Under review as a conference paper at ICLR 2026

FROM OBJECTS TO SKILLS: INTERPRETABLE META-
POLICIES FOR NEURAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite its success in learning high-performing policies for diverse control and
decision-making tasks, deep reinforcement learning remains difficult to interpret
and align due to the black-box nature of its neural network representations. Neuro-
symbolic approaches improve transparency by incorporating symbolic reasoning,
but when applied to low-level actions, they result in overly complex policies. We in-
troduce NEXUS, a hierarchical Reinforcement Learning framework that integrates
neural skills with neuro-symbolic meta-policies to balance efficiency and inter-
pretability. In its core, it allows transparent reasoning on disentangled high-level
actions (i.e. interpretable skills), greatly reducing complexity of symbolic poli-
cies. Object-centric representations enable extracting rewards and meta-policies
from language models, while the hierarchical structure allow reasoning over skills
rather than atomic actions. We experimentally demonstrate that NEXUS agents are
interpretable, less prone to reward hacking, and more robust to environment simpli-
fications. We further evaluate how differing levels of meta-policy interpretability
(i.e. purely neural or symbolic) influences performance. Overall, NEXUS enables
interpretable and robust control via neuro-symbolic reasoning over high-level skills.

1 INTRODUCTION

Recent advancements in Deep Reinforcement Learning have led to highly capable agents on a diverse
set of tasks (Mnih et al.l 2015} |[Schulman et al., 2017} |Gallici et al., [2024)); however, these policies are
most often based on neural networks that operate as black boxes and thus exhibit difficult to interpret
behaviors that may be misaligned (Rudinj 2019). Without interpretability, identifying misalignment
or correcting undesirable behaviors, remains a significant challenge for practitioners (Zahavy et al.|
2016} Zhang et al., |2018}; |Delfosse et al., 2024b)).

Neuro-symbolic approaches address this issue by combining neural networks for perceptual grounding
with symbolic reasoning modules for decision-making (Delfosse et al., 2023a; [Hazra & Raedt,
2023} |Acharya et al., |2024; Delfosse et al., [2024bj [Luo et al., [2024). These architectures aim to
enhance transparency by representing the policies through symbolic structures that are more readily
interpretable. Despite their promise, applying symbolic reasoning directly to low level action spaces
often results in policies of prohibitive complexity (cf. Figure [T} Section [B). The combinatorial
explosion of symbolic rules at fine-grained action levels undermines 1nterpretab111ty and scalability.

Hierarchical Reinforcement Learning offers an alternative by abstracting sequences of actions into
higher-level skills or options (Sutton et al., |{1999; Dietterich, [2000; |Barto & Mahadevan, [2003). While
the framework provides a natural structure, the resulting options, when learned autonomously, are
often entangled or have overlapping goals, and the meta-policy remains opaque, both hindering
interpretability.

To address these limitations, we draw inspiration from the dual-process theory of cognition (Kah-
neman, 201 1)), distinguishing fast, intuitive actions (System 1) from slow, deliberative reasoning
(System 2). We emulate this cognitive structure in our hierarchical framework NEXUS, Neural
EXecution Under Symbols, which preserves the effectiveness of low-level neural policies (System
1), while combining them with a meta-policy layer of simple, interpretable rule sets (System 2) to
maintain clarity about the reasoning behind the active skill in complex environments (cf. Figure [2).
We ensure disentangled skills, i.e. each skill corresponds to a distinct situation with clear semantics,
by defining their subgoals explicitly through reward functions on objects extracted from the image.

Under review as a conference paper at ICLR 2026

Neural Symbolic To reduce the manual effort re-

Classic Hierarchical Decision Tree Logic Rules quired, we leverage the reason-

{%} T 2]) o) L ing capabilities of Largef Lgng}lage

AN :o:;,m)meup,m) Models (LLMs) to assist in iden-

v Vv v "‘ > tifying those skills, defining the

{%@M%M%} : iy I vete@ | hioh- Jevel meta-policy functions,

e — and generating the reward sig-

black box X black box X transparent v transparent v nals that guide the training of
monolithic X modular v monolithic X monolithic X

learns shortcuts X learns shortcuts X excessive size X excessive size X the low-level neural controllers.
Both the low-level skills and the
Figure 1: Current RL policies are not interpretable. Neu- meta-policy Q-function are learned

ral network-based policies are non-modular black box models. jointly in an off-policy manner.
Hierarchical RL separates high-level skill selection and low- Qverall, our neuro-symbolic de-
level control, but the learned entangled skills. Transparent gign enables true interpretability
symbolic approaches leverage logical rules or decision trees on the abstract level of skills with-
on symbolic states, but quickly become excessively complex if out compromising the efficiency of
applied on low-level state features and actions. neural agents.

Our primary contributions are as follows:

(i) We extend Parallelised Q-Networks to the hierarchical setting for efficient and scalable meta-
policy and skill learning (Section [3.1)).

(ii) We introduce 3 NEXUS variants balancing interpretability and flexibility (Section - Sec-
tion [3.3).

(iili) We demonstrate that generated object-centric rewards and high-level meta-policy functions
guide training towards disentangled skills and interpretable policies (Section[4.2).

(iv) We provide evidence that NEXUS agents are less susceptible to reward hacking and generalize
better to small distribution shift than common algorithms (Section[4.3).

2 BACKGROUND

Let us introduce Deep Reinforcement Learning, that enables applying neural networks to sequential
decision-making tasks. and Hierarchical Reinforcement Learning, that decomposes complex tasks
into hierarchies of simpler sub-tasks, thereby abstracting actions into skills.

