches [31 51} 42]] have been proposed to integrate VP and
PA through various complex strategies. Counterintuitively, these methods do not exhibit dominant
superiority compared to single-objective approaches, as shown in Figure [T{a). This observation
naturally raises a question: Does integrating different objectives offer fundamental advantages?
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Figure 1: (a) Comparison of single- vs. bi-objective pruning methods on LLaVA-1.5-7B at a 66.7%
pruning rate; (b) distribution of the prompt-visual coupling, revealing two distinct patterns across
various tasks: weak coupling (large distance) and strong coupling (small distance); (c) radar charts of
LLaVA-1.5-7B with visual tokens reduced from 576 to 192, 128, and 64 (left-to-right), demonstrating
the consistent improvements of MoB across 10 well-recognized benchmarks.

Inspired by this question, we formulate preservation using the Hausdorff distance between the original
and pruned token sets and derive the first closed-form error bound for visual token pruning (Lemma/[T).
This bound depends on VP and PA, while it is also affected by a prompt-visual coupling, measured by
the Hausdorff distance between prompt and visual tokens. Notably, we identify two patterns of this
coupling across popular benchmarks, as presented in Figure[T|b): weak coupling with large distance
(e.g., TextVQA, POPE) and strong coupling with small distance (e.g., MMB, VizWiz). Our further
analysis reveals that the effectiveness of the pruning objectives varies under distinct coupling patterns
(Lemma[2). However, existing multi-objective methods overlook this variation and integrate VP and
PA via constant strategies, yielding inconsistent improvements over single-objective baselines.

To quantify the effect of prompt-visual coupling, we reexamine visual token pruning from a geometric
covering perspective. In this view, the retained tokens can be thought of as the union of two disjoint
covers for prompt and visual tokens, where each objective corresponds to a Hausdorff covering
radius, and the prompt-visual coupling is represented by the inter-cover diameter. By analyzing the
geometric relationship between the radii and the diameter, we reveal an intrinsic trade-off between
the two objectives (Theorem [I), which identifies the optimal attainment level of each objective to
achieve the performance ceiling under a fixed pruning budget and prompt-visual coupling.

For a practical solution to this trade-off, we propose Multi-objective Balanced Covering (MoB), a
training-free visual token pruning method with provable performance guarantees and multilinear
complexity (Theorem [2)). MoB partitions the retained tokens into two disjoint subsets for PA and VP,
employing greedy radius-trading strategies to reduce the trade-off in objective attainment to a budget
allocation problem. This allows MoB to achieve the optimal balance under each coupling pattern
by selecting appropriate subset sizes. As shown in Figure[T[c), MoB consistently outperforms both
single-objective and multi-objective baselines by a clear margin at identical pruning rates. Besides,
MoB accelerates LLaVA-Next-7B by 1.3-1.5x with negligible performance loss. Ablation studies
further validate our theoretical analysis. Our key contributions are summarized as follows:

® To our knowledge, we present the first closed-form error bound for visual token pruning and its
practical relaxation, characterizing the contributions of the two objectives to preservation quality.

6 We quantify the trade-off between the objectives and identify their optimal attainment level under
a fixed budget and prompt-visual coupling, offering valuable insights into visual token pruning.

® We propose Multi-objective Balanced Covering (MoB) for training-free visual token pruning, which
reduces the trade-off of objective attainment to a budget allocation problem via two greedy radius-
trading strategies, yielding both a provable performance guarantee and multilinear scalability.



® Extensive experiments across 14 public benchmarks demonstrate the superiority of MoB. For
instance, it retains 96.4% and 97.9% performance for LLaVA-1.5-7B and Video-LLaVA-7B with
an 88.9% reduction ratio, outperforming the second-best method by 2.7% and 1.6%, respectively.
MoB can also be readily incorporated into advanced MLLMs, such as LLaVA-Next and Qwen2-VL.

2 Background

2.1 Related Work

Multimodal Large Language Model (MLLM). MLLM:s [30} 21160} 28] have achieved remarkable
progress in vision-language reasoning, owing to their robust cross-modality modeling via attention
mechanisms [43| 34]. However, the spatial redundancy inherent in visual signals typically leads to a
large number of input tokens [25} 22| [29, 144], particularly in high-resolution images and multi-frame
videos (e.g., 2048 tokens in Video-LLaVA [27])). This issue exacerbates the quadratic scaling problem
of attention mechanisms, posing significant computational challenges. Moreover, to further enhance
the visual capability by incorporating high-quality details, advanced MLLMs are now designed to
support higher resolution images [24} 11, |10, l4], thereby necessitating the processing of even more
visual tokens (e.g., 2880 tokens in LLaVA-NEXT [29]). In these scenarios, effectively selecting
representative visual tokens becomes a critical requirement for the real-world application of MLLMs.

Visual Token Pruning. Due to the spatial redundancy, inputs to MLLMs contain numerous less
informative visual tokens. Visual token pruning accelerates MLLMs by selectively retaining only the
most critical tokens during inference. Existing methods typically focus on either visual preservation
(VP) [6} 1381 18, 1521 157} 132} [46]] or prompt alignment (PA) [58) 51, 48]]. VP-driven methods, such
as ToMe [6] and LLaVA-PruMerge [38]], reduce redundancy by merging similar tokens, while
FastV [8]] and FasterVLM [57] select tokens based on visual salience. PA-driven approaches like
SparseVLM [58] rely on cross-modal attention to identify prompt-relevant tokens. More recently,
MustDrop [31] integrates VP and PA through a multi-stage pruning pipeline, reporting notable
improvements. Despite these advances, existing methods largely overlook the varying relative
importance of VP and PA across different scenarios. In this paper, we formally characterize the
contribution of each objective under a fixed pruning budget, and propose an algorithm that balances
these objectives per scenario, yielding consistent improvements across diverse pruning conditions.

2.2 Preliminaries

Pipeline of MLLM. MLLMSs perform vision-language reasoning by jointly processing multimodal
inputs in a shared representation space. Formally, given visual tokens V(1) extracted from the visual
inputs and prompt tokens (") encoded from user prompts, the multimodal input is defined as

xW =y pm p® = W Wy P = (] pY C R

where N and L denote the numbers of visual and prompt tokens, respectively. We regard both V(1)

and P(1) as compact sets on d-dimensional Euclidean space (R, || - ||). The input X'() is then fed

into a language model [y ;) with I transformer block, and the final output is given by
y:]:[LH(X(l)) where ]:[1’[] = rofI—l O...0 fl’

In particular, each f, follows the standard Transformer (e.g., multi-head self-attention [43]], layer
normalization [3}[50])). The intermediate feature for any layer ¢ € {2,..., I} is defined as

XO = Fyog(@®) = v o PO, Fie-1 = fe-10...0 fi,

with V© and P representing the visual and prompt tokens after /—1 layers, respectively.

Visual Token Pruning. To accelerate MLLMs with minimal performance loss, visual token pruning
selectively removes less-informative visual tokens at chosen intermediate layers of the language
model Fi; 7). Specifically, for any chosen layer f;, £ € {2,...,I}, pruning algorithms first select
a subset S®) C VO of size K (i.e., pruning budget) and form the pruned input X" = $(® 1 P®),
The corresponding output before and after pruning are then defined as

y=Fun(X9), yo=Fun(X") where Fyp=fro---ofu



Notation Description Notation Description

e, I Pruning layer index; Final layer index. fe Transformer block at layer £.
Embedding dimension. s Visual tokens at layer £, i.e., V C R

P® Prompt tokens at layer £, i.e., P C R%. s® Retained visual tokens at layer ¢, i.e., S C V.

X All tokens at layer ¢, i.e., X=V LI P. XS([') Retained tokens at layer ¢, i.e., Xs=S U P.

N, L #visual tokens, |V|=N; #prompt tokens, |P|=L. K Pruning budget, |S|=K.

Fl1,1] Full model (layers 1. .. I). Fle, 1] Submodel from layer € to I.

Y, Ys Outputs with full tokens X’ / pruned tokens X. dm (A, B) Hausdorff distance between sets A and B.

Cy Lipschitz constant of F[¢, Il w.rt. dg. n Visual-prompt coupling bound: d g (V, P) <n.

Sp, Sy Prompt center / Visual center set, S=S,, U Sy. K, K. Budgets for Sp, and Sy, K=K, + K.

€p Covering radius for P, d g (Sp, P). €y Covering radius for V, d g (Sy, V).

N(X,e) Covering number of X’ at radius €. degt Effective dimension of V, P.

a, b Covering-number lower/upper constants for P. a, v Covering-number lower/upper constants for V.

€0 Validity radius for covering bounds. 5 Small dilation radius (6 < 7).

Vs, Ps é-dilation of V and P. B(c,€) Ball {z : ||z—c|| < €}.

z Radius scaling factor (> 1). Dy Trade-off constant (4aa’)/ dett |

Do Trade-off constant 1/ 2. €* Optimal radius max{n/z, /D1 K ~/dett }.

k Fold for the proposed nearest-neighbor covering. SF', Candidate set before final truncation by K.

a(n, k, L) Alignment constant n)(bkL /a)'/ dett B Preservation constant 2 (b’ )1/ ®eff .

o) Asymptotically equal (same order); i.e., Ici1,ca >  Q(-) Asymptotic lower bound (at least on the order of g),
0, no : c1g(n) < f(n) < cag(n) forn > ng. ie,3c>0,no: f(n)>cg(n)forn > ng.

Table 1: Summary of notation used in the theoretical framework.

Finally, the objective of visual token pruning is formulated as
SO = argmingw cy), 150 = 1y = Ysllo-

Notation. For brevity we omit the layer index (¢) and simply write ¥ = VU Pand Xs = SUP
to denote the input and its pruned counterpart at an arbitrary layer f,. We use F to denote any
composition mapping of the full model Fy; ;1. Finally, we let || - || denote the Euclidean norm.

3 Methodology

3.1 Revisiting Visual Token Pruning: Insights into Prompt-Visual Coupling

As shown in Fig.[T(a), multi-objective pruning methods fail to achieve the expected improvements, and
objective-specific methods exhibit inconsistent performance across benchmarks. These observations
motivate us to reexamine the problem of visual token pruning. We begin by introducing Assumption|[T]
which quantifies pruning performance in terms of the preservation of the original token set.

Assumption 1 (Lipschitz Continuity w.r.t. the Hausdorff Distance). Assume every partial composition
F (from layer { to I) of the language model is Lipschitz continuous w.r.t. the Hausdorff distance with
constant Cy > 1. Formally, for any intermediate token sets X, Xs C R4,

[F(X) = F(X)| < Crdu (X, &),

where dyy is the Hausdorff distance induced by the Euclidean norm:

dp (X, Xs) = max { SUp, ¢ v infy cx, (| — 2|, sup,_cy, infrex ||z — xb||} (1)

Subsequently, we measure the preservation of the original token set A" using three pairwise distances
among visual tokens V), retained tokens S, and prompt tokens P, thereby establishing a unified
performance bound for various visual token pruning algorithms, as presented in Lemmal[I]

Lemma 1 (An Error Bound for Visual Token Pruning). Under Assumpl|l] given a token set with
its pruned counterpart X =V U P, Xy =S UP C R the pruning error bound is given by:

|F(X)~F@)| < Cr max { min {dn(S,V), d(V,P)}, min {du(S,V), du(S,P)}}.

