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Abstract

We give a model of how to infer natural language rules by doing experiments. The1

model integrates Large Language Models (LLMs) with Monte Carlo algorithms for2

probabilistic inference, interleaving online belief updates with experiment design3

under information-theoretic criteria. We conduct a human-model comparison on a4

Zendo-style task, finding that a critical ingredient for modeling the human data is to5

assume that humans also consider fuzzy, probabilistic rules, in addition to assuming6

that humans perform approximately-Bayesian belief updates. We also compare7

with recent algorithms for using LLMs to generate and revise hypotheses, finding8

that our online inference method yields higher accuracy at recovering the true9

underlying rule, and provides better support for designing optimal experiments.10

1 Introduction11

An important way that humans grow their knowledge of the world is by experimentation and other12

forms of active learning. This process is most clearly present in the experimental sciences, but similar13

processes of active inference begin in infancy through early childhood [1, 2, 3, 4, 5]. Within everyday14

adult cognition, active experimentation helps us quickly learn to use new devices and tools.15

A basic framework for modeling experimentation is to alternate between conducting a good experi-16

ment, and updating one’s beliefs based on those experimental results [6]. These beliefs concern a17

latent hypothesis about the regularity or trend the experimenter is investigating. This leaves open at18

least two computational questions. First, we need to define a hypothesis space. Second, we need19

efficient algorithms for belief updates and experiment generation. Such algorithms should reason20

about probabilistic beliefs—considering many hypotheses and their associated probabilities—in order21

to find experiments that optimally resolve different competing hypothesis.22

Here we will introduce a model that represents hypotheses in natural language—even for problems23

that do not intrinsically involve human language. We do this for two reasons. First, natural language24

can index many human concepts, and can recursively combine them, giving an expressive hypothesis25

space. Second, it allows using Large Language Models (LLMs) to aid the inference task of updating26

beliefs after each experiment, giving tractable, approximate probabilistic inference when we view the27

LLM as a proposal distribution for a Monte Carlo estimator.28

We are especially interested in comparing our model to human behavior, given the long legacy of29

probabilistic modeling within cognitive science [7, 8]. We find a nuanced picture: vanilla LLMs are30

not humanlike on our active learning tasks (and underperform humans); our full model outperforms31

humans; but a simple change—switching from deterministic to probabilistic hypotheses—allows32

matching humans in overall performance, and agreement with humans on more fine-grained metrics.33

From a technical perspective, our work needs to infer natural-language hypotheses in an online setting,34

so that it can cycle between experimentation and hypothesis formation. This differs from recent35
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batched approaches for hypothesis formation [9, 10, 11]. To allow online inference, we hybridize36

LLMs with Sequential Monte Carlo Samplers (SMC-S: [12]). In SMC-S, one tracks a modest number37

of hypotheses that serve as (approximate) samples from the posterior. Meanwhile, the LLM focuses38

the sampler on a small set of candidate hypotheses that it deems relevant, given the data. The resulting39

sampler facilitates active learning by choosing an experiment which optimally “splits” the candidate40

hypotheses. With strategies that do not use probabilistic framing, such as tracking a single best-guess41

hypothesis, the active learner would have little guidance on what experiment to do next.42

We will focus here on active inference of basic symbolic concepts expressible in natural language, as43

we believe these are tractable first targets of study. Concretely, we consider tasks in the spirit of the44

boardgame ‘Zendo’, a challenging but accessible game where human players actively learn binary45

rules combining logical and spatial relations [13, 14, 15], as well as ‘Blicket test’ style tasks, inspired46

by studies in developmental psychology [16, 2, 17] that investigate how children learn the causal47

mechanism behind the activation of a machine. See Figure 1.48

We contribute the following:49

1. An algorithm for probabilistic inference of latent natural language hypotheses. This derives from50

SMC-S, but uses an LLM proposal distribution to allow tractable inference over natural language51

strings, essentially using the LLM to suggest ways of revising the belief state.52

2. Model-Human/Model-Baseline comparisons, finding that (1) we get a better fit to human data53

using natural language, instead of formal languages; (2) the model can be further made more54

humanlike by considering fuzzy (probabilistic) rules, and (3) that our online inference also yields55

better accuracy at the actual task relative to recent work [10, 9, 11].56

3. Empirical findings about the ability of LLMs to revise hypotheses and propose experiments. On57

the domains we consider, we find that LLMs are effective for proposing and revising hypotheses,58

but do not consistently outperform random guessing when proposing experiments.59

2 Model60

We start with standard Bayesian optimal experiment design, which gives a framework for describing61

both experimentation and hypothesis formation [18, 19]. Our model includes natural-language62

hypotheses h ∈ Σ∗, experiments x ∈ X , and experiment outcomes y ∈ Y . We consider equipping63

h with real-valued parameters θ: For example, if the hypothesized rule is fuzzy (noisy), then θ64

would control the noise level. As new experiments are proposed sequentially, we index experiments65

and outcomes with subscripts, i.e. xt and yt for the tth experiment and outcome, respectively. The66

objective is to identify ground-truth h∗, and to accurately predict the outcome of future experiments.67
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The machine makes sound when
Hypothesis 1: at least one of them is a yellow object
Hypothesis 2: more than three objects are present

The machine makes sound when
Hypothesis 1: at least one of them is a yellow object

      or a cylinder
Hypothesis 2: there are at least two objects

The machine makes sound when
Hypothesis 1: at least one of them is a yellow object

      or a cylinder that is not red

Experimentation
Hypothesis
Revision

Figure 1: Alternation of experimentation and hypothesis generation on a simplified version of our
ActiveACRE domain. Hypotheses characterizes what causes the machine to activate (make noise).
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The joint distribution over hypothesis h, θ and outcomes y1:T , given experiments x1:T , is68

p(h, y1:T , θ|x1:T ) = p(h)p(θ)
∏

1≤t≤T

p(yt|xt, h, θ) (1)

where the prior p(h) favors shorter or simpler hypotheses. From eq. (1) the posterior is69

p(h|x1:T , y1:T ) ∝ p(h)

∫
θ

p(θ)
∏

1≤t≤T

p(yt|xt, h, θ)dθ (2)

where we assume the above integral is tractable, because θ is low-dimensional. Ultimately, the70

purpose of the hypothesis is to make predictions on new experiments. Given a test experiment xtest,71

an ideal learner predicts an outcome ytest distributed as follows:72

p(ytest|xtest, x1:T , y1:T ) =
∑
h

p(h|x1:T , y1:T )

∫
θ

p(θ|h, x1:T , y1:T )p(ytest|xtest, h, θ)dθ (3)

The optimal experiment for identifying h maximizes the following information gain [20]:73

x∗ = argmax
x∈X

E
p(y|x1:T ,y1:T ,x)

[DKL(p(h|x1:T , y1:T , x, y)||p(h|x1:T , y1:T ))] (4)

The above computations are intractable because they involve considering the infinitely large set of all74

hypotheses and experiments. We next describe our LLM-guided approximation methods.75

2.1 Revising Rules: Online Inference76

We introduce a generalization of the Sequential Monte Carlo Sampler (SMC-S) [12], an online77

approximate inference algorithm which tracks a small pool of hypotheses—called particles—that78

evolve over time as new data is collected. Tracking representative high-posterior particles allows79

approximate inference (eq. (2)) and prediction (eq. (3)) by only considering the current particles. This80

makes the model “boundedly rational” [21]: as the bound on computation (# particles) grows large,81

the sampler better approximates optimal inference. To the extent that our work offers a cognitive82

model, we are claiming that humans only consider a small number of hypotheses, which evolve in83

ways that approximate probabilistic reasoning. This should be seen within the tradition of using84

approximate inference methods to give mechanistic accounts of human learning [22, 23, 24, 25].85

Standard SMC-S tracks n particles at each time point t, written Ht = {h(i)
t }ni=1. Each86

particle has a weight, Wt = {w(i)
t }ni=1, giving the approximate posterior p(h|x1:t, y1:t) ≈87 ∑

i w
(i)
t 1

[
h = h

(i)
t

]
. Upon observing a new data point, the particles Ht are pushed through a88

forward kernel qt+1(ht+1|h(i)
t ), which randomly perturbs the particles, to obtain new particles Ht+1.89

