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Abstract

In this paper, we propose an online convex optimization approach with two dif-
ferent levels of adaptivity. On a higher level, our approach is agnostic to the un-
known types and curvatures of the online functions, while at a lower level, it can
exploit the unknown niceness of the environments and attain problem-dependent
guarantees. Specifically, we obtain O(log VT ), O(d log VT ) and Ô(

√
VT ) regret

bounds for strongly convex, exp-concave and convex loss functions, respectively,
where d is the dimension, VT denotes problem-dependent gradient variations and
the Ô(·)-notation omits log VT factors. Our result not only safeguards the worst-
case guarantees but also directly implies the small-loss bounds in analysis. More-
over, when applied to adversarial/stochastic convex optimization and game theory
problems, our result enhances the existing universal guarantees. Our approach is
based on a multi-layer online ensemble framework incorporating novel ingredi-
ents, including a carefully designed optimism for unifying diverse function types
and cascaded corrections for algorithmic stability. Notably, despite its multi-layer
structure, our algorithm necessitates only one gradient query per round, making it
favorable when the gradient evaluation is time-consuming. This is facilitated by a
novel regret decomposition equipped with carefully designed surrogate losses.

1 Introduction

Online convex optimization (OCO) is a versatile model that depicts the interaction between a learner
and the environments over time [Hazan, 2016, Orabona, 2019]. In each round t ∈ [T ], the learner
selects a decision xt from a convex compact set X ⊆ Rd, and simultaneously the environments
choose a convex loss function ft : X 7→ R. Subsequently, the learner incurs a loss ft(xt), obtains
information about the online function, and updates the decision to xt+1, aiming to optimize the
game-theoretical performance measure known as regret [Cesa-Bianchi and Lugosi, 2006]:

REGT ≜
T∑

t=1

ft(xt)−min
x∈X

T∑

t=1

ft(x), (1.1)

which represents the learner’s excess loss compared to the best fixed comparator in hindsight.

In OCO, the type and curvature of online functions significantly impact the minimax regret bounds.
Specifically, for convex functions, online gradient descent (OGD) can achieve an O(

√
T ) regret

guarantee [Zinkevich, 2003]. For α-exp-concave functions, online Newton step (ONS), with prior
knowledge of the curvature coefficient α, attains an O(d log T ) regret [Hazan et al., 2007]. For
λ-strongly convex functions, OGD with prior knowledge of the curvature coefficient λ and a dif-
ferent parameter configuration enjoys an O(log T ) regret [Hazan et al., 2007]. Note that the above
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Table 1: Comparison with existing results. The second column presents the regret bounds for various kinds of
functions, where VT and FT are problem-dependent quantities that are at most O(T ) and can be much smaller
in nice environments. The Ô(·)-notation omits logarithmic factors on VT and FT . The third column shows the
gradient query complexity. All problem-dependent bounds require the smoothness of online functions.

Works
Regret Bounds Gradient

QueryStrongly Convex Exp-concave Convex

van Erven and Koolen [2016] O(d log T ) O(d log T ) O(
√
T ) 1

Wang et al. [2019] O(log T ) O(d log T ) O(
√
T ) 1

Zhang et al. [2022a] O(min{log VT , logFT }) O(dmin{log VT , logFT }) O(
√
FT ) O(log T )

Ours O(min{log VT , logFT }) O(dmin{log VT , logFT }) Ô(min{√VT ,
√
FT }) 1

algorithms require the function type and curvature beforehand and does not consider the niceness of
environments. Recent studies further strengthen the algorithms and results with two levels of adap-
tivity. The higher-level adaptivity requires an algorithm to be agnostic to the unknown types and
curvatures of the online functions. And the lower-level adaptivity requires an algorithm to exploit
the unknown niceness of the environments within a specific function family. In the following, we
delve into an extensive discussion on these two levels of adaptivity.

1.1 High Level: Adaptive to Unknown Curvature of Online Functions

Traditionally, the learner needs to know the function type and curvature in advance to select suitable
algorithms (and parameter configurations), which can be burdensome in practice. Universal online
learning [van Erven and Koolen, 2016, Wang et al., 2019, Zhang et al., 2022a] aims to develop a
single algorithm agnostic to the specific function type and curvature while achieving the same regret
guarantees as if they were known. The pioneering work of van Erven and Koolen [2016] proposed
a single algorithm called MetaGrad that achieves an O(

√
T ) regret for convex functions and an

O(d log T ) regret for exp-concave functions. Later, Wang et al. [2019] further obtained the optimal
O(log T ) regret for strongly convex functions. Notably, these approaches are efficient regarding the
gradient query complexity, by using only one gradient within each round.

However, the above approaches are not flexible enough since they have to optimize a group of
heterogeneous and carefully-designed surrogate loss functions, which can be cumbersome and chal-
lenging. To this end, Zhang et al. [2022a] introduced a simple framework that operates on the
original online functions with the same optimal results at the expense of O(log T ) gradient queries.

1.2 Low Level: Adaptive to Unknown Niceness of Online Environments

Within a specific function family, the algorithm’s performance is also substantially influenced by the
niceness of environments. This concept is usually captured through problem-dependent quantities
in the literature. Therefore, it becomes essential to develope adaptive algorithms with problem-
dependent regret guarantees. Specifically, we consider the following problem-dependent quantities:

FT ≜ min
x∈X

T∑

t=1

ft(x), and VT ≜
T∑

t=2

sup
x∈X

∥∇ft(x)−∇ft−1(x)∥2,

where the small loss FT represents the cumulative loss of the best comparator [Srebro et al., 2010,
Orabona et al., 2012] and the gradient variation VT characterizes the variation of the function gradi-
ents [Chiang et al., 2012]. In particular, the gradient-variation bound demonstrates its fundamental
importance in modern online learning from the following three aspects: (i) it safeguards the worst-
case guarantees in terms of T and implies the small-loss bounds in analysis directly; (ii) it draws a
profound connection between adversarial and stochastic convex optimization; and (iii) it is crucial
for fast convergence rates in game theory. We will explain the three aspects in detail in the next part.

1.3 Our Contributions and Techniques

In this paper, we consider the two levels of adaptivity simultaneously and propose a novel univer-
sal approach that achieves O(log VT ), O(d log VT ) and Ô(

√
VT ) regret bounds for strongly convex,

2



exp-concave and convex loss functions, respectively, using only one gradient query per round, where
Ô(·)-notation omits factors on log VT . Table 1 compares our results with existing ones. In summary,
relying on the basic idea of online ensemble [Zhao et al., 2021], our approach primarily admits a
multi-layer online ensemble structure with several important novel ingredients. Specifically, we pro-
pose a carefully designed optimism, a hyper-parameter encoding historical information, to handle
different kinds of functions universally, particularly exp-concave functions. Nevertheless, it necessi-
tates careful management of the stability of final decisions, which is complicated in the multi-layer
structure. To this end, we analyze the negative stability terms in the algorithm and propose cascaded
correction terms to realize effective collaboration among layers, thus enhancing the algorithmic
stability. Moreover, we facilitate a novel regret decomposition equipped with carefully designed
surrogate losses to achieve only one gradient query per round, making our algorithm as efficient
as van Erven and Koolen [2016] regarding the gradient complexity. Our result resolves an open
problem proposed by Zhang et al. [2022a], who have obtained partial results for exp-concave and
strongly convex functions and asked whether it is possible to design designing a single algorithm
with universal gradient-variation bounds. Among them, the convex case is particularly important
because the improvement from T to VT is polynomial, whereas logarithmic in the other cases.

Next, we shed light on some applications of our approach. First, it safeguards the worst-case guar-
antees [van Erven and Koolen, 2016, Wang et al., 2019] and directly implies the small-loss bounds
of Zhang et al. [2022a] in analysis. Second, gradient variation is shown to play an essential role
in the stochastically extended adversarial (SEA) model [Sachs et al., 2022, Chen et al., 2023b], an
interpolation between stochastic and adversarial OCO. Our approach resolves a major open problem
left in Chen et al. [2023b] on whether it is possible to develop a single algorithm with universal guar-
antees for strongly convex, exp-concave, and convex functions in the SEA model. Third, in game
theory, gradient variation encodes the changes in other players’ actions and can thus lead to fast
convergence rates [Rakhlin and Sridharan, 2013b, Syrgkanis et al., 2015, Zhang et al., 2022b]. We
demonstrate the universality of our approach by taking two-player zero-sum games as an example.

Technical Contributions. Our first contribution is proposing a multi-layer online ensemble ap-
proach with effective collaboration among layers, which is achieved by a carefully-designed op-
timism to unify different kinds of functions and cascaded correction terms to improve the algo-
rithmic stability within the multi-layer structure. The second contribution arises from efficiency.
Although there are multiple layers, our algorithm only requires one gradient query per round, which
is achieved by a novel regret decomposition equipped with carefully designed surrogate losses. Two
interesting byproducts rises in our approach. The first one is the negative stability term in the analysis
of MSMWC [Chen et al., 2021], which serves as an important building block of our algorithm. And
the second byproduct contains a simple approach and analysis for the optimal worst-case universal
guarantees, using one gradient query within each round.

Organization. The rest of the paper is structured as follows. Section 2 provides preliminaries. Sec-
tion 3 proposes our multi-layer online ensemble approach for universal gradient-variation bounds.
Section 4 further improves the gradient query complexity. Due to page limits, the applications of
our proposed algorithm are deferred to Appendix A. All the proofs can be found in the appendices.

2 Preliminaries

In this section, we introduce some preliminary knowledge, including our assumptions, the defini-
tions, the formal problem setup, and a review of the latest progress of Zhang et al. [2022a].

To begin with, we list some notations. Specifically, we use ∥ · ∥ for ∥ · ∥2 in default and use
∑
t,
∑
k,∑

i as abbreviations for
∑
t∈[T ],

∑
k∈[K] and

∑
i∈[N ]. a ≲ b represents a ≤ O(b). Ô(·)-notation

omits logarithmic factors on leading terms. For example, Ô(
√
V ) omits the dependence of log V .

Assumption 1 (Boundedness). For any x,y ∈ X and t ∈ [T ], the domain diameter satisfies ∥x −
y∥ ≤ D, and the gradient norm of the online functions is bounded by ∥∇ft(x)∥ ≤ G.

Assumption 2 (Smoothness). All online functions are L-smooth: ∥∇ft(x)−∇ft(y)∥ ≤ L∥x−y∥
for any x,y ∈ X and t ∈ [T ].

Both assumptions are common in the literature. Specifically, the boundedness assumption is com-
mon in OCO [Hazan, 2016]. The smoothness assumption is essential for first-order algorithms to
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achieve gradient-variation bounds [Chiang et al., 2012]. Strong convexity and exp-concavity are de-
fined as follows. For any x,y ∈ X , a function f is λ-strongly convex if f(x)−f(y) ≤ ⟨∇f(x),x−
y⟩− λ

2 ∥x−y∥2, and is α-exp-concave if f(x)−f(y) ≤ ⟨∇f(x),x−y⟩− α
2 ⟨∇f(x),x−y⟩2. Note

that the formal definition of β-exp-concavity states that exp(−βf(·)) is concave. Under Assump-
tion 1, β-exp-concavity leads to our definition with α = 1

2 min{ 1
4GD , β} [Hazan, 2016, Lemma 4.3].

For simplicity, we use it as an alternative definition for exp-concavity.

In the following, we formally describe the problem setup and briefly review the key insight of Zhang
et al. [2022a]. Concretely, we consider the problem where the learner has no prior knowledge about
the function type (strongly convex, exp-concave, or convex) or the curvature coefficient (α or λ).
Without loss of generality, we study the case where the curvature coefficients α, λ ∈ [1/T , 1]. This
requirement is natural because if α (or λ) < 1/T , even the optimal regret is Ω(T ) [Hazan et al.,
2007], which is vacuous. Conversely, functions with α (or λ) > 1 are also 1-exp-concave (or 1-
strongly convex). Thus using α (or λ) = 1 will only worsen the regret by a constant factor, which
can be omitted. This condition is also used in previous works [Zhang et al., 2022a].

A Brief Review of Zhang et al. [2022a]. A general solution to handle the uncertainty is to leverage
a two-layer framework, which consists of a group of base learners exploring the environments and a
meta learner tracking the best base learner on the fly. To handle the unknown curvature coefficients
α and λ, the authors discretize them into the following candidate pool:

H ≜ {1/T , 2/T , 4/T , . . . , 1}, (2.1)
where |H| ≈ log T . Consequently, they design three groups of base learners:

(i) about log T base learners, each of which runs the algorithm for strongly convex functions
with a guess λi ∈ H of the strong convexity coefficient λ;

(ii) about log T base learners, each of which runs the algorithm for exp-concave functions with
a guess αi ∈ H of the exp-concavity coefficient α;

(iii) 1 base learner that runs the algorithm for convex functions.

Overall, they maintain N ≈ log T + log T +1 base learners. Denoting by pt ≜ (pt,1, . . . , pt,N ) the
meta learner’s weights and xt,i the i-th base learner’s decision, the learner submits xt =

∑
i pt,ixt,i.

In the two-layer framework, the regret (1.1) can be decomposed into two terms:

REGT =

[
T∑

t=1

ft(xt)−
T∑

t=1

ft(xt,i⋆)

]
+

[
T∑

t=1

ft(xt,i⋆)−min
x∈X

T∑

t=1

ft(x)

]
, (2.2)

where the meta regret (first term) assesses how well the algorithm tracks the best base learner, and
the base regret (second term) measures the performance of it. The best base learner is the one which
runs the algorithm matching the ground-truth function type with the most accurate guess of the
curvature — taking α-exp-concave functions as an example, there must exist a base learner indexed
by i⋆, whose coefficient αi⋆ ∈ H satisfies αi⋆ ≤ α ≤ 2αi⋆ .

A direct benefit of the above decomposition is that the meta regret can be bounded by a constant
O(1) for exp-concave and strongly convex functions, allowing the algorithm to perfectly inherit
the gradient-variation bound from the base learner. Taking α-exp-concave functions as an exam-
ple, by definition, the meta regret can be bounded by

∑
t rt,i⋆ − α

2

∑
t r

2
t,i⋆ , where the first term

rt,i ≜ ⟨∇ft(xt),xt − xt,i⟩ denotes the linearized regret, and the second one is a negative term
from exp-concavity. Choosing ADAPT-ML-PROD [Gaillard et al., 2014] as the meta algorithm
bounds the first term

∑
t rt,i⋆ by O(

√∑
t(rt,i⋆)

2), which can be canceled by the negative term,
leading to an O(1) meta regret. Due to the meta algorithm’s benefits, their approach can inherit
the gradient-variation guarantees from the base learner. Similar derivation also applies to strongly
convex functions. However, their approach is not favorable enough in the convex case and is not
efficient enough in terms of the gradient query complexity. We will give more discussions about the
above issues in Section 3.1 and Section 4.

3 Our Approach

This section presents our multi-layer online ensemble approach with universal gradient-variation
bounds. Specifically, in Section 3.1, we provide a novel optimism to unify different kinds of func-
tions. In Section 3.2, we exploit two types of negative terms to cancel the positive term caused by
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the optimism design. We summarize the overall algorithm in Section 3.3. Finally, in Section 3.4, we
present the main results and list several applications of our approach.

3.1 Universal Optimism Design

In this part, we propose a novel optimism that simultaneously unifies various kinds of functions.
We start by observing that Zhang et al. [2022a] does not enjoy gradient-variation bounds for convex
functions, where the main challenge lies in obtaining an O(

√
VT ) meta regret for convex functions

while simultaneously maintaining an O(1) regret for exp-concave and strongly convex functions. In
the following, we focus on the meta regret because the base regret optimization is straightforward
by employing the optimistic online learning technique [Rakhlin and Sridharan, 2013a,b] in a black-
box fashion. Optimistic online learning is essential in our problem since it can utilize the historical
information, e.g., ∇ft−1(·) for our purpose due to the definition of the gradient variation.