Remark. Here dy (S, P) and dg (S, V) describe the prompt alignment and visual preservation,
while dg (V, P) is an inherent term that describes the prompt-visual coupling of input data.
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Figure 2: Illustration of prompt-visual coupling with two distinct patterns: In fine-grained tasks (e.g.
POPE), only a few patches are critical, so the worst-case patch lies far from best-case ones, resulting
in a large Hausdorff distance and making prompt alignment valuable. In coarse-grained tasks (e.g.
MMB), many relevant patches contain the answer cues; thus, the worst-case patch remains close to
best-case ones, yielding a small Hausdorff distance and making visual preservation more efficient.

Proof in Appendix By Lemma in practical settings where
governed by a non-trivial interaction among visual preservation, prompt alignment, and prompt-visual
coupling. However, existing multi-objective methods typically overlook the coupling term d g (V, P)
and statically combine the two objectives across tasks, limiting their effectiveness. Our empirical
evidence across popular benchmarks validates two distinct patterns of dg (V, P), each favoring
different pruning objectives, as shown in Figure 2| To further explicate the effect of prompt-visual
coupling, we introduce Assumption [2]and propose a practical relaxed error bound in Lemma 3]

Assumption 2 (Prompt-Visual Coupling Bound). We assume the input visual data and prompts
are not entirely unrelated; hence, there exists a constant n > 0 for any intermediate token set
X =VUP CR?such that dg (V, P) < n, ensuring the reasonability of vision-language reasoning.

Lemma 2 (A Relaxed Error Bound under Practical Budgets). Under Assumptions [I] and 2}
let X =VUP, Xy=SUP CRIwith|S| = K < N. Partition the retained token set S
into two disjoint subsets: S = S, U S, devoted to prompt alignment dg (S,,, P) and visual
preservation dg (Sy, V), respectively. Then, the pruning error bound reduces to

|F(X) — F(X)| < Cp max {du(Sp,P), du(Sy,V)} + Cen.

Proof in Appendix [E2] As Lemma 2]indicates, under weak coupling (large 7), most visual regions
are distant from prompt tokens in the semantic space. Consequently, if S, misses the critical patches,
dp (Sp,P) dominates the pruning error, making the selection of S, i.e., prompt alignment, more
significant. Conversely, under strong coupling (small 1), d ¢ (Sp, P) tends to decrease in tandem with
dy(Sy, V), reducing the marginal benefit of prompt alignment. To further guide pruning methods
design, we next quantify this trade-off governed by 7 through an e-covering argument.

3.2 Quantifying Prompt-Visual Trade-Off: A Geometric Covering Perspective

We first introduce some geometric metrics in Deﬁnition recasting each objective term d g (Sp, P)
and dg (Sy, V) as covering radii and the coupling term dg (V, P) as an inter-cover diameter. Next,
we relate each recasted objective to its token budget |Sp|, |S| via covering regularity in Lemma 3]
Finally, by loading the budget constraint and applying the triangle inequality between radii and
diameter, we derive a quantitative trade-off jointly governed by K and 7 in Theorem I}

Definition 1 (e-cover, Covering Number, and Covering Regularity). Let (R?, || - ||) be the d-
dimensional Euclidean space and let X C R be a compact set.

(a) e-cover. if there exists a finite set C = {cy,...,car} C R, an e-cover of X is given by
X C Ucec Blc,€), Blc,e) ={x € RY: ||z —c|| < €},

where C is the collection of covering centers, and ¢ is the covering radius.
(b) Covering number. The minimum cardinality of C is the covering number of X’ at radius e:

N(X, ) = min{M €N :3CCRY|Cl=M, X C U, Bl e)}.



(c) Covering regularity. We say that X satisfies d-dimensional covering regularity if there exist
constants 0 < A < B and ¢g > 0 such that

Aed < N(X,e) < Be 9, Ve e (0,€).
Based on Definition Eka) (b), Sp, Sy C V can be thought of as two collections of centers such that

P C Ui Bisy) ), VU BV &),

where the radii are given by €, = dy(Sp, P), €y = du(Sy,V), and the covering numbers satisfy
N(P,ep) < [Spl, N(V,ev) < |Sy|. Thereby, we derive a lower bound of the required budget,
i.e., |Sp|, |Sy|. to improve each objective, i.e., €p, €y, based on deg-dimensional covering regularity.

Lemma 3 (Covering Number Bounds). Given P,V C R® with an effective dimension d.g. Sup-
pose their 0-dilations Vs := ¢\, B(v,0), Ps = Up673 B(p,d) (0 < n) satisfy deg-dimensional
covering regularity, thus, there exist constants b>a >0, b’ >a’ > 0 and €y > § such that

ae;de“ <N(P,ep) < be;de“, a e bt < NV, e,) <V e dert, Vep, €y € (4, €0,

Remark. Previous work suggests that both visual and language embeddings concentrate on a
low-dimensional manifold, so the effective covering dimension satisfies the typical relation deg < d.

Proof in Appendix [E.3] Lemma [3|demonstrates that once the radius (i.e., the objective) falls below
€0, any further improvement of it demands a © (e~ ff) increase in the number of selected token.

By loading Lemma [3|into the budget constraint: |S, | + |S,|= K, and applying a two-step triangle
inequality between the covering radii €, €, and the inter-cover diameter 7, we establish a K -n-bound
in Theorem[I|(b), which quantifies the trade-off governed by the budget and prompt-visual coupling.

Theorem 1 (Trade-off between Prompt Alignment and Visual Preservation). Under Assump-
tionand the covering-regularity hypothesis of Lemma E|with constants a,a’, degg > 0, there
exist a radius-scaling factor z > 1 such that n/z > 6 and K < N'(P,n/z) + N(V,n/z), for
every pruning results S = (S, U Sy) C V with budget K satisfying

max{ D1 K~/ Dyn?} < dy(Sp,P) du(Sy, V),
where Dy = (4aa’)t/% > 0, Dy :=1/2% > 0.

Remark (Optimal Attainment Level). D K ~2/%# js completely determined by the pruning
budget, while Dy n? quantifies the effect of prompt-visual coupling. The optimal attainment
level per objective is given by ¢* = max{n/z, /D1 K~} Any attempt to reduce one
objective below €* forces the other above €*, thereby increasing the overall pruning error.

Remark (Effect of Budget and Coupling Strength). As K decreases, z correspondingly shrinks,
ultimately making Do n? dominate the bound; while as K increases, both of the terms reduce,
thereby diminishing the trade-off and tightening the overall error bound.

Proof in Appendix [E.4 Theorem [I] characterizes the optimal attainment level for each objective
under a fixed pruning budget and prompt-visual coupling. However, it is actually very challenging to
dynamically determine the attainment level per objective during the pruning process. To address this,
we propose Multi-objective Balanced Covering, which leverages the monotonic relationship between
covering radii and numbers to reduce the trade-off of attainment to a budget-allocation problem.

3.3 Multi-Objective Balanced Covering: From Trade-Off to Budget Allocation

Motivated by the insights in §3.2] Multi-objective Balanced Covering (MoB) recasts visual token
pruning as bi-objective covering. Specifically, given a token set ¥ =V LUP C R with a budget K,
the retained token set S is defined as the union of a prompt center set S, and a visual center set S,:

S=8 US CVCRY where Pc U B(sy.e), VUL, Bs¥,e).
MoB then selects the cover centers (i.e., retained tokens) by minimizing the overall maximum radius:

(Spy Sy) = arg min max{ep(Sp), €v(Sy)}.

SpUS, CV, |Sp|=Kp, |Sv|=K—-K}



In practice, MoB solves this problem approximately by two sequential greedy covering procedures:
selection of prompt center set S;, with budget K,, and selection of visual center set S, with the
remaining budget K — K,. By the covering number bounds given in Lemma we have

Kp =0(e, "), K — Ky = 6(e,"),

where d.g is the effective dimension of V, P. Accordingly, by selecting the unique budget K,
(i.e., fixing the remaining budget K — K,) under each coupling pattern, MoB ensures €, €, =

Q(max{n /z, vD1 K -1/ deff}), thus yielding provable performance guarantees across scenarios.

Normalization. For efficiency, MoB applies L2 normalization to each z € X so that ||z|| = 1. Hence,
for any token pair x1, x2 € X, the Euclidean distance can be induced by their cosine similarity:

|z1 — 22| = /2 — 2 cos(z1,x2).

Selection of Prompt Center Set S;,. Since all s, € V lie outside P, a typical solution for minimizing
the radius €, is Nearest-Neighbor covering (NN covering) [[15], which uniformly allocates the nearest
sp € V for each prompt token. However, the contribution of each prompt token is inequivalent,
especially under weak prompt-visual coupling; thus, equal allocation risks missing the “best-case
tokens.” To remedy this, we introduce a k-fold NN covering procedure. Formally, let L = |P| and
k > 1 be a hyperparameter; we first utilize a temporary budget of kL to form a candidate set.

SI’) = UpeP argtopksev(cos(s,p), k), |SI’)| > Ky,

thereby over-sampling the k nearest visual tokens for each prompt token. Subsequently, we refine the
candidate set by selecting the final K, centers that maximize their worst-case alignment with P:

Sp = arg tOPkses;, (maxpep cos(s, p), Kp).

By concentrating the limited budget on those visual tokens most strongly aligned with the key prompt
tokens, this strategy ensures a better preservation of the critical regions in the visual input. We
determine the appropriate & by ablation to avoid the oversampling of a few salient prompt tokens.

Selection of Visual Center Set S,. Unlike the prompt center selection, each visual center s, lies
in V. Thereby, we employ Farthest Point Sampling (FPS) [36] on the remaining tokens, i.e., V \ S,
to select the visual centers, which makes the visual centers S, well-spread over V, minimizing the
covering radius €,. Concretely, FPS operates by iteratively selecting the token farthest (i.e., the most
different) from the current centers S, where the distance is given by

distpps(sy,S) = minges(1 — cos(sy,s)), Vs, € V\S.

Subsequently, we initialize the visual centers with the empty set, i.e., Sél) := . We then successively
add the farthest visual token to the current centers S{”) LI S,, until it contains a total of K elements.
Hence, the visual centers at the subsequent iteration, Sf,””, is given by:

S+ = SO | arg max ) distpps(sy, S US,), foriec[l,...,K — K]

seeV\(sgus,

More details of the proposed MoB algorithm are provided in Appendix [B]

Theorem 2 (Performance Guarantee). Under Assump|[l|and the covering-regularity of Lem
with consts a,a’, deg >0 and b>a, b' >a/, for any budget split (K,,, K — K,,), covering fold
k, and token set X =V UP C R with |V| = N, |P| = L, dg(V,P) < n, the following hold:
(a) Performance bound: The Performance degradation caused by MoB is upper bounded by

|7 (%) — F(MoB(X)) | < Cemax{a(n, k, L) (Kp) /%0, B (K - Kp)~ Y/t b +Cp,

where a(n,k, L) = n(bkLja)"/™", B = 2(b)t/der.
(b) Multilinear complexity: The complexity of MoB is given by Tyop = O(N (L + K) d).
Remark (Coupling Trade-off). Under weak coupling (large o), minimizing the bound requires
a larger K,,. Conversely, under strong coupling (small o), the alignment term decays rapidly,
favoring visual preservation (increasing K — K,). Specially, under perfect coupling (n = 0), the
bound simplifies to |Ay|| < CoB (K — K,)~Y%x, i.e., MoB reduces to pure visual preservation.