Next, the particles are reweighed to obtain Wt+1. Finally, a resampling step can be executed to prune90

low-weight particles and multiply high-weight particles.91

qt+1 weigh

New experiment: 
xt+1, yt+1

Ht LLM proposals

resample Ht+1

Revised hypotheses
Falsified by 
new experiment

Figure 2: Sequential Monte Carlo method tracks a small number of hypotheses (called particles),
each of which is a natural language rule, represented above by circles. After each experiment, the
particles are revised in light of the new data by pushing the particles through the forward kernel.
Then, the new particles are reweighed according to how well each explains the data we have seen so
far. Resampling prunes low-probability hypotheses while multiplying high-probability ones.
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Here h is a natural language string, suggesting an LLM should define qt(ht|h(i)
t−1). For example, an92

LLM can be prompted with a hypothesis, together with the latest experiment outcome, and asked93

to revise that hypothesis. But calling an LLM to perturb every single particle is expensive, and94

unnecessary for hypotheses that already explain the data well.95

We therefore design a variant of SMC-S whose forward kernel looks globally at the current set96

of particles and prompts an LLM to revise the worst (lowest-likelihood) particles, while keeping97

unchanged the best (highest-likelihood) particles. This concentrates the computation on improving98

bad hypotheses, instead of wasting effort altering what already works. Within the context of LLMs,99

this can be seen as an online, probabilistic version of hypothesis refinement [9, 26, 10]. Within the100

context of SMC-S, this mathematically corresponds to defining a forward kernel that conditions101

on the entire set of previous particles and all seen data points, qt(ht|Ht−1, x1:t, y1:t).1 Below we102

formalize our new SMC-S variant, which we call LLM-SMC-S, illustrated in Figure 2.103

Procedure: LLM-SMC-S (A.3). Given Ht,Wt where p(h|x1:t, y1:t) ≈
∑

i w
(i)
t 1

[
h = h

(i)
t

]
:104

1. Define unnormalized target densities γ(h) = p(h, y1:t, x1:t) and γ′(h) = p(h, y1:t+1, x1:t+1).105

2. Sample h′ ∼ qt+1(·|Ht, x1:t+1, y1:t+1) (i.e., using LLM to revise hypotheses)106

3. Compute the weight w′ for h′ following107

w′ =
A(h′, Ht,Wt)

qt+1(h′|Ht, x1:t+1, y1:t+1)
where A(h′, Ht,Wt) =

1

n

n∑
i=1

w
(i)
t

γ′(h′)r(h
(i)
t |h′)

γ(h
(i)
t )

(5)

with the reverse kernel r(h|h′) defined as uniform up to strings of a maximum length.108

4. Repeat steps 2-3 (sampling/weighing) a total of n times, and normalize the weights. Optionally,109

resample to generate an unweighted posterior (we always resample).110

5. Output: Ht+1 and Wt+1, formed from n samples of h′, w′ with w′ normalized from step 4, which111

approximate p(h|x1:t+1, y1:t+1).112

The correctness of the above procedure is most easily understood using the following definition:113

Definition: Proper Weighting [27]. Let γ(h) be an unnormalized target density, which we can114

evaluate. Let the corresponding normalized target density be π(h) = γ(h)
Zπ

where Zπ =
∫
γ(h)dh is115

the normalization constant. A weighted particle h,w is properly weighted with respect to γ if for any116

function f ,117

E[wf(h)] = ZπEπ(h)[f(h)]

Proposition 1. If H,W input to Procedure LLM-SMC-S is properly weighted with respect to γ, then118

the output h′, w′ is properly weighted with respect to γ′. (Proof in Appendix A.1.)119

2.2 Doing Experiments: Active Learning120

Our active learning works by doing an experiment that maximizes information gain (eq. (4)). Ex-121

periments may be complex, such as involving putting objects or instruments in specific positions,122

and there might be combinatorially many possible experiments. For a rich space of experiments, a123

bounded learner—human or AI—cannot consider all possibilities.124

We will propose experiments using an LLM, but then reassess those proposals under probabilistic125

criteria. Particularly, we provide an LLM with the hypotheses tracked by the SMC-S sampler at each126

iteration, and prompt it to generate experiments that support and falsify each hypothesis. Empirically,127

this process yields a diverse pool of experiments. We take the best experiment proposed by the LLM,128

as measured under the approximate posterior from SMC-S:129

xt+1 = argmax
x∈PROMPT(Ht)

E
p̂(y|x,x1:t,y1:t)

[DKL(p̂(h|x1:t, y1:t, x, y)||p̂(h|x1:t, y1:t))] (6)

where p̂ is approximated with the weighted particles from SMC-S.2130

1We note that whether we condition on the seen data points or not does not change the proof. The main
novelty of this new variant lies in how q can be conditioned on the entire set of particles Ht−1

2We let the particles Ht be the support for both distributions so that we can calculate KL divergence.
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2.3 Instantiating the model131

All of our experiments have binary outcomes (y ∈ {0, 1}), and all of our natural language hypotheses132

correspond to rules that predict whether an experiment succeeds or fails (1 or 0). Although the rules133

predict hard all-or-none judgments, a learner can relax that constraint by assuming that the underlying134

rule is fuzzy (noisy). Many natural language facts and rules actually only partly hold, such as birds fly135

(almost always true), or birds lay eggs (true half the time). To handle the possibility of fuzzy rules, we136

equipped each hypothesized rule with real-valued parameters θ that control the noise level. The noise137

parameters decompose into a pair θ = (ϵ, δ) controlling the rate of false-positives/false-negatives:138

p(y = 1|x, h, ϵ, δ) =
[

δ if h(x) = 1
1− ϵ if h(x) = 0

]
Under this formulation, hard rules corresponds to p(ϵ) and p(δ) having non-zero probability only at139

value 1. For probabilistic, fuzzy rules, we use Gaussian priors for p(ϵ) and p(δ), truncated to [0.5,1],140

and with a bias toward larger ϵ. The prior p(h) is defined as inversely proportional to wordcount,141

giving a gentle bias toward parsimony. We investigate both hard and fuzzy rules in our experiments.142

Evaluating h(x) requires checking the natural language string h against experiment x, for which we143

use GPT-3.5 to translate the natural language h to code which is run on x. We use GPT-4 Turbo to144

propose hypotheses [30]. Recent studies find a similar breakdown of LLMs works well [9, 10, 11].145

3 Experimental Results146

Domains. Zendo is a game where a player seeks to infer a hidden binary rule about scenes of147

colored shapes. Our Zendo games begin with showing the player a positive example scene, followed148

by 7 rounds of experimentation, where the player builds a scene, and receives feedback on if the149

scene obeys the hidden rule. After the experimentation phase, players are tested on 8 test scenes, half150

of which follow the hidden rule. Our setup follows Bramley et al.[13], but modified for LLMs by151

presenting scenes as text describing each block by its color, size, orientation, groundedness, and what152

other blocks it touches and stacks (Figure 3).153

Our second domain, ActiveACRE, derives from The Abstract Causal REasoning (ACRE) dataset [17],154

which in turn derives from ‘blicket’ tests in developmental cognitive psychology [16]. The original155

ACRE is a causal induction dataset where each task is to figure out what causes the ‘blicket’ machine156

to make sounds when multiple objects are put on the machine. We add active learning to ACRE:157

rather than passively observe examples, our ActiveACRE allows the player to try 7 experiments, after158

passively witnessing the outcome of one experiment involving eight objects. The player is then tested159

(without further feedback) on all possible combinations of the original eight objects.160

Model-Baseline comparisons. Table 1 contrasts the performance of different models, showing that161

online inference with hard rules outperforms all other models on both datasets, including a ReAct-162

style baseline [31] (Direct LLM), and batched inference with refinement, an approach advocated for163

in recent work [10, 9]. To measure accuracy on Zendo, we compute the predictive posterior accuracy164

summed over the 8 test scenes and averaged over all tasks. Because the test set on ActiveACRE165

a) b)

c)

Ground truth rule: Majority of blocks are red

Which of the following blocks will stars come out of? 