Deep Reinforcement Learning. Reinforcement Learning (RL) is a framework for sequential
decision making in which an agent learns to interact with an environment in order to maximize
cumulative reward. The environment is typically modeled as a Markov Decision Process (MDP),
defined by the tuple M = (S, A, P, R,), where S is the set of states, A is the set of actions,
P(s" | s, a) is the transition probability from state s to state s’ under action a, R(s, a) is the reward
function and 7 € [0, 1) is the discount factor. The goal of the agent is to learn a policy 7 : S — A
that maximizes the expected discounted return: E [>°,° v R(s¢, at)].

In Q-learning, a value-based RL algorithm, the agent seeks to learn the optimal action-
value function Q*(s,a), which satisfies the Bellman optimality equation: Q*(s,a) =
Ey [R(s,a) + ymax, Q*(s’,a’)]. This function is updated iteratively via the Q-learning update
rule: Q(st,ar) — Q(st,at) + ary + ymaxy Q(str1,a’) — Q(st,ar)], where « is the learning
rate. With growing state space S, it becomes infeasible to store and update a tabular ()-function.
Deep Q-Networks (DQN) (Mnih et al., 2015) address this by using a deep neural network Qs (s, a),
parameterized by 6, to approximate (Q)(s, a). DQN introduces several key modifications to stabi-
lize learning, including experience replay, where transitions (s, as, ¢, s;.+1) are stored in a replay
buffer and sampled randomly to break correlations between consecutive updates and target networks,
where a separate network Qg (s, a) is used to compute the target value and is updated periodically:
Y =1 +ymaxy Qp-(Se41,0").

More recently, |Gallici et al.|(2024])) introduced Parallelised Q-Networks (PON), a simplified variant
of DQN that eliminates the use of experience replay and target networks. Instead, PQN leverages a
large number of parallel (ideally vectorized) environments and applies normalization techniques to
mitigate training instabilities. This high degree of parallelization enables substantially faster training
while maintaining performance comparable to state-of-the-art RL algorithms.

Under review as a conference paper at ICLR 2026

obj x 'y
80 72 -

0
1 closeby(player, enemies)
= 48 16 0 60 available(divers)
—
1
1

~ 68 44
46 73
DXYGEN J — 36 44 1 0 @;ﬂ'mm

0 [low(oxygen) or full(divers): g

observation symbolic state neurosymbolic meta policy neural skills actions distribution

Figure 2: NEXUS with a neuro-symbolic meta-policy. The symbolic state is extracted from
the observation. The LLM-generated meta policy selects potential relevant skills, then selected
using a trained meta Q-function. Finally, the selected neural skill outputs the final low-level action.
While the meta policy’s Q-function is trained using the environmental reward, each skill is trained
using its own LLM-generated reward signal, allowing for interpretable disentangled skills.

Hierarchical Reinforcement Learning. Hierarchical reinforcement learning (HRL) decomposes
complex tasks into simpler sub-tasks, often modeled as temporally extended actions or "options"
(Sutton et al., [1999). At inference time, a meta policy selects the option, enabling more efficient
exploration and transfer in environments with long horizons or sparse rewards. Sub-policies can
be learned autonomously using intrinsic objectives (Bacon et al., 2017} |Vezhnevets et al.|[2017)) or
guided by manually designed reward functions (Sutton et al.| 1999 Dietterich, 2000). However,
autonomous discovery often suffers from option entanglement or collapse. NEXUS instead enforces
disentangled options via explicit reward functions, which are LLM-generated.

3 NEURAL EXECUTION UNDER SYMBOLS

We address the challenge of building interpretable and high performing reinforcement learning agents
with NEXUS, a hierarchical framework that combines symbolic reasoning with neural skill execution.
The overall pipeline is described in Figure[2} At a high level, NEXUS decomposes decision-making
into two layers: (1) a high-level meta-policy and (2) a set of low-level neural skill policies optimized
for specific sub-goals. At each step, the decision process proceeds as follows. First, object-centric
representations are extracted from pixel-based inputs. Second, symbolic rules, encoding the activation
conditions of each skill, filter out skills without valid preconditions. Third, the learned meta-policy
Q-function selects the most suitable skill among the remaining candidates. Finally, the chosen skill
executes its policy to maximize the corresponding sub-goal. Object-centric representations are crucial
for enabling symbolic rule definition and skill-specific reward design, both of which are difficult
without such structured representations. Moreover, the explicit availability of object information
allows the use of LL.Ms for generating the rules and reward functions.

In the following, we describe three distinct meta-policy function type: purely neural, purely symbolic,
and neuro-symbolic. The first method, NEXUS (neural), corresponds to a hierarchical PQN method,
which learns both a neural meta-policy and neural skills (based on skill-specific rewards) and which
serves as the foundation for subsequent variants. While it offers high flexibility due to the learned
meta-policy, it is missing reasoning for why a given sub-goal (and its corresponding skill) is selected in
the current step. This shortcoming can be facilitated by replacing the learned meta-policy with a fixed,
interpretable function that can be either manually defined or LLM-generated. This variant, NEXUS
(symbolic), is fully symbolic at the meta-policy level, prioritizing transparency over adaptability.
Finally, we present the hybrid approach NEXUS (nesy) that filters candidate skills via predefined
symbolic rules and selects among them using Q-learning. This last variant results in a neuro-symbolic
meta-policy, symbolic in rule-based filtering and neural in value estimation, combined with neural
sub-policies, achieving a principled trade-off between interpretability and flexibility.