Remark (Budget Scaling). As the budget K increases, the preservation term 3 (K — K,,)~1/d
decays, requiring a corresponding increase in K, (and thus a reduction in the alignment term)
to re-balance the trade-off and further lower the overall error bound.

Remark (Scalability). MoB exhibits a multilinear scalability w.r.t #visual tokens N, #prompt
tokens L, and #retained tokens K (K, L < N ), making it easily adaptable to more challenging
scenarios involving large token counts, e.g., higher-resolution inputs or multi-frame video.

Proof in Appendix [E.3]
Strong Couplin Weak Couplin;
Method Objectives & ping Ping Avg.
MMB MMBcy SQA VizWiz GQA MME POPE VQAT VQAYZ OCR
LLaVA-1.5-7B w/o Pruning, N = 576; Token Reduction Rate = 0.0%
Vanilla [28] - 64.7 58.1 69.5 50.0 61. 1862 859 58.2 78.5 297 100%
LLaVA-1.5-7B Pruning budget K = 192; Token Reduction Rate = 66.7 %
FastV (ECCV’24) [8] VP 61.2 57.0 673 508 527 1612 648 525 67.1 291 91.2%
Sparse VLM (ICML’25) [38] PA 62.5 53.7 69.1 505 57.6 1721 83.6 56.1 75.6 292 96.3%
MustDrop (24.11) [31] PA VP 62.3 55.8 69.2 514 582 1787 826 565 76.0 289  97.2%
DART (EMNLP’25) [46] VP 63.6 57.0 69.8 512 60.0 1856 82.8 574 76.7 296  98.8%
MoB (w/o n-prior) PA VP 63.8 57.5 70.0 524 612 1858 845 582 77.9 304 100.2%
+ n-prior - 64.1 57.8 70.1 525 614 1860 84.8 585 78.3 307 100.6%
LLaVA-1.5-7B Pruning budget K = 128; Token Reduction Rate =77.8%
FastV (ECCV’24) VP 56.1 56.4 602 513 496 1490 596 50.6 61.8 285  86.4%
SparseVLM (ICML’25) PA 60.0 51.1 67.1 514 560 1696 80.5 549 73.8 280  93.8%
MustDrop (24.11) PA VP 61.1 55.2 685 521 569 1745 787 563 74.6 281  95.6%
DART (EMNLP’25) VP 63.2 57.5 69.1 51.7 587 1840 80.1 564 75.9 296 98.0%
MoB (w/o n-prior) PA VP 63.2 57.3 693 528 60.7 1842 817 575 77.2 299 99.2%
+ n-prior - 63.5 57.5 69.6 527 609 1845 821 578 71.5 299  99.4%
LLaVA-1.5-7B Pruning budget K = 64; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 48.0 52.7 51.1 508 46.1 1256 48.0 478 55.0 245 77.3%
SparseVLM (ICML’25) PA 56.2 46.1 622 50.1 527 1505 75.1 518 68.2 180  84.6%
MustDrop (24.11) PA VP 60.0 53.1 634 512 531 1612 68.0 542 69.3 267  90.1%
DART (EMNLP’25) VP 60.6 53.2 69.8 516 559 1765 739 544 72.4 270 93.7%
MoB (w/o n-prior) PA VP 61.7 54.2 69.7 520 59.0 1806 772 570 75.5 277 96.3%
+ n-prior - 62.1 54.5 69.8 521 59.0 1806 772 570 75.5 277 96.4%
LLaVA-Next-7B w/o Prunmg, N = 2880; Token Reductwn Rate = 0.0%
Vanilla [29] - 67.4 60.6 70.1 57.6 64.2 1851 86.5 64.9 81.8 517 100%
LLaVA-Next-7B Pruning budget K = 320; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 61.6 51.9 628 531 559 1661 717 557 71.9 374 86.4%
SparseVLM (ICML’25) PA 60.6 54.5 66.1 52.0 56.1 1533 824 584 71.5 270 85.9%
MustDrop (24.11) PA VP 62.8 55.1 68.0 540 573 1641 821 599 73.7 382 90.4%
FasterVLM (24.12) [57] VP 61.6 53.5 66.5 526 569 1701 83.6 565 74.0 401 89.8%
DART (EMNLP’25) VP 65.3 58.2 68.4  56.1 61.7 1710 84.1 58.7 79.1 406 93.9%
MoB (with 7-prior) PA VP 65.8 58.9 68.7 570 626 1760 844 602 80.1 418 95.4%

Table 2: Partial comparison of image understanding on the LLaVA-7B series. For MoB, we set K, €
{64, 48,32} and k € {4,6, 8}, corresponding to token-reduction rates of {88.9%, 77.8%, 66.7%}.

For MoB with the 7 prior, we use K, € {%, %, %} with k = BKD for strong-coupling benchmarks

and K, € { R 7116( , 51[2{ } with k = % for weak-coupling benchmarks, corresponding to the same

token-reductlon rates; the pruning layer is fixed at £ = 2. Blue and Orange denote the best and the
second. See Appendix [C.4]for the detailed setting, and see Appendix [D.T]for the full results.

4 Experimental Results

E'xperlmen.t Setting. We perform a comprehen- "/ 0 GQA MME POPE VOA™ MMB SQA Avg,
sive evaluation of the proposed MoB and several - -

. . . Qwen2-VL-7B  w/o Pruning; Token Reduction Rate = 0.0%
representative methods on two visual tasks: image — Vanilla [44] 622 2317 86.1 821 80.5 847 100%

uqderstanding and Visual'understandin'g, together  Gyen2 vi7B Token Reduction Rate — 66.1%
with an efficiency analysis. Our experiments em-  FastV 580 2130 8.1 773 761 80.0 94.0%
. DART 60.2 2245 839 805 789 814 97.0%
ploy four popular MLLMs and include a total of  moB (withn) 618 2268 847 811 795 82.3 98.4%
14 widely rgcogmzed benchmarks. For furthe.r de-  Qwen2-vL 7B Token Reduction Rate = 77.8%
tails regarding the benchmarks, models, baselines, FastV 567 2031 792 720 741 783 91.0%
. ) . DART 585 2175 821 753 77.3 79.6 94.3%
and implement details please refer to Appendix Q MoB (with ) 59.4 2203 82.8 758 78.1 80.4 95.2%
i Qwen2-VL-7B Token Reduction Rate = 88.9 %
Image Understanding,. Table|Z|and'Table|§|report Qwen sio  joiken Reduction Rate = 889% @ 1o
the evaluation results across a variety of image- DART 555 2052 719 618 720 77.6 87.4%

understanding tasks on LLaVA series and Qwen2- MoB(withnm) 565 2094 785 627 728 784 83.6%

VL, respectively. We highlight five key observa- Table 3: Comparative experiments on image under-
tions: (a) MoB consistently outperforms all base- standing with Qwen2-VL-7B.
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Figure 3: Performance-Latency trade-off comparisons across four benchmarks on LLaVA-Next-7B.

lines on LLaVA-1.5-7B in most cases. This will be more pronounced when incorporating the n-prior,
which highlights the inherent advantage of our approach; (b) single-objective baselines exhibit com-
plementary strengths under different coupling patterns, whereas MoB consistently outperforms all
baselines, demonstrating the benefit of balanced objectives; (c) the superiority of MoB becomes even
more significant under aggressive token reduction. Specifically, the improvement of MoB over the
best baseline in average scores increases from 1.8% at a 66.7% token reduction to 2.7% at an 88.8%
reduction on LLaVA-1.5-7B; (d) MoB matches the performance of the vanilla LLaVA-1.5-7B with
only 33.3% of visual tokens, which may be attributed to the mitigation of hallucinations caused by
redundant tokens; and (e) MoB scales seamlessly to advanced models, preserving 95.2% performance
on Qwen2-VL-7B using only 22.2% of visual tokens. These observations demonstrate the superiority
of MoB in leveraging limited visual tokens while minimizing performance degradation.

VldeO. Understanding. As presepted in Table @l Nietmoa TGIF MSVD MSRV ActNet Avg.
MOB 18 genera}l anq can be I'eE.ldlly .eXtend.ed to Video-LLaVA-7B Token Reduction Rate = 0.0%
more challenging video scenarios without incur-  vanilla [27] 471 698 567 431 100%
ring additional cost. Specifically, MoB preserves  vigeoLLava-78 Token Reduction Rate = 93.4%
97.9% of average performance for Video-LLaVA-  FastV (ECCV'24) 231 380 193 306 52.1%
7B usi v 6.6% of the visual tok hich ~ SpaseVLM (ICML25) 447 682 310 426 86.5%
using only 6.07 ol the visual tokens, whic VisionZip (24.12) [51] 424 635 521 430 932%

sets new records in most VideoQA benchmarks, TwigVLM (ICCV’25) [39] 44.7 68.3 546 415 963%
achieving 1.6% and 4.7% improvements over MoB (with r7-prion) — 0 ol
TwigVLM and VisionZip, respectively. These re- Table 4: Comparative experiments on video under-
sults validate the generalization ability of MoB.  standing with Video-LLaVA-7B.

Efficiency Analysis. We present a performance-latency trade-off measured on an NVIDIA A800-
80GB GPU in Figure 3] The results show that (a) MoB achieves a strong performance-latency
trade-off, delivering a 1.3-1.5x speed-up for LLaVA-NEXT-7B with negligible performance loss;
(b) due to ignoring the K -7 trade-off, the multi-stage method MustDrop is outperformed by single-
objective methods FastV and SparseVLM on MME and POPE, and suffers significant performance
drops as token budgets shrink (i.e., latency decreases). In contrast, MoB consistently maintains a
robust trade-off across all benchmarks, surpassing all the baselines by a clear margin; (c) MoB does
not rely on attention scores to identify important tokens, making it compatible with flash attention
and more efficient than attention-based methods such as SparseVLM and FastV.

5 Ablation and Discussion

Impact of (K, 7, K, ). We study the impact of K, n, and K, on pruning performance across four
benchmarks: GQA and TextVQA (weak coupling); VizWiz and MMB (strong coupling). As shown
in Figure ] the results can be interpreted by Theorem [I|and Theorem [2|(a), respectively.