-Block 4:
Color – red,
Size – large,

Orientation – left, 
Groundedness – grounded, 

Touching – none

-Block 1:
Color – green,

Size – medium,
Orientation – upright, 

Groundedness – grounded, 
Touching – Block 3

Figure 3: (a) Example Zendo scene and its serialization into text. (b) Eight experiments, each of
which is a scene, with a binary outcome (whether the scene makes stars come out of it). (c) Test
scenes that evaluate whether a model or human has correctly inferred the hidden rule.
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Method Zendo ActiveACRE

Avg Pred Posterior Avg Pred Posterior ROC AUC F1 Task Solving

Human from [13] 5.26 - - - -
Direct LLM [31] 4.60± 0.19 0.83± 0.05 0.60± 0.02 0.86± 0.04 0.00± 0.00

Batch, Fuzzy 4.57± 0.15 0.64± 0.02 0.84± 0.02 0.84± 0.04 0.00± 0.00
Online, Fuzzy (Ours) 5.35± 0.09 0.72± 0.01 0.90± 0.03 0.96± 0.01 0.15± 0.08

Batch, Hard 6.01± 0.19 0.89± 0.03 0.77± 0.04 0.96± 0.01 0.10± 0.07
Batch w/ Refinement, Hard [9, 10] 6.18± 0.14 0.86± 0.04 0.73± 0.04 0.91± 0.04 0.15± 0.08

Online, Hard (Ours) 6.55± 0.13 0.92± 0.03 0.87± 0.04 0.98± 0.01 0.35± 0.11

Table 1: Performance on Zendo and ActiveACRE. The results for Zendo are mean ± standard error
of predictive posterior accuracy summed over the test scenes, averaged over the tasks and 5 seeds.
ActiveACRE results are mean ± standard error of each metric averaged over 20 tasks. ActiveACRE
is heavily class-inbalanced, so we compute a wider variety of accuracy metrics.

are highly imbalanced, we also report ROC AUC, F1, and task solving scores. The last metric, task166

solving, measures whether the models perfectly solves each task. The results, especially the large gap167

on average task solving between our online inference algorithm and batch inference, demonstrate168

that our online algorithm is more successful at inducing the correct causal law within ACRE, and169

more accurate at predicting what scenes obey the rule in Zendo. Interestingly, our most performant170

models—which assume hard deterministic rules—actually surpass human accuracy [13]. This raises171

the question of how humanlike the model is (or isn’t), which we investigate next.172

Method LogL

[13]’s best model −1539
Batch, Fuzzy −1660.90
Online, Fuzzy −1478.82
Batch, Hard −2921.00

Batch w/ Refinement, Hard −3499.76
Online, Hard −5209.93

Table 2: Log likelihood of human data on
models summed over all test scenes of all
Zendo rules.

Model-Human comparisons. We run the model on the173

same Zendo games that human participants did, taking174

human data from Bramley et al. [13]. Average human175

accuracy is 5.26/8, which surpasses a ReAct-style agent176

(4.60/8), falls short of our strongest model (6.55/8), and177

is close to the variant of our model which uses prob-178

abilistic fuzzy rules (5.35/8). For a more fine-grained179

understanding of how human and model accuracy com-180

pare, we split accuracy across each of the 10 rules on test181

scenes that either obey the hidden rule (Rule Following182

or RF condition) or violate the rule (Not Rule Following183

or Not RF condition) (Figure 4a). With fuzzy rules, the184

model explains 57% of the variation in this more fine-grained measurement of human accuracy185

(R2 = .57). Switching to hard rules drops this to R2 = .10, suggesting that hard all-or-none rules186

do not provide as good of an explanation of human behavior, even though hard rules outperform187

probabilistic ones in terms of accuracy. Doing batch inference instead of online inference degrades188

fit to R2 = .05. Having the LLM play Zendo directly (ReAct [31]) is only loosely correlated with189

human accuracy patterns (R2 = .25). We last consider predicting every single human judgment on190

every single test scene, for every single rule. The online, fuzzy rules model predicts these human191

judgments at the level of R2 = .35, and importantly, it is only with combination of online inference192

with fuzzy rules that gives a significant fraction of explained variance (Figure 5), and which assigns193

the highest likelihood to the raw human data (Table 2).194

0 1 2 3 4 5 6 7 8
Number of Test Scenes Correct

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

Performance on 'the majority of blocks is red.'

Online, Fuzzy Model
Human

Figure 6: Performance of human and
model on ’the majority of blocks is red’

We noticed across many rules a significant difference in195

human accuracy on RF and Not RF test scenes. Whether196

people finds RF or Not RF test scenes easier depends197

on the underlying rule. Figure 4b illustrates this phe-198

nomenon and compares it against what each model199

thinks should be the easier condition. Online learning of200

fuzzy rules successfully predicts the direction of almost201

all of these trends, unlike the alternative models.202

Hence, we hypothesize that although the hidden Zendo203

rules are deterministic, humans might nonetheless in-204

fer fuzzy rules. Real-world regularities are seldomly205

deterministic, so it may be rational for human learners206

to seek probabilistic explanations, especially when they207

are uncertain about the underlying rule. However, fuzzy208
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Figure 4: Human vs model accuracy binned by 4 rule-following (RF) and 4 not rule-following (Not
RF) test scenes. (a) Each point is a RF or Not RF accuracy for the 10 rules. (b) Rows/columns are
methods/rules. Online inference with fuzzy rules (last row) most closely matches humans.

rules on their own do not suffice to explain human judgments: Only by combining with online209

probabilistic inference do we begin to explain the data.210

Why reason in natural language instead of a formal language? Many Bayesian models account for211

human concept learning using probabilistic reasoning over formal languages such as logic [32, 33, 34,212

35, 36]. Instead, our model operates over natural language. This helps address two liabilities of formal213

representations: expressivity and tractability. A handcrafted formal language is often insufficiently214

expressive, accidentally excluding many human concepts. This expressivity must be limited because,215

although there exist highly expressive formal languages, in practice, inference in such languages is216

generally intractable—a tradeoff partly addressed by using LLM proposal distributions.217

To illustrate these points, we study a new Zendo rule—‘the majority of blocks is red’—which is not218

expressible in the formal language introduced by [13]. We collect new human data in an IRB-approved219

study. Figure 6 shows that both humans and our model correctly learn this rule 30%− 40% of the220

time. This indicates both the model and humans are able to represent this rule in their hypothesis221

space, which is unrepresentable in a formal language designed specifically for Zendo.222
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Figure 5: Comparing human and model prediction on each test scene after 7 rounds of experimenta-
tion; see also Table 2. Each point is a prediction on a test scene. We only present LLM, best batch
model, and best online model here. Please see the figure for all methods at Figure 14.

Active learning method Inference method

Online, Fuzzy Online, Hard

LLM 4.52± 0.08 4.72± 0.08
Random 5.03± 0.11 5.84± 0.19
InfoGain 5.35± 0.09 6.55± 0.13

Table 3: Average predictive posterior (stan-
dard error computed over 5 seeds) of on-
line inference models with different active
learning methods on Zendo.

Proposer for InfoGain Number of candidate experiments

1 5 10

Random proposer 5.84± 0.19 6.23± 0.16 6.55± 0.28
LLM proposer 5.73± 0.16 6.19± 0.12 6.55± 0.13

Table 4: Average predictive posterior (standard error
computed over 5 seeds) of online inference with hard
rules model with different experiment proposers on
different number of candidate experiments on Zendo.

Another reason to use natural language representations is that LLMs, trained on human-generated data,223

may to some extent capture human bias, judgement, and opinions [37, 38, 39]. Unlike approaches224

based on estimating probabilities on formal languages, incorporating LLMs into our models might225

therefore make them display more human-like behaviors—as shown in earlier sections—without226

access to additional human data. Indeed, Table 2 shows that our best-performing model surpasses227

[13]’s model on human data log likelihood even though the latter fits their models on both human228

active queries and predictions, while our model does not perform such parameter fitting.229

1 5 10
Number of LLM Calls per Iteration

0.0

0.1

0.2

0.3

0.4

0.5

R
² S

co
re

R² Score between Model and Human Predictions

Batch, Hard
Batch w/ Refinement, Hard
Online, Hard

Batch, Fuzzy
Online, Fuzzy

Figure 7: R2 score of human vs model ac-
curacy at different computational budgets.
A LLM call batch-samples 15 hypotheses.