Shifting our focus to the meta regret, we consider upper-bounding it by a second-order bound of
O(
√∑

t(rt,i⋆ −mt,i⋆)2), where rt,i = ⟨∇ft(xt),xt − xt,i⟩ and the optimism mt,i⋆ can encode
historical information. Such a second-order bound can be easily obtained using existing prediction
with expert advice algorithms, e.g., ADAPT-ML-PROD [Wei et al., 2016]. Nevertheless, as we will
demonstrate in the following, designing an optimism mt,i that effectively unifies various function
types is not straightforward, thereby requiring novel ideas in the optimism design.

To begin with, a natural impulse is to choose the optimism as mt,i = ⟨∇ft−1(xt−1),xt,i − xt⟩,2
which yields the following second-order bound:

T∑

t=1

(rt,i⋆ −mt,i⋆)
2 ≲





∑
t
∥xt − xt,i⋆∥2, (strongly convex)

∑
t
∥∇ft(xt)−∇ft−1(xt−1)∥2, (convex)

where the inequality is due to the boundedness assumption (Assumption 1). This optimism design
handles the strongly convex functions well since the bound can be canceled by the negative term
imported by strong convexity (i.e., −∥xt − xt,i⋆∥2). Moreover, it is quite promising for convex
functions because the bound essentially consists of the desired gradient variation and a positive term
of ∥xt − xt−1∥2 (we will deal with it later). However, it fails for exp-concave functions because
the negative term imported by exp-concavity (i.e., −⟨∇ft(xt),xt − xt,i⋆⟩2) cannot be used for
cancellation due to the mismatch of the formulation.

To unify various kinds of functions, we propose a novel optimism design defined by mt,i = rt−1,i.
This design aims to secure a second-order bound of O(

√∑
t(rt,i⋆ − rt−1,i⋆)2), which is sufficient

to achieve an O(1) meta regret for exp-concave functions (with strong convexity being a subcat-
egory thereof) while maintaining an O(

√
VT ) meta regret for convex functions. The high-level

intuition behind this approach is as follows: although the bound cannot be canceled exactly by the
negative term imported by exp-concavity (i.e., −r2t,i⋆ ) within each round, it becomes manageable
when aggregated across the whole time horizon as

∑
t(rt,i⋆ − rt−1,i⋆)

2 ≲ 4
∑
t r

2
t,i⋆ , because rt,i⋆

and rt−1,i⋆ differs by merely a single time step. In the following, we propose the key lemma of the
universal optimism design and defer the proof to Appendix B.1.

Lemma 1 (Key Lemma). Under Assumptions 1 and 2, if the optimism is chosen as mt,i = rt−1,i =
⟨∇ft−1(xt−1),xt−1 − xt−1,i⟩, it holds that

T∑

t=1

(rt,i⋆ −mt,i⋆)
2 ≲





T∑

t=1

⟨∇ft(xt),xt − xt,i⋆⟩2, (exp-concave)

VT +

T∑

t=2

∥xt,i⋆ − xt−1,i⋆∥2 +
T∑

t=2

∥xt − xt−1∥2. (convex)

Moreover, the second part of Lemma 1 shows that the bound for convex functions is also controllable
by being further decomposed into three terms. The first term is the desired gradient variation. The

2Although xt is unknown when using mt,i, we only need the scalar value of ⟨∇ft−1(xt−1),xt⟩, which
can be efficiently solved via a fixed-point problem of ⟨∇ft−1(xt−1),xt(z)⟩ = z. xt relies on z since mt,i

relies on z and xt relies on mt,i. Interested readers can refer to Section 3.3 of Wei et al. [2016] for details.
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second one measures the base learner stability, which can be canceled by optimistic algorithms
[Rakhlin and Sridharan, 2013a]. We provide a self-contained analysis of the stability of optimistic
online mirror descent (OMD) in Appendix E.2. At last, if the stability term of the final decisions
(i.e., ∥xt − xt−1∥2) can be canceled, an O(

√
VT ) meta regret for convex functions is achievable.

To this end, we give the positive term ∥xt − xt−1∥2 a more detailed decomposition, due to the
fact that the final decision is the weighted combination of base learners’ decisions (i.e., xt =∑
i pt,ixt,i). A detailed proof is deferred to Lemma 6. Specifically, it holds that

∥xt − xt−1∥2 ≲ ∥pt − pt−1∥21 +
N∑

i=1

pt,i∥xt,i − xt−1,i∥2, (3.1)

where the first part represents the meta learner’s stability while the second one is a weighted version
of the base learners’ stability. In Section 3.2, we cancel the two parts respectively.

3.2 Negative Terms for Cancellation

In this part, we propose negative terms to cancel the two parts of (3.1). Specifically, Section 3.2.1
analyzes the endogenous negative stability terms of the meta learner to handle the first part, and Sec-
tion 3.2.2 proposes artificially-injected cascaded corrections to cancel the second part exogenously.

3.2.1 Endogenous Negativity: Stability Analysis of Meta Algorithms

In this part, we aim to control the meta learner’s stability, measured by ∥pt − pt−1∥21. To this end,
we leverage the two-layer meta algorithm proposed by Chen et al. [2021], where each layer runs the
MSMWC algorithm [Chen et al., 2021] but with different parameter configurations. Specifically, a
single MSMWC updates via the following rule:
pt = argmin

p∈∆d

{⟨mt,p⟩+Dψt
(p, p̂t)} , p̂t+1 = argmin

p∈∆d

{⟨ℓt + at,p⟩+Dψt
(p, p̂t)} , (3.2)

where ∆d denotes a d-dimensional simplex, ψt(p) =
∑d
i=1 η

−1
t,i pi ln pi is the weighted negative

entropy regularizer with time-coordinate-varying step size ηt,i, Dψt
(p, q) = ψt(p) − ψt(q) −

⟨∇ψt(q),p − q⟩ is the induced Bregman divergence for any p, q ∈ ∆d, mt is the optimism, ℓt
is the loss vector and at is a bias term.

It is worth noting that MSMWC is based on OMD, which is well-studied and proved to enjoy nega-
tive stability terms in analysis. However, the authors omitted them, which turns out to be crucial for
our purpose. In Lemma 2 below, we extend Lemma 1 of Chen et al. [2021] by explicitly exhibiting
the negative terms in MSMWC. The proof is deferred to Appendix B.2.
Lemma 2. If maxt∈[T ],i∈[d]{|ℓt,i|, |mt,i|} ≤ 1, then MSMWC (3.2) with time-invariant step sizes
(i.e., ηt,i = ηi for any t ∈ [T ])3 enjoys the following guarantee if ηi ≤ 1/32

T∑

t=1

⟨ℓt,pt⟩ −
T∑

t=1

ℓt,i⋆ ≤ 1

ηi⋆
ln

1

p̂1,i⋆
+

d∑

i=1

p̂1,i
ηi

− 8

T∑

t=1

d∑

i=1

ηipt,i(ℓt,i −mt,i)
2

+16ηi⋆
T∑

t=1

(ℓt,i⋆ −mt,i⋆)
2 − 4

T∑

t=2

∥pt − pt−1∥21.

The two-layer meta algorithm is constructed by MSMWC in the following way. Briefly, both layers
run MSMWC, but with different parameter configurations. Specifically, the top MSMWC (indicated
by MSMWC-TOP) connects with K = O(log T ) MSMWCs (indicated by MSMWC-MID), and
each MSMWC-MID is further connected with N base learners (as specified in Section 2). The spe-
cific parameter configurations will be illuminated later. The two-layer meta algorithm is provable to
enjoy a regret guarantee of O(

√
V⋆ lnV⋆) (Theorem 5 of Chen et al. [2021]), where V⋆ is analogous

to
∑
t(ℓt,i⋆ − mt,i⋆)

2, but within a multi-layer context (a formal definition will be shown later).
By choosing the optimism as mt,i = ⟨ℓt,pt⟩,4, it can recover the guarantee of ADAPT-ML-PROD,

3We only focus on the proof with fixed learning rate, since it is sufficient for our analysis.
4Although pt is unknown when using mt,i due to (3.2), mt,i = ⟨ℓt,pt⟩ remains the same for all dimension

i ∈ [d] and can thus omitted in the algorithm, i.e., it only suffices to update as pt = argminp∈∆d
Dψt(p, p̂t).

Interested readers can refer to Section 2.1 of Chen et al. [2021] for more details.
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Table 2: Notations of the three-layer structure. The first column presents the index of layers. The rest columns
illuminate the notations for the algorithms, losses, optimisms, decisions and outputs of each layer.

Layer Algorithm Loss Optimism Decision Output
Top (Meta) MSMWC ℓt mt qt ∈ ∆K xt =

∑
k qt,kxt,k

Middle (Meta) MSMWC ℓt,k mt,k pt,k ∈ ∆N xt,k =
∑
i pt,k,ixt,k,i

Bottom (Base) Optimistic OMD ft(·) ∇ft−1(·) xt,k,i ∈ X xt,k,i

although up to an O(lnV⋆) factor (leading to an Ô(
√
VT ) meta regret), but with additional negative

terms in analysis. Note that single MSMWC enjoys an O(
√
V⋆ lnT ) bound, where the extra lnT

factor would ruin the desired O(log VT ) bound for exp-concave and strongly convex functions. This
is the reason for choosing a second-layer meta algorithm, overall resulting in a three-layer structure.

For clarity, we summarize the notations of the three-layer structure in Table 2. Besides, previous
notions need to be extended analogously. Specifically, instead of (2.2), regret is now decomposed as

REGT =

[
T∑

t=1

ft(xt)−
T∑

t=1

ft(xt,k⋆,i⋆)

]
+

[
T∑

t=1

ft(xt,k⋆,i⋆)−min
x∈X

T∑

t=1

ft(x)

]
.

The quantity V⋆ is defined as V⋆ ≜
∑
t(ℓt,k⋆,i⋆ −mt,k⋆,i⋆)

2, where ℓt,k,i = ⟨∇ft(xt),xt,k,i⟩ and
mt,k,i = ⟨∇ft(xt),xt⟩ − ⟨∇ft−1(xt−1),xt−1 − xt−1,k,i⟩ follows the same sprit as Lemma 1.

At the end of this part, we explain why we choose MSMWC as the meta algorithm. Apparently, a
direct try is to keep using ADAPT-ML-PROD following Zhang et al. [2022a]. However, it is still
an open problem to determine whether ADAPT-ML-PROD contains negative stability terms in the
analysis, which is essential to realize effective cancellation in our problem. Another try is to explore
the titled exponentially weighted average (TEWA) as the meta algorithm, following another line of
research [van Erven and Koolen, 2016], as introduced in Section 1.1. Unfortunately, its stability
property is also unclear. Investigating the negative stability terms in these algorithms is an important
open problem, but beyond the scope of this work.

3.2.2 Exogenous Negativity: Cascaded Correction Terms

In this part, we aim to deal with the second term in (3.1) (i.e.,
∑
i pt,i∥xt,i − xt−1,i∥2). Inspired

by the work of Zhao et al. [2021] on the gradient-variation dynamic regret in non-stationary online
learning,5 we incorporate exogenous correction terms for cancellation. Concretely, we inject cas-
caded correction terms to both top and middle layers. Specifically, the loss ℓt and the optimism mt

of MSMWC-TOP are chosen as

ℓt,k ≜ ⟨∇ft(xt),xt,k⟩+ λ1∥xt,k − xt−1,k∥2,mt,k ≜ ⟨m̂t,k,pt,k⟩+ λ1∥xt,k − xt−1,k∥2. (3.3)

The loss ℓt,k and optimism mt,k of MSMWC-MID are chosen similarly as

ℓt,k,i ≜ ⟨∇ft(xt),xt,k,i⟩+λ2∥xt,k,i−xt−1,k,i∥2,mt,k,i ≜ m̂t,k,i+λ2∥xt,k,i−xt−1,k,i∥2, (3.4)

where m̂t,k ≜ (m̂t,k,1, . . . , m̂t,k,N ) and m̂t,k,i = ⟨∇ft(xt),xt⟩− ⟨∇ft−1(xt−1),xt−1−xt−1,k,i⟩
denotes our optimism, which uses the same idea as Lemma 1 in Section 3.1.

To see how the correction term works, consider a simpler problem with regret
∑
t⟨ℓt, qt⟩−

∑
t ℓt,k⋆ .

If we instead optimize the corrected loss ℓt + bt and obtain a regret bound of RT , then moving the
correction terms to the right-hand side, the original regret is at mostRT−

∑
t

∑
k qt,kbt,k+

∑
t bt,k⋆ ,

where the negative term of −∑t

∑
k qt,kbt,k can be leveraged for cancellation. Meanwhile, the

algorithm is required to handle an extra term of
∑
t bt,k⋆ , which only relies on the k⋆-th dimension.

In the next part, we will discuss about how cascaded corrections and negative stability terms of meta
algorithms realize effective collaboration for cancellation in the multi-layer online ensemble.

It is noteworthy that our work is the first to introduce correction mechanisms to universal online
learning, whereas prior works use it for different purposes, such as non-stationary online learn-

5This work proposes an improved dynamic regret minimization algorithm compared to its conference ver-
sion [Zhao et al., 2020], which introduces the correction terms to the meta-base online ensemble structure and
thus improves the gradient query complexity from O(log T ) to 1 within each round.
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Algorithm 1 Universal OCO with Gradient-variation Guarantees

Input: Curvature coefficient pool H, MSMWC-MID number K, base learner number N
1: Initialize: Top layer: Atop — MSMWC-TOP with ηk = (C0 · 2k)−1 and q̂1,k = η2k/

∑K
k=1 η

2
k

Middle layer: {Amid
k }k∈[K] — MSMWC-MID with step size 2ηk and p̂1,k,i = 1/N

Bottom layer: {Bk,i}k∈[K],i∈[N ] — base learners as specified in Section 2
2: for t = 1 to T do
3: Receive xt,k,i from Bk,i, obtain xt,k =

∑
i pt,k,ixt,k,i and submit xt =

∑
k qt,kxt,k

4: Suffer ft(xt) and observe the gradient information ∇ft(·)
5: Construct (ℓt,mt) (3.3) for Atop and (ℓt,k,mt,k) (3.4) for Amid

k

6: Atop updates to qt+1 and Amid
k updates to pt+1,k

7: Multi-gradient feedback model:
8: Send gradient ∇ft(·) to Bk,i for update ▷ O(log2 T ) gradient queries
9: One-gradient feedback model:

10: Construct surrogates hsc
t,i(·), hexp

t,i (·), hc
t,i(x) using only ∇ft(xt)

11: Send the surrogate functions to Bk,i for update ▷ Only one gradient query
12: end for

ing [Zhao et al., 2021] and the multi-scale expert problem [Chen et al., 2021]. Distinctively, dif-
ferent from the conventional two-layer algorithmic frameworks seen in prior studies, deploying this
technique to a three-layer structure necessitates a comprehensive use and extensive adaptation of it.