A. TheoremPerspective: When K is large, e.g., K = 192, the trade-off is governed by Dy K —2/desr|
hence the trade-off intensity remains nearly identical across benchmarks. Conversely, When K is
small, especially K = 64, in weak-coupling benchmarks, the trade-off turns to be governed by Don?;
thus, the trade-off intensity is obviously more pronounced in GQA and TextVQA than that in VizWiz
and MMB. These observations exactly confirm the validity of Theorem|[I]

B. Theorem a) Perspective. (a) Under weak coupling, the alignment term (), k, L) (K},) ™1/ dett
is amplified, which requires a larger K, to suppress the overall error. However, across benchmarks
sharing the same coupling pattern, the optimal K, values exhibit only minor variation. (b) Increasing
the total budget K pushes the optimal K, upward to rebalance the two bound terms. Since the prompt
length L is fixed, adding more tokens yields diminishing returns for prompt alignment, which is
reflected in the declining ratio K,/ K. These validate the performance bound in Theorem a).
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Figure 4: Comprehensive ablation on the budget configuration (K, K') across four benchmarks with

distinct prompt-visual coupling 7 on LLaVA-1.5-7B, where K = {64, 128, 192}; the mean relative
slope (%) is given by — 10_0951 St % quantifying the trade-off intensity; the ratio % reflects

the cost-effectiveness of prompt alignment, and the box plot presents the distribution of 7.
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Figure 5: Ablation on the ratio of k/K,. Figure 6: Ablation on the pruning layer.

Remarkably, the experimental results suggest that simply determining the optimal K, for each of the
two coupling patterns suffices to guarantee effective generalization across all scenarios.

Impact of Covering Fold k. We chose the covering fold & by examining the normalized ratio k/ K,
across eight benchmarks and nine budget configurations. As shown in Figure[5] (a) weak-coupling
benchmarks generally require a larger & to ensure critical region coverage, whereas strong-coupling
settings suffice with a smaller k; (b) benchmarks with longer prompts impose a lower cap on k to
preserve sampling diversity and avoid redundant selection of salient tokens. Notably, weak-coupling
benchmarks with long prompts (e.g., GQA, TextVQA) exhibit a narrowly clustered optimal k/ K,
range, reflecting their strict requirement to cover key tokens without excessive redundancy.

Impact of Pruning Layer. As shown in Figure[6} (a) models with visual token pruning consistently
achieve a more favorable performance-efficiency trade-off than the vanilla model on both benchmarks.
(b) Pruning in deeper layers provides more significant benefits for the weak-coupling TextVQA than
strong-coupling MME. We attribute this to stronger cross-modal interactions in deeper MLLM layers,
which facilitate identification of answer-relevant tokens under weak coupling, whereas pruning in
shallow layers disrupts these interactions and incurs greater performance degradation.

6 Conclusion

In this paper, we present a comprehensive analysis of visual token pruning, deriving the first closed-
form error bound with a practical relaxation. Leveraging e-covering theory, we quantify the intrinsic
trade-off between the fundamental pruning objectives, i.e., visual preservation and prompt alignment,
and identify their optimal attainment levels under a fixed pruning budget. Building on these insights,
we introduce MoB, a training-free algorithm for visual token pruning. Based on greedy radius trading,
MoB ensures the near-optimal attainment per objective via budget allocation, offering a provable
performance bound and multilinear scalability. Experimental results indicate that MoB matches the
performance (100.6%) of LLaVA-1.5-7B with only 33.3% of visual tokens and can be seamlessly
integrated into advanced MLLMs, such as LLaVA-Next-7B and Qwen2-VL-7B. Our work advances
the understanding of visual token pruning and offers valuable insights for future MLLM compression.

Limitations. Our theoretical guarantees rely on assumption |1} which is generally satisfied in practice
but may not hold for all MLLMSs. Besides, MoB applies a preliminary search to select the proper K,
which potentially introduces extra tuning overhead in practical applications. Future work will focus
on developing an adaptive K, selection mechanism driven by online estimation of the coupling 7.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section [I|for the main claims; see Sections 3]to[5]and Appendices[D]and|[E]
for the detailed contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section[@l for the discussion on the limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are clearly stated in the statement of the theorems: any partial
composition F of the language model satisfies a Lipschitz Continuity w.r.t. the Hausdorff
Distance with constant C; > 1, the ¢-dilations Vs == U, ¢, B(v,9), Ps = U, cp B(p,9)
(6 < n) satisfy d.g-dimensional covering regularity with constants a,a’, b, b’". See Theo-
rems T]and 2] The proof of Lemma[I|can be found in Appendix [E.1] the proof of Lemma[Z]
can be found in Appendix [E.2] the proof of Lemma 3| can be found in Appendix [E.3] the
proof of Theorems [I|and 2] are provided in Appendices[E.4]and [E.5] respectively.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendices [B|and |C|for the information needed to reproduce the main
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is provided in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment does not involve any training process. See Section [5|and ap-
pendix [C| for all the test details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are accompanied by significance tests, and cross-
validation conducted using a publicly available third-party framework.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix [C|for the computer resources needed to reproduce the experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section [6]and appendix [A] for the discussion on the broader impacts.
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11.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in this paper are properly credited, and the license and terms
are respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: MoB is an inference-time algorithm that prunes visual tokens in pre-trained
multimodal LLMs—LLaVA-1.5-7B, LLaVA-Next-7B, Qwen2-VL-7B and Video-LLaVA-
7B. At Transformer layer ¢ = 2, it removes redundant vision tokens using a bi-objective
covering rule (see Section [3|and appendices [Band[C). The LLM weights remain frozen; no
additional data, gradient updates, or prompt engineering are used. Thus the LLMs serve as
essential yet unmodified back-bones whose intermediate embeddings are the input to MoB.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In the appendix, we provide additional information as listed below:

* §A|provides the broader impacts of MoB

* §B|provides the algorithm details and pseudocode of MoB

. §E]pr0vides the overview of the data, models, baselines and implementation details.
+ §D|provides the additional experimental results.

* §E]provides the omitted technical details.

A Broader Impacts and Limitations

Theory Impacts. Beyond the visual setting, MoB’s theoretical lens—balancing Visual Preservation
(retaining sufficient context) and Prompt Alignment (isolating “golden evidence”’)—naturally transfers
to language domain. It makes the key challenging (context vs. evidence) in long-context LLM
explicit and offers actionable guidance for token-level compression and scheduling under fixed
context budgets. In practice, this perspective informs RAG (calibrating recall vs. precision) and
summarization/LLM memory (trading coherence vs. conciseness).

Application Impacts. The proposed MoB yields substantial acceleration of MLLMs with neg-
ligible performance loss, thereby enabling high-resolution vision-language models to operate on
resource-constrained platforms such as edge devices and mobile systems while supporting low-latency
applications—including assistive technologies for the visually impaired, autonomous navigation, and
AR/VR. Besides, MoB potentially benefits other redundancy-heavy domains (e.g., point clouds and
multi-sensor fusion), guiding efficient token-level compression beyond vision.

Theory Limitations. The theoretical analysis (lemmaI]and theorem|[I)) and the performance guar-
antees (theorem [2)) rely on assumption [I|(Lipschitz Continuity) and lemma [3|(Covering Regularity).
In embedding spaces that violate metric properties or exhibit highly irregular token distributions,
these conditions may fail to hold, and the provable performance bounds may no longer apply.

Application Limitations. Our deployment presently requires an a priori estimate of 1 to set
the pruning hyperparameters K, and k. When 7 is misestimated for a new model, domain, or
input distribution, the selected K, and k can deviate from their optimum, leading to suboptimal
speed—accuracy trade-offs.
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B

Algorithm

Algorithm 1 Multi-Objective Balanced Covering (MoB)

Require: Visual token V € R"*¢, Prompt token P € R**¢, Budget K, K, Covering fold k
Ensure: Index list for select tokens S € N¥+&v

1:

10:
11:

12:
13:

14:
15:

Normalize all token embeddings to unit £, norm: V <= V/||V||2 0w, P < P/|| P2 0w

Step 1. Select Prompt Centers via Nearest-Neighbor Covering
Compute cosine-similarity matrix viaPV': M« PV T >M € REXN,
Retrieve k nearest token indices per prompt:

Ciax < ArgTopK(M, k, axis = 1), Cgiy < TopK(M, k, axis = 1)

> Ciax, Csin € RV collects index and similarity of % closest centers per prompt token.
# Deduplicate candidate indices
Flatten index and similarity arrays: Cigx < Flatten(Ciay), Csin ¢ Flatten(Csiy) >
Cidx S NLka Csim S RLk

: Remove duplicate indices, preserving associated similarities:

<C;.Fdx7 C*

*im) < UniqueIndices(Cigx, Csin)

b Ky < |Clayl < Lk
Identify top- K, prompt centers by similarity: i, < ArgTopK(C3;,, Kp)
Form the prompt-center index list: S;, <— Cf,,[ip] >S, € Nfe

Step 2. Select Visual Centers via Farthest-Point Sampling

Initialize selected centers: S <— S,

# Initialize token-to-prompt minimum distances

Compute pairwise minimum distances between all tokens and selected prompt centers:

d + Lyxx, — VVI[S,]", d+ Min(d, axis = 1)

> Selected centers have zero distance in d € RY,

# Farthest-Point Sampling
fort =1to K, do

Select the token farthest from current centers: i* < ArgMax(d), S ¢ Concat(S, i*) >
Selected tokens are excluded (distance = 0) from further sampling.

Compute cosine distances to the newly selected token: dp < 1y — V V[i*]T

Update each token’s minimum distance: d + ElementwiseMin(d, dy) > Distance of
newly selected token i* set to zero in d.
end for
return S

Algorithm 2 Compute Prompt-Visual Coupling

Require: Visual embeddings V € R®*4 Prompt embeddings P € R >4
Ensure: Hausdorff distance h(V,P)

1:

Step 1. Compute Pairwise Euclidean Distances
Compute distance matrix via cdist: D « cdist(V, P, p = 2) >D e Rr*r

Step 2. Directed Hausdorff Distances
Visual-to-prompt directed distance:

dvop, _ ¢ min(D, axis =2) , hy,p + max(dy_p)
Prompt-to-visual directed distance:
dpsv, _ ¢ min(D, axis=1) , hyy < max(dp_v)

Step 3. Final Hausdorff Distance
return max (hy_p, hp_sv)
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C Experiment Details

C.1 Benchmarks

Our experiments evaluate the vision-language reasoning abilities of multimodal large language
models using a comprehensive suite of widely recognized benchmarks. For image understanding
tasks, we assess performance on ten public benchmarks: GQA, MMBench (MMB) and MMBench-CN
(MMBcy), MME, POPE, VizWiz, ScienceQA (SQA), VQAY2, TextVQA (VQAT), and OCRBench
(OCR). For video understanding tasks, we conduct experiments on four popular benchmarks: TGIF-
QA (TGIF), MSVD-QA (MSVD), MSRVTT-QA (MSRYV), and ActivityNet-QA (ActNet). The
following section provides a concise overview of these benchmarks:

GOQA [17] leverages scene graphs, questions, and images to evaluate visual scene understanding
and reasoning. By incorporating detailed spatial relationships and object-level attributes, it poses
significant challenges for models to perform accurate visual reasoning in complex environments.