Bounded rationality. To understand the effect of com-230

putational cost on the results, we analyze performance231

and human-model fit while varying the computational232

budget, as measured by LLM calls. Figure 7 plots233

human-model fit as compute budget varies (see also234

Table 5). We observe an (inverted) U-shaped curve: Too235

little budget gives a bad fit, but overshooting also de-236

grades fit. This result aligns with the theory of bounded237

rationality [21], which argues for considering human’s238

limited cognitive resources, and with the rational anal-239

ysis of human processing limitations [23, 40].240

What makes good experiments: LLMs, or Informa-241

tion Gain? We first study the importance of the in-242

formation gain objective (Table 3), contrasting three243

different active learning methods: LLM (prompting with244

the hypotheses and asking for a good experiment); Ran-245

dom (handcoded random generator), and InfoGain (main246

method, with LLM proposing experiments). Substituting InfoGain with alternative methods signifi-247

cantly degrades model performance. Reranking LLM proposals with information gain is important,248

and an LLM—on its own—does not generate experiments that are as effective.249

Is this explained by the strength of the LLM experiment proposer, or by the strength of the InfoGain250

objective? While earlier results support LLMs’ effectiveness as hypothesis proposers, Table 4 demon-251

strates that a random proposer, hand-designed under reasonable assumptions, performs similarly to252

an LLM experiment proposer. This finding is in line with [41] which argues that LLMs may not253

always produce the most useful set of candidate questions.254
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A.1 Proof for the weight update of LLM-SMC-S418

Proposition 1. If H,W input to Procedure LLM-SMC-S is properly weighted with respect to γ, then419

the output h′, w′ is properly weighted with respect to γ′.420

Proof. Let Zπ′ =
∫
γ′(h′)dh′ be the normalizing constant of γ′ and π′(h′) = γ′(h′)

Zπ′
be the normalized421

target. We want to show422

E[w′f(h′)] = Zπ′Eπ′(h′)[f(h
′)].

Following arguments similar to [29], we have423

LHS (7)

= EHt,Wt,h′,x1:t+1,y1:t+1

[
A(h′, Ht,Wt)

qt+1(h′|Ht, x1:t+1, y1:t+1)
f(h′)

]
(sub in the definition of w)

(8)

= EHt,Wt

[∫
A(h′, Ht,Wt)f(h

′)dh′
]

(write Eh′∼qt+1
as an integral)

(9)

= EHt,Wt

[
1

n

n∑
i=1

w(i) γ
′(h′)r(h(i)|h′)

γ(h(i))
f(h′)dh′

]
(sub in the definition of A)

(10)

=
1

n

n∑
i=1

Eh(i),w(i)

[∫
w(i) γ

′(h′)r(h(i)|h′)

γ(h(i))
f(h′)dh′

]
(pull the

∑
out of the

∫
)

(11)

=
1

n

n∑
i=1

Eh(i),w(i) [w(i)g(h(i))] (denote the integral as g(h(i)))

(12)

= ZπEπ(h)[g(h)]
(apply the proper weighting
property with test function g)

(13)

= Zπ

∫
π(h)

∫
γ′(h′)r(h|h′)

γ(h)
f(h′)dh′dh (sub in expression for g)

(14)

=

∫ ∫
γ′(h′)r(h|h′)f(h′)dh′dh (cancel terms using Zπ = γ/π)

(15)

=

∫
γ′(h′)f(h′)dh′ (r(h′|h) is normalized)

(16)

= Zπ′Eπ′(h′)[f(h
′)] (Zπ′ = γ′/π′)

(17)
= RHS. (18)

A.2 Zendo and ACRE details424

Zendo. Zendo is a game where a player seeks to infer a hidden binary rule about assemblies of425

colored blocks. The game starts by providing the player with a positive scene that follows the hidden426

rule. Then, the player queries an oracle as to a particular scene follows the rule or not, or makes a427

guess about the secret rule. The game ends when they guess correctly.428

Bramley et al. (2018) [13] introduces a 2D version of the Zendo game shown in Figure 3. The scenes429

consist of blocks, each with its own color (red, blue, green) and size (small, medium, large). The430

blocks can have different orientations and positions in a 2D scene. They may and may not touch each431

other. The game starts with an initial phase where a rule-following scene is given, followed by 7432
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rounds of active learning phase where the player gets to query an oracle for ground truth prediction.433

At the end, the player enters a prediction phase where they are asked to give predictions for 8 test434

scenes (4 rule-following and 4 not rule-following). Bramley et al. (2018) study human gameplay on435

10 rules, collecting data from 30 participants who each play Zendo 10 times (once per rule). They436

use a cover story of an alien planet where some arrangements of blocks emit radiation, and the task is437

to figure out a rule predicting radiation emission.438

Zendo is most naturally framed as a visual-physical concept learning problem. For our model,439

however, we will work with discrete symbolic descriptions of scenes. This makes that problem more440

compatible with the language-of-thought paradigm, and also allows using LLMs to operationalize the441

language of thought. We therefore modify Bramley et al. (2018)’s version of Zendo by associating442

each block in a scene with discrete attributes instead. The five attributes are color (red, blue, green),443

size (small, medium, large), orientation (upright, left, right, strange), groundedness (grounded,444

ungrounded, stacking), and touching (which blocks it touches / stacks). While this natural language445

version of the game removes continuous attributes, such as x, y position and orientation in 2D space,446

from its scene representations, these five attributes still maintain the complexity of the game and are447

sufficient for all 10 Zendo rules.3448

The data is licensed under CC-BY 4.0.449

ActiveACRE. We convert the originally visual tasks into symbolic version of the tasks, similar450

to [9]. While the ground truth rule always has the structure that the blicket machine produces451

noises when one or more "blicket" objects (each object is either a blicket or a non-blicket) is placed452

on the machine, in contrast to [9], we do not hint the learners that the ground truth rule is of453

this form, which means the learners are free to think that the rule may have to do with colors,454

number of objects, etc. We further modify the task to incorporate elements of active learning,455

making the logistics similar to Zendo: the game starts with 8 relevant objects, described with456

color (gray/red/blue/green/brown/cyan/purple/yellow), material (metal/rubber), and shape attributes457

(cube/sphere/cylinder), placed on the blicket machine which causes the machine makes sounds and458

follows by 7 rounds of query. The prediction phase tests the models on all possible combinations459

of the eight objects. We call this resulting domain, ActiveACRE. Figure 1 partially shows what a460

gameplay of simplified ActiveACRE looks like.461

To obtain the 8 initial objects, we sample uniformly from the three attributes to get an object and keep462

doing this until we achieve 8 unique objects. This can be done with a simple code, without external463

data.464

A.3 Algorithm details465

For all methods, unless specified, the number of LLM calls used per each iteration is 5 with each call466

batch-sampling 15 natural language hypotheses.467

Batch Inference. For batch, fuzzy model, we cap the number of unique hypotheses considered468

to 30, otherwise we would have too many hypotheses considered, since all fuzzy hypotheses have469

non-zero posterior probability, making inference very compute intensive.470

Batch Inference with Refinement. We set the number of refinement to 2 (we have tried increasing471

the number of refinement to 4 but didn’t see any improvement). Following [9], this method works472

as follows: (1) it first batch-samples many hypotheses with LLM, (2) select the best hypothesis (in473

numbers of data points accounted) to be refined, (3) use LLM to output a batch of refined hypotheses,474

and (4) repeat the (2)-(3) steps until at least one hypothesis fully accounts for all data points.475

Online Inference (LLM-SMC-S) The algorithm for LLM-SMC-S is described in Algorithm 1.476

For the first iteration, the initial important proposer q(h|x1, y1) is defined to be an LLM, similar to477

batch inference. We define the forward kernel q in the algorithm as follows:478

q(h|H,x1:t, y1:t) ∝ 1[h ∈ (H ∪B(x1:t, y1:t, H))] (19)

3The 10 rules we use are “there’s a red", “all are the same size", “nothing is upright", “one is blue", “there’s a
small blue", “all are blue or small", “a red is bigger than all non reds", “some touch", “a blue and a red touch"
“some pieces are stacked”, and “some pieces are stacked"
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Algorithm 1 LLM-SMC-S algorithm