3.3 Overall Algorithm: A Multi-layer Online Ensemble Structure

In this part, we conclude our three-layer online ensemble approach in Algorithm 1. In Line 3, the
decisions are aggregated from bottom to top for the final output. In Line 4, the learner suffers the loss
of the decision, and the environments return the gradient information of the loss function. In Line 5,
the algorithm constructs the surrogate losses and optimisms for the two-layer meta learner. In Line 6-
11, the update is conducted from top to bottom. Note that in Line 8, our algorithm requires multiple,
concretely O(log2 T ), gradient queries per round since it needs to query ∇ft(xt,k,i) for each base
learner, making it inefficient when the gradient evaluation is costly. To this end, in Section 4, we
improve the algorithm’s gradient query complexity to 1 per round, corresponding to Line 10-11, via
a novel regret decomposition and carefully designed surrogate loss functions.

In Figure 1, we illustrate the detailed procedure of the collaboration in our multi-layer online en-
semble approach. Specifically, we aim to deal with the positive term of ∥xt − xt−1∥2, which stems
from the universal optimism design proposed in Section 3.1. Since xt =

∑
k qt,kxt,k, the posi-

tive term can be further decomposed into two parts: ∥qt − qt−1∥21 and
∑
k qt,k∥xt,k − xt−1,k∥2,

which can be canceled by the negative and correction terms in MSMWC-TOP, respectively. Note
that the correction comes at the expense of an extra term of ∥xt,k⋆ − xt−1,k⋆∥2, which can be
decomposed similarly into two parts: ∥pt,k⋆ − pt−1,k⋆∥21 and

∑
i pt,k⋆,i∥xt,k⋆,i − xt−1,k⋆,i∥2 be-

cause of xt,k =
∑
i pt,k,ixt,k,i. The negative term and corrections in the middle layer (specifi-

cally, the k⋆-th MSMWC-MID) can be leveraged for cancellation. This correction finally generate
∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆∥2, which can be handled by choosing optimistic OMD as base algorithms.

As a final remark, although it is possible to treat the two-layer meta algorithm as a single layer, its
analysis will become much more complicated than that in one layer and is unsuitable for extending
to more layers. In contrast, our layer-by-layer analytical approach paves a systematic and principled
way for analyzing the dynamics of the online ensemble framework with even more layers.

3.4 Universal Regret Guarantees

In this part, we conclude our main theoretical result and provide several implications and appli-
cations to validate its importance and practical potential. Theorem 1 summarizes the main result,
universal regret guarantees in terms of the gradient variation. The proof is deferred to Appendix B.4.

Theorem 1. Under Assumptions 1 and 2, Algorithm 1 obtains O(log VT ), O(d log VT ) and
Ô(

√
VT ) regret bounds for strongly convex, exp-concave and convex functions, respectively.
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Positive Term: ∥xt − xt−1∥2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

︸ ︷︷ ︸
canceled by−∑K

k=1 qt,kbt,k

+λ1∥xt,k⋆ − xt−1,k⋆∥2∥qt − qt−1∥2
1︸ ︷︷ ︸

canceled by MSMWC-TOP

∥pt,k⋆ − pt−1,k⋆∥2
1︸ ︷︷ ︸

canceled by MSMWC-MID

N∑

i=1

pt,k⋆,i∥xt,k⋆,i − xt−1,k⋆,i∥2

︸ ︷︷ ︸
canceled by−∑N

i=1 pt,k⋆,ibt,k⋆,i

+λ2∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆∥2

Top Layer

Middle Layer

Bottom Layer

Figure 1: Decomposition of the positive term ∥xt − xt−1∥2 and how it is handled by the multi-layer online
ensemble via endogenous negativity from meta algorithm and exogenous negativity from cascaded corrections.

Theorem 1 improves the results of Zhang et al. [2022a] by not only maintaining the optimal rates for
strongly convex and exp-concave functions but also taking advantage of the small gradient variation
for convex functions when VT ≪ FT . For example, if f1 = . . . = fT = f and minx∈X f(x) = 1,
our bound is much better since VT = 0 while FT = T . Moreover, Algorithm 1 also provably
achieves universal small-loss guarantees without any algorithmic modification and thus safeguards
the case when FT ≤ VT . We conclude the result below and provide the proof in Appendix B.5.

Corollary 1. Under Assumptions 1 and 2, if ft(·) ≥ 0, Algorithm 1 obtains O(logFT ), O(d logFT )

and Ô(
√
FT ) regret bounds for strongly convex, exp-concave and convex functions.

Due to the connection of the gradient-variation with stochastic and adversarial OCO [Sachs et al.,
2022] and game theory [Syrgkanis et al., 2015], our results can be immediately applied and achieve
best known universal guarantees therein. Due to page limits, we defer applications to Appendix A.

4 Improved Gradient Query Complexity

Though achieving favorable theoretical guarantees in Section 3, one caveat is that our algorithm
requires O(log2 T ) gradient queries per round since it needs to query ∇ft(xt,k,i) for all k ∈ [K], i ∈
[N ], making it computational-inefficient when the gradient evaluation is costly, e.g., in nuclear norm
optimization [Ji and Ye, 2009] and mini-batch optimization [Li et al., 2014]. The same concern also
appears in the approach of Zhang et al. [2022a], who provided small-loss and worst-case regret
guarantees for universal online learning. By contrast, traditional algorithms such as OGD typically
work under the one-gradient feedback setup, namely, they only require one gradient ∇ft(xt) for the
update. In light of this, it is natural to ask whether there is a universal algorithm that can maintain
the desired regret guarantees while using only one gradient query per round.

We answer the question affirmatively by reducing the gradient query complexity to 1 per round.
To describe the high-level idea, we first consider the case of known λ-strong convexity within a
two-layer structure, e.g., adaptive regret minimization for strongly convex functions [Wang et al.,
2018]. The regret can be upper-bounded as REGT ≤ [

∑
t ht(xt)−

∑
t ht(xt,i⋆)]+ [

∑
t ht(xt,i⋆)−∑

t ht(x
⋆)], where x⋆ ∈ argminx∈X

∑
t ft(x) and ht(x) ≜ ⟨∇ft(xt),x⟩ + λ∥x − xt∥2/2 is a

second-order surrogate of the original function ft. This yields a homogeneous surrogate for both
meta and base algorithms — the meta algorithm uses the same evaluation function across all the
base learners, who in turn use this function to update their base-level decisions.

In the universal online learning (i.e., unknown λ), a natural adaptation would be a heterogeneous
surrogate ht,i(x) ≜ ⟨∇ft(xt),x⟩+ λi∥x− xt∥2/2 for the i-th base learner, where λi is a guess of
the true curvature λ from the candidate pool H (2.1). Consequently, the regret decomposition with
respect to this surrogate becomes REGT ≤ [

∑
t ht,i⋆(xt) −

∑
t ht,i⋆(xt,i⋆)] + [

∑
t ht,i⋆(xt,i⋆) −∑

t ht,i⋆(x
⋆)], where i⋆ denotes the index of the best base learner whose strong convexity coefficient

satisfies λi⋆ ≤ λ ≤ 2λi⋆ . This admits heterogeneous surrogates for both meta and base regret, which
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necessitates designing expert-tracking algorithms with heterogeneous inputs for different experts as
required in MetaGrad [van Erven and Koolen, 2016], which is not flexible enough.

To this end, we propose a novel regret decomposition that admits homogeneous surrogates for the
meta regret, making our algorithm as flexible as Zhang et al. [2022a], and heterogeneous surrogate
for the base regret, making it as efficient as van Erven and Koolen [2016]. Specifically, we remain
the heterogeneous surrogates ht,i(x) defined above for the base regret. For the meta regret, we
define a homogeneous linear surrogate ℓt(x) ≜ ⟨∇ft(xt),x⟩ such that the meta regret is bounded
by
∑
t ℓt(xt) −

∑
t ℓt(xt,i⋆) − λi⋆

∑
t ∥xt − xt,i⋆∥2/2. As long as we can obtain a second-order

bound for the regret defined on this surrogate loss, i.e.,
∑
t ℓt(xt)−

∑
t ℓt(xt,i⋆), it can be canceled

by the negative term from strong convexity. Overall, we decompose the regret in the following way:

REGT ≤
[
T∑

t=1

ℓt(xt)−
T∑

t=1

ℓt(xt,i⋆)−
λi⋆

2

T∑

t=1

∥xt − xt,i⋆∥2
]
+

[
T∑

t=1

ht,i⋆(xt,i⋆)−
T∑

t=1

ht,i⋆(x
⋆)

]
.

For clarity, we denote this surrogate for strongly convex functions by hsc
t,i(x). Similarly, we define

the surrogates hexp
t,i (x) ≜ ⟨∇ft(xt),x⟩ + αi⟨∇ft(xt),x − xt⟩2/2 and hc

t,i(x) ≜ ⟨∇ft(xt),x⟩
for α-exp-concave and convex functions, respectively. These surrogates require only one gradient
∇ft(xt) within each round, thus successfully reducing the gradient query complexity.

Note that the base regret optimization requires controlling the algorithmic stability, because the em-
pirical gradient variation ∇hsc

t,i(xt,i)−∇hsc
t−1,i(xt−1,i) = ∇ft(xt)+λi(xt,i−xt)−∇ft−1(xt−1)−

λi(xt−1,i−xt−1) not only contains the desired gradient variation, but also includes the positive sta-
bility terms of base and final decisions. Fortunately, as discussed earlier, these stability terms can be
effectively addressed through our cancellation mechanism within the multi-layer online ensemble.
This stands in contrast to previous two-layer algorithms with worst-case regret bounds [Zhang et al.,
2018, Wang et al., 2018], where the algorithmic stability is not examined.

The efficient version is concluded in Algorithm 1 with Line 10-11, which uses only one gradient
∇ft(xt). The only algorithmic modification is that base learners update on the carefully designed
surrogate functions, not the original one. We provide the regret guarantee below, which achieves the
same guarantees as Theorem 1 with only one gradient per round. The proof is in Appendix C.2.
Theorem 2. Under Assumptions 1 and 2, efficient Algorithm 1 enjoys O(log VT ), O(d log VT ) and
Ô(

√
VT ) for strongly convex, exp-concave and convex functions, using only one gradient per round.

As a byproduct, we show that this idea can be used to recover the optimal worst-case universal
guarantees using one gradient with a simpler approach and analysis, with proof in Appendix C.1.
Proposition 1. Under Assumption 1, using the above surrogate loss functions for base learners,
and running ADAPT-ML-PROD as the meta learner guarantees O(log T ), O(d log T ) and O(

√
T )

regret bounds for strongly convex, exp-concave and convex functions, using one gradient per round.

5 Conclusion

In this paper, we obtain universal gradient-variation guarantees via a multi-layer online ensemble
approach. We first propose a novel optimism design to unify various kinds of functions. Then we
analyze the negative terms of the meta algorithm MSMWC and inject cascaded correction terms
to improve the algorithmic stability to realize effective cancellations in the multi-layer structure.
Furthermore, we provide a novel regret decomposition combined with carefully designed surrogate
functions to achieve one gradient query per round. Finally, we deploy the our approach into two
applications, including the stochastically extended adversarial (SEA) model and two-player zero-
sum games, to validate its effectiveness, and obtain best known universal guarantees therein. Due to
page limits, the applications are deferred to Appendix A. Two byproducts rise in our work. The first
one is negative stability terms in the analysis of MSMWC. And the second one contains a simple
approach and analysis for the optimal worst-case universal guarantees, using one gradient per round.

An important open problem lies in optimality and efficiency. In the convex case, our results still
exhibit an O(log VT ) gap from the optimal O(

√
VT ) result. Moreover, our algorithm necessitates

O(log2 T ) base learners, as opposed to O(log T ) base learners in two-layer structures. Whether it
is possible to achieve the optimal results for all kinds of functions (strongly convex, exp-concave,
convex) using a two-layer algorithm remains as an important problem for future investigation.
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A Applications

In this section, we validate the importance and the practical potential of our approach by applying
it in two problems, including stochastically extended adversarial (SEA) model in Appendix A.1 and
two-player zero-sum games in Appendix A.2.

A.1 Application I: Stochastically Extended Adversarial Model

Stochastically extended adversarial (SEA) model [Sachs et al., 2022] serves as an interpolation
between stochastic and adversarial online convex optimization, where the environments choose the
loss function ft from a distribution Dt (i.e., ft ∼ Dt). They proposed cumulative stochastic variance
σ2
1:T , the gap between ft and its expected version Ft(·) ≜ Eft∼Dt [ft(·)], and cumulative adversarial

variation Σ2
1:T , the gap between Ft(·) and Ft−1(·), to bound the expected regret. Formally,

σ2
1:T ≜

T∑

t=1

max
x∈X

Eft∼Dt

[
∥∇ft(x)−∇Ft(x)∥2

]
,Σ2

1:T ≜ E

[
T∑

t=2

sup
x∈X

∥∇Ft(x)−∇Ft−1(x)∥2
]
.

By specializing different σ2
1:T and Σ2

1:T , the SEA model can recover the adversarial and stochastic
OCO setup, respectively. Specifically, setting σ2

1:T = 0 recovers the adversarial setup, where Σ2
1:T

equals to the gradient variation VT . Besides, choosing Σ2
1:T = 0 recovers the stochastic setup, where

σ2
1:T stands for the variance in stochastic optimization.

For smooth expected function Ft(·), Sachs et al. [2022] obtained an optimal O(
√
σ2
1:T +Σ2

1:T )
expected regret for convex functions and an O((σ2

max + Σ2
max) log T ) regret for strongly con-

vex functions, where σ2
max ≜ maxt∈[T ] maxx∈X Eft∼Dt

[∥∇ft(x) − ∇Ft(x)∥2] and Σ2
max ≜

maxt∈[T ] supx∈X ∥∇Ft(x)−∇Ft−1(x)∥2. Later, the results are improved by Chen et al. [2023b],
where the authors achieved a better O((σ2

max+Σ2
max) log(σ

2
1:T +Σ2

1:T )) regret6 for strongly convex
functions and a new O(d log(σ2

1:T +Σ2
1:T )) regret for exp-concave functions, while maintaining the

optimal guarantee for convex functions. Their key observation is that the gradient variation in opti-
mistic algorithms encodes the information of the cumulative stochastic variance σ2

1:T and cumulative
adversarial variation Σ2

1:T , restated in Lemma 5.

A major open problem remains in the work of Chen et al. [2023b] that whether it is possible to
get rid of different parameter configurations and obtain universal guarantees in the problem. In
the following, we show that our approach can be directly applied and achieves almost the same
guarantees as those in Chen et al. [2023b], up to a logarithmic factor in leading term. Notably, our
algorithm does not require different parameter setups, thus resolving the open problem proposed by
the authors. We conclude our results in Theorem 3 and the proof can be found in Appendix D.1.
Theorem 3. Under the same assumptions as Chen et al. [2023b], the efficient version of Algorithm 1
obtains O((σ2

max + Σ2
max) log(σ

2
1:T + Σ2

1:T )) regret for strongly convex functions, O(d log(σ2
1:T +

Σ2
1:T )) regret for exp-concave functions and Ô(

√
σ2
1:T +Σ2

1:T ) regret for convex functions, where
the Ô(·)-notation omits logarithmic factors in leading terms.

Note that Sachs et al. [2023] also considered the problem of universal learning and obtained an
O(

√
T log T ) regret for convex functions and an O((σ2

max + Σ2
max + D2L2) log2 T ) regret for

strongly convex functions simultaneously. We conclude the existing results in Table 3. Our results
are better than theirs in two aspects: (i) for strongly convex and convex functions, our guarantees
are adaptive with the problem-dependent quantities σ1:T and Σ1:T while theirs depends on the time
horizon T ; and (ii) our algorithm achieves an additional guarantee for exp-concave functions.

A.2 Application II: Two-player Zero-sum Games

Multi-player online games [Cesa-Bianchi and Lugosi, 2006] is a versatile model that depicts the
interaction of multiple players over time. Since each player is facing similar players like herself,
the theoretical guarantees, e.g., the summation of all players’ regret, can be better than the minimax
optimal

√
T bound in adversarial environments, thus achieving fast rates.