MMBench [54]] introduces a hierarchical evaluation framework where model capabilities are dissected
into three levels. Level-1 focuses on basic perception and reasoning; Level-2 subdivides these abilities
into six distinct sub-skills; and Level-3 further refines the evaluation into 20 specific dimensions. Its
Chinese counterpart, MMBench-CN, adopts a similar structure.

MME [26] rigorously tests perceptual and cognitive abilities across 14 sub-tasks. By employing
carefully crafted instruction-answer pairs and succinct instructions, MME minimizes data leakage
and provides a robust, fair assessment of a model’s multifaceted performance.

POPE [_23] targets the evaluation of object hallucination by posing binary questions about object
presence in images. It quantifies hallucination levels using metrics, e.g., accuracy, recall, precision,
and F1 score, offering a precise and focused measure of model reliability.

VizWiz [14] is a visual question answering benchmark derived from interactions with blind users.
Comprising over 31,000 image-question pairs with 10 human-annotated answers per query, it
encapsulates the challenges of low-quality image capture and conversational spoken queries, thereby
emphasizing real-world visual understanding.

ScienceQA [35] spans multiple scientific domains by organizing questions into 26 topics, 127
categories, and 379 skills. This hierarchical categorization provides a diverse and rigorous testbed
for evaluating multimodal understanding, multi-step reasoning, and interpretability across natural,
language, and social sciences.

VQAV? [12] challenges models with open-ended questions based on 265,016 images that depict a
variety of real-world scenes. Each question is paired with 10 human-annotated answers, facilitating a
thorough evaluation of a model’s capacity to interpret and respond to diverse visual queries.

TextVQA [41] focuses on the integration of text within visual content. It evaluates a model’s
proficiency in reading and reasoning about textual information embedded in images, thereby requiring
a balanced understanding of both visual and linguistic cues.

OCRBench [33] is a comprehensive benchmark for evaluating the OCR capabilities of multi-modal
language models across five key tasks: text recognition, scene text-centric and document-oriented
VQA, key information extraction, and handwritten mathematical expression recognition.

TGIF-QA [18] adapts the visual question answering task to the video domain by focusing on GIFs.
With 165K question-answer pairs, it incorporates tasks, e.g., counting repetitions, identifying repeat-
ing actions, detecting state transitions, and frame-specific question answering, thereby demanding
detailed spatio-temporal analysis.

MSVD-QA [49] builds upon the MSVD dataset by pairing 1,970 video clips with approximately
50.5K QA pairs. Questions are categorized into five distinct types, e.g., what, who, how, when, and
where, making it a versatile tool for evaluating video understanding.

MSRVTT-QA [[7] features 10K video clips and 243K QA pairs designed to test the integration
of visual and temporal information. Its structure, which parallels that of MSVD-QA through the
inclusion of five question types, further enriches the evaluation landscape for video-based tasks.
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ActivityNet-QA [53]] provides 58K human-annotated question-answer pairs drawn from 5.8K videos.
Its focus on questions related to motion, spatial relationships, and temporal dynamics necessitates
long-term spatio-temporal reasoning, thus serving as a benchmark for advanced video understanding.

C.2 Multi-modal Large Language Models

We evaluate MoB using various open-source multimodal large language models (MLLMs). For image
understanding tasks, experiments are conducted on the LLaVA series, including LLaVA-1.5-7B and
LLaVA-Next-7B, as well as the Qwen-VL series, such as Qwen2-VL-7B. Specifically, LLaVA-Next
and Qwen2-VL are utilized to validate performance on high-resolution images, i.e., those with a
larger number of visual tokens. For video understanding tasks, we employ Video-LLaVA-7B as the
baseline model, following the settings reported in its original paper to ensure a fair comparison.

LLaVA-1.5-7B [28§] is a robust vision-language model built on the LLaVA framework. It processes
images resized to 224 x 224 and tokenizes them into roughly 572 visual tokens using a patch-based
vision encoder. This design balances fine-grained visual representation with computational efficiency,
making it effective for diverse multimodal tasks.

LLaVA-Next-7B [29] extends the LLaVA-1.5 by incorporating refined training strategies and data
curation. It supports higher-resolution inputs (up to 448 x 448), yielding up to 2880 visual tokens.
These enhancements improve its visual reasoning capabilities and enable more precise alignment
between visual content and language but also incur significantly increased computational cost.

Qwen2-VL-7B [44] augments the Qwen2 language model with visual input capabilities. This model
leverages cross-modal pretraining to seamlessly merge vision and language, demonstrating strong
performance in complex visual question answering and comprehensive scene understanding.

Video-LLaVA-7B [27] extends the LLaVA framework into the temporal domain by processing
video inputs. It is designed to capture both spatial and temporal dynamics, enabling effective video
comprehension and video-based question answering with coherent and context-aware responses.

C.3 Baselines

To validate the superiority of the proposed MoB, we construct a robust baseline that integrates a
comprehensive set of representative existing methods, which encompass single-stage methods with
both two distinct objectives and several multi-stage methods.

ToMe [6] employs a lightweight token-matching scheme to merge visually similar tokens across
transformer layers, thereby reducing computation without additional training. Its simple yet effective
design makes it well suited for real-time applications.

FastV [8] leverages attention maps in the early layers to identify and prune non-critical tokens,
significantly reducing initial computational overhead. This focus on early-stage reduction allows the
model to operate more efficiently while maintaining performance.

SparseVLM [58]] ranks tokens based on cross-modal attention to assess image-prompt relevance and
adopts adaptive sparsity ratios to retain key information. It further incorporates a token recycling
mechanism to balance the trade-off between efficiency and accuracy.

HiRED [2] allocates token budgets across image partitions by using CLS token attention and then
selects the most informative tokens within each partition. This spatially aware approach ensures
balanced reduction while preserving contextual details.

LLaVA-PruMerge [38] combines pruning and merging strategies by dynamically removing less
important tokens using sparse CLS-visual attention. It then clusters the retained tokens based on key
similarity, ensuring that crucial visual features remain intact.

PyramidDrop [48] adopts a progressive token-dropping strategy across different model stages,
resulting in a pyramid-like token structure. This method carefully balances the reduction of tokens
with the preservation of performance as the processing advances.

MustDrop [31] integrates several token-reduction strategies including spatial merging, text-guided
pruning, and output-aware cache policies. Its multi-faceted approach efficiently reduces token counts
across various stages of the model.
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VisionZip [51]] first selects dominant tokens that capture the majority of an image’s information and
then merges the remaining tokens based on semantic similarity. This approach dramatically reduce
token redundancy while accelerating inference and maintaining robust performance.

Faster VLM [57]] evaluates token importance using CLS attention in the encoder and prunes tokens
before they interact with the language model. This preemptive reduction streamlines the overall
process and enhances model efficiency.

GlobalCom? [32] employs a hierarchical strategy by coordinating thumbnail tokens to allocate
adaptive retention ratios for high-resolution crops. This approach successfully preserves local details
while providing effective global context reduction.

DART [46]] leverages token duplication to guide its pruning process instead of relying solely on
attention scores. By selecting a small set of pivot tokens and retaining only those with minimal
redundancy, DART achieves significant acceleration in a training-free manner.

TokenCarve [42] implements a two-stage, training-free compression framework that preserves
critical visual information during aggressive token reduction. It first prunes low-information tokens
using an information-preservation guided selection and then merges the remaining tokens based on
similarity to minimize accuracy loss.

TwigVLM [39] accelerates large vision-language models by appending a lightweight twig block
to an early layer of a frozen base VLM. It utilizes twig-guided token pruning coupled with self-
speculative decoding to boost generation speed while retaining high accuracy even under aggressive
token reduction.

C.4 Implement Details

From Theorems [I]and 2] the balance between the visual preservation and prompt alignment, i.e., the
optimal budget K, applied for covering prompt tokens P, is jointly determined by the total budget
K and the visual-prompt coupling 1. To ensure fair comparison, we evaluate two settings.

(i) Without 7 prior. This setting deliberately avoids any benchmark-specific prior (w/o n prior).
MoB adjusts K, solely as a function of K to balance the two objectives. Based on an ablation
over (K, K,,), we set K, € {64,48,32} and k € {4, 6, 8}, corresponding to token-reduction rates of
{88.9%, 77.8%,66.7%}.

(i) With 7 prior. To verify the K'—)—-K, relationship formulated in Theorems|T|and[2} we introduce a
coarse benchmark prior on 7). Specifically, we do not meticulously search the optimal hyperparameters
for MoB, i.e., K, and the covering fold k, per benchmark. Instead, we partition benchmarks by
their empirical 7 distribution into two groups (strong v.s. weak coupling) and employ the same
configuration per group. From a joint ablation over (K, 7, K,,), for image understanding we set

. : 3K
strong coupling: K, € {3K K LKL} — o
. K
weak coupling: K, € {%, %, % , k=E

which again yield token-reduction rates of {88.9%, 77.8%, 66.7%}.

%> for MSVD, MSRY, and ActNet, and

K, = %, k= % for TGIF. Unless otherwise stated, the pruning layer index is fixed to £ = 2 for
both image and video tasks. The same configurations are applied across all MLLMs, and all baselines
are run with their default settings.

As for video understanding, we set K, = %, k =

To ensure reproducibility, we cross-validated our experimental results using the publicly available
MLLMs evaluation tool Imms-eval (v0.3.0) [56|5], with the random seed set to 1234. All experiments
were conducted on 4x Nvidia A800-80GB GPUs paired with 2x Intel Xeon® Gold 6348 CPUs. The
implementation was catried out in Python 3.10 using PyTorch 2.1.2 and CUDA 11.8.
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D Additional Experimental Results

D.1 Quantitative Comparison

Strong Coupling ‘Weak Coupling
Method Objectives . B Va2 Avg.
MMB MMBcn SQA VizWiz GQA MME POPE VQAT VQAY? OCR

LLaVA-1.5-7B w/o Pruning, N = 576; Token Reduction Rate = 0.0%
Vanilla [28] - 64.7 58.1 69.5 50.0 619 1862 859 58.2 78.5 297 100%
LLaVA-1.5-7B Pruning budget K = 192; Token Reduction Rate = 66.7%
ToMe (ICLR’23) [0] VP 60.5 - 65.2 - 543 1563 724  52.1 68.0 - 88.5%
FastV (ECCV’24) [8] VP 61.2 57.0 673 50.8 527 1612 648 525 67.1 291 91.2%
HIiRED (AAAT’25) 2] VP 62.8 54.7 684  50.1 58.7 1737 828 474 74.9 190  91.5%
LLaVA-PruMerge (24.05) [38] VP 59.6 529 679 50.1 543 1632 713 543 70.6 253  90.8%
SparseVLM (ICML’25) [58] PA 62.5 53.7 69.1 505 57.6 1721 83.6 56.1 756 292 96.3%
PyramidDrop (CVPR’25) [48] PA 63.3 56.8 68.8 51.1 571 1797 823 56.1 75.1 290 96.7%
FiCoCo-V (EMNLP’24) [55] VP 62.3 55.3 67.8 51.0 585 1732 825 557 74.4 - 96.1%
MustDrop (24.11) [31]] PA VP 62.3 55.8 69.2 514 582 1787 826 56.5 760 289 97.2%
VisionZip (24.12) [51]] VP 63.0 - 68.9 - 593 1783 853 573 76.8 - 97.7%
DART (EMNLP’25) [46] VP 63.6 57.0 69.8 512 600 1856 82.8 574 76.7 296 98.8%
TokenCarve (25.03) [42] PA VP 63.0 - 69.1  50.9 - 1830 849 584 78.0 - 99.3%
TwigVLM (ICCV’25) [39] PA 64.0 - 68.8 - 61.2 1848 872 58.0 78.1 - 99.5%
MoB (w/o n-prior) PA VP 63.8 57.5 700 524 612 1858 845 582 779 304 100.2%