Let (x1, y1) be the first data point we observe
h
(1)
1 , ..., h

(n)
1 ∼ q(h|x1, y1)

w
(i)
1 ←

p(x1,y1,h
(i)
1 )

q(h|x1,y1)
for 1 ≤ i ≤ n ▷ Reweighting

H1 ← Resampling(H1,W1) ▷ Resampling
for t = 2, ..., T do

The active learning algorithm gives (xt, yt)

h
(1)
t , ..., h

(n)
t ∼ q(h|Ht−1, x1:t, y1:t) ▷ Rejuvenating

A(h
(i)
t , Ht−1,Wt−1) =

1
n

∑n
j=1 w

(j)
t−1

p(h
(i)
t |x1:t,y1:t)r(h

(j)
t−1|h

(i)
t ,x1:t,y1:t)

p(h
(j)
t |x1:t−1,y1:t−1)

w
(i)
t ←

A(h
(i)
t ,Ht−1,Wt−1)

q(h
(i)
t |Ht−1,x1:t,y1:t)

for 1 ≤ i ≤ n ▷ Reweighting

Ht ← Resampling(Ht,Wt) ▷ Resampling
end for

Algorithm 2 B function pseudocode

function B(x1:t, y1:t, H)
result = ∅
h1, ..., hk = top-k-lowest-likelihood(H,x1:t, y1:t) ▷ get k hypotheses with lowest likelihood
for i = 1, ..., k do

Hnb = LLM(xt, yt, hi) ▷ get neighbors (nb) of hi

Hnb = {hnb ∈ Hnb | p(hnb|x1:t, y1:t) ≤ p(hi|x1:t, y1:t)} ▷ filter out bad neighbors
if |Hnb| > m then ▷ we want to consider a maximum of m neighbors

w
(i)
nb ← p(h

(i)
nb |x1:t, y1:t) for 1 ≤ i ≤ n

Hnb ← Down− Sampling(Hnb, p = Wnb, size = m)
end if
result = result ∪Hnb

end for
return result

end function

The pseudocode for B can be founded at Algorithm 2. What B is doing is basically look at low479

likelihood hypotheses, prompt LLM to come up with their neighbors, and filter out bad neighbors480

and limit the number of chosen neighbors to m. We find that having the down-sampling step to keep481

the number of neighbors considered low is helpful in practice, but one can remove this step to make482

B fully deterministic. The LLM function in the pseudocode means prompting an LLM with zero483

temperature.484

A.4 Priors485

Priors for ϵ and δ p(δ) has a mean of 0.7 and a standard deviation of 0.1, and p(ϵ) has a mean of486

0.9 and a standard deviation of 0.01. Both distributions are truncated to remain within the range [0.5,487

1]. We found that using different priors for ϵ and δ results in a more human-like behavior as shown in488

Figure 8.489

Prior for h We let p(h) be inversely proportional to the word count of h for Zendo and uniform for490

ActiveACRE.491

For Zendo, we consider using a prior that would decay exponentially in length but find that letting492

p(h) ∝ ( 1
word_count(h) )

2 already makes the particles become mostly short strings. A prior decaying493

exponentially in string length would definitely be too harsh on the hypotheses.494
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Figure 8: Human vs online, fuzzy model accuracy binned by 4 rule-following (RF) and 4 not rule-
following (Not RF) test scenes. This figure shows online, fuzzy model with same and different priors
for ϵ and δ

Method Number of LLM Calls Per Iteration

1 5 10

Batch, Fuzzy 4.58± 0.12 4.57± 0.15 4.56± 0.16
Online, Fuzzy 5.11± 0.04 5.35± 0.09 5.28± 0.06
Batch, Hard 6.16± 0.17 6.01± 0.19 6.18± 0.14

Batch w/ Refinement, Hard 6.15± 0.16 6.18± 0.14 5.83± 0.16
Online, Hard 6.15± 0.26 6.55± 0.13 6.38± 0.11

Table 5: Average predictive posterior (standard error computed over 5 seeds) of models with different
number of LLM calls (each LLM batch-samples 15 hypotheses) on Zendo.

A.5 Computational Cost495

Computational Cost Analysis Table 5 shows the performance of models with different compute496

budgets (number of LLM calls per iteration) on Zendo. It turns out that the performance of batch497

inference models plateaus after just 15 hypotheses (1 LLM call), while the performance of online498

inference models benefits from being able to sample more hypotheses but also plateaus after 75499

hypotheses (5 LLM calls).500

Experiments Compute Resources We also describe here the compute resources required to501

reproduce the experiments. The main compute cost comes from OpenAI API which we call to prompt502

GPTs. The models with 1, 5, 10 LLM calls per each iteration uses up roughly $0.5, $1.5, $3 OpenAI503

API credit to run a Zendo task. For Zendo, one needs to run 50 tasks—10 Zendo tasks on 5 different504

seeds—to get the performance numbers of a method like we reported. The actual cost, however,505

could be lower than calculated since one can cache LLM responses.506

A.6 Human Study on ‘Majority is red’ Rule Details507

20 participants from our academic department were recruited via Slack to attempt the rule "the major-508

ity of blocks are red". The participants are compensated $10-$20 depending on their performance509

($10 base rate + $1.25 bonus for each correct test scence prediction – there are 8 test scenes). Figure 9510

shows the web interface displayed to participants. The full instructions given to human participants511

are displayed at Figures 12 and 13.512
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Figure 9: Example of the web interface shown to participants.

Figure 10: First figure for human participants instructions shown at Figure 12

18



Figure 11: Second figure for human participants instructions shown at Figure 12
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Thank you for playing my game!

In this game you will be learning about an alien planet. This planet is called Zorb.

On Zorb, there are these special blocks that look like this:

{Figure 9}

These special blocks may look the same, but there are many different kinds of
special blocks on the planet Zorb. They all have different names, and they all
work differently.

Sometimes, when the blocks are set up in certain ways, stars will shoot out of them!
Every kind of special block has a different rule for making stars shoot out of them.

Your job is to figure out each rule for how to make stars come out of all of the
different kinds of special blocks!

{Figure 10}

So there are a lot of things that might make stars come out of certain special
blocks!

You might get stars from blocks of different numbers, from blocks of different
colors, from blocks of different sizes, from blocks facing different directions, and
more!

We found out that there are 2 more kinds of special blocks on Zorb! Let’s call them
’Bemmies’ and ’Yoks’. Again, you do not have to memorize the names -- we just want
to emphasize that different kinds of blocks work under different rules

But we don’t know the rule for setting up each kind of special blocks so stars will
come out of them. Your job is to figure out the two different rules for how to set
up each different kind of special blocks so stars come out!

Now we’re going to watch a video. This video is going to show you how you can move
the special blocks around yourself!
You must watch the video to continue.

So, in the interface you can:
Press buttons at the bottom to add blocks
Move the blocks around by picking them up with the mouse (left clicking and

holding)
Turn them using the "Z" (counterclockwise) and "X" (clockwise) keys
Right click on them to remove them (command + click if you are using mac

trackpad)

When you’re done moving the special blocks, you’re going to test them to see if
stars will come out of them. If you set them up in the right way according to the
rule, you’ll see a bunch of stars appear! Otherwise, nothing will happen.

Figure 12: (Part 1) Instructions for participants. Please find instruction figure 1 and 2 at Figures 10
and 11
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After you move the special blocks around and test them, you’re going to see if you
can pick out which pictures of the blocks you think will shoot out stars. This video
will show you how to do that:

{demo video}

In the video you can see that this participant thinks that four of the pictures
show bemmies that stars will come out of (the ones marked in grey). The right answer
could be anywhere between one and seven of the pictures.

Adults: You will earn a bonus of $1.25 for each of the pictures in the main task
where you guess correctly whether it will shoot out stars (demo task performance
does not count). That means, if you get all eight pictures correct in the main task,
you will earn a bonus of $10!

You must watch the video to continue.

{demo video}

Finally, you may guess the rule for how this kind of special blocks works.

For example, if it looks like stars only shoot out of the blocks if all of them are
green, you would write something like: "all the blocks have to be green"!

Warning: Your responses will be checked by a human before HIT approval. Nonsensical
or copy-pasted answers will lead to your HIT being rejected. If you truly have no
ideas about a rule, please just write "I do not know".

Instructions Summary:
You will look at 2 different kinds of special blocks (including one demo task

for learning the game) that will shoot out stars if they are set up in certain ways.