6This bound improves the result of O(min{G2 log(σ2
1:T +Σ2

1:T ), (σ
2
max +Σ2

max) log T}) in their confer-
ence version [Chen et al., 2023a].
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Table 3: Comparisons of our results with existing ones. The second column presents the regret bounds for
various kinds of loss functions, where σ2

1:T and Σ2
1:T are the cumulative stochastic variance and adversarial

variation, which are at most O(T ) and can be much smaller in benign environments. The Ô(·)-notation omits
logarithmic factors on leading terms. The third column indicates whether the results for different kinds of
functions are achieved by a single algorithm.

Works
Regret Bounds Single

Algorithm?Strongly Convex Exp-concave Convex

Sachs et al. [2022] O((σ2
max +Σ2

max) log T ) ✗ O(
√
σ2
1:T +Σ2

1:T ) No

Chen et al. [2023b] O((σ2
max +Σ2

max) log(σ
2
1:T +Σ2

1:T )) O(d log(σ2
1:T +Σ2

1:T )) O(
√
σ2
1:T +Σ2

1:T ) No

Sachs et al. [2023] O((σ2
max +Σ2

max +D2L2) log2 T ) ✗ Ô(
√
T ) Yes

Ours O((σ2
max +Σ2

max) log(σ
2
1:T +Σ2

1:T )) O(d log(σ2
1:T +Σ2

1:T )) Ô(
√
σ2
1:T +Σ2

1:T ) Yes

Table 4: Comparisons of our results with existing ones. In the honest case, the results are measured by the
summation of all players’ regret and in the dishonest case, the results are in terms of the individual regret of
each player. Bilinear and strongly convex-concave games are considered inside each case. • denotes the best
result in each case (row).

Games Syrgkanis et al. [2015] Zhang et al. [2022a] Ours

Honest
bilinear O(1) • O(

√
T ) O(1) •

strongly convex-concave O(1) • O(log T ) O(1) •

Dishonest
bilinear O(

√
T ) • O(

√
T ) • Ô(

√
T ) •

strongly convex-concave O(
√
T ) O(log T ) • O(log T ) •

The pioneering works of Rakhlin and Sridharan [2013b], Syrgkanis et al. [2015] investigated op-
timistic algorithms in multi-player online games and illuminated the importance of the gradient
variation. Specifically, Syrgkanis et al. [2015] proved that when each player runs an optimistic al-
gorithm (optimistic OMD or optimistic follow the regularized leader), the summation of the regret,
which serves as an upper bound for some performance measures in games, can be bounded by O(1).
The above results assume that the players are honest, i.e., they agree to run the same algorithm dis-
tributedly. In the dishonest case, where there exist players who do not follow the agreed protocol,
the guarantees will degenerate to the minimax result of O(

√
T ).

In this part, we consider the simple two-player zero-sum games as an example to validate the ef-
fectiveness of our proposed algorithm. The game can be formulated as a min-max optimization
problem of minx∈X maxy∈Y f(x,y). We consider the case that the game is either bilinear (i.e.,
f(x,y) = x⊤Ay), or strongly convex-concave (i.e., f(x,y) is λ-strongly convex in x and λ-
strongly concave in y). Our algorithm can guarantee the regret summation in the honest case and
the individual regret of each player in the dishonest case, without knowing the type of games in
advance. We conclude our results in Theorem 4, and the proof can be found in Appendix D.2.

Theorem 4. Under Assumptions 1 and 2, for bilinear and strongly convex-concave games, the effi-
cient version of Algorithm 1 enjoys O(1) regret summation in the honest case, Ô(

√
T ) and O(log T )

bounds in the dishonest case, where the Ô(·)-notation omits logarithmic factors in leading terms.

Table 4 compares our approach with Syrgkanis et al. [2015], Zhang et al. [2022a]. Specifically, ours
is better than Syrgkanis et al. [2015] in the strongly convex-concave games in the dishonest case due
to its universality, and better than Zhang et al. [2022a] in the honest case since our approach enjoys
gradient-variation bounds that are essential in achieving fast rates for regret summation.

B Proofs for Section 3

In this section, we provide proofs for Section 3, including Lemma 1, Lemma 2 and Lemma 3. For
simplicity, we introduce the following notations denoting the stability of the final and intermediate
decisions of the algorithm. Specifically, for any k ∈ [K], i ∈ [N ], we define

Sx
T ≜

T∑

t=2

∥xt − xt−1∥2, Sx
T,k ≜

T∑

t=2

∥xt,k − xt−1,k∥2, Sx
T,k,i ≜

T∑

t=2

∥xt,k,i − xt−1,k,i∥2,
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Sq
T ≜

T∑

t=2

∥qt − qt−1∥21, and Sp
T,k ≜

T∑

t=2

∥pt,k − pt−1,k∥21. (B.1)

B.1 Proof of Lemma 1

Proof. For simplicity, we define gt ≜ ∇ft(xt). For exp-concave functions, we have

T∑

t=1

(rt,i⋆ −mt,i⋆)
2 =

T∑

t=1

(⟨gt,xt − xt,i⋆⟩ − ⟨gt−1,xt−1 − xt−1,i⋆⟩)2

≤ 2

T∑

t=1

⟨gt,xt − xt,i⋆⟩2 + 2

T∑

t=1

⟨gt−1,xt−1 − xt−1,i⋆⟩2

≤ 4

T∑

t=1

⟨gt,xt − xt,i⋆⟩2 +O(1).

For convex function, it holds that

T∑

t=1

(rt,i⋆ −mt,i⋆)
2 =

T∑

t=1

(⟨gt,xt − xt,i⋆⟩ − ⟨gt−1,xt−1 − xt−1,i⋆⟩)2

≤ 2

T∑

t=1

⟨gt − gt−1,xt − xt,i⋆⟩2 + 2

T∑

t=1

⟨gt−1,xt − xt−1 + xt,i⋆ − xt−1,i⋆⟩2

≤ 2D2
T∑

t=1

∥gt − gt−1∥2 + 2G2
T∑

t=1

∥xt − xt−1 + xt,i⋆ − xt−1,i⋆∥2 (by Assumption 1)

≤ 4D2VT + 4(D2L2 +G2)

T∑

t=2

∥xt − xt−1∥2 + 4G2
T∑

t=2

∥xt,i⋆ − xt−1,i⋆∥2,

where the last step is due to the definition of the gradient variation, finishing the proof.

B.2 Proof of Lemma 2

In this part, we analyze the negative stability terms in the MSMWC algorithm [Chen et al., 2021].
For self-containedness, we restate the update rule of MSMWC in the following:

pt = argmin
p∈∆d

{⟨mt,p⟩+Dψt(p, p̂t)} , p̂t+1 = argmin
p∈∆d

{⟨ℓt + at,p⟩+Dψt(p, p̂t)} ,

where the bias term at,i = 16ηt,i(ℓt,i −mt,i)
2. Below, we give a detailed proof of Lemma 2, fol-

lowing a similar logic flow as Lemma 1 of Chen et al. [2021], while illustrating the negative stability
terms. Moreover, for generality, we investigate a more general setting of an arbitrary comparator
u ∈ ∆d and changing step sizes ηt,i. This was done hoping that the negative stability term analysis
would be comprehensive enough for readers interested solely in the MsMwC algorithm.

Proof of Lemma 2. To begin with, the regret with correction can be analyzed as follows:

T∑

t=1

⟨ℓt + at,pt − ei⋆⟩ ≤
T∑

t=1

(Dψt
(u, p̂t)−Dψt

(u, p̂t+1)) +

T∑

t=1

⟨ℓt + at −mt,pt − p̂t+1⟩

−
T∑

t=1

(Dψt
(p̂t+1,pt) +Dψt

(pt, p̂t))

≤
T∑

t=1

(Dψt(u, p̂t)−Dψt(u, p̂t+1))

︸ ︷︷ ︸
TERM (A)

+

T∑

t=1

(
⟨ℓt + at −mt,pt − p̂t+1⟩ −

1

2
Dψt

(p̂t+1,pt)

)

︸ ︷︷ ︸
TERM (B)
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− 1

2

T∑

t=1

(Dψt
(p̂t+1,pt) +Dψt

(pt, p̂t))

︸ ︷︷ ︸
TERM (C)

,

where the first step follows the standard analysis of optimistic OMD, e.g., Theorem 1 of Zhao et al.
[2021]. One difference of our analysis from the previous one lies in the second step, where previous
work dropped the Dψt(pt, p̂t) term while we keep it to generate the desired negative terms.

To begin with, we require an upper bound of ηt,i ≤ 1/32 for the step sizes. To give a lower bound
for TERM (C), we notice that for any a, b ∈ ∆d,

Dψt
(a, b) =

d∑

i=1

1

ηt,i

(
ai ln

ai
bi

− ai + bi

)
=

d∑

i=1

bi
ηt,i

(
ai
bi

ln
ai
bi

− ai
bi

+ 1

)

≥ min
t,i

1

ηt,i

d∑

i=1

(
ai ln

ai
bi

− ai + bi

)
≥ 32KL(a, b), (by ηt,i ≤ 1/32)

where the first inequality is due to x lnx− x+ 1 ≥ 0 for all x > 0, leading to

TERM (C) ≥ 32

T∑

t=1

(KL(p̂t+1,pt) + KL(pt, p̂t)) ≥
32

2 ln 2

T∑

t=1

(
∥p̂t+1 − pt∥21 + ∥pt − p̂t∥21

)

≥ 16

T∑

t=2

(
∥p̂t − pt−1∥21 + ∥pt − p̂t∥21

)
≥ 8

T∑

t=2

∥pt − pt−1∥21,

where the first step is from the above derivation, the second step is due to the Pinsker’s inequal-
ity [Pinsker, 1964]: KL(a, b) ≥ 1

2 ln 2∥a − b∥21 for any a, b ∈ ∆d and the last step is true because
of 2x2 + 2y2 ≥ (x+ y)2 for any x, y ∈ R and ∥a+ b∥ ≤ ∥a∥+ ∥b∥ for any a, b ∈ Rd.

For TERM (B), the proof is similar to the previous work, where only some constants are modified.
For self-containedness, we give the analysis below. Treating p̂t+1 as a free variable and defining

p⋆ ∈ argmax
p

⟨ℓt + at −mt,pt − p⟩ − 1

2
Dψt(p,pt),

by the optimality of p⋆, we have

ℓt + at −mt =
1

2
(∇ψt(pt)−∇ψt(p⋆)).

Since [∇ψt(p)]i = 1
ηt,i

(ln pi + 1), it holds that

ℓt,i −mt,i + at,i =
1

2ηt,i
ln
pt,i
p⋆i

⇔ p⋆i = pt,i exp(−2ηt,i(ℓt,i −mt,i + at,i)).

Therefore we have

⟨ℓt + at −mt,pt − p̂t+1⟩ −
1

2
Dψt(p̂t+1,pt) ≤ ⟨ℓt + at −mt,pt − p⋆⟩ − 1

2
Dψt(p

⋆,pt)

=
1

2
⟨∇ψt(pt)−∇ψt(p⋆),pt − p⋆⟩ − 1

2
Dψt(p

⋆,pt) =
1

2
Dψt(pt,p

⋆) (by definition)

=
1

2

d∑

i=1

1

ηt,i

(
pt,i ln

pt,i
p⋆i

− pt,i + p⋆i

)

=
1

2

d∑

i=1

pt,i
ηt,i

(2ηt,i(ℓt,i −mt,i + at,i)− 1 + exp(−2ηt,i(ℓt,i −mt,i + at,i)))

≤ 1

2

d∑

i=1

pt,i
ηt,i

4η2t,i(ℓt,i −mt,i + at,i)
2 = 2

d∑

i=1

ηt,ipt,i(ℓt,i −mt,i + at,i)
2,
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where the first and second steps use the optimality of p⋆, the last inequality uses e−x − 1 + x ≤ x2

for all x ≥ −1, requiring |2ηt,i(ℓt,i −mt,i + at,i)| ≤ 1. It can be satisfied by ηt,i ≤ 1/32 and |ℓt,i −
mt,i+at,i| ≤ 16, where the latter requirement can be satisfied by setting at,i = 16ηt,i(ℓt,i−mt,i)

2:

|ℓt,i −mt,i + at,i| ≤ 2 + 16 · 1

32
(2ℓ2t,i + 2m2

t,i) ≤ 4 ≤ 16.

As a result, we have

(ℓt,i −mt,i + at,i)
2 =

(
ℓt,i −mt,i + 16ηt,i(ℓt,i −mt,i)

2
)2 ≤ 4(ℓt,i −mt,i)

2,

where the last step holds because |ℓt,i|, |mt,i| ≤ 1 and ηt,i ≤ 1/32. Finally, it holds that

TERM (B) ≤ 2

T∑

t=1

d∑

i=1

ηt,ipt,i(ℓt,i −mt,i + at,i)
2 ≤ 8

T∑

t=1

d∑

i=1

ηt,ipt,i(ℓt,i −mt,i)
2.

As for TERM (A), following the same argument as Lemma 1 of Chen et al. [2021], we have

TERM (A) ≤
d∑

i=1

1

η1,i
fKL(ui, p̂1,i) +

T∑

t=2

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
fKL(ui, p̂t,i),

where fKL(a, b) ≜ a ln(a/b)− a+ b. Combining all three terms, we have
T∑

t=1

⟨ℓt + at,pt − u⟩ ≤
d∑

i=1

1

η1,i
fKL(ui, p̂1,i) +

T∑

t=2

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
fKL(ui, p̂t,i)

+ 8

T∑

t=1

d∑

i=1

ηt,ipt,i(ℓt,i −mt,i)
2 − 4

T∑

t=2

∥pt − pt−1∥21.

Moving the correction term
∑T
t=1⟨at,pt − u⟩ to the right-hand side gives:

T∑

t=1

⟨ℓt,pt − u⟩ ≤
d∑

i=1

1

η1,i
fKL(ui, p̂1,i) +

T∑

t=2

d∑

i=1

(
1

ηt,i
− 1

ηt−1,i

)
fKL(ui, p̂t,i)

− 8

T∑

t=1

d∑

i=1

ηt,ipt,i(ℓt,i −mt,i)
2 + 16

T∑

t=1

d∑

i=1

ηt,iui(ℓt,i −mt,i)
2 − 4

T∑

t=2

∥pt − pt−1∥21.

Finally, choosing u = ei⋆ and ηt,i = ηi for all t ∈ [T ] finishes the proof.

B.3 Proof of Lemma 3

In this part, we give a self-contained analysis of the two-layer meta learner, which mainly follows
the Theorem 4 and Theorem 5 of Chen et al. [2021], but with additional negative stability terms.
Lemma 3. If |ℓt,k|, |mt,k|, |ℓt,k,i|, |mt,k,i| ≤ 1 and (ℓt,k −mt,k)

2 = ⟨ℓt,k −mt,k,pt,k⟩2 for any
k ∈ [K] and i ∈ [N ], then the two-layer MSMWC algorithm satisfies
T∑

t=1

⟨ℓt, qt − ek⋆⟩+
T∑

t=1

⟨ℓt,k⋆ ,pt,k⋆ − ei⋆⟩ ≤
1

ηk⋆
ln

N

3C2
0η

2
k⋆

+ 32ηk⋆V⋆ −
C0

2
Sq
T − C0

4
Sp
T,k⋆ ,

where V⋆ ≜
∑
t(ℓt,k⋆,i⋆−mt,k⋆,i⋆)

2, Sq
T ≜

∑T
t=2 ∥qt−qt−1∥21 and Sp

T,k ≜
∑T
t=2 ∥pt,k−pt−1,k∥21

measure the stability of MSMWC-TOP and MSMWC-MID.