+ n-prior - 64.1 57.8 70.1 525 614 1860 84.8 585 783 307 100.6%
LLaVA-1.5-7B Pruning budget K = 128; Token Reduction Rate =77.8%
ToMe (ICLR’23) VP 533 - 59.6 - 524 1343  62.8 49.1 63.0 - 80.4%
FastV (ECCV’24) VP 56.1 56.4 602 513 496 1490 59.6 50.6 61.8 285 86.4%
HiRED (AAAT’25) VP 61.5 53.6 68.1 513 572 1710 79.8 46.1 734 191 90.2%
LLaVA-PruMerge (24.05) VP 58.1 51.7 67.1 503 533 1554 672 543 68.8 248 88.83%
SparseVLM (ICML’25) PA 60.0 51.1 67.1 514 560 1696 80.5 549 73.8 280 93.8%
PyramidDrop (CVPR’25) PA 61.6 56.6 683 51.0 560 1761 823 55.1 729 287 95.1%
FiCoCo-V (EMNLP’24) VP 61.1 54.3 683 494 576 1711 822 556 73.1 - 94.9%
MustDrop (24.11) PA VP 61.1 55.2 68.5 521 569 1745 787 56.3 746 281 95.6%
VisionZip (24.12) VP 62.0 - 68.9 - 57.6 1762 832  56.8 75.6 - 96.2%
DART (EMNLP’25) VP 63.2 57.5 69.1 51.7 587 1840 80.1 564 759 296 98.0%
TokenCarve (25.03) PA VP 62.7 - 689 51.0 - 1829 845 58.1 713 - 99.0%
TwigVLM (ICCV’25) PA 63.5 - 69.5 - 60.6 1818 86.6 57.8 77.9 - 99.0%
MoB (w/o n-prior) PA VP 63.2 57.3 69.3 528 60.7 1842 81.7 575 772 299 992%

+ m-prior - 63.5 57.5 69.6 527 609 1845 82.1 578 775 299 99.4%
LLaVA-1.5-7B Pruning budget K = 64; Token Reduction Rate = 88.9 %
ToMe (ICLR’23) VP 43.7 - 50.0 - 48.6 1138 525 453 57.1 - 70.1%
FastV (ECCV’24) VP 48.0 52.7 51.1  50.8 46.1 1256 48.0 478 550 245 77.3%
HiRED (AAAI’25) VP 60.2 514 682 502 546 1599 73.6 442 69.7 191 87.0%
LLaVA-PruMerge (24.05) VP 55.3 49.1 68.1 50.1 519 1549 653 540 67.4 250 87.4%
SparseVLM (ICML’25) PA 56.2 46.1 622 50.1 527 1505 75.1 518 68.2 180  84.6%
PyramidDrop (CVPR’25) PA 58.8 50.5 68.6 50.7 419 1561 559 459 69.2 250 78.1%
FiCoCo-V (EMNLP’24) VP 60.3 53.0 68.1 498 524 1591 76.0 53.6 71.3 - 91.5%
MustDrop (24.11) PA VP 60.0 53.1 63.4 512 531 1612 68.0 542 693 267 90.1%
VisionZip (24.12) VP 60.1 - 69.0 - 55.1 1690 77.0 55.5 724 - 92.8%
DART (EMNLP’25) VP 60.6 53.2 69.8 51.6 559 1765 739 544 724 270 93.7%
TokenCarve (25.03) PA VP 62.0 - 69.7 514 - 1754 799 57.0 74.8 - 97.0%
TwigVLM (ICCV’25) PA 60.4 - 70.0 - 588 1760 82.7 55.8 75.6 - 96.1%
MoB (w/o n-prior) PA VP 61.7 54.2 69.7 520 59.0 1806 77.2 57.0 755 277 96.3%

+ n-prior - 62.1 54.5 69.8 521 59.0 1806 77.2 57.0 755 277 96.4%
LLaVA-Next-7B w/o Pruning, N = 2880; Token Reduction Rate = 0.0%
Vanilla [29] - 67.4 60.6 70.1 57.6 642 1851 86.5 64.9 81.8 517 100%
LLaVA-Next-7B Pruning budget K = 320; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 61.6 51.9 62.8  53. . 661 71.7 557 719 374 86.4%
HiRED (AAAT’25) VP 64.2 55.9 66.7 542 593 1690 83.3 58.8 757 404 91.8%
LLaVA-PruMerge (24.05) VP 61.3 55.3 66.4 540 536 1534 60.8 50.6 69.7 146 79.9%
SparseVLM (ICML’25) PA 60.6 54.5 66.1 520 56.1 1533 824 584 715 270 85.9%
PyramidDrop (CVPR’25) PA 63.4 56.2 67.5 541 564 1663 77.6 544 735 259 86.8%
MustDrop (24.11) PA VP 62.8 55.1 68.0 540 573 1641 821 599 737 382 90.4%
VisionZip (24.12) VP 63.1 - 67.3 - 59.3 1702 - 58.9 76.2 - 93.0%
FasterVLM (24.12) [57] VP 61.6 535 66.5 52.6 569 1701 83.6 56.5 740 401 89.8%
GlobalCom?(25.01) [32] VP 61.8 534 674 546 571 1698 838 572 76.7 375 90.3%
DART (EMNLP’25) VP 65.3 58.2 684 56.1 61.7 1710 84.1 587 79.1 406 93.9%
TwigVLM (ICCV’25) PA 65.0 - 68.7 - 622 1758 - 57.4 79.7 - 95.4%
MoB (with n-prior) PA VP 65.8 58.9 68.7 570 626 1760 844 602 80.1 418  95.4%

Table 5: Full results on image understanding with the LLaVA-7B Series. For MoB, we set K, €
{64,48,32} and k € {4,6, 8}, corresponding to token-reduction rates of {88.9%, 77.8%, 66.7%}.

For MoB with the ) prior, we use K, € {%, %, %} with k = Sﬁ)" for strong-coupling benchmarks
and K, € {%, %, %} with k£ = % for weak-coupling benchmarks, corresponding to the same

token-reduction rates; the pruning layer is fixed at £ = 2. B and O denote the best and the second.
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D.2 Visualization

Visual Data

Prompts: “What brand of watch is this? ”

Figure 7: Visualization of the selected prompt and visual centers under weak coupling.
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Visual Data

Prompts: “Which is right? ... C. The man is holding the sign. ...”

Prompts: “What type of environment is depicted in the picture? ... B. Children's playground. ..."”

Figure 8: Visualization of the selected prompt and visual centers under strong coupling.
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MoB formulates visual token pruning as a bi-objective covering problem over (V, P), which is
expected to gather query-relevant, fine-grained evidence with S, while preserving global scene
context with S,.. The visualizations (Figures and qualitatively validate this design: tokens in S,
concentrate in regions aligned with the text query and key visual evidence, whereas elements of S,
spread more uniformly across the image to maintain the overall context. Together, this complementary
allocation enables MoB to retain the most informative visual content for each image—query pair,
accounting for its strong empirical performance.

D.3 Additional Ablation & Discussion

GQA
(K,K,) 0 2 4 6 8 12 16 24 32 48 64 96
(64,32) 583 588 59.0 - 587 - 582 - 574 - - -
(128,64) 602 - 605 - 607 - 606 - 600 - 595
(192,96) 606 - - 611 - 612 - 609 - 607 - 605
TextVQA
(K,K,) 0 2 4 6 8 12 16 24 32 48 64 96
(64,32) 565 569 57.0 - 568 - 565 - 562 - - -
(128,64) 571 - 575 - 577 - 517 - 512 - 568 -
(192,96) 57.8 - - 582 - 582 - 581 - 577 - 5715

Table 6: Detailed ablation on the covering fold & for GQA and TextVQA.

To assess MoB’s sensitivity to the covering-fold parameter k—particularly under weak coupling with
long prompts—we conduct a detailed ablation on k using GQA and TextVQA.

As Table [f|demonstrates, MoB is not overly sensitive to the choice of k, particularly within a clear
optimal range. For instance, in both two benchmarks, performance only varies by approximately
0.3% for k values between [2, 8] under (K = 64, K, = 32) setting.

There is also a principled, theoretical reason for this robustness, which stems from the relationship
between the covering fold £, the budget K, and the length L of prompt tokens PP. From covering
theory, every prompt token p € P is covered by at least one visual token v € V under the condition
K, > kL, thereby ensuring the performance guarantee of MoB. Therefore, as selected k satisfies
k < K, /L, the performance will remain stable.

Heuristic for estimating k. In practice, a robust range for k& can be inferred from the prompt length
L. Given the analysis above, we expect an adaptive, per-sample search for a fine-grained & to yield
only limited gains, so we rely on this length-based heuristic instead.
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D.4 Real-life Application
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Figure 9: Observations of prompt-visual coupling 7 across 9 popular benchmarks.

Open-domain recipe. MoB is task-agnostic, which does not require pre-defined task labels and
can operate online by classifying each sample’s coupling pattern. For a given target model, we adopt
a two-stage strategy:

* Offline calibration. Analyze the empirical 7 distributions on a set of representative benchmarks
(as shown in Figure[9) and set a robust threshold 7 that separates weak vs. strong coupling.

* Online classification and inference. For each incoming query, compute its Hausdorff distance
using Algorithm with tractable bilinear complexity O(NN Ld). Classify the sample by comparing
this value to 7, then apply the corresponding budget configuration (e.g., K, k) and run MoB +
forward inference. In practice, this online cost is negligible relative to the pruned forward pass.