3.1 HIERARCHICAL PQN

We accommodate the hierarchical learning setup by modeling the environment as two layers of MDPs.
On the action level, we define a collection of MDPs M = {(S, A, P, R,,,)}, for N skills, each
associated with a distinct option policy 7,, € 1I that decides over the actual environment actions. The
meta-level MDP M et = (S, II, P, Reny, ¥) governs option selection through a meta-policy mmeta
that selects over the options II. Note that the option-level MDPs differ only in their reward functions

R,,, while the meta-level MDP retains the environment’s original reward Repy.

Under review as a conference paper at ICLR 2026

To enable learning across sub-policies even when they are not actively selected, we adopt off-policy
Q-learning. This allows all the skills to learn from trajectories generated by the active skill and
meta-policy while optimizing for their respective reward structures. Exploration within each skill
is conducted via e-greedy action selection. For scalability through vectorization, we build our
hierarchical training approach upon PQL with A-returns (Gallici et al., [2024). However, instead
of learning a single shared Q-network Q4 as in PQL, we learn separate Q-functions @, for each
low-level skill, along with a meta-level Q-network (4,... Each Q-network thus predicts the returns
of its own reward function.

For updating, we roll out trajectories (s, ..., s7) following the global policy by selecting the next
active skill 7, € 1I using the meta-policy Q-function (), and find the most promising action
according to the active skill’s Q-function Qy,,:
T, = argmax Q.. (St, ™), a' =argmaxQy, (s¢,a). (1
T €11 a’eA
By executing the action in the environment, we obtain the rewards and the next environmental state for
the next iteration. We employ e-greedy for exploration during both the skill and the action selection.

Next to the environment reward r¢py ¢, we require skill-specific reward functions 7, ; that are based
on the object-centric state s; and may be automatically generated by LLMs (cf. Section[G]), which
we use to compute the A-returns recursively back in time (for details, we refer the reader to|Gallici
et al.| (2024); Daley & Amatol|(2019)):

Ry = Toa 7 AR oy + (1= N maxQy, (s011,0')|, @)
and similarly, for the learned meta-policy using environment rewards:
ReAnV,t = TenV,t +’Y |:AReAnv,t,+1 + (1 - A)H}rax Q¢meta (St+1 ’ 7rn):| 9 (3)

or, if s; is terminal R} ; = ry, ; and R}, ; = Teny,+. All learned Q-functions are updated towards their

A-returns. We provide the full algorithm in Section

3.2 INTERPRETABLE META-POLICY FUNCTION

While the hierarchical structure allows to identify the active skill, it does not expose the decision
process that leads to its selection. To make this process transparent, we introduce interpretable
meta-policy functions implemented as rule-based programs. We choose this representation for two
key reasons. First, rule-based programs offer simplicity and accessibility since conditional statements
can typically be understood and modified even by users with limited programming background.
Second, LLLMs are highly effective at generating and editing code-like structures due to extensive
pretraining on programming data. This enables generation of human-interpretable meta-policies and
greatly reduces manual effort. Further details on how we employ LLMs to generate the meta-policy
function are available in Section[Gl

Formally, instead of relying on a learned Q-function Q... we define a meta-policy Tmer : S — 11
as a set of human-readable rules that directly maps the current object-centric state s, € S to the
selected low-level policy m,, € II:

Tn = ﬂ'meta(St)7 (4)

We hereby constrain 7y, to simple rules that are mutually exclusive to enable transparent inspection
of policy decisions. The selected skill can be traced back to the specific rule that evaluates to true
given the current state (cf. Figure[3] left side).

3.3 NEURO-SYMBOLIC META-POLICY FUNCTION

The symbolic meta-policy is a deterministic function that selects skills based on the rule with the
highest priority. However, this approach may become inefficient in situations where multiple skills
are simultaneously applicable. Consider an agent controlling a submarine that can shoot a nearby
enemy or surface to replenish oxygen. The most viable depends on the specific context: if the oxygen
level is critically low, resurfacing may be prioritized; if an enemy is dangerously close, attacking may
take precedence. Crafting hard-coded rules to handle such trade-offs would quickly lead to growing,
less interpretable policies.

Under review as a conference paper at ICLR 2026

Instead, we propose a neuro-symbolic Algorithm 1 NEXUS Variants
(NeSy) approach, by maintaining a set
of high-level, interpretable conditions
(e.g., “go to surface if oxygen is low”,
“fight if enemy is close”), represented as
a binary condition vector ¢; € {0, 1}%,
where each entry indicates whether a
particular condition is active at time
t. We formulate these rule-sets again
as simple code functions and leverage
LLMs for their generation (cf. Figure[5]
right side). However, this time we allow
multiple conditions to be active concur-
rently. The skill selection is then mod-

Require: Skill policies {m,})_, with Q-functions
{Q4, }N_,, meta-policy Qg (for learned/soft)
1: for each episode do
2: for each environment step (in parallel) do
3: Extract object-centric state s;
4 Select skill 7, ¢ as follows:
A) Neural: 7, ; = argmax,,, Qg,..(St, Tn)
B) Symbolic: 7, 4 = Tmeta(St)
C) NeSy: 7, s =argmaxy, (¢; © Qg (St, Tn))
5: Select action a; using e-greedy from 7, ;
: Execute ag and observe transition

({rn,t}nNzoa Tenv,t, $t+1)

ulated by these conditions using a bi- ; te,:;iet;;l radient step do
Bary 1mask applied to the meta-policy 9: Comp fte R>, an dp R, Gf A or C)
-values: ’) env,
10: Update each @4, using skill-specific Réi
T = arg Max (¢t © Qg (56,7n)) 11 Update Qg,,., using Ry, , (if A or C)

(5) 122 endfor
where ® denotes element-wise multipli- 13: end for
cation, Qg,.. (s¢,+) € RY is the vector
of meta-policy Q-values for each interpretable condition, and II is the set of available skills.