You must figure out the rule for how each kind of special blocks works.

You will set up the special blocks and test them to see if stars will shoot out
of them seven times for each type.

Your goal is to figure out which out of 8 new pictures of each kind of special
blocks will shoot out stars ($1.25 bonus for each correct in the main task)...

...and to write down your best guess of the rule for that kind of special block!

Figure 13: (Part 2) Instructions for participants.

21



0.0 0.2 0.4 0.6 0.8 1.0
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.13

LLM vs Human

0.0 0.2 0.4 0.6 0.8 1.0
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.00

Batch, Hard Model vs Human

0.0 0.2 0.4 0.6 0.8 1.0
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.00

Batch, Refine, Hard Model vs Human

0.2 0.4 0.6 0.8 1.0
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.08

Online, Hard Model vs Human

0.4 0.6 0.8
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.01

Batch, Fuzzy Model vs Human

0.4 0.5 0.6 0.7 0.8 0.9
Average Model Predicted Probabilty

0.0

0.2

0.4

0.6

0.8

1.0

H
um

an
 A

cc
ur

ac
y

R² = 0.35

Online, Fuzzy Model vs Human

Figure 14: Comparing human and model prediction on each test scene after 7 rounds of experimenta-
tion. Each point is a prediction on a test scene.
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Figure 15: Human vs online, fuzzy model accuracy binned by 4 rule-following (RF) and 4 not rule-
following (Not RF) test scenes. This figure shows online, fuzzy model with three different active
learning methods: LLM, Random, and InfoGain

A.7 Prompts513

The prompts used in all of our experiments can be found in Tables 6 to 11.514

For Zendo, we engineer the prompts for initial importance sampler q(h|x, y) for online inference so515

that they only output simple rules (see Table 6); this approach helps the proposer output hypotheses516

with higher priors, since our prior is defined by the number of words in the rule. We cannot apply517

this trick to batch inference because, unlike online inference, it does not evolve simpler rules into518

more complex ones. Additionally, we also design the importance sampler prompts to avoid proposing519

negative rules (‘there is no ...’) (see Table 6). We found that this leads to a more human-like behavior520

and also better performance.521

A.8 Supplemental Results522

See Figures 14 and 15523
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Method Prompts for Zendo Prompts for ActiveACRE

Batch Inference

Given the following
structures described with
{att_summary} of blocks in
the structures:
{text_c}
Please list {num} possible
rules about the attributes
in a structure that
differentiate the good
structures from the bad
structures.
Keep in mind that
1. All bad structures must
violate the rules.
2. Orders of blocks in a
structure do NOT matter.
3. Do NOT propose
"negative rules" such as
"there is no green block".
4. The rules are short,
concise, single sentences.
Please number them from
1-{num} and do not say
anything else

A group of objects may
make the "blicket machine"
have lights turned on
or off depending on the
objects in it. We seek
to figure out the rule
underlying this. Consider
the following:

{text_c}

Please state {num}
possible rules what makes
the light turned on. State
them in a listed number.
Do not explain.

Online Inference

Please list {num} possible
rules about the {att}.

Example 1:
Structure: blue, blue
Simple rules (Orders do
NOT matter):
1. There is a blue block
2. All blocks are blue
Do NOT propose "negative
rules" such as "there
is no green block". Do
NOT propose rules with
quantifier such as "there
are two blue blocks"

Task 1:
{x}
Simple rules (Orders do
NOT matter):

A group of objects may
make the "blicket machine"
have lights turned on
or off depending on the
objects in it. We seek
to figure out the rule
underlying this. Consider
the following:

{text_c}

Please state {num}
possible rules what makes
the light turned on. State
them in a listed number.
Do not explain.

Table 6: Prompts used for the importance sampler q(h|x1, y1) of all methods
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Prompts for Zendo Prompts for ActiveACRE

A structure has one or more blocks.
Each block should contain the
following attributes:
{att_par}

Example of rule modifications:
Quantifier change: ’There must be a
green block’ -> ’There are two green
blocks’
Additional attribute: ’There must be
a green block’ -> ’There must be a
green block that is upright’
Attribute change: ’There must be a
green block’ -> ’There must be a blue
block’
These modifications are "local": only
one attribute/quantifier is changed
or added for each modification.

Please modify the rule ’{h}’.
Generate {num} rules for each
type of modification (Quantifier
change, Additional attribute,
Attribute change) so that the
following structure is {text_y} a
good structure:
{x}
Note that the number of the blocks do
not matter.

Make the format a numbered list
(1., 2., ..., 15.) Remember that
the new rules should be a "local"
modification from the rule ’{h}’. Do
not use attribute values that are
not mentioned earlier. Do not say
anything other than the modified
rules.

An object contains the following
attributes:
color (gray/red/blue/green/\
brown/cyan/purple/yellow)
material (metal/rubber)
shape(cube/sphere/cylinder)

Example of rule modifications:
Additional conjunction: ’The light
turns on when there is a cylinder
present’ -> ’The light turns on
when there is a cylinder and a cube
present’
Additional disjunction: ’The light
turns on when there is a cylinder
present’ -> ’The light turns on
when there is a cylinder or a cube
present’
Additional attribute: ’The light
turns on when there is a cylinder
present’ -> ’The light turns on when
there is a blue cylinder present’
These modifications are "local": only
one disjunction/conjunction/attribute
is changed or added for each
modification.

Please modify the rule ’{h}’.
Generate {num} rules for each type of
modification (Additional conjunction,
Additional disjunction, Additional
attribute) so that the light does
{text_y} turn on when the following
objects are present:
{x}
Note that the number of the blocks do
not matter.

Make the format a numbered list
(1., 2., ..., 15.) Remember that
the new rules should be a "local"
modification from the rule ’{h}’. Do
not use attribute values that are
not mentioned earlier. Do not say
anything other than the modified
rules.

Table 7: Prompts used for the forward kernel q(h′|Ht, x1:t, y1:t) of online inference methods
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Prompts for Zendo Prompts for ActiveACRE

Given the rule ’{h}’, please give one
structure that conforms with the rule
and another structure that violates
with the rule.

A structure has one of more blocks.
Each block should contain the
following attributes:
{spec}{stacking_note}

The format of each structure should
be as follows:
(conforms with the rule) Structure 1:
{example_block}

(violates the rule) Structure 2:
{example_block}

Given the rule ’{h}’, please give one
group of objects that makes the light
turned on and another that makes the
light turned off

The list of available of objects are
{all_objects}.

The format of your answer should as
follows:

light on group of objects: obj_1,
obj_2, ...

light off group of objects: obj_1,
obj_2, ...

All objects in a group must be
unique. Do not say anything else.

Table 8: Prompts used for experiment proposers.
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Prompts for Zendo Prompts for ActiveACRE

Please synthesize a python program
that implements the rule ’{h}’

The program should takes in a
ZendoStructure which represents a
structure and returns True if it’s a
good structure and False otherwise.

The docstrings for the classes are as
follow:

class ZendoStructure:
:param blocks: list of ZendoBlock

class ZendoBlock:
:param color: str

(blue/red/green)
:param size: str

(small/medium/large)
:param orientation: str

(upright/left/right/strange)
{groundedness_param_msg}
:param touching: list of int

(index starts at 1)

The signature for the synthesized
program should be
def rule(structure: ZendoStructure)
-> bool

Only output the ’rule’ function. Do
not include anything else.

Please synthesize a python program
that implements the rule ’{h}’

The program should takes in a
ACREGroup which represents a group
of objects and returns True if it’s a
good group and False otherwise.

The docstrings for the classes are as
follow:

class ACREGroup:
:param objs: list of ACREObject

class ACREObject:
:param color: str (gray, red,

blue, green, brown, cyan, purple,
yellow)

:param material: str (metal,
rubber)

:param shape: str (cube, sphere,
cylinder)

The signature for the synthesized
program should be
def rule(group: ACREGroup) -> bool

Only output the ’rule’ function. Do
not include anything else.