Computational Overhead. We provide a detailed cost breakdown for online computation of the
Hausdorff distance using Algorithm [2| with complexity O(N Ld) on LLaVA-1.5-7B and LLaVA-
Next-7B, where N, L, and d denote the numbers of visual tokens, prompt tokens, and the feature
dimension, respectively. As shown in Table [/} the measured cost (TFLOPs) of exact Hausdorff
computation is orders of magnitude smaller than that of MoB itself and the model’s forward pass,
yielding a negligible overhead.
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LLaVA-1.5 (N = 576, L = 10, d = 4096)

Model Vanilla K =64 K =128 K =192
Forward 8.2 1.0 1.9 2.8
Compute dp 2.3e—5 23e—5 23e—5 23e—5
MoB - 1.7e — 4 3.3e—4 4.8¢ — 4
LLaVA-Next (N = 2880, L = 10, d = 4096)
Model Vanilla K =320 K =640 K =960
Forward 40.5 4.6 9.1 13.6
Compute d 1.2e — 4 1.2e — 4 1.2e — 4 1.2e — 4
MoB - 3.9¢e — 3 7.6e — 3 1l.le—2

Table 7: Computation cost in LLaVA-7B series (TFLOPs)

Concretely, computing dgr (e.g., ~ 1.2 x 10~* TFLOPs on LLaVA-Next) is insignificant relative
to the pruned forward pass (e.g., ~ 4.6 TFLOPs at K = 320) and, more importantly, to the savings
from pruning (~ 35.9 TFLOPs). Thus, exact online estimation is not a practical bottleneck; its cost
is dwarfed by the efficiency gains of our method. Further acceleration is possible with standard
techniques (e.g., heuristic support sampling or low-dimensional random projections), although it is
unnecessary in our settings.

* Heuristic Sampling: It computes the distance on smaller support sets of the tokens (V' C V, P’ C
P), which can be constructed via random sampling [46] or more advanced heuristics such as
Key-Norm selection [T} [13]]. This reduces complexity to O(N'L’d), where |V'| = N’, |P'| = L'.

* Random Projections: For a more theoretically grounded approach, the Johnson-Lindenstrauss
(JL) lemma [19] allows us to project embeddings to a much lower dimension (d’ < d) while
preserving geometric structure, reducing complexity to O(NL d').

Potential Extensions. A natural extension is to maintain an online estimate of the coupling statistic
1 during inference—e.g., a running summary of an approximate 7 computed from shallow-layer
tokens. As more samples are processed, we expect the empirical distribution of 7 to become bimodal
(consistent with the benchmark patterns in Figure[J), enabling a data-driven threshold to be derived on
the fly that separates weak vs. strong coupling regimes. Using this live threshold, MoB could adapt
K, (and k) per sample or per mini-batch by selecting from a small budget pool or by scheduling K,
as a function of 7, with conservative warm-up and safeguards for distribution shift.
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E Omitted Technical Details

E.1 Proof of Lemmal

Restatement of Lemma [I| (An Error Bound for Visual Token Pruning). Under Assumption[l} given
any token set with its pruned counterpart X =V UP, X, =S U P C R? the pruning error bound
is given by:

IF(%) = FX)|| < Co max { min {d(S,V), du(V,P)}, min {du(S,V), du(S.,P)}}.

Remark. Here dy (S, P) and dgy(S,V) describe the prompt alignment and visual preservation,
while dir (V,P) is an inherent term that describes the prompt-visual coupling of input data.

Proof. The intermediate input for any layer and its pruned counterpart are given by
X=VUPand X, =S UP.
By Equation (T)), the Hausdorff distance is symmetric, i.e.,
dg (S8, V) =dy(V,S), (E1-1)

and induced by Euclidean distance.

Step 1. Bound the one-sided distances.

We analyze the distances by considering the membership of the points in the subsets.
Direction 1 (X — &) Forany z € X:

Case (i): If x € P, then since P C X,

inf —y|| = 0.
Jnf, |z —yll
Case (ii): If x € V, then the candidate points in X; = S UP can be chosen either from S or P. Thus,
inf |z — <'{'f—,'f—}.
Jof o —yll < mim inf [lz — s, iof |z —p]

Taking the supremum over x € V yields

sup inf ||z — <min{su inf |2 — sl||, sup inf ||z — }
sup inf [l —yl| < min sup inf | s sup inf |~ p]

sup inf ||z — < max{su inf || — pl|, sup inf ||p — x }zd V,P),
sup inf v =) sup inf le — |, sup inf lp — [} = di (V. P)
By Equation (), we derive the distance in direction 1:

sup inf ||z —y| < min{dH(V,S), dH(V,P)}. (E1-2)
zEX YEXs

Direction 2 (X; — X)) For any y € A§:

Case (i): If y € P,thenas P C &,
inf [ly — ]| = 0.
xre

Case (ii): If y € S, the candidate points in X = V LI P can be chosen from either V or P; hence
inf |ly — || < '{'f — |, inf ||y — }
Inf lly — 2|l < ming inf [ly — o], inf fly —p]

Taking the supremum over y € S yields

sup inf —zx| < min{su inf — ||, sup inf — }
yegxexlly [ yegvevl\y P yegpeplly pll
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sup inf ||y — < max{ sup inf ||y — pl|, sup inf ||p — } =dy(S,P),
yegpepHy | yegpep\ly il pegyes\lp yll H(S,P)
By Equation (T), we derive the distance in direction 2:

. Ll < . -
;él}é;giﬂy z|| < mm{dH(S,V), dH(S,P)} (E1-3)

Step 2. Combine the bounds.
By Equation (), combining the bounds in[(EI-2)|and [(EI-3)] we obtain

dy (X, X,) < max{min{dH(v,S), di(V,P)}, min {d (S, V), dH(S,P)}}.
Based on[(ET-T)] we have
dy (X, X,) < max{min{dH(S,V), dy(V,P)}, min {dp(S,V), dH(S,P)}}.

Loading the Assumption[I] we have the output discrepancy is bounded by
IF(X) = F(X)| < Co du(X, X).
—c max{min{dH(s,V), dy(V,P)}, min {dp(S,V), dH(S,p)}},

This completes the proof. O
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E.2 Proof of Lemmalfl

Restatement of Lemma |Z| (A Relaxed Error Bound under Practical Budgets) . Under Assumptions |Z|
and let X =VUP, X, =SUP C Rwith |S| = K < N. Partition the retained token
set S into two disjoint subsets: S = S, U S, devoted to prompt alignment dg (Sp, P) and visual
preservation dg (Sy, V), respectively. Then, the pruning error bound reduces to

IF(X) = FA)| < Cr max{du(S,,P), du(Sy,V)} + Cen.
Proof. By LemmalI] we obtain
IF(X) = FX)|| < Cy max{mm {du(S,V), du(V,P)}, min {du(S, V), dH(S,P)}}.
Since min{a, b} < max{a, b}, we have

IF(%) = FX)|| < Cr max{ du(S.P), du(S,V), du(V,P)}. (E2-1)

For any p € P, we have
'f—:'{'f—'f_}<'f—.
inf |lp - s/ = min Inf lp = sll, inf lp sy < SlenspHp sl

Taking the supremum over p € P yields

sup inf |[p — s|| < sup inf ||p — s|.

sup inf lp — ] < sup inf }p— s
Similarly, since S, C S,

sup inf [|s — p|| < sup inf ||s — pl|.

seS, PEP scS PEP

Thus, by Equation (T)),

dy(S,P) < max {dH(sp,P), dH(SV,P)}.

Using Assumption 2| (dg (V, P) < n) and the triangle inequality for Hausdorff distance, we have
A (Sv,P) < dp(Sv,V)+dua(V,P) <du(Sy,V)+n,
dH(SPa V) S dH(SP7 7)) + dH(P7 V) S dH(SPa 7)) + YR
Hence,
dp(S,P) < max {dH(Sp, P), du(Sy,V) + n}. (E2-2)

Similarly, one can show that

dp(S,V) < max {dH(SV, V), du(S,,P) + n}. (E2-3)

Loading the maximum of [(E2-3)|and d (V, P) into[(E2-1)] we obtain
|F(X) = F@)|| < Cr max {d(S,P), dr(S,V), d(V,P)}
< C; max {du(8,,P), dn(Se, V) + 1, dia(Se, V), dii(Sp,P) +1, )
Since dg (Sp, P) > 0, d(Sy, V) > 0,717 > 0, we have

maX{dH(Sp,P), dH(Sp77D) + n, 77} = dH(Sp7P) + m,
max{dy(S,,V), du(S,V)+n, n} =du(Sy, V) +n.

Hence

| F(X) = F(X)I < Ce max{dH(sp,P), dH(SV,V)} +Cy.
This completes the proof. O
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E.3 Proof of Lemma[3|

Restatement of LemmaB] (deg-regular lower bound on covering numbers). Given P,V C R? with
an effective dimension deg. Suppose their -dilations Vs = J,,c, B(v,9), Ps := Upef B(p,9)

(6 < ) satisfy deg-dimensional covering regularity; thus, there exist constants b>a >0, b’ >a’ > 0
and €y > 6 such that
ae;de“ <N(P,ep) < be;deff’ a e;drt < N(V,e,) <V eydert, Vep, ev € (9, €0l,

Remark Previous work suggests that both visual and language embeddings concentrate on a low-
dimensional manifold, so the effective covering dimension satisfies the typical relation d.g < d.

Proof. We prove the two-sided bound for P; the argument for ) is identical.
Notation.

e N(X,r): minimal number of closed balls of radius r covering X.
e X5 = U, ex Bl d), with B(z,) = {y : |y — 2| < 3}.

Step 1. Transfer trick for small e.

Fix € € (0, ¢o] and define ¢ = min{e + J, €}.

If e < €9 — 0 (so € = €+ 9), then any e-cover {z; }'"; of P satisfies for each y € Pj:
JzeP:ly—=z|<d, Fi:|lv—z]<e = |ly—zil|<e+d=¢€.

Hence

Ps € B d) = N(Ps,e') < N(P,o). (E3-1)
i=1
Note: For € > €y — d, the above transfer argument is not applied.

Step 2. Lower bound on NV (P, ¢).

Split into two cases:

Case I: € < ¢y — 4. Since Pj satisfies d.g-dimensional covering regularity; loading the lower-bound
for Ps at radius € = € + J, there exists a constant as > 0 such that

N(Ps,€) = N(Ps,e+6) > as(e+5) %,
Based on[(E3-1)] we obtain
as(e+8)"%" < N(Ps,e') < N(P,e)
Since § < ¢, it follows that € + § < 2¢; thus, we have

N(P,e) > ag2 et ¢dert, (E3-2)

CaseIl: € > ¢y — 0. Define @ := (eg — )%, such that
(€p — 0) et =G 1.

Since € > ¢g — d, we have
e dett < (60 _ 5)*deff'

Hence
—deff ~—1 ~ —doff
€ < a < ac < 1.

Since any nonempty set PP has covering number at least one, the following holds

Gl < 1 < N(P,e). (E3-3)
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Therefore, set a := min{a;2~%, @} > 0, combining (E3-2)|and|(E3-3)| yields
N(P,e) > ae % VYee (5 e). (E3-4)
Similarly, V holds N'(V,€) > a’ e~ % Ve € (6, €.

Step 3. Upper bound on N (P, ¢).