Note that we leverage a condition of (ℓt,k − mt,k)
2 = ⟨ℓt,k − mt,k,pt,k⟩2 in Lemma 3 only to

ensure a self-contained result. When using Lemma 3 (more specifically, in Theorem 2), we will
verify that this condition is inherently satisfied by our algorithm.

Proof. Using Lemma 2, the regret of MSMWC-TOP can be bounded as
T∑

t=1

⟨ℓt, qt − ek⋆⟩ ≤
(

1

ηk⋆
ln

1

q̂1,k⋆
+

K∑

k=1

q̂1,k
ηk

)
+ 0 + 16ηk⋆

T∑

t=1

(ℓt,k⋆ −mt,k⋆)
2 − min

k∈[K]

1

4ηk
Sq
T ,
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where the first step comes from fKL(a, b) = a ln a/b − a + b ≤ a ln a/b + b for a, b > 0. The
second term above (corresponding to the second term in Lemma 2) is zero since the step size is
time-invariant. The first term above can be further bounded as

1

ηk⋆
ln

1

q̂1,k⋆
+

K∑

k=1

q̂1,k
ηk

=
1

ηk⋆
ln

∑K
k=1 η

2
k

η2k⋆
+

∑K
k=1 ηk∑K
k=1 η

2
k

≤ 1

ηk⋆
ln

1

3C2
0η

2
k⋆

+ 4C0,

where the first step is due to the initialization of q̂1,k = η2k/
∑K
k=1 η

2
k. Plugging in the setting of

ηk = 1/(C0 · 2k), the second step holds since

K2

4C2
0

≤
K∑

k=1

η2k ≤
K∑

k=1

1

C2
0 · 4k ≤ 1

3C2
0

,

K∑

k=1

ηk ≤ 1

C0 · 2k
≤ 1

C0
.

Since 1/ηk = C0 · 2k ≥ 2C0, the regret of MSMWC-TOP can be bounded by

T∑

t=1

⟨ℓt, qt − ek⋆⟩ ≤
1

ηk⋆
ln

1

3C2
0η

2
k⋆

+ 16ηk⋆
T∑

t=1

(ℓt,k⋆ −mt,k⋆)
2 − C0

2
Sq
T +O(1).

Next, using Lemma 2 again, the regret of the k⋆-th MSMWC-MID, whose step size is 2ηk⋆ , can be
bounded as

T∑

t=1

⟨ℓt,k⋆ ,pt,k⋆ − ei⋆⟩ ≤
1

2ηk⋆
lnN + 32ηk⋆

T∑

t=1

(ℓt,k⋆,i⋆ −mt,k⋆,i⋆)
2 − C0

4
Sp
T,k⋆

− 16ηk⋆
T∑

t=1

N∑

i=1

pt,k⋆,i(ℓt,k,i −mt,k,i)
2,

where the first step is due to the initialization of p̂1,k,i = 1/N . Based on the observation of

(ℓt,k⋆ −mt,k⋆)
2 = ⟨ℓt,k⋆ −mt,k⋆ ,pt,k⋆⟩2 ≤

N∑

i=1

pt,k⋆,i(ℓt,k,i −mt,k,i)
2,

where the last step use Cauchy-Schwarz inequality, combining the regret of MSMWC-TOP and the
k⋆-th MSMWC-MID finishes the proof.

B.4 Proof of Theorem 1

In Appendix C.2, we provide the proof of Theorem 2, the gradient-variation guarantees of the effi-
cient version of Algorithm 1. Therefore, the proof of Theorem 1 can be directly extracted from that
of Theorem 2. In the following, we give a proof sketch.

Proof Sketch. The proof of the meta regret is the same as Theorem 2 since the meta learners (top
and middle layer) are both optimizing the linearized regret of

∑T
t=1⟨∇ft(xt),xt − xt,k⋆,i⋆⟩. The

only difference lies in the base regret. In Theorem 1, since the base regret is defined on the original
function ft, the gradient-variation bound of the base learner can be directly obtained via a black-
box analysis of the optimistic OMD algorithm, e.g., Theorem B.1 of Zhang et al. [2022a] (strongly
convex), Theorem 15 (exp-concave) and Theorem 11 (convex) of Chiang et al. [2012]. The only re-
quirement on the base learners is that they need to cancel the positive term of ∥xt,k⋆,i⋆−xt−1,k⋆,i⋆∥2
caused by the universal optimism design (Lemma 1) and cascaded correction terms (Figure 1). The
above base algorithms satisfy the requirement. The negative stability term in the optimistic OMD
analysis is provided in Appendix E.2.

B.5 Proof of Corollary 1

In Appendix C.3, we provide Corollary 2, the small-loss guarantees of the efficient version of Al-
gorithm 1. The proof of Corollary 1 can be directly extracted from that of Corollary 2. We give a
proof sketch below.
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Proof Sketch. The proof sketch is similar to that of Theorem 1 in Appendix B.4. Specifically, the
meta regret can be bounded in the same way. Since gradient-variation bounds naturally implies
small-loss ones due to (E.3), the small-loss bound of the base learner can be directly obtained via a
black-box analysis of the base algorithms mentioned in Appendix B.4, for different kinds of func-
tions. The requirement of being capable of handling ∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆∥2 can be still satisfied,
which finishes the proof sketch.

C Proofs for Section 4

In this section, we give the proofs for Section 4, including Proposition 1, Theorem 2 and Corollary 2.

C.1 Proof of Proposition 1

Proof. To handle the meta regret, we use ADAPT-ML-PROD [Gaillard et al., 2014] to optimize the
linear loss ℓt = (ℓt,1, . . . , ℓt,N ), where ℓt,i ≜ ⟨∇ft(xt),xt,i⟩, and obtain the following second-
order bound by Corollary 4 of Gaillard et al. [2014],

T∑

t=1

⟨∇ft(xt),xt − xt,i⋆⟩ ≲

√√√√ln lnT

T∑

t=1

⟨∇ft(xt),xt − xt,i⋆⟩2.

For α-exp-concave functions, it holds that

META-REG ≲

√√√√ln lnT

T∑

t=1

⟨∇ft(xt),xt − xt,i⋆⟩2 −
αi⋆

2

T∑

t=1

⟨∇ft(xt),xt − xt,i⋆⟩2

≤ ln lnT

2αi⋆
≤ ln lnT

α
, (by αi⋆ ≤ α ≤ 2αi⋆ )

where the second step uses AM-GM inequality:
√
xy ≤ ax

2 + y
2a for any x, y, a > 0 with a =

αi⋆ . To handle the base regret, by optimizing the surrogate loss function hexp
t,i⋆ using online Newton

step [Hazan et al., 2007], it holds that

BASE-REG ≲
dDGexp

αi⋆
log T ≤ 2dD(G+GD)

α
log T,

where Gexp ≜ maxx∈X ,t∈[T ],i∈[N ] ∥∇hexp
t,i (x)∥ ≤ G+GD represents the maximum gradient norm

the last step is because α ≤ 2αi⋆ . Combining the meta and base regret, the regret can be bounded
by O(d log T ). For λ-strongly convex functions, since it is also α = λ/G2 exp-concave under
Assumption 1 [Hazan et al., 2007, Section 2.2], the above meta regret analysis is still applicable.
To optimize the base regret, by optimizing the surrogate loss function hsc

t,i⋆ using online gradient
descent [Hazan et al., 2007], it holds that

BASE-REG ≤ G2
sc

λi⋆
(1 + log T ) ≤ 2(G+D)2

λ
(1 + log T ),

where Gsc ≜ maxx∈X ,t∈[T ],i∈[N ] ∥∇hsc
t,i(x)∥ ≤ G + D represents the maximum gradient norm

and the last step is because λ ≤ 2λi⋆ . Thus the overall regret can be bounded by O(log T ). For
convex functions, the meta regret can be bounded by O(

√
T ln lnT ), where the ln lnT factor can be

omitted in the O(·)-notation, and the base regret can be bounded by O(
√
T ) using OGD, resulting

in an O(
√
T ) regret overall, which completes the proof.

C.2 Proof of Theorem 2

Proof. We first give different decompositions for the regret, then analyze the meta regret, and finally
provide the proofs for different kinds of loss functions. Some abbreviations of the stability terms are
defined in (B.1).
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Regret Decomposition. Denoting by x⋆ ∈ argminx∈X
∑T
t=1 ft(x), for exp-concave functions,

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
⋆) ≤

T∑

t=1

⟨∇ft(xt),xt − x⋆⟩ − α

2

T∑

t=1

⟨∇ft(xt),xt − x⋆⟩2

≤
T∑

t=1

⟨∇ft(xt),xt − x⋆⟩ − αi⋆

2

T∑

t=1

⟨∇ft(xt),xt − x⋆⟩2 (by αi⋆ ≤ α ≤ 2αi⋆ )

=

T∑

t=1

⟨∇ft(xt),xt − xt,k⋆,i⋆⟩ −
αi⋆

2
⟨∇ft(xt),xt − xt,k⋆,i⋆⟩2

︸ ︷︷ ︸
META-REG

+

T∑

t=1

hexp
t,i⋆(xt,k⋆,i⋆)−

T∑

t=1

hexp
t,i⋆(x

⋆)

︸ ︷︷ ︸
BASE-REG

,

where the second step uses the strong exp-concavity and the last step holds by defining surrogate
loss functions hexp

t,i (x) ≜ ⟨∇ft(xt),x⟩ + αi

2 ⟨∇ft(xt),x − xt⟩2. Similarly, for strongly convex
functions, the regret can be upper-bounded by

T∑

t=1

⟨∇ft(xt),xt − xt,k⋆,i⋆⟩ −
λi⋆

2
∥xt − xt,k⋆,i⋆∥2

︸ ︷︷ ︸
META-REG

+

T∑

t=1

hsc
t,i⋆(xt,k⋆,i⋆)−

T∑

t=1

hsc
t,i⋆(x

⋆)

︸ ︷︷ ︸
BASE-REG

,

by defining surrogate loss functions hsc
t,i(x) ≜ ⟨∇ft(xt),x⟩+ λi

2 ∥x− xt∥2. For convex functions,
the regret can be decomposed as:

REGT ≤
T∑

t=1

⟨∇ft(xt),xt − xt,k⋆,i⋆⟩
︸ ︷︷ ︸

META-REG

+

T∑

t=1

⟨∇ft(xt),xt,k⋆,i⋆ − x⋆⟩
︸ ︷︷ ︸

BASE-REG

.

Meta Regret Analysis. For the meta regret, we focus on the linearized term since the negative
term by exp-concavity or strong convexity only exists in analysis. Specifically,

T∑

t=1

⟨∇ft(xt),xt − xt,k⋆,i⋆⟩ =
T∑

t=1

⟨∇ft(xt),xt − xt,k⋆⟩+
T∑

t=1

⟨∇ft(xt),xt,k⋆ − xt,k⋆,i⋆⟩

=

T∑

t=1

⟨ℓt, qt − ek⋆⟩+
T∑

t=1

⟨ℓt,k⋆ ,pt,k⋆ − ei⋆⟩ − λ1

T∑

t=1

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

− λ2

T∑

t=1

N∑

i=1

pt,k⋆,i∥xt,k⋆,i − xt−1,k⋆,i∥2 + λ1S
x
T,k⋆ + λ2S

x
T,k⋆,i⋆ (by definition of ℓt, ℓt,k)

≤
T∑

t=1

⟨ℓt, qt − ek⋆⟩+
T∑

t=1

⟨ℓt,k⋆ ,pt,k⋆ − ei⋆⟩ − λ1

T∑

t=1

K∑

k=1

qt,k∥xt,k − xt−1,k∥2 + λ2S
x
T,k⋆,i⋆

+ (2λ1 − λ2)

T∑

t=1

N∑

i=1

pt,k⋆,i∥xt,k⋆,i − xt−1,k⋆,i∥2 + 2λ1D
2Sp

T,k⋆ (by Lemma 6)

≤
T∑

t=1

⟨ℓt, qt − ek⋆⟩+
T∑

t=1

⟨ℓt,k⋆ ,pt,k⋆ − ei⋆⟩ − λ1

T∑

t=1

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+ 2λ1D
2Sp

T,k⋆ + λ2S
x
T,k⋆,i⋆ . (requiring λ2 ≥ 2λ1)

Next, we investigate the regret of the two-layer meta algorithm (i.e., the first two terms above). To
begin with, we validate the conditions of Lemma 3. First, since

|ℓt,k,i| ≤ GD + λ2D
2, |mt,k,i| ≤ 2GD + λ2D

2,

|ℓt,k| ≤ GD + λ1D
2, |mt,k| ≤ 2GD + (λ1 + λ2)D

2,
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rescaling the ranges of losses and optimisms to [−1, 1] only add a constant multiplicative factors on
the final result (λ1 and λ2 only consist of constants). Second, by the definition of the losses and the
optimisms, it holds that

(ℓt,k⋆ −mt,k⋆)
2 = (⟨∇ft(xt),xt,k⋆⟩ − ⟨m̂t,k⋆ ,pt,k⋆⟩)2

= ⟨ℓ̂t,k⋆ − m̂t,k⋆ ,pt,k⋆⟩2 = ⟨ℓt,k⋆ −mt,k⋆ ,pt,k⋆⟩2

where ℓ̂t,k,i ≜ ⟨∇ft(xt),xt,k,i⟩. Using Lemma 3, it holds that

T∑

t=1

⟨∇ft(xt),xt − xt,k⋆,i⋆⟩ ≤
1

ηk⋆
ln

N

η2k⋆
+ 32ηk⋆V⋆ + λ2S

x
T,k⋆,i⋆ (requiring C0 ≥ 1)

− C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2 +
(
2λ1D

2 − C0

4

)
Sp
T,k⋆

≤ 1

ηk⋆
ln

N

η2k⋆
+ 32ηk⋆V⋆ + λ2S

x
T,k⋆,i⋆ − C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2,

where the last step holds by requiring C0 ≥ 4λ1D
2.

Exp-concave Functions. Using Lemma 1, it holds that

1

ηk⋆
ln

N

η2k⋆
+ 32ηk⋆V⋆ ≤

1

ηk⋆
ln

N

η2k⋆
+ 128ηk⋆

T∑

t=1

⟨∇ft(xt),xt,k⋆,i⋆ − xt⟩2 +O(1).