Table 9: Prompts used to translate natural language h to code.
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Prompts for Zendo Prompts for ActiveACRE

A structure has one or more blocks.
Each block should contain the
following attributes:
{att_par}

Consider the following rule: ’{h}’

Given a structure, the output is yes
if it follows the rule (or is a good
structure) and no if it does not (or
is a bad structure)

The given rule gives incorrect output
for the following structures:

{feedback}

Based on the given rule, generate
{num} new refined rules that fix the
outputs for all mentioned structures.
The new rules may involve any of the
mentioned attributes (color, size,
orientation, grounded, touching).
Please number them from 1-{num} and
do not say anything else

An object contains the following
attributes:
color (gray/red/blue/green/\
brown/cyan/purple/yellow)
material (metal/rubber)
shape(cube/sphere/cylinder)

Consider the following rule: ’{h}’

The given rule gives incorrect output
for the following groups of objects:

{feedback}

Based on the given rule, generate
{num} new refined rules that fix the
outputs for all mentioned structures.
Please number them from 1-{num} and
do not say anything else

Table 10: Prompts used to perform refinement in batch inference with refinement
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Prompts for Zendo Prompts for ActiveACRE

Initial prompt

You are playing an
inductive game with me.
I’ll be the moderator,
and your task is to figure
out the secret rule that
I know by coming up with
a structure of blocks to
ask me whether it conforms
with the secret rule or
not.

The structure has one
of more blocks. Each
block should contain the
following attributes:
{att_par}

To give you a start, I’ll
describe one structure
that follows the rule:

{text_c}

Give a very short summary
on what you currently
think the secret rule is.

You are playing an
inductive game with me.
I’ll be the moderator,
and your task is to figure
out the secret rule that I
know by coming up with a
group of blocks to ask me
whether the group conforms
with the secret rule or
not.

An object contains the
following attributes:
color
(gray/red/blue/green/\
brown/cyan/purple/yellow)
material (metal/rubber)
shape(cube/sphere/cylinder)
The list of available of
objects are {all_objects}.

To give you a start, I’ll
describe one group of
objects that follows the
rule:

{text_c}

Give a very short summary
on what you currently
think the secret rule is.

Follow-up prompt

The verdict on whether the
queried structure follows
the rule is {verdict}.
Give a very short summary
on what you currently
think the secret rule is.

The verdict on whether the
queried structure follows
the rule is {verdict}.
Give a very short summary
on what you currently
think the secret rule is.

Active learning prompt

Give one structure you
want to test whether it
follows the secret rule
or not. Do not include
anything other than the
structure.

Give one structure you
want to test whether it
follows the secret rule
or not. Do not include
anything other than the
structure.

Prediction prompt

Now, do you think this
structure follow the
rule?\n: {x}\nAnswer only
yes or no. Give your best
guess even if you are
uncertain. Do not explain.
Just say yes or no

Now, do you think this
group of objects follow
the rule?\n: {x}\nAnswer
only yes or no. Give your
best guess even if you are
uncertain. Do not explain.
Just say yes or no’

Table 11: Prompts used for vanilla, direct LLM method
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NeurIPS Paper Checklist524

1. Claims525

Question: Do the main claims made in the abstract and introduction accurately reflect the526

paper’s contributions and scope?527

Answer: [Yes]528

Justification: The claims we made in abstract and introduction accurately reflect the paper’s529

contributions and scope.530

Guidelines:531

• The answer NA means that the abstract and introduction do not include the claims532

made in the paper.533

• The abstract and/or introduction should clearly state the claims made, including the534

contributions made in the paper and important assumptions and limitations. A No or535

NA answer to this question will not be perceived well by the reviewers.536

• The claims made should match theoretical and experimental results, and reflect how537

much the results can be expected to generalize to other settings.538

• It is fine to include aspirational goals as motivation as long as it is clear that these goals539

are not attained by the paper.540

2. Limitations541

Question: Does the paper discuss the limitations of the work performed by the authors?542

Answer: [Yes]543

Justification: The last section discusses limitations.544

Guidelines:545

• The answer NA means that the paper has no limitation while the answer No means that546

the paper has limitations, but those are not discussed in the paper.547

• The authors are encouraged to create a separate "Limitations" section in their paper.548

• The paper should point out any strong assumptions and how robust the results are to549

violations of these assumptions (e.g., independence assumptions, noiseless settings,550

model well-specification, asymptotic approximations only holding locally). The authors551

should reflect on how these assumptions might be violated in practice and what the552

implications would be.553

• The authors should reflect on the scope of the claims made, e.g., if the approach was554

only tested on a few datasets or with a few runs. In general, empirical results often555

depend on implicit assumptions, which should be articulated.556

• The authors should reflect on the factors that influence the performance of the approach.557

For example, a facial recognition algorithm may perform poorly when image resolution558

is low or images are taken in low lighting. Or a speech-to-text system might not be559

used reliably to provide closed captions for online lectures because it fails to handle560

technical jargon.561

• The authors should discuss the computational efficiency of the proposed algorithms562

and how they scale with dataset size.563

• If applicable, the authors should discuss possible limitations of their approach to564

address problems of privacy and fairness.565

• While the authors might fear that complete honesty about limitations might be used by566

reviewers as grounds for rejection, a worse outcome might be that reviewers discover567

limitations that aren’t acknowledged in the paper. The authors should use their best568

judgment and recognize that individual actions in favor of transparency play an impor-569

tant role in developing norms that preserve the integrity of the community. Reviewers570

will be specifically instructed to not penalize honesty concerning limitations.571

3. Theory Assumptions and Proofs572

Question: For each theoretical result, does the paper provide the full set of assumptions and573

a complete (and correct) proof?574

Answer: [Yes]575
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Justification: We provide the formal proof of our proposition in the appendix.576

Guidelines:577

• The answer NA means that the paper does not include theoretical results.578

• All the theorems, formulas, and proofs in the paper should be numbered and cross-579

referenced.580

• All assumptions should be clearly stated or referenced in the statement of any theorems.581

• The proofs can either appear in the main paper or the supplemental material, but if582

they appear in the supplemental material, the authors are encouraged to provide a short583

proof sketch to provide intuition.584

• Inversely, any informal proof provided in the core of the paper should be complemented585

by formal proofs provided in appendix or supplemental material.586

• Theorems and Lemmas that the proof relies upon should be properly referenced.587

4. Experimental Result Reproducibility588

Question: Does the paper fully disclose all the information needed to reproduce the main ex-589

perimental results of the paper to the extent that it affects the main claims and/or conclusions590

of the paper (regardless of whether the code and data are provided or not)?591

Answer: [Yes]592

Justification: We have fully described the algorithms used in the paper, with details included593

in the appendix.594

Guidelines:595

• The answer NA means that the paper does not include experiments.596

• If the paper includes experiments, a No answer to this question will not be perceived597

well by the reviewers: Making the paper reproducible is important, regardless of598

whether the code and data are provided or not.599

• If the contribution is a dataset and/or model, the authors should describe the steps taken600

to make their results reproducible or verifiable.601

• Depending on the contribution, reproducibility can be accomplished in various ways.602

For example, if the contribution is a novel architecture, describing the architecture fully603

might suffice, or if the contribution is a specific model and empirical evaluation, it may604

be necessary to either make it possible for others to replicate the model with the same605

dataset, or provide access to the model. In general. releasing code and data is often606

one good way to accomplish this, but reproducibility can also be provided via detailed607

instructions for how to replicate the results, access to a hosted model (e.g., in the case608

of a large language model), releasing of a model checkpoint, or other means that are609

appropriate to the research performed.610

• While NeurIPS does not require releasing code, the conference does require all submis-611

sions to provide some reasonable avenue for reproducibility, which may depend on the612

nature of the contribution. For example613

(a) If the contribution is primarily a new algorithm, the paper should make it clear how614

to reproduce that algorithm.615

(b) If the contribution is primarily a new model architecture, the paper should describe616

the architecture clearly and fully.617

(c) If the contribution is a new model (e.g., a large language model), then there should618

either be a way to access this model for reproducing the results or a way to reproduce619

the model (e.g., with an open-source dataset or instructions for how to construct620

the dataset).621

(d) We recognize that reproducibility may be tricky in some cases, in which case622

authors are welcome to describe the particular way they provide for reproducibility.623

In the case of closed-source models, it may be that access to the model is limited in624

some way (e.g., to registered users), but it should be possible for other researchers625

to have some path to reproducing or verifying the results.626

5. Open access to data and code627

Question: Does the paper provide open access to the data and code, with sufficient instruc-628

tions to faithfully reproduce the main experimental results, as described in supplemental629

material?630
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Answer: [No]631