Since Ps satisfies deg-dimensional covering regularity, there exists a constant bs > as > 0 such that
N(Ps,€) < bse e,
Since P C Pjs, we have N (P, €) < N (Ps, €); thus, the following holds
N(P,e) <N (Ps,e) < bge et

Based on the monotonicity of covering numbers, for every radius € > ¢, we have

N(P,e) < N(P,0).
Therefore, set b := max{bs, N (P,d)}, forall € € (, €g] we have

N(P,e) < be err, (E3-5)
Likewise for V), the following holds N (V,¢) < b’ e~ Ve € (6, ).
Step 4. Combine the bounds.
Based on [(E3-4)|and [(E3-5)} for all € € (4, €] the following holds

ae dt < N(Pre) <be %t q/ edet < N(V,€) < b e befr,

This completes the proof. O
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E.4 Proof of Theorem[Il

Restatement of Theorem [I] (Trade-off between Prompt Alignment and Visual Preservation). Un-
der Assumptionand the covering-regularity hypothesis of Lemma with constants a,a’, degg > 0,
there exist a radius-scaling factor z > 1 such that n/z > § and K < N (P,n/z) + N (V,n/z), for
every pruning results S = (S, U Sy) C V with budget K satisfying

InaX{DlKiz/dCffa D2 772} < dH(Sp> P) dH(Sva V)v
where Dy = (4aa’)/ % >0, Dy :=1/2% > 0.

Remark (Optimal Attainment Level). The term Dy K ~2/% js completely determined by the pruning
budget, while Dy n? quantifies the effect of prompt-visual coupling. Hence, the optimal attainment
level per objective is given by ¢* = max{n/z, vD1 K —1/dest }. Any attempt to reduce one objective
below €* forces the other above €*, thereby increasing the overall pruning error.

Remark (Effect of Budget and Coupling Strength). As K decreases, z correspondingly shrinks (D4
growing as a power function), ultimately making Dy n? dominate the bound; while as K increases,
both of the terms reduce, thereby diminishing the trade-off and tightening the overall error bound.
Proof. We begin the proof by noting

e =du(Sp,P), & =du(Sy,V), K,=|S|, K, =S|, K,+K,=K.

Step 1. Quantify the impact of budget K.
By Lemmal3] for all €, €, € (6, €], we have

ae;de“ <SNP,ep) <Ky, de;% <NV, e,) < K,. (E4-1)
By AM-GM inequality, we have K, K, < (%)2; thus, loading [(E4-1)[ we have

2
(a a/) (Ep 6V)—deff < (%) — ey > (4aal)1/deff J 2/ dest

Define D; := (4aa’)'/% > 0, the K-bound is established by
epev > Dy K2/ dest (E4-2)

Step 2. Quantify the impact of prompt-visual coupling 7.
Based on the budget condition, the radius-scaling factor z holds
K<N(P,L)+NV,2). (E4-3)

For contradiction, we suppose two covering radii is simultaneously small, such that e, < 1/z and
€y < 1/z. Then, the monotonicity of covering numbers gives

N(P,e) > N(P, 1), NV,e&) >NV, 1).

Hence

K > N(P,ep) + N(V,ey) > N(P, L) +N(V, 1),
contradicting ((E4-3)| Therefore at least one of €, €, is > 1/z. Consequently

2
€p €y > (Z) ;

Define Dy := Z% > 0, the n-bound is given by
ep v > Donf. (E4-4)

Step 3. Combine the impacts.

By [(E4-2)|and [(E4-4)] we have
€p€y > Dy K™%/t and €p€y = Do = €p €y > Inax{DlK”/dC“, DQT]Q}.

This completes the proof. O
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E.5 Proof of Theorem[2]

Restatement of Theorem [2| (Performance Guarantee). Under Assumption [I| and the covering-
regularity ofLemma with constants a, a’, deg >0 and b>a, ' > d/, for any budget split (K,,, K —
K,), covering fold k, and token set X =V LUP C R with V| = N, |P| = L, and dg(V,P) <,
the following hold:

(a) Performance bound: The Performance degradation caused by MoB is upper bounded by

(%) = FOMoB(X))|| < Cp max{a(n, k, L) (Kp) ™V, 8(K — Kp)~ Ve b 4 Gy,

where a(n,k,L) = n(bk L/a)l/d"ff’ B = 2(b )L/ dest
(b) Multilinear complexity: The complexity of MoB is given by Tyios = O(N (L 4+ K) d).

Remark (Coupling Trade-off). Under weak coupling (large «(n, k, L)), minimizing the bound
requires a larger K,. Conversely, under strong coupling (small o(n, k, L)), the alignment term decays
rapidly, favoring visual preservation (increasing K — K,). Specially, under perfect coupling (n = 0),
the bound simplifies to |Ay|| < C¢B (K — K,)~/ % i.e., MoB reduces to pure visual preservation.

Remark (Budget Scaling). As the total budget K increases, the preservation term 3 (K — K,)~1/de
decays, requiring a corresponding increase in K, (and thus a reduction in the alignment term) to
rebalance the trade-off and further lower the overall error bound.

Remark (Scalability). MoB exhibits a multilinear scalability with respect to visual tokens N, prompt
tokens L, and retained tokens K (especially K,L < N), making it readily adaptable to more
challenging scenarios, such as advanced MLLMs with higher-resolution inputs or multi-frame video.

Notation.

e The intermediate input X" is formulated as
X=VUPCR! where [V|=N, |P|=L, and N> L.

Particularly, V, P are compact sets with d.g effective dimensions.

e We define the pruned intermediate input as
MoB(X) := X;, where X, =S U P where |S|=K.

o The budget configuration is given by (K, K ), where K, + K, = K.
Proof. We separately proof the Performance Guarantee & Complexity in Part A & Part B
Part A: Performance Guarantee

Part A-1: Performance Guarantee of prompt alignment

Step A-1.1: Bound of the radius derived by k-fold NN-covering
Given any union set before K ,-truncation
S = U arg tg\[})—k(cos(sp,p),k) where |S)| =K, and K, < K] <kL,
pep O

we define

6; = dH(Slg, ’P)
By previous work [[15], NN-covering achieves a 1-approximation for the k-center problem with
sufficient budget; i.e., specifically for any p € P we have

inf ||p — sp|| = inf |[p— v].
o2, Ip = spll = inf lp =]

Thus,

sup inf ||p — s’ || = sup inf ||p — v]|.
;lelgségséllp spl ;gg;gvllp vl
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Based on Assumption since s € S;, C V), the upper bound of the radius ¢}, is given by
e =dg (S, P) :=max{ sup inf ||p—s.|, sup inf |p—s
b = (S, P) = sup, taf o= sy, sup . s3]}
< max{sup inf ||p —v||, supinf |[p —v (E5-1)
{sup inf [lp — o], sup inf [~ o]}
=dg(V, P) <n.

Step A-1.2: Impact of K,-truncation on the radius

Based on Lemma 3} we have
ar~det < N(P,r) < by deit,

(L) 1/dett
Ky :

1/ dess
1\ —dett / / a
a(ey) <K = € > (KT;,) .

In particular:

b(ep)_deff > Ky, = ¢

IN

and also

p p

Combining the upper and lower bound for ¢, and e;), respectively in terms of b, K, K r/>’ we obtain

1/de 1/de 1/de 1/de
o< (2 /dets _ (bK /dett (a /dett < (b K/, [ dets y
p = &, = \axk, K/ S \ak, P

That is, truncating from K to K7, centers increases the radius by at most the factor

1/dess 4
€p.

e < (bKI’)/aKp)
Since kL > K. r/>’ loading into above, we have

e < (bkL/aK,)Y " el
By loading[(E5-T)|into the above, the performance guarantee of prompt alignment is given by

€p ‘= dy (Sp, < a(n,k, T/ %t where «(n,k,L) = a . (B5-
b= du(Sp, P) < a(n,k, L) (Kp) Y% wh (n.k, L) == (bkL/a) ™", (E5-2)

Part A-2: Performance Guarantee of Visual Preservation
By previous work [36]], FPS achieves a 2-approximation for the k-center problem:
e < 26*(Ky), (E5-3)
where €* (K, ) is the optimal radius with K, centers. Based on Lemma 3] we have
NW,r) < b pdeir
thereby, the upper bound of optimal radius is given by
€ () < (/).

By loading the above into [(E5-3)] the performance guarantee of visual preservation is given by

ev = dp(Sy, V) < B(K,) T/, where = 20/"/%, (ES-4)
Part A-3: Performance Guarantee of MoB

By substituting [(E5-2)]and [(E5-4)|into Lemma 2] the performance guarantee of the MoB is given by:

|F(X) = FMoB(X))|| < Co max{a, b, L) (K)o, § (K)o 4 o,

where (1, k, L) = 1 (bkL/a) 1/dcff’ B = gpt/den
This completes the proof of Part A.
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Part B: Complexity

Since k < K, < K ~ L < N, we restrict our complexity analysis to the leading-order terms.

Part B-1: Normalization

MoB do a L, normalization for each token z € X C R?; thus, the complexity is given by
Tnorm = O((N + L) d) (E5-5)

Part B-2: Selection of Prompt Center

Firstly, MoB calculates the cosine similarity with each p € P and v € V via a matrix multiplication:
Mgy, =PV’ e REXNY  where V € RV*? and P € REX4,

which leads a complexity of Tyep1-1 = O(N L d). Subsequent, MoB do a top-k retrieval in the first
dimension of My;,,, the select £ most closed centers for each prompt token p € P, which can be
reduced to a partial sorting, thereby leading to a complexity of Tyep1-2 = O(N L log k). Finally,
MoB merge the selected result of each p € P, and truncated the top- K, ones with largest similarity,
leading to a Tyep1-3 = O(L k log K,). Consequently, the total complexity Tp-select Of prompt
center selection is given by:
Tp-select = Tstep 1-1 + Tstep 1-2 + Tstep 1-3»

=O(NLd)+O(NLlogk)+ O(Lk log K,), (E5-6)

= O(N Ld).
Part B-3: Selection of Visual Center
Initially, MoB calculates the minimum distance (used in FPS) with each visual token v € V\ S, = V'
and the selected prompt centers via a matrix multiplication together with an argmin operator:

dpps = argmin VT S, e RY "% where V' € RV~ »)¥d and §, € R¥r>4,

thus, the complexity is given by
Tstep2-1 = O((N — Kp) Ky d)+O((N — Kp) Kp)a

matrix multiplication argmin
=0O((N - K;,) Ky d).
Subsequently, in K — K, iterations, MoB add the tokens with largest minimum distance with an
argmax operator in drpg, and update the drppg with an inner production together with an N — K-
dimensional element-wise comparison; thus the complexity is given by
Tsep2-2 = O((N = Kp) (K — K;,)) + O((K — Kp) Nd) + O((K — Kp)d)

argmax inner productioin ele—wise comparision
=O((K — Kp)Nd).
Consequently, the total complexity 75 -select Of Visual center selection is given by:
Ty-select = Tstep2-1 + Tstep 2-2,
=0O(N - K,)K,d)+O(K — K,)Nd), (E5-7)
= O(N K d).

Part B-4: Totally complexity

By [(E3-5)] [(E5-6)|and [(E3-7)] the totally complexity of MoB is given by
TvoB = Thorm + Tp-sclect + Ty-select
= O((N +L)d)+ O(N Ld) + O(N K d),
=O(NLd)+ O(N K d),
= O(N (L + K)d).
This completes the proof of Part B.

Combining the Part A & B, we complete the proof.
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