As a result, the meta regret can be bounded by

META-REG ≤ 1

ηk⋆
ln

N

η2k⋆
+
(
128ηk⋆ − αi⋆

2

) T∑

t=1

⟨∇ft(xt),xt,k⋆,i⋆ − xt⟩2 + λ2S
x
T,k⋆,i⋆

− C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

≤ 2C0 ln(4C
2
0N) +

512

α
ln

220N

α2
+ λ2S

x
T,k⋆,i⋆ − C0

2
Sq
T (by Lemma 8 with η⋆ ≜ αi⋆

256 )

− λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2, (C.1)

where the last step holds by αi⋆ ≤ α ≤ 2αi⋆ . For the base regret, according to Lemma 11, the i⋆-th
base learner guarantees

T∑

t=1

hexp
t,i⋆(xt,k⋆,i⋆)−

T∑

t=1

hexp
t,i⋆(x

⋆) ≤ 16d

αi⋆
ln

(
1 +

αi⋆

8γd
V̄T,k⋆,i⋆

)
+

1

2
γD2 − γ

4
Sx
T,k⋆,i⋆ , (C.2)

where V̄T,k⋆,i⋆ =
∑T
t=2 ∥∇h

exp
t,i⋆(xt,k⋆,i⋆)−∇hexp

t−1,i⋆(xt−1,k⋆,i⋆)∥2 denotes the empirical gradient
variation of the i⋆-th base learner. For simplicity, we denote by gt ≜ ∇ft(xt), and this term can be
further decomposed and bounded as:

V̄T,k⋆,i⋆ =

T∑

t=2

∥(gt + αi⋆gtg
⊤
t (xt,k⋆,i⋆ − xt))− (gt−1 + αi⋆gt−1g

⊤
t−1(xt−1,k⋆,i⋆ − xt−1))∥2

≤ 2

T∑

t=2

∥gt − gt−1∥2 + 2α2
i⋆

T∑

t=2

∥gtg⊤
t (xt,k⋆,i⋆ − xt)− gt−1g

⊤
t−1(xt−1,k⋆,i⋆ − xt−1)∥2

≤ 4VT + 4L2Sx
T + 4D2

T∑

t=2

∥gtg⊤
t − gt−1g

⊤
t−1∥2 (by (E.2))
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+ 4G4
T∑

t=2

∥(xt,k⋆,i⋆ − xt)− (xt−1,k⋆,i⋆ − xt−1)∥2 (by α ∈ [1/T , 1])

≤ C1VT + C2S
x
T + 8G4Sx

T,k⋆,i⋆ ,

where the first step uses the definition of ∇hexp
t,i (x) = gt + αigtg

⊤
t (x− xt) and the last step holds

by setting C1 = 4 + 32D2G2 and C2 = 4L2 + 32D2G2L2 + 8G4. Then we obtain

ln

(
1 +

αi⋆

8γd
V̄T,k⋆,i⋆

)
≤ ln

(
1 +

αi⋆C1

8γd
VT +

αi⋆C2

8γd
Sx
T +

αi⋆G
4

γd
Sx
T,k⋆,i⋆

)

= ln

(
1 +

αi⋆C1

8γd
VT

)
+ ln


1 +

αi⋆C2

8γd Sx
T + αi⋆G

4

γd Sx
T,k⋆,i⋆

1 + αi⋆C1

8γd VT




≤ ln

(
1 +

αi⋆C1

8γd
VT

)
+
αi⋆C2

8γd
Sx
T +

αi⋆G
4

γd
Sx
T,k⋆,i⋆ . (ln(1 + x) ≤ x for x ≥ 0)

Plugging the above result and due to αi⋆ ≤ α ≤ 2αi⋆ , the base regret can be bounded by

BASE-REG ≤ 32d

α
ln

(
1 +

αC1

8γd
VT

)
+

2C2

γ
Sx
T +

(
16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆ +

1

2
γD2.

Combining the meta regret and base regret, the overall regret can be bounded by

REGT ≤ 512

α
ln

220N

α2
+ 2C0 ln(4C

2
0N) +

32d

α
ln

(
1 +

αC1

8γd
VT

)

+

(
4C2D

2

γ
− C0

2

)
Sq
T +

(
4C2

γ
− λ1

) T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+

(
λ2 +

16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆ +

1

2
γD2

≤ O
(
d

α
lnVT

)
. (requiring C0 ≥ 8C2D

2/γ, λ1 ≥ 4C2/γ, γ ≥ 8G2 + λ2)

Strongly Convex Functions. Since a λ-strongly convex function is also α = λ/G2 exp-concave
under Assumption 1 [Hazan et al., 2007, Section 2.2], plugging α = λ/G2 into the above analysis,
the meta regret can be bounded by

META-REG ≤ 512G2

λ
ln

220NG4

λ2
+ 2C0 ln(4C

2
0N) + λ2S

x
T,k⋆,i⋆

− C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2.
(C.3)

For the base regret, according to Lemma 12, the i⋆-th base learner guarantees
T∑

t=1

hsc
t,i⋆(xt,k⋆,i⋆)−

T∑

t=1

hsc
t,i⋆(x

⋆) ≤ 16G2
sc

λi⋆
ln
(
1 + λi⋆ V̄T,k⋆,i⋆

)
+

1

4
γD2 − γ

8
Sx
T,k⋆,i⋆ , (C.4)

where V̄T,k⋆,i⋆ =
∑T
t=2 ∥∇hsc

t,i⋆(xt,k⋆,i⋆) −∇hsc
t−1,i⋆(xt−1,k⋆,i⋆)∥2 is the empirical gradient vari-

ation and Gsc ≜ maxx∈X ,t∈[T ],i∈[N ] ∥∇hsc
t,i(x)∥ ≤ G+D represents the maximum gradient norm.

For simplicity, we denote by gt ≜ ∇ft(xt), and the empirical gradient variation V̄T,k⋆,i⋆ can be
further decomposed as

V̄T,k⋆,i⋆ =

T∑

t=2

∥(gt + λi⋆(xt,k⋆,i⋆ − xt))− (gt−1 + λi⋆(xt−1,k⋆,i⋆ − xt−1))∥2

≤ 2

T∑

t=2

∥gt − gt−1∥2 + 2λ2i⋆

T∑

t=2

∥(xt,k⋆,i⋆ − xt)− (xt−1,k⋆,i⋆ − xt−1)∥2
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≤ 4VT + (4 + 4L2)Sx
T + 4Sx

T,k⋆,i⋆ , (by λ ∈ [1/T , 1])

where the first step uses the definition of ∇hsc(x) = gt + λi(x− xt). Consequently,

ln
(
1 + λi⋆ V̄T,k⋆,i⋆

)
≤ ln(1 + 4λi⋆VT + (4 + 4L2)λi⋆S

x
T + 4λi⋆S

x
T,k⋆,i⋆)

= ln(1 + 4λi⋆VT ) + ln

(
1 +

(4 + 4L2)λi⋆S
x
T + 4λi⋆S

x
T,k⋆,i⋆

1 + 4λi⋆VT

)

≤ ln(1 + 4λi⋆VT ) + (4 + 4L2)λi⋆S
x
T + 4λi⋆S

x
T,k⋆,i⋆ . (ln(1 + x) ≤ x for x ≥ 0)

Plugging the above result and due to λi⋆ ≤ λ ≤ 2λi⋆ , the base regret can be bounded by

BASE-REG ≤ 32G2
sc

λ
ln(1 + 4λVT ) + 16C3S

x
T +

(
64G2

sc −
γ

8

)
Sx
T,k⋆,i⋆ +

1

4
γD2,

where C3 = (4 + 4L2)G2
sc. Combining the meta regret and base regret, the overall regret satisfies

REGT ≤ 512G2

λ
ln

220NG4

λ2
+ 2C0 ln(4C

2
0N) +

32(G+D)2

λ
ln(1 + 4λVT )

+

(
32D2C3 −

C0

2

)
Sq
T + (32C3 − λ1)

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+
(
λ2 + 64G2

sc −
γ

8

)
Sx
T,k⋆,i⋆ +

1

4
γD2

≤ O
(
1

λ
lnVT

)
. (requiring C0 ≥ 64D2C3, λ1 ≥ 32C3, γ ≥ 8λ2 + 512G2

sc)

Convex Functions. Using Lemma 1, it holds that

1

ηk⋆
ln

N

η2k⋆
+ 32ηk⋆V⋆ ≤

1

ηk⋆
ln

N

η2k⋆
+ 128ηk⋆D

2VT + 2(D2L2 +G2)Sx
T + 2G2Sx

T,k⋆,i⋆

≤ 2C0 ln(4C
2
0N) + 32D

√
2VT ln(512ND2VT ) + 2(D2L2 +G2)Sx

T + 2G2Sx
T,k⋆,i⋆

where the first step is due to ηk = 1/(C0 · 2k) ≤ 1/(2C0) and requiring C0 ≥ 1 and the last step is
by Lemma 7 and requiring C0 ≥ 8D. Thus the meta regret can be bounded by

META-REG ≤ 2C0 ln(4C
2
0N) +O(

√
VT lnVT ) + 2(D2L2 +G2)Sx

T

+ (λ2 + 2G2)Sx
T,k⋆,i⋆ − C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

For the base regret, according to Lemma 10, the convex base learner guarantees

BASE-REG =

T∑

t=1

⟨∇ft(xt),xt,k⋆,i⋆ − x⋆⟩ ≤ 5D
√

1 + V̄T,k⋆,i⋆ + γD2 − γ

4
Sx
T,k⋆,i⋆ , (C.5)

where V̄T,k⋆,i⋆ =
∑T
t=2 ∥∇ft(xt)−∇ft−1(xt−1)∥2 denotes the empirical gradient variation of the

base learner. Via (E.2), the base regret can be bounded by

BASE-REG ≤ 5D
√
1 + 2VT + 10DL2Sx

T + γD2 − γ

4
Sx
T,k⋆,i⋆ .

Combining the meta regret and base regret, the overall regret can be bounded by

REGT ≤ 2C0 ln(4C
2
0N) +O(

√
VT lnVT ) + 5D

√
1 + 2VT

+

(
2DC4 −

C0

2

)
Sq
T + (2C4 − λ1)

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+
(
λ2 + 2G2 − γ

4

)
Sx
T,k⋆,i⋆ + γD2
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≤ O(
√
VT lnVT ), (requiring C0 ≥ 4DC4, λ1 ≥ 2C4, γ ≥ 4λ2 + 8G2)

where C4 = 2D2L2 + 2G2 + 10DL2.

Overall. At last, we determine the specific values of C0, λ1 and λ2. These parameters need to
satisfy the following requirements:

C0 ≥ 1, C0 ≥ 4λ1D
2, C0 ≥ 128, C0 ≥ 8C2D

2

8G2 + λ2
, C0 ≥ 64D2C3, C0 ≥ 8D, C0 ≥ 4DC4,

λ1 ≥ 4C2

8G2 + λ2
, λ1 ≥ 32C3, λ1 ≥ 2C4, λ2 ≥ 2λ1.

As a result, we set C0, λ1, λ2 to be the minimum constants satisfying the above conditions., which
completes the proof.

C.3 Proof of Corollary 2

In this part, we provide Corollary 2, which obtains the same small-loss bounds as Corollary 1, but
only requires one gradient query within each round.
Corollary 2. Under Assumptions 1 and 2, if ft(·) ≥ 0 for all t ∈ [T ], the efficient version of
Algorithm 1 obtains O(logFT ), O(d logFT ) and Ô(

√
FT ) regret bounds for strongly convex, exp-

concave and convex functions, using only one gradient per round.

Proof. For simplicity, we define Fx
T ≜

∑T
t=1 ft(xt). Some abbreviations are given in (B.1).

Exp-concave Functions. The meta regret can be bounded the same as Theorem 1 (espe-
cially (C.1)), and thus we directly move on to the base regret. For simplicity, we denote by
gt ≜ ∇ft(xt) and give a different decomposition for V̄T,k⋆,i⋆ =

∑T
t=2 ∥∇h

exp
t,i⋆(xt,k⋆,i⋆) −

∇hexp
t−1,i⋆(xt−1,k⋆,i⋆)∥2, the empirical gradient variation of the base learner.

V̄T,k⋆,i⋆ =

T∑

t=2

∥(gt + αi⋆gtg
⊤
t (xt,k⋆,i⋆ − xt))− (gt−1 + αi⋆gt−1g

⊤
t−1(xt−1,k⋆,i⋆ − xt−1))∥2

≤ 2

T∑

t=2

∥gt − gt−1∥2 + 2α2
i⋆

T∑

t=2

∥gtg⊤
t (xt,k⋆,i⋆ − xt)− gt−1g

⊤
t−1(xt−1,k⋆,i⋆ − xt−1)∥2

≤ 2

T∑

t=2

∥gt − gt−1∥2 + 4D2
T∑

t=2

∥gtg⊤
t − gt−1g

⊤
t−1∥2 + 8G4Sx

T + 8G4Sx
T,k⋆,i⋆

≤ (2 + 16D2G2)

T∑

t=2

∥gt − gt−1∥2 + 8G4Sx
T + 8G4Sx

T,k⋆,i⋆

≤ C5F
x
T + 8G4Sx

T + 8G4Sx
T,k⋆,i⋆ , (by (E.3))

where the first step by using the definition of ∇hexp
t,i (x) = gt + αigtg

⊤
t (x− xt), the third step uses

the assumption that α ∈ [1/T , 1] without loss of generality, and the last step sets C5 = 16L(2 +
16D2G2). Consequently, it holds that

ln

(
1 +

αi⋆

8γd
V̄T,k⋆,i⋆

)
≤ ln

(
1 +

αi⋆C5

8γd
Fx
T

)
+
αi⋆G

4

γd
Sx
T +

αi⋆G
4

γd
Sx
T,k⋆,i⋆ .

Plugging the above result and due to αi⋆ ≤ α ≤ 2αi⋆ , the base regret can be bounded by

BASE-REG ≤ 32d

α
ln

(
1 +

αC5

8γd
Fx
T

)
+

16G4

γ
Sx
T +

(
16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆ +

1

2
γD2.

Combining the meta regret (C.1) and base regret, the overall regret can be bounded by

REGT ≤ 512

α
ln

220N

α2
+ 2C0 ln(4C

2
0N) +

32d

α
ln

(
1 +

αC5

8γd
Fx
T

)
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+

(
32D2G4

γ
− C0

2

)
Sq
T +

(
32G4

γ
− λ1

) T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+

(
λ2 +

16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆

≤ O
(
d

α
lnFx

T

)
(requiring C0 ≥ 64D2G4/γ, λ1 ≥ 32G4/γ, γ ≥ 8G2 + λ2)

≤ O
(
d

α
lnFT

)
,

where the last uses the following lemma.

Lemma 4 (Corollary 5 of Orabona et al. [2012]). If a, b, c, d, x > 0 satisfy x− d ≤ a ln(bx+ c),

x− d ≤ a ln

(
2ab ln

2ab

e
+ 2bd+ 2c

)
.

Strongly Convex Functions. The meta regret can be bounded the same as Theorem 1 (es-
pecially (C.3)), and thus we directly move on to the base regret. For simplicity, we denote by
gt ≜ ∇ft(xt) and give a different decomposition for V̄T,k⋆,i⋆ =

∑T
t=2 ∥∇hsc

t,i⋆(xt,k⋆,i⋆) −
∇hsc

t−1,i⋆(xt−1,k⋆,i⋆)∥2, the empirical gradient variation of the base learner.

V̄T,k⋆,i⋆ =

T∑

t=2

∥(gt + λi⋆(xt,k⋆,i⋆ − xt))− (gt−1 + λi⋆(xt−1,k⋆,i⋆ − xt−1))∥2

≤ 2

T∑

t=2

∥gt − gt−1∥2 + 2λ2i⋆

T∑

t=2

∥(xt,k⋆,i⋆ − xt)− (xt−1,k⋆,i⋆ − xt−1)∥2

≤ 32LFx
T + 4Sx

T + 4Sx
T,k⋆,i⋆ , (by (E.3) and λ ∈ [1/T , 1])

where the first step uses the definition of ∇hsc
t,i(x) = gt + λi(x− xt). Consequently,

16G2
sc

λi⋆
ln
(
1 + λi⋆ V̄T,k⋆,i⋆

)
≤ 16G2

sc

λi⋆
ln(1 + 32λi⋆LF

x
T ) + 64G2

sc(S
x
T + Sx

T,k⋆,i⋆).

Plugging the above result and due to λi⋆ ≤ λ ≤ 2λi⋆ , the base regret can be bounded by

BASE-REG ≤ 32G2
sc

λ
ln(1 + 32λLFx

T ) + 64G2
scS

x
T +

(
64G2

sc −
γ

8

)
Sx
T,k⋆,i⋆ +

1

4
γD2.