This way, we can preserve interpretability at the symbolic level while enabling the agent to resolve
ambiguous scenarios adaptively based on learned preferences. An overview of the different meta-
policy variations is provided in Algorithm I}

Prior knowledge requirements. There are two components of NEXUS that require prior knowl-
edge. The first is the specification of skill reward functions. The second is the definition of meta-policy
rules for the symbolic and the neuro-symbolic variants. Although these elements can be provided
manually, we leverage LLMs to minimize expert input. Given the prompts in Section[G] only the
game manual is ultimately required.

4 EXPERIMENTAL EVALUATION

This work aims to develop an object-centric pipeline for agents capable of solving complex environ-
ments while maintaining interpretability of high-level goals. We assess this objective by addressing
the following research questions:

(Q1) Does NEXUS learn meaningful disentangled skills?

(Q2) Are NEXUS policies interpretable?

(Q3) Can NEXUS compete with other deep methods?

(Q4) Does NEXUS improve robustness to game simplifications?
(Q5) How does noise in the object extractor influence NEXUS?

4.1 EXPERIMENTAL SETUP

Our experiments assume access to pre-extracted object representations and attributes. We therefore
provide the agent with symbolic environment states directly, allowing us to remain agnostic to the
specific object extraction pipeline. We conduct experiments on JAXAtarzF_l a JAX-based reimple-
mentation of the Atari Learning Environment (ALE) (Bellemare et al., 2013)), specifically using the
games Kangaroo and Seaquest, with object-centric representations similar to OCatari (Delfosse
et al., [2024a)). These games are selected because their gameplay naturally decomposes into low-level
skills that must be combined to solve the overall task. In Kangaroo, the objective is to ascend
through platforms while avoiding enemies and collecting berries. In Seaquest, the player navigates
a submarine to rescue divers and return them to the surface, while avoiding hazards such as sharks

'https://github.com/k4ntz/JAXAtari

https://github.com/k4ntz/JAXAtari

Under review as a conference paper at ICLR 2026

Rescue Divers Shoot Enemies Surface

Seaquest
Skill Returns

Steps le7 Steps le7 Steps le7

Move Up Handle Threats Collect Fruits
12.5 8 15.0
o Z100 . 12.5 /\/VJJVVV
o £
H 275 M\/‘ 100
o & \/\,\/\/—"’\\,\/\/’I 4 75
g =50 M N s 5.0
¥ 5o 2.5 app———rye—————
0.0 0 00 [
0 1 2 3 4 5 o 1 2 3 4 5 0 1 2 3 4 5
Steps le7 Steps le7 Steps le7
—— PPO (baseline) PQN (baseline) HPQN (baseline) —— NEXUS (neural) NEXUS (symbolic) —— NEXUS (nesy)

Figure 3: NEXUS learns disentangled skills from off-policy data. In Seaquest (top), the baseline
methods mainly focus on shooting enemies, while the NEXUS approaches acquire the target skills
more evenly. Similarly, in Kangaroo (bottom), the NEXUS approaches learn "Move Up’ and ’Collect
Fruits’ reliably, while the baselines focus mostly on "Handle Threats’.

and enemy submarines. These two games are known to exhibit reward hacking behavior, meaning
that the agents find simple shortcuts of increasing their return rather than the intended way that
humans would typically choose. Examples include exclusively shooting enemies in Seaquest and
only catching falling apples or boxing monkeys in Kangaroo. Additionally, we evaluate on Crafter
(Hafner, |2021)), using the JAX reimplementation by [Matthews et al.| (2024), an environment that
integrates elements from the games Minecraft and NetHack. Unlike Atari games, Crafter presents a
more complex, open-ended challenge that requires agents to acquire and coordinate multiple skills,
including navigation, combat, resource collection, and crafting. While primarily designed as a
benchmark for open-ended learning, Crafter’s task diversity makes it well-suited for evaluating the
generalization and skill composition capabilities of RL methods.

Finally, for generalization we also test the pre-trained agents on slightly modified versions of the
games. These modifications are designed to highlight the sensitivity of standard reinforcement
learning agents to minor changes in the environment, including simplifications. For example,
removing enemies from Seaquest to reduce the task’s complexity already leads to a substantial drop
in many deep agents performances (Delfosse et al., 2025).

We compare all three variations of NEXUS to the default, non-interpretable PQN (Gallici et al.,
2024), and, in case of the Atari games, with the actor-critic PPO (Schulman et al.,|2017) as baselines.
Additionally, we compare to HPQN, a hierarchical PQN variation that does not employ skill-specific
rewards and has a purely neural meta-policy. All results (including baselines) are directly trained on
object-centric inputs, which may affect performance compared to image based training. We adhere to
the standard frame budgets of both games: 200M frames for JAXAtari and 1B frames for Crafter.
Further implementation details are available in Section

4.2 INTERPRETABILITY RESULTS

Disentangled skill learning (Q1). We first evaluate whether NEXUS enables efficient learning
of meaningful skills. Since each skill requires its own reward function, we leverage the reasoning
capabilities of LLMs to generate them based on the game manual, skill definitions, and the object-
centric state (cf. Section[G]for further information).