Justification: We will release code upon acceptance. All details needed to reproduce the632

experiments, including full LLM prompts, are in the appendix.633

Guidelines:634

• The answer NA means that paper does not include experiments requiring code.635

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/636

public/guides/CodeSubmissionPolicy) for more details.637

• While we encourage the release of code and data, we understand that this might not be638

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not639

including code, unless this is central to the contribution (e.g., for a new open-source640

benchmark).641

• The instructions should contain the exact command and environment needed to run to642

reproduce the results. See the NeurIPS code and data submission guidelines (https:643

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.644

• The authors should provide instructions on data access and preparation, including how645

to access the raw data, preprocessed data, intermediate data, and generated data, etc.646

• The authors should provide scripts to reproduce all experimental results for the new647

proposed method and baselines. If only a subset of experiments are reproducible, they648

should state which ones are omitted from the script and why.649

• At submission time, to preserve anonymity, the authors should release anonymized650

versions (if applicable).651

• Providing as much information as possible in supplemental material (appended to the652

paper) is recommended, but including URLs to data and code is permitted.653

6. Experimental Setting/Details654

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-655

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the656

results?657

Answer: [Yes]658

Justification: Algorithm details are described in the appendix.659
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• The answer NA means that the paper does not include experiments.661

• The experimental setting should be presented in the core of the paper to a level of detail662

that is necessary to appreciate the results and make sense of them.663

• The full details can be provided either with the code, in appendix, or as supplemental664

material.665

7. Experiment Statistical Significance666

Question: Does the paper report error bars suitably and correctly defined or other appropriate667

information about the statistical significance of the experiments?668

Answer: [Yes]669

Justification: The paper reports error bars – most of them computed over 5 seeds.670
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• The answer NA means that the paper does not include experiments.672

• The authors should answer "Yes" if the results are accompanied by error bars, confi-673

dence intervals, or statistical significance tests, at least for the experiments that support674

the main claims of the paper.675

• The factors of variability that the error bars are capturing should be clearly stated (for676
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run with given experimental conditions).678

• The method for calculating the error bars should be explained (closed form formula,679

call to a library function, bootstrap, etc.)680

• The assumptions made should be given (e.g., Normally distributed errors).681
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• It should be clear whether the error bar is the standard deviation or the standard error682

of the mean.683

• It is OK to report 1-sigma error bars, but one should state it. The authors should684

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis685

of Normality of errors is not verified.686

• For asymmetric distributions, the authors should be careful not to show in tables or687

figures symmetric error bars that would yield results that are out of range (e.g. negative688

error rates).689

• If error bars are reported in tables or plots, The authors should explain in the text how690

they were calculated and reference the corresponding figures or tables in the text.691

8. Experiments Compute Resources692

Question: For each experiment, does the paper provide sufficient information on the com-693

puter resources (type of compute workers, memory, time of execution) needed to reproduce694

the experiments?695

Answer: [Yes]696

Justification: We have provided estimated OpenAI API cost for our experiments.697
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• The answer NA means that the paper does not include experiments.699

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,700

or cloud provider, including relevant memory and storage.701

• The paper should provide the amount of compute required for each of the individual702

experimental runs as well as estimate the total compute.703

• The paper should disclose whether the full research project required more compute704

than the experiments reported in the paper (e.g., preliminary or failed experiments that705

didn’t make it into the paper).706

9. Code Of Ethics707

Question: Does the research conducted in the paper conform, in every respect, with the708

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?709

Answer: [Yes]710

Justification: The research conducted in the paper conforms, in every aspect, with the711

NeurIPS Code of Ethics.712
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.714

• If the authors answer No, they should explain the special circumstances that require a715
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eration due to laws or regulations in their jurisdiction).718

10. Broader Impacts719
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societal impacts of the work performed?721

Answer: [NA]722
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• The answer NA means that there is no societal impact of the work performed.725
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• The conference expects that many papers will be foundational research and not tied732

to particular applications, let alone deployments. However, if there is a direct path to733

any negative applications, the authors should point it out. For example, it is legitimate734

to point out that an improvement in the quality of generative models could be used to735
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11. Safeguards747

Question: Does the paper describe safeguards that have been put in place for responsible748

release of data or models that have a high risk for misuse (e.g., pretrained language models,749

image generators, or scraped datasets)?750

Answer: [NA]751

Justification: The paper poses no such risks.752

Guidelines:753

• The answer NA means that the paper poses no such risks.754

• Released models that have a high risk for misuse or dual-use should be released with755

necessary safeguards to allow for controlled use of the model, for example by requiring756

that users adhere to usage guidelines or restrictions to access the model or implementing757

safety filters.758

• Datasets that have been scraped from the Internet could pose safety risks. The authors759

should describe how they avoided releasing unsafe images.760

• We recognize that providing effective safeguards is challenging, and many papers do761

not require this, but we encourage authors to take this into account and make a best762

faith effort.763

12. Licenses for existing assets764

Question: Are the creators or original owners of assets (e.g., code, data, models), used in765

the paper, properly credited and are the license and terms of use explicitly mentioned and766

properly respected?767

Answer: [Yes]768

Justification: The creators of original data are all properly credited, and the license and769

terms of use of the data are explicitly mentioned and properly respected.770
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• The answer NA means that the paper does not use existing assets.772

• The authors should cite the original paper that produced the code package or dataset.773

• The authors should state which version of the asset is used and, if possible, include a774

URL.775

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.776

• For scraped data from a particular source (e.g., website), the copyright and terms of777

service of that source should be provided.778

• If assets are released, the license, copyright information, and terms of use in the779
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has curated licenses for some datasets. Their licensing guide can help determine the781

license of a dataset.782

• For existing datasets that are re-packaged, both the original license and the license of783

the derived asset (if it has changed) should be provided.784
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• If this information is not available online, the authors are encouraged to reach out to785

the asset’s creators.786

13. New Assets787

Question: Are new assets introduced in the paper well documented and is the documentation788

provided alongside the assets?789

Answer: [Yes]790

Justification: The code and data introduced in the paper is well documented.791
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• The answer NA means that the paper does not release new assets.793

• Researchers should communicate the details of the dataset/code/model as part of their794

submissions via structured templates. This includes details about training, license,795

limitations, etc.796

• The paper should discuss whether and how consent was obtained from people whose797

asset is used.798

• At submission time, remember to anonymize your assets (if applicable). You can either799

create an anonymized URL or include an anonymized zip file.800

14. Crowdsourcing and Research with Human Subjects801

Question: For crowdsourcing experiments and research with human subjects, does the paper802

include the full text of instructions given to participants and screenshots, if applicable, as803

well as details about compensation (if any)?804

Answer: [Yes]805

Justification: We have described our human study in details in the appendix.806

Guidelines:807

• The answer NA means that the paper does not involve crowdsourcing nor research with808

human subjects.809

• Including this information in the supplemental material is fine, but if the main contribu-810

tion of the paper involves human subjects, then as much detail as possible should be811

included in the main paper.812

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,813

or other labor should be paid at least the minimum wage in the country of the data814

collector.815

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human816

Subjects817

Question: Does the paper describe potential risks incurred by study participants, whether818

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)819

approvals (or an equivalent approval/review based on the requirements of your country or820

institution) were obtained?821

Answer: [Yes]822

Justification: We did not anticipate any risks from participating in our study. IRB approval823

was obtained.824
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• The answer NA means that the paper does not involve crowdsourcing nor research with826

human subjects.827

• Depending on the country in which research is conducted, IRB approval (or equivalent)828

may be required for any human subjects research. If you obtained IRB approval, you829

should clearly state this in the paper.830

• We recognize that the procedures for this may vary significantly between institutions831

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the832

guidelines for their institution.833

• For initial submissions, do not include any information that would break anonymity (if834

applicable), such as the institution conducting the review.835

34


	Introduction
	Model
	Revising Rules: Online Inference
	Doing Experiments: Active Learning
	Instantiating the model

	Experimental Results
	Appendix
	Proof for the weight update of LLM-SMC-S
	Zendo and ACRE details
	Algorithm details
	Priors
	Computational Cost
	Human Study on `Majority is red' Rule Details
	Prompts
	Supplemental Results