Combining the meta regret (C.3) and base regret, the overall regret can be bounded by

REGT ≤ 512G2

λ
ln

220NG4

λ2
+ 2C0 ln(4C

2
0N) +

32G2
sc

λ
ln(1 + 32λLFx

T )

+

(
128D2G2

sc −
C0

2

)
Sq
T +

(
128G2

sc − λ1
) T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+
(
λ2 + 64G2

sc −
γ

8

)
Sx
T,k⋆,i⋆

≤ O
(
1

λ
lnFx

T

)
(requiring C0 ≥ 256D2G2

sc, λ1 ≥ 128G2
sc, γ ≥ 8λ2 + 512G2

sc)

≤ O
(
1

λ
lnFT

)
. (by Lemma 4)

Convex Functions. We first give a different analysis for V⋆ ≜
∑T
t=1(ℓt,k⋆,i⋆ −mt,k⋆,i⋆)

2. From
Lemma 1, it holds that

V⋆ ≤ 2D2
T∑

t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2 + 2G2
T∑

t=1

∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆ + xt−1 − xt∥2
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≤ 32D2LFx
T + 4G2Sx

T,k⋆,i⋆ + 4G2Sx
T . (by (E.3))

Plugging the above analysis back to the meta regret, we obtain

META-REG ≤ 1

ηk⋆
ln

N

η2k⋆
+ 1024ηk⋆D

2LFx
T + 2G2Sx

T + (λ2 + 2G2)Sx
T,k⋆,i⋆

− C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2.

For the base regret, using Lemma 10 and (E.3), it holds that

BASE-REG ≤ 20D
√
LFx

T + γD2 − γ

4
Sx
T,k⋆,i⋆ +O(1).

Combining the meta regret and base regret, the overall regret can be bounded by

REGT ≤ 1

ηk⋆
ln

N

η2k⋆
+ 1024ηk⋆D

2LFx
T + 20D

√
LFx

T +
(
λ2 + 2G2 − γ

4

)
Sx
T,k⋆,i⋆

+

(
4D2G2 − C0

2

)
Sq
T +

(
4G2 − λ1

) T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

≤ 1

ηk⋆
ln

N

η2k⋆
+ 1024ηk⋆D

2LFx
T + 20D

√
LFx

T ≤ 1

ηk⋆
ln
Ne5

η2k⋆
+ 1044ηk⋆D

2LFx
T

≤ 2

ηk⋆
ln
Ne5

η2k⋆
+ 2088ηk⋆D

2LFT

≤ 4C0 ln(4C
2
0N) +O

(√
FT lnFT

)
, (by Lemma 7)

where the second step holds by requiring C0 ≥ 8D2G2, λ1 ≥ 4G2 and γ ≥ 4λ2 + 8G2, and the
third step uses AM-GM inequality:

√
xy ≤ ax

2 + y
2a for any x, y, a > 0 with a = 1/(2Dηk⋆). The

fourth step is by requiring 1− 1044ηk⋆D
2L ≥ 1/2, i.e., ηk ≤ 1/(2088D2L) for any k ∈ [K], which

can be satisfied by requiring C0 ≥ 1044D2L.

Overall. At last, we determine the specific values of C0, λ1 and λ2. These parameters need to
satisfy the following requirements:

C0 ≥ 1, C0 ≥ 4λ1D
2, C0 ≥ 128, C0 ≥ 64D2G4

8G2 + λ2
, C0 ≥ 256D2G2

sc, C0 ≥ 8D2G2,

C0 ≥ 1044D2L, λ1 ≥ 32G4

8G2 + λ2
, λ1 ≥ 128G2

sc, λ1 ≥ 4G2, λ2 ≥ 2λ1.

As a result, we set C0, λ1, λ2 to be the minimum constants satisfying the above conditions. Be-
sides, since the absolute values of the surrogate losses and the optimisms are bounded by problem-
independent constants, as shown in the proof of Theorem 1, rescaling them to [−1, 1] only add a
constant multiplicative factors on the final result.

D Proofs for Appendix A

This section provides the proofs for Appendix A, including Theorem 3 and Theorem 4.

D.1 Proof of Theorem 3

A key result in the work of Chen et al. [2023b] is the following decomposition for the empirical
gradient variation V̄T ≜

∑T
t=2 ∥∇ft(xt)−∇ft−1(xt−1)∥2, restated as follows.

Lemma 5 (Lemma 4 of Chen et al. [2023b]). Under the same assumptions as Chen et al. [2023b],

E

[
T∑

t=2

∥∇ft(xt)−∇ft−1(xt−1)∥2
]
≤ 4L2

T∑

t=2

∥xt − xt−1∥2 + 8σ2
1:T + 4Σ2

1:T +O(1).
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Proof of Theorem 3. The analysis is almost the same as the proof of Theorem 2. Some abbreviations
of the stability terms are defined in (B.1).

Exp-concave Functions. The meta regret remains the same as (C.1) and the only difference is a
slightly different decomposition of the empirical gradient variation of the base learner, i.e., V̄T,k⋆,i⋆
in (C.2). Specifically, it holds that

V̄T,k⋆,i⋆ =

T∑

t=2

∥(gt + αi⋆gtg
⊤
t (xt,k⋆,i⋆ − xt))− (gt−1 + αi⋆gt−1g

⊤
t−1(xt−1,k⋆,i⋆ − xt−1))∥2

≤ (2 + 16D2G2)

T∑

t=2

∥gt − gt−1∥2 + 8G4Sx
T + 8G4Sx

T,k⋆,i⋆

≤ 2C5σ
2
1:T + C5Σ

2
1:T + C6S

x
T + 8G4Sx

T,k⋆,i⋆ ,

whereC5 = 8(1+8D2G2), C6 = 8L2+64D2G2L2+8G4 and the last step is by taking expectation
on both sides and Lemma 5, leading to the following upper bound of the base algorithm:

E[BASE-REG] ≤ O
(
d

α
ln
(
σ2
1:T +Σ2

1:T

))
+

2C6

γ
Sx
T +

(
16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆ +

1

2
γD2.

Combining the meta regret and base regret, the overall regret can be bounded by

E[REGT ] ≤
512

α
ln

220N

α2
+ 2C0 ln(4C

2
0N) +O

(
d

α
ln
(
σ2
1:T +Σ2

1:T

))

+

(
4C6D

2

γ
− C0

2

)
Sq
T +

(
4C6

γ
− λ1

) T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+

(
λ2 +

16G4

γ
− γ

4

)
Sx
T,k⋆,i⋆ +

1

2
γD2 ≤ O

(
d

α
ln(σ2

1:T +Σ2
1:T )

)
,

where the last step holds by requiring C0 ≥ 8C6D
2/γ, λ1 ≥ 4C6/γ and γ ≥ λ2 + 8G2.

Strongly Convex Functions. The meta regret remains the same as (C.3) and the only difference is
a slightly different decomposition of the empirical gradient variation of the base learner:

E
[
∥∇hsc

t,i⋆(xt,k⋆,i⋆)−∇hsc
t−1,i⋆(xt−1,k⋆,i⋆)∥2

]

= E
[
∥(gt + λi⋆(xt,k⋆,i⋆ − xt))− (gt−1 + λi⋆(xt−1,k⋆,i⋆ − xt−1))∥2

]

≤ 2E
[
∥gt − gt−1∥2

]
+ 2λ2i⋆∥(xt,k⋆,i⋆ − xt)− (xt−1,k⋆,i⋆ − xt−1)∥2

≤ 16σ2
t + 8Σ2

t + (4 + 8L2)∥xt − xt−1∥2 + 4∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆∥2,
where σ2

t ≜ maxx∈X Eft∼Dt
[∥∇ft(x) − ∇Ft(x)∥2], Σ2

t ≜ E[supx∈X ∥∇Ft(x) − ∇Ft−1(x)∥2],
and the last step is by taking expectation on both sides and Lemma 5. Plugging the above empirical
gradient variation decomposition into Lemma 12, we aim to control the following term:

E

[
T∑

t=2

1

λi⋆t
∥∇hsc

t,i⋆(xt,k⋆,i⋆)−∇hsc
t−1,i⋆(xt−1,k⋆,i⋆)∥2

]

≤ 8

T∑

t=2

2σ2
t +Σ2

t

λi⋆t
+ 4

T∑

t=2

(1 + 2L2)∥xt − xt−1∥2 + ∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆∥2
λi⋆t

≤ O
(
1

λ
(σ2

max +Σ2
max) ln(σ

2
1:T +Σ2

1:T )

)
+

8D2(L2 + 1)

λi⋆
ln(1 + λi⋆(1 + 2L2)Sx

T + λi⋆S
x
T,k⋆,i⋆).

The last step is due to Lemma 9, which is a generalization of Lemma 5 of Chen et al. [2023b].
Combining the meta regret and base regret, the overall regret can be bounded by

E[REGT ] ≤
512G2

λ
ln

220NG4

λ2
+ 2C0 ln(4C

2
0N) +O

(
1

λ
(σ2

max +Σ2
max) ln(σ

2
1:T +Σ2

1:T )

)

+

(
2C7D

2 − C0

2

)
Sq
T + (2C7 − λ1)

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2
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+
(
λ2 + 32D2(L2 + 1)− γ

8

)
Sx
T,k⋆,i⋆ +

1

4
γD2

≤ O
(
1

λ
(σ2

max +Σ2
max) ln(σ

2
1:T +Σ2

1:T )

)
,

where C7 = 64D2(L2 + 1)2 and the last step holds by requiring C0 ≥ 4C7D
2, λ1 ≥ 2C7 and

γ ≥ 8λ2 + 256D2(L2 + 1).

Convex Functions. We first give a slightly different decomposition for V⋆ ≜
∑
t(ℓt,k⋆,i⋆ −

mt,k⋆,i⋆)
2. Starting from Lemma 5, it holds that

V⋆ ≤ 2D2
T∑

t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2 + 2G2
T∑

t=1

∥xt,k⋆,i⋆ − xt−1,k⋆,i⋆ + xt−1 − xt∥2

≤ 8D2(2σ2
1:T +Σ2

1:T ) + (8D2L2 + 4G2)Sx
T + 4G2Sx

T,k⋆,i⋆ +O(1),

where the last step by taking expectation on both sides. Following the same proof as in Theorem 2,
taking expectation on both sides, the expected meta regret can be bounded by

E[META-REG] ≤ 1

ηk⋆
ln

N

η2k⋆
+ 128D2ηk⋆(2σ

2
1:T +Σ2

1:T ) + 128(2D2L2 +G2)Sx
T

+ (λ2 + 128G2)Sx
T,k⋆,i⋆ − C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

≤ 2C0 ln(4C
2
0N) +O

(√
(σ2

1:T +Σ2
1:T ) ln(σ

2
1:T +Σ2

1:T )

)

+ 128(2D2L2 +G2)Sx
T + (λ2 + 128G2)Sx

T,k⋆,i⋆ − C0

2
Sq
T − λ1

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2,

where the last step is due to Lemma 7 by requiring C0 ≥ 8D.

For the base regret, the only difference is a slightly different decomposition of the empirical gradient
variation of the base learner, i.e., V̄T,k⋆,i⋆ in (C.5). Specifically, using Lemma 5, it holds that

E[BASE-REG] ≤ 10D
√

(2σ2
1:T +Σ2

1:T ) + 10DLSx
T + γD2 − γ

4
Sx
T,k⋆,i⋆ +O(1).

Combining the meta regret and base regret, the overall regret can be bounded by

E[REGT ] ≤ O
(√

(σ2
1:T +Σ2

1:T ) ln(σ
2
1:T +Σ2

1:T )

)
+ 2C0 ln(4C

2
0N)

+

(
2D2C9 −

C0

2

)
Sq
T + (2C9 − λ1)

T∑

t=2

K∑

k=1

qt,k∥xt,k − xt−1,k∥2

+
(
λ2 + 128G2 − γ

4

)
Sx
T,k⋆,i⋆ + γD2

≤ O
(√

(σ2
1:T +Σ2

1:T ) ln(σ
2
1:T +Σ2

1:T )

)

whereC9 = 128(2D2L2+G2)+10DL and the last step holds by requiringC0 ≥ 4D2C9, λ1 ≥ 2C9

and γ ≥ 4λ2 + 512G2.

Overall. At last, we determine the specific values of C0, λ1 and λ2. These parameters need to
satisfy the following requirements:

C0 ≥ 1, C0 ≥ 4λ1D
2, C0 ≥ 128, C0 ≥ 8C6D

2

8G2 + λ2
, C0 ≥ 4C7D

2, C0 ≥ 4D2C8

16 + λ2
, C0 ≥ 8D,

C0 ≥ 4D2C9, λ1 ≥ 4C6

8G2 + λ2
, λ1 ≥ 2C7, λ1 ≥ 2C8

16 + λ2
, λ1 ≥ 2C9, λ1 ≥ 4G2, λ2 ≥ 2λ1.

As a result, we set C0, λ1, λ2 to be the minimum constants satisfying the above conditions. Be-
sides, since the absolute values of the surrogate losses and the optimisms are bounded by problem-
independent constants, as shown in the proof of Theorem 1, rescaling them to [−1, 1] only add a
constant multiplicative factors on the final result.
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D.2 Proof of Theorem 4

Proof. The proof of the dishonest case is straightforward by directly applying Theorem 2. In the
following, we mainly focus on the honest case. Consider a bilinear game of f(x,y) ≜ x⊤Ay and
denote by gx

t ≜ Ayt, g
y
t ≜ Axt the gradients received by the x-player and y-player. The only

difference from the proof of Theorem 2 is that the gradient variation can be now decomposed

∥gx
t − gx

t−1∥2 = ∥Ayt −Ayt−1∥2 ≤ ∥yt − yt−1∥2,
where the last step holds under the mild assumption of ∥A∥ ≤ 1. The gradient variation of the x-
player is associated with the stability term of the y-player. When summing the regret of the players,
the negative terms in the x-player’s algorithm can be leveraged to cancel the gradient variation of
the y-player and vise versa. As a result, all gradient variations can be canceled and the summation
of regret is bounded by O(1). As for strongly convex-concave games, since it is a special case of
the bilinear games, the above derivations still hold, which completes the proof.

E Supporting Lemmas

In this section, we present several supporting lemmas used in proving our theoretical results. In
Appendix E.1, we provide useful lemmas for the decomposition of two combined decisions and the
parameter tuning. And in Appendix E.2, we analyze the stability of the base algorithms for different
kinds of loss functions.

E.1 Useful Lemmas

In this part, we conclude some useful lemmas for bounding the gap between two combined decisions
(Lemma 6), tuning the parameter (Lemma 7 and Lemma 8), and a useful summation (Lemma 9).

Lemma 6. Under Assumption 1, if x =
∑N
i=1 pixi,y =

∑N
i=1 qiyi, where p, q ∈ ∆N ,xi,yi ∈ X

for any i ∈ [N ], then it holds that

∥x− y∥2 ≤ 2

N∑

i=1

pi∥xi − yi∥2 + 2D2∥p− q∥21.

Lemma 7. For a step size pool of Hη = {ηk}k∈[K], where η1 = 1
2C0

≥ . . . ≥ ηK = 1
2C0T

, if

C0 ≥
√
X

2T , there exists η ∈ Hη such that

1

η
ln
Y

η2
+ ηX ≤ 2C0 ln(4Y C

2
0 ) + 4

√
X ln(4XY ).

Lemma 8. Denoting by η⋆ the optimal step size, for a step size pool of Hη = {ηk}k∈[K], where
η1 = 1

2C0
≥ . . . ≥ ηK = 1

2C0T
, if C0 ≥ 1

2η⋆T
, there exists η ∈ Hη such that

1

η
ln
Y

η2
≤ 2C0 ln(4Y C

2
0 ) +

2

η⋆
ln

4Y

η2⋆
.