Figure 3| demonstrates that NEXUS is able to learn most target skills successfully from a single source
of off-policy data. This means that a skill can learn from another skills action and is not required to be
activated to do so. Unlike the baselines, which tend to mostly focus on a single skill that maximizes
environment reward (e.g., Shoot Enemies for Seaquest, Handle Threats for Kangaroo), NEXUS
approaches promote balanced skill acquisition. Especially the symbolic meta-policy approach seems
to learn all skills most reliably.

Under review as a conference paper at ICLR 2026

Survival Combat Craft Collect Resources Exploration

o 150
c 800 80
5 -60 l 125 l
2 600 60
Q -65
2 100
= -70 400 40 75
=
0 -7 200 20 50
-80 0 o 25
000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 100 000 025 050 075 100 000 025 050 075 1.00
Steps le9 Steps 1e9 Steps le9 Steps le9 Steps le9
—— PQN (baseline) —— NEXUS (neural) NEXUS (symbolic) —— NEXUS (nesy)

Figure 4: NEXUS succesfully learns LLM-proposed Crafter skills. Compared to the baseline,
NEXUS approaches often converge faster on the proposed skills.

def meta_policy_rules(st: state):
fight_enemies = False
rescue_divers = True
surface = False
if enemy_close(st.enemies,
st.player) :
fight_enemies = True
if is_low(st.oxygen) or
all_collected(st.divers):
surface = True
return [fight_enemies,
rescue_divers, surface]

def meta_policy(st: state):

if enemy_close(st.enemies,

st.player) :
return fight_enemies ()

elif is_available(st.divers):
return rescue_divers /()

elif is_low(st.oxygen):
return surface()

elif all collected(st.divers):
return surface()

return rescue_divers ()

Figure 5: NEXUS policies and rules are clear and interpretable. A symbolic meta-policy (left)
and similar filtering rules for the neuro-symbolic meta-policy (right) for the Atari game Seaquest.

We experience a similar picture when evaluating on Crafter. Using the game manual and state
description, we query an LLM for essential skills. Recurrent versions of NEXUS are then trained
explicitly for these skills and compared to a recurrent PQN baseline. Results are presented in Figure[d]
where we compare the ability to learn the skills between the different methods. Similar to before,
NEXUS approaches are able to learn the five skills with symbolic being the fastest.

Interpretability of NEXUS policies (Q2). To assess the interpretability of NEXUS, we visualize
a fixed meta-policy for Seaquest on the left side in Figure[5} By abstracting raw observations into
object-centric representations and low-level actions into high-level skills, the decision-making process
becomes transparent. Each option has a clear, mutually exclusive activation condition, enabling
unambiguous skill selection. For example, the combat skill activates if and only if an enemy is in
close proximity. This simplicity offers two advantages: technical users can design fully interpretable
policies, and LLMs can autonomously generate such meta-policies, which remain editable due to
their transparency. We illustrate LLM-based meta-policy generation in Section [G]

Full transparency is not guaranteed for neuro-symbolic meta-policies, as multiple conditions may
be simultaneously satisfied (e.g., an enemy is nearby and oxygen is low; cf. Figure[3] right side).
Nonetheless, such overlaps are rare, and interpretability is largely preserved. In ambiguous cases,
interpretability is traded for flexibility, allowing the agent to select the skill with the highest expected
return based on the meta-policy Q-values. An example of a Seaquest agent operating under a
neuro-symbolic meta-policy is available in Figure[§]

4.3 PERFORMANCE RESULTS

Comparison to other approaches (Q3). We evaluate NEXUS against baselines using two metrics:
Game returns and aligned environment goals, which track progress toward goals defined in game
manuals (e.g. , divers rescued in Seaquest, level completion in Kangaroo). The latter aims to capture
the overall alignment with the intended game objectives, which differ from just maximizing the
reward for these environments, where deep agents usually perform reward hacking (Shihab et al.,
2025).

Under review as a conference paper at ICLR 2026

D0000880
b

fight_enemies:

enemy_closeby 156.10

rescue_divers:

diver_available | "**%2- O

M oxygen_low
surface:

0.0

all_collected

00000220
ELI

enemy_closeby

diver_available

273.32

fight_enemies:

277.47

rescue_divers:

i oxygen_low

all_collected

surface: 0.0

00000220
b

enemy_closeby

fight_enemies:
395.02

diver_available

rescue_divers:

oxygen_low

all_collected

surface:
405.52

Figure 6: NEXUS produces interpretable yet flexible high-level plans for ambiguous scenarios.
Left: Both "enemy_closeby" and "diver_available" rules evaluate to true; the learned meta-policy
prioritizes fighting, likely due to the diver’s proximity to the enemy. Middle: Under similar conditions,
rescuing the diver is preferred, reason could be the easier access. Right: With all divers collected and
an enemy nearby, the meta-policy opts to return to the surface due to the higher estimated return.

Seaquest Kangaroo

As shown in Figure [/, NEXUS

approach@s are competitive to B 3000 B 5000 |
the baselines. In most cases, & © |
they achieve comparable or even 3 20001 3 6000

higher HNS and notably outper- f, f, 4000

form the baselines on the actual ~ £ 1000 E ool

games’ main goal, demonstrat- © Y] | .

ing the baselines reward hack- T T o N @
. \\0"' \\ee \\oe \,@\ Ve
ing tendency. The results sug- oS, :\ :\v \f,\ \5\,‘&0 o
gest that NEXUS mitigates re- ¢ $0e® g™

ward misalignment by incorpo-
rating domain priors into the
decision-making process, while

e\\oe\e\\ve\ \\oe\ \,@\\ 0\\<,\ =)

) o\
PRt s\a\\‘@“
PSRN W A

Figure 7: NEXUS is competitive. In Seaquest, NEXUS out-
performs the baselines on both HNS and rescuing divers. In
still achieving good performance. Kangaroo, NEXUS approaches are better aligned to the actual
We provide further comparisons game objective.

to neuro-symbolic and interpretable RL methods in Section [E]

Robustness to game simplifications (Q4). Most RL algorithms struggle to adapt to even minor
variations in the environment (Delfosse et al., 2025)). Surprisingly, their performances drop even in
settings that simplify the game for humans, such as removing deadly threats like enemies and their
projectiles in Seaquest and Kangaroo. We assess whether NEXUS agents can generalize to such
simplified variants by training the agents on the standard versions of the games and evaluating on the
unseen simplifications. In Seaquest and Kangaroo we remove all threats, while in Crafter we remove
the need to drink water for survival. Figure [§] presents the results. As expected, the baselines suffer
substantial performance degradation under the simplifications in all three games.

All NEXUS variants exhibit distinct robustness characteristics. In Atari, only the symbolic variant
demonstrates improved robustness, with smaller performance drops in Kangaroo and even gains in
Seaquest, while the fully neural and neuro-symbolic variants show limited robustness. In Crafter all
NEXUS variants maintain or improve performance. We attribute this robustness to symbolic steering
of the meta-policy, which deactivates unnecessary skills such as handling enemies or drinking water.

Seaquest . Kangaroo Crafter
X 80 \ .
< 30 - Ll [!
3 S 60+ Lol |
& 20 2 n
o g 40 z
5 10 : '] ‘ 937
> = 204
a | | [
0 m i W ¢, I i
e\«\ Ol e\«@a e\\x@\ a\)(o\\«\ 0\\06 \‘\ee\l\ e\\o Ol e\‘“aaee\‘“e\ a\)(o\\«\ 0\\06 \‘\ee\l\ aea\-\o?'\ \‘\2\3‘3\\ o el . “Be‘!\
LN\ o\ D SISl N\ o\ o N S > Q) N
\\\\ N N \¢ P o) \~\ N \¢ P N Y \¢ R
< W o b W O N
Original Modified

Figure 8: Symbolic NEXUS remains practical on simplified games. While baseline performance
drops significantly, neuro-symbolic and fully symbolic NEXUS improve in the modified Seaquest
(left) and symbolic NEXUS shows smaller performance drops in modified Kangaroo (middle).

Under review as a conference paper at ICLR 2026

Influence of noisy detections
on NEXUS (Q5). While ob-
ject detection methods become
increasingly reliable, misdetec-
tions still happen. With the fol-
lowing ablation, we test whether
NEXUS is robust to misdetec-
tions and noise in the detec-
tions. For that, we incorporate
a 10% misdetection chance and
add gaussian noise with a stan-
dard deviation of 3px to each ob-
ject attribute during training. The
results are visualized in Figure 9]
We observe that both the neu-

Seaquest Kangaroo

3000

-
N
&}

=

2000

w
o

1000

Game Reward

Divers Rescued
Game Reward

Level Completion (%)

I Game Reward [Alignment Score 1 Original [ZZ1 Noisy

Figure 9: Effect of noisy detections. In Seaquest, the neural
and the symbolic meta-policy take a performance hit in both
reward and alignment score, while the NeSy variation is robust.

In Kangaroo, all approaches improve with the added noise.

ral and the symbolic approaches

lose performance when the noise is applied in Seaquest, while the neuro-symbolic meta-policy
remains reliable. Surprisingly, the experiments on Kangaroo indicate that all approaches increase
the level completion score and often times the game reward. Most notably, the neuro-symbolic
meta-policy is able to increase the level completion rate from ~70% to above 125% and always
finishes level one. Further details and results are available in Section B

On the choice of the meta-policy. Drawing from our findings, we can now offer recommendations
regarding the optimal design of the meta-policy. The purely neural meta-policy presents the simplest
training paradigm as it does not need a separate symbolic meta-policy, and it demonstrates strong per-
formance in terms of training environment reward. However, this approach sacrifices interpretability
and also performance when evaluated on simplified environments. In contrast, the purely symbolic
meta-policy necessitates an additional step of rule definition. Since this can be largely automated
with LLMs, this investment is often justified by its enhanced interpretability and robustness. Lastly,
the neuro-symbolic approach eases the definition of the additional rules, since they do not need to be
mutually exclusive. While the performance is often similar to the symbolic policy, it is less robust to
game simplification, but more robust to noise in the detection method. Considering these trade-offs,
we advocate for both, the purely symbolic and the neuro-symbolic meta-policies as effective choices,
offering a compelling balance of strong performance, interpretability, and generalizability.

Limitations. NEXUS relies on object-centric scene decoders that accurately provide the agent with
objects and their positions and sizes from raw images, which we assume to exist in this work. For
Atari games, multiple approaches are viable (Li et al.} 2017} [Cocatello et al, 2020} [Lin et al.}
Delfosse et all, [2023b)) with some achieving near-perfect sprite extraction (Smirnov et al., 2021).
For real-world data, recent advancements have significantly improved robustness, with models like
SAM2 reaching up to 90% J & F accuracy on zero-shot segmentation.

NEXUS requires a pre-defined description of the task, i.e. the game’s manual, for the reward
generation (as done in (2023))). This limits it’s applicability to tasks that can be explained
in language. Moreover, while the LLM-generated reward functions and meta-policies generally
capture valid semantics and are logically consistent, some manual adjustments to align them with the
implementation framework are still necessary. Prior work on LLM-based reward design (e.g.,
(2024), Ma et al| (2024)), Kaufmann et al.| (2024))) has documented recurring issues such as reward
misspecification, proxy objective selection, and over- or under-constrained preconditions, highlighting
the need for careful verification. NEXUS currently addresses these risks through manual inspection of
the generated code, but does not incorporate automated diagnostics or iterative improvements during
learning. Extending our framework by incorporating more refined mechanisms is a crucial direction
for enhancing robustness and scalability. Lastly, the presented approach is based on Q-learning and
thus currently limited to discrete action space, however, extension to continuous action spaces seems
viable by adopting an off-policy actor critic instead of e-greedy action selection (Lillicrap et al.|

2016; [Haarnoja et al}, [2018)).

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Interpretable and Hierarchical Reinforcement Learning. Interpretability in RL can be introduced
at various stages of the pipeline (Glanois et al.,2024), often by deriving symbolic state representations
from raw observations via object recognition or segmentation (Li et al., 2017} [Locatello et al., 2020;
Kirillov et al.| 2023} |Lin et al., 2020; Delfosse et al.,|2023b). Such object-centric states have enabled
interpretable policies through decision trees (Silva et al.l 2019; Likmeta et al., 2020; Delfosse et al.,
2024b), logic rules (Maes et al., [2012; |Akrour et al.| 2019; Delfosse et al.| 2023a)), parametric
functions (Luo et al.}|2024) or programmatic policies and trees (Verma et al.,[2019; [Anderson et al.,
2020; [Kohler et al.| 2024])). Neural and logical policies can also be efficiently combined (Shindo et al.}
2025). Complementary efforts introduce hierarchical decompositions, where high-level interpretable
policies select among low-level sub-policies, leveraging annotated task sketches (Andreas et al.,
2017) or (differentiable) symbolic planning (Leonetti et al., 2016; |Yang et al., 2018} [Jin et al.
2022; Lyu et al.l 2019} [Ye et al.| [2025). Hierarchical symbolic planning based on object-centric
representations has been shown to be beneficial for task transferability (James et al., [2022) and
robotics applications (Sharma et al.} 2020). Our work extends these directions by enforcing semantic
separation of skills, introducing a neurosymbolic meta-policy to balance interpretability and flexibility,
and integrating LLMs throughout the pipeline. Unlike prior approaches, we validate on challenging
Atari and Crafter environments.

Relation to the Options framework. HRL has been studied extensively, with the Options framework
(Sutton et al.[[1999)) as the most prominent formulation. NEXUS instantiates the Options framework
by performing intra-option learning, where multiple options are learned simultaneously from shared
off-policy experience, using sub-policies guided by option-specific reward functions and coordinated
by a neuro-symbolic meta-policy. Key differences arise in temporal abstraction and in the treatment
of initiation and termination conditions. Rather than executing an option until termination, the
meta-policy selects the active option at every time step, jointly determining activation and termination.
The logical rule set used to filter Q-values before selection serves as a generalized initiation set,
enabled by the object-centric encoding of observations. NEXUS’ key innovations to HRL are: (1)
disentangled neural options through specialized rewards and (2) interpretable meta-policies.

6 CONCLUSION

In this work, we present NEXUS, a hierarchical RL method that combines high interpretability on
meta-policy level with neural, low-level action execution. The evaluation suggest several advantages
of our approach. It learns disentangled sub-policies corresponding to identifiable skills, provides
interpretable and modular structures for inspection and intervention, reduces reward-hacking through
fine-grained control, and remains robust to environment simplifications where standard deep RL
agents fail. We also demonstrate that LLMs can be integrated into the NEXUS pipeline to generate
skill decompositions, reward functions, and symbolic meta-policies, enabling dynamic adaptation to
novel objects, evolving environments, or shifting task objectives. Future work should increase the
autonomy of policy adaptation by incorporating mechanisms to detect when new skills or meta-policy
updates are required, e.g. via causal world models (Yang et al.| 2025} Dillies et al.,2025)), which could
enable scaling to complex, open-ended environments. Updates to the skills or meta-policy could be
retrieved by re-querying an LLM. Additionally, future work should evaluate the actual interpretability
of NEXUS in a user-study. Overall, this work advances RL interpretability and modularity through
symbolic and object-centric reasoning while supporting human-in-the-loop control at the skill level,
offering a promising path toward transparent, adaptable, and aligned agents.

Reproducibility Statement. We have taken several measures to ensure reproducibility of our
results. Details of the proposed method, including model architectures, training procedures, evaluation
protocols, hyperparameters, implementation details and LLM interactions are provided in the main
paper and the appendix. Additionally, we release source code and configuration files to reproduce all
experiments, along with environment setup instructions.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Kamal Acharya, Waleed Raza, Carlos M. J. M. Dourado Jinior, Alvaro Velasquez, and Houbing Her-
bert Song. Neurosymbolic Reinforcement Learning and Planning: A Survey. IEEE Transactions
on Artificial Intelligence, 5(5):1939-1953, 2024.

Riad Akrour, Davide Tateo, and Jan Peters. Towards reinforcement learning of human readable
policies. In The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases: The 1st Workshop on Deep Continuous-Discrete Machine
Learning, 2019.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic Reinforcement
Learning with Formally Verified Exploration. In Neural Information Processing Systems, volume
abs/2009.12612, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches. In International Conference on Machine Learning (ICML), pp. 166175, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. In AAAI Conference
on Artificial Intelligence (AAAI), pp. 1726-1734, 2017.

Adria Puigdomenech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark.
In International Conference on Machine Learning (ICML), pp. 507-517, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341-379, 2003.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research (JAIR), 47:253-279, 2013.

Brett Daley and Christopher Amato. Reconciling A-Returns with Experience Replay. In Conference
on Neural Information Processing Systems (NeurIPS), 2019.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable and
Explainable Logical Policies via Neurally Guided Symbolic Abstraction. In Conference on Neural
Information Processing Systems (NeurIPS), 2023a.

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbacher, Dwarak Vittal, and Kristian Kersting.
Boosting Object Representation Learning via Motion and Object Continuity. Springer Nature
Switzerland, 2023b.

Quentin Delfosse, Jannis Bliiml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting. Ocatari:
Object-Centric Atari 2600 Reinforcement Learning Environments. Reinforcement Learning
Conference (RLC), 1:400-449, 2024a.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kersting.
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents. In Conference on
Neural Information Processing Systems (NeurIPS), volume abs/2401.05821, 2024b.

Quentin Delfosse, Jannis Bliiml, Fabian Tatai, Théo Vincent, Bjarne Gregori, Elisabeth Dillies, Jan
Peters, Constantin Rothkopf, and Kristian Kersting. Deep reinforcement learning agents are not
even close to human intelligence. arXiv preprint, 2025.

Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227-303, 2000.

Elisabeth Dillies, Quentin Delfosse, Jannis Bliiml, Raban Emunds, Florian Peter Busch, and Kristian
Kersting. Better decisions through the right causal world model. 2025.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, B. Pou, Ivan Masmitja, J. Foerster, and Mario Martin.
Simplifying Deep Temporal Difference Learning. arXiv.org, abs/2407.04811, 2024.

11

Under review as a conference paper at ICLR 2026

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu.
A survey on interpretable reinforcement learning. Machine Learning, 113(8):5847-5890, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML). Pmlr, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Rishi Hazra and Luc De Raedt. Deep Explainable Relational Reinforcement Learning: A Neuro-
Symbolic Approach. In European Conference on Machine Learning and Knowledge Discovery in
Databases (PKDD), pp. 213-229, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Jodo G.M. Aradjo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022. URL
http://Jmlr.org/papers/v23/21-1342 .htmll

Steven James, Benjamin Rosman, and George Konidaris. Autonomous Learning of Object-Centric
Abstractions for High-Level Planning. In International Conference on Learning Representations
(ICLR), 2022.

Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity of Al:
Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning. In AAAT
Conference on Artificial Intelligence (AAAI), pp. 7042-7050, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Timo Kaufmann, Jannis Bliiml, Antonia Wiist, Quentin Delfosse, Kristian Kersting, and Eyke Hiiller-
meier. Ocalm: Object-centric assessment with language models. arXiv preprint arXiv:2406.16748,
2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross B. Girshick.
Segment Anything. In IEEE International Conference on Computer Vision (ICCV), pp. 39924003,
2023.

Hector Kohler, Quentin Delfosse, R. Akrour, Kristian Kersting, and Philippe Preux. Interpretable
and Editable Programmatic Tree Policies for Reinforcement Learning. arXiv.org, abs/2405.14956,
2024.

Matteo Leonetti, Luca Iocchi, and Peter Stone. A synthesis of automated planning and reinforcement
learning for efficient, robust decision-making. Artificial Intelligence, 241:103-130, 2016.

Yuezhang Li, Katia P. Sycara, and Rahul Iyer. Object-sensitive Deep Reinforcement Learning. In
Global Conference on Artificial Intelligence (GCAI), pp. 20-35, 2017.

Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and
Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent and
general decision-making in autonomous driving. Robotics and Autonomous Systems, 131:103568,
2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR), 2016.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised Object-Oriented Scene Representation via Spatial

Attention and Decomposition. In International Conference on Learning Representations (ICLR),
2020.

12

http://jmlr.org/papers/v23/21-1342.html

Under review as a conference paper at ICLR 2026

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot
Attention. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455—
16468, 2022.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-End
Neuro-Symbolic Reinforcement Learning with Textual Explanations. In International Conference
on Machine Learning (ICML), 2024.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: Interpretable and Data-Efficient
Deep Reinforcement Learning Leveraging Symbolic Planning. In AAAI Conference on Artificial
Intelligence (AAAI), pp. 2970-2977, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=IEduRUO55F.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents (extended abstract). In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, 2018.

Francis Maes, Raphael Fonteneau, Louis Wehenkel, and Damien Ernst. Policy Search in a Space of
Simple Closed-form Formulas: Towards Interpretability of Reinforcement Learning. In Interna-
tional Conference on Discovery Science (DS), pp. 37-51, 2012.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A Lightning-Fast Benchmark for Open-Ended Rein-
forcement Learning. In International Conference on Machine Learning, volume abs/2402.16801,
2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Feichtenhofer.
Sam 2: Segment Anything in Images and Videos. In The