Lemma 9. For a sequence of {at}Tt=1 and b, where at, b > 0 for any t ∈ [T ], denoting by amax ≜
maxt at and A ≜ ⌈b∑T

t=1 at⌉, we have

T∑

t=1

at
bt

≤ amax

b
(1 + lnA) +

1

b2
.

Proof of Lemma 6. The term of ∥x− y∥2 can be decomposed as follows:

∥x− y∥2 =

∥∥∥∥∥
N∑

i=1

pixi −
N∑

i=1

qiyi

∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

i=1

pixi −
N∑

i=1

piyi +

N∑

i=1

piyi −
N∑

i=1

qiyi

∥∥∥∥∥

2

≤ 2

∥∥∥∥∥
N∑

i=1

pi(xi − yi)

∥∥∥∥∥

2

+ 2

∥∥∥∥∥
N∑

i=1

(pi − qi)yi

∥∥∥∥∥

2
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≤ 2

(
N∑

i=1

pi∥xi − yi∥
)2

+ 2

(
N∑

i=1

|pi − qi|∥yi∥
)2

≤ 2

N∑

i=1

pi∥xi − yi∥2 + 2D2∥p− q∥21,

where the first inequality is due to (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, and the last step is due to
Cauchy-Schwarz inequality, Assumption 1 and the definition of ℓ1-norm, finishing the proof.

Proof of Lemma 7. Denoting the optimal step size by η⋆ ≜
√

ln(4XY )/X , if the optimal step size
satisfies η ≤ η⋆ ≤ 2η, where η ≤ η⋆ can be guaranteed if C0 ≥

√
X

2T , then it holds that

1

η
ln
Y

η2
+ ηX ≤ 2

η⋆
ln

4Y

η2⋆
+ η⋆X ≤ 3

√
X ln(4XY ).

Otherwise, if the optimal step size is greater than the maximum step size in the parameter pool, i.e.,
η⋆ ≥ (η = η1 = 1

2C0
), then we have

1

η
ln
Y

η2
+ ηX ≤ 1

η
ln
Y

η2
+ η⋆X ≤ 2C0 ln(4Y C

2
0 ) +

√
X ln(4XY ).

Overall, it holds that
1

η
ln
Y

η2
+ ηX ≤ 2C0 ln(4Y C

2
0 ) + 4

√
X ln(4XY ),

which completes the proof.

Proof of Lemma 8. The proof follows the same flow as Lemma 7.

Proof of Lemma 9. This result is inspired by Lemma 5 of Chen et al. [2023b], and we generalize it
to arbitrary variables for our purpose. Specifically, we consider two cases: A < T and A ≥ T . For
the first case, if A < T , it holds that

T∑

t=1

at
bt

=

A∑

t=1

at
bt

+

T∑

A+1

at
bt

≤ amax

b

A∑

t=1

1

t
+

1

b(A+ 1)

T∑

A+1

at ≤
amax

b
(1 + lnA) +

1

b2
,

where the last step is due to
∑T
A+1 at ≤ ∑T

t=1 at ≤ A/b. The case of A < T can be proved
similarly, which finishes the proof.

E.2 Stability Analysis of Base Algorithms

In this part, we analyze the negative stability terms in optimism OMD analysis, for convex, exp-
concave and strongly convex functions. For simplicity, we define the empirical gradient variation:

V̄T ≜
T∑

t=2

∥gt − gt−1∥2, where gt ≜ ∇ft(xt). (E.1)

In the following, we provide two kinds of decompositions that are used in the analysis of gradient-
variation and small-loss guarantees, respectively. First, using smoothness (Assumption 2), we have

V̄T =

T∑

t=2

∥gt −∇ft−1(xt) +∇ft−1(xt)− gt−1∥2 ≤ 2VT + 2L2
T∑

t=2

∥xt − xt−1∥2, (E.2)

Second, for an L-smooth and non-negative function f : X 7→ R+, ∥∇f(x)∥22 ≤ 4Lf(x) holds for
any x ∈ X [Srebro et al., 2010, Lemma 3.1]. It holds that

V̄T =

T∑

t=2

∥gt − gt−1∥2 ≤ 2

T∑

t=2

∥gt∥2 + 2

T∑

t=2

∥gt−1∥2 ≤ 4

T∑

t=1

∥gt∥2 ≤ 16L

T∑

t=1

ft(xt). (E.3)

Next we provide the regret analysis in terms of the empirical gradient-variation V̄T , for convex
(Lemma 10), exp-concave (Lemma 11), and strongly convex (Lemma 12) functions.
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Lemma 10. Under Assumptions 1 and 2, if the loss functions are convex, optimistic OGD with the
following update rule:

xt = ΠX [x̂t − ηtmt], x̂t+1 = ΠX [x̂t − ηt∇ft(xt)], (E.4)

where ΠX [x] ≜ argminy∈X ∥x − y∥, mt = ∇ft−1(xt−1) and ηt = min{D/
√
1 + V̄t−1, 1/γ},

enjoys the following empirical gradient-variation bound:

REGT ≤ 5D
√
1 + V̄T + γD2 − γ

4

T∑

t=2

∥xt − xt−1∥2 +O(1).

Lemma 11. Under Assumptions 1 and 2, if the loss functions are α-exp-concave, optimistic OMD
with the following update rule:

xt = argmin
x∈X

{⟨mt,x⟩+Dψt
(x, x̂t)} , x̂t+1 = argmin

x∈X
{⟨∇ft(xt),x⟩+Dψt

(x, x̂t)} ,

where ψt(·) = 1
2∥ · ∥2Ut

,7 Ut = γI + αG2

2 I + α
2

∑t−1
s=1 ∇fs(xs)∇fs(xs)⊤ and mt = ∇ft−1(xt−1),

enjoys the following empirical gradient-variation bound:

REGT ≤ 16d

α
ln

(
1 +

α

8γd
V̄T

)
+

1

2
γD2 − γ

4

T∑

t=2

∥xt − xt−1∥2 +O(1).

Lemma 12. Under Assumptions 1 and 2, if the loss functions are λ-strongly convex, optimistic
OGD (E.4) with ηt = 2/(γ+λt) and mt = ∇ft−1(xt−1), enjoys the following empirical gradient-
variation bound:

REGT ≤ 16G2

λ
ln
(
1 + λV̄T

)
+

1

4
γD2 − γ

8

T∑

t=2

∥xt − xt−1∥2 +O(1).

Proof of Lemma 10. The proof mainly follows Theorem 11 of Chiang et al. [2012]. Following the
standard analysis of optimistic OMD, e.g., Theorem 1 of Zhao et al. [2021], it holds that

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
⋆) ≤

T∑

t=1

ηt∥∇ft(xt)−mt∥2

︸ ︷︷ ︸
ADAPTIVITY

+

T∑

t=1

1

ηt
(Dψ(x⋆, x̂t)−Dψ(x⋆, x̂t+1))

︸ ︷︷ ︸
OPT-GAP

−
T∑

t=1

1

ηt
(Dψ(x̂t+1,xt) +Dψt

(xt, x̂t))

︸ ︷︷ ︸
STABILITY

, (E.5)

where x⋆ ∈ argminx∈X
∑T
t=1 ft(x) and ψ(·) ≜ 1

2∥ · ∥2. The adaptivity term satisfies

ADAPTIVITY =

T∑

t=1

ηt∥∇ft(xt)−mt∥2 ≤ D

T∑

t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2√
1 +

∑t−1
s=1 ∥∇fs(xs)−∇fs−1(xs−1)∥2

≤ 4D

√√√√1 +

T∑

t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2 + 4DG2,

where the last step uses
∑T
t=1 at/

√
1 +

∑t−1
s=1 as ≤ 4

√
1 +

∑T
t=1 at +maxt∈[T ] at [Pogodin and

Lattimore, 2019, Lemma 4.8]. Next, we move on to the optimality gap,

OPT-GAP =

T∑

t=1

1

ηt
(Dψ(x⋆, x̂t)−Dψ(x⋆, x̂t+1)) =

T∑

t=1

1

2ηt
(∥x⋆ − x̂t∥2 − ∥x⋆ − x̂t+1∥2)

7∥x∥Ut ≜
√
x⊤Utx refers to the matrix norm.
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≤ ∥x⋆ − x̂1∥2
2η1

+

T∑

t=2

(
1

2ηt
− 1

2ηt−1

)
∥x⋆ − x̂t∥2

≤ D

2
(1 + γD) +D2

T∑

t=2

(
1

2ηt
− 1

2ηt−1

)
≤ D

2
(1 + γD) +

D2

2ηT

= γD2 +
D

2

√
1 + V̄T +O(1).

Finally, we analyze the stability term,

STABILITY =

T∑

t=1

1

2ηt
(∥x̂t+1 − xt∥2 + ∥xt − x̂t∥2) ≥

T∑

t=2

1

2ηt
(∥x̂t − xt−1∥2 + ∥xt − x̂t∥2)

≥
T∑

t=2

1

4ηt
∥xt − xt−1∥2 ≥ γ

4

T∑

t=2

∥xt − xt−1∥2.

Combining the above inequalities completes the proof.

Proof of Lemma 11. The proof mainly follows Theorem 15 of Chiang et al. [2012]. Denoting by
x⋆ ∈ argminx∈X

∑T
t=1 ft(x), it holds that

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
⋆) ≤

T∑

t=1

∥∇ft(xt)−mt∥2U−1
t

︸ ︷︷ ︸
ADAPTIVITY

+

T∑

t=1

(Dψt
(x⋆, x̂t)−Dψt

(x⋆, x̂t+1))

︸ ︷︷ ︸
OPT-GAP

−
T∑

t=1

(Dψt(x̂t+1,xt) +Dψt(xt, x̂t))

︸ ︷︷ ︸
STABILITY

− α

2

T∑

t=1

∥xt − x⋆∥2∇ft(xt)∇ft(xt)⊤

︸ ︷︷ ︸
NEGATIVITY

,

where the last term is imported by the definition of exp-concavity. First, the optimality gap satisfies

OPT-GAP =
1

2

T∑

t=1

∥x⋆ − x̂t∥2Ut
− 1

2

T∑

t=1

∥x⋆ − x̂t+1∥2Ut

≤ 1

2
∥x⋆ − x̂1∥2V1

+
1

2

T∑

t=1

(∥x⋆ − x̂t+1∥2Ut+1
− ∥x⋆ − x̂t+1∥2Ut

)

≤ 1

2
γD2 +

αG2D2

4
+
α

4

T∑

t=1

∥x⋆ − x̂t+1∥2∇ft(xt)∇ft(xt)⊤
.

We handle the last term by leveraging the negative term imported by exp-concavity:

OPT-GAP − NEGATIVITY

≤ 1

2
γD2 +

α

4

T∑

t=1

∥x⋆ − x̂t+1∥2∇ft(xt)∇ft(xt)⊤
− α

2

T∑

t=1

∥xt − x⋆∥2∇ft(xt)∇ft(xt)⊤
+O(1)

≤ 1

2
γD2 +

α

2

T∑

t=1

∥xt − x̂t+1∥2∇ft(xt)∇ft(xt)⊤
+O(1),

where the local norm of the second term above can be transformed into Ut:

α

2

T∑

t=1

∥xt − x̂t+1∥2∇ft(xt)∇ft(xt)⊤
≤ αG2

2

T∑

t=1

∥xt − x̂t+1∥2 ≤
T∑

t=1

∥xt − x̂t+1∥2Ut
.

Using the stability of optimistic OMD [Chiang et al., 2012, Proposition 7], the above term can be
further bounded by

T∑

t=1

∥xt − x̂t+1∥2Ut
≤

T∑

t=1

∥∇ft(xt)−mt∥2U−1
t
.
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By choosing the optimism as mt = ∇ft−1(xt−1), the above term can be consequently bounded due
to Lemma 19 of Chiang et al. [2012]:

T∑

t=1

∥∇ft(xt)−∇ft−1(xt−1)∥2U−1
t

≤ 8d

α
ln

(
1 +

α

8γd
V̄T

)
.

The last step is to analyze the negative stability term:

STABILITY =

T∑

t=1

(Dψt
(x̂t+1,xt) +Dψt

(xt, x̂t)) =
1

2

T∑

t=1

∥x̂t+1 − xt∥2Ut
+

1

2

T∑

t=1

∥xt − x̂t∥2Ut

≥ γ

2

T∑

t=1

∥x̂t+1 − xt∥2 +
γ

2

T∑

t=1

∥xt − x̂t∥2 ≥ γ

4

T∑

t=2

∥xt − xt−1∥2.

Combining existing results, we have

REGT ≤ 16d

α
ln

(
1 +

α

8γd
V̄T

)
+

1

2
γD2 − γ

4

T∑

t=2

∥xt − xt−1∥2 +O(1),

which completes the proof.

Proof of Lemma 12. The proof mainly follows Theorem 3 of Chen et al. [2023b]. Following the
almost the same regret decomposition in Lemma 10, it holds that

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
⋆) ≤ (E.5) − λ

2

T∑

t=1

∥xt − x⋆∥2

︸ ︷︷ ︸
NEGATIVITY

.

First, we analyze the optimality gap,

OPT-GAP ≤ 1

η1
Dψ(x⋆, x̂1) +

T∑

t=1

(
1

ηt+1
− 1

ηt

)
Dψ(x⋆, x̂t+1)

≤ 1

4
(γ + λ)D2 +

λ

4

T∑

t=1

∥x⋆ − x̂t+1∥2.

We handle the last term by leveraging the negative term imported by strong convexity:

OPT-GAP − NEGATIVITY ≤ 1

4
(γ + λ)D2 +

λ

4

T∑

t=1

∥x⋆ − x̂t+1∥2 −
λ

2

T∑

t=1

∥xt − x⋆∥2

≤ 1

4
γD2 +

λ

2

T∑

t=1

∥xt − x̂t+1∥2 +O(1).

The second term above can be bounded by the stability of optimistic OMD:

λ

2

T∑

t=1

∥xt − x̂t+1∥2 ≤ λ

2

T∑

t=1

η2t ∥∇ft(xt)−mt∥2 ≤
T∑

t=1

ηt∥∇ft(xt)−mt∥2.

Finally, we lower-bound the stability term as

STABILITY =

T∑

t=1

γ + λt

4
(∥x̂t+1 − xt∥2 + ∥xt − x̂t∥2)

(
by ηt = 2

γ+λt

)

≥ γ

4

T∑

t=2

(∥x̂t − xt−1∥2 + ∥xt − x̂t∥2) ≥
γ

8

T∑

t=2

∥xt − xt−1∥2.
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Choosing the optimism as mt = ∇ft−1(xt−1), we have

REGT ≤ 2

T∑

t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥2 +
1

4
γD2 − γ

8

T∑

t=2

∥xt − xt−1∥2 +O(1).

To analyze the first term above, we follow the similar argument of Chen et al. [2023b]. By Lemma 9
with at = ∥∇ft(xt)−∇ft−1(xt−1)∥2, amax = 4G2, A = ⌈λV̄T ⌉, and b = λ, it holds that

T∑

t=1

1

λt
∥gt − gt−1∥2 ≤ 4G2

λ
ln
(
1 + λV̄T

)
+

4G2

λ
+

1

λ2
.

Since ηt = 2/(γ + λt) ≤ 2/(λt), combining existing results, we have

REGT ≤ 16G2

λ
ln
(
1 + λV̄T

)
+

1

4
γD2 − γ

8

T∑

t=2

∥xt − xt−1∥2 +O(1),

which completes the proof.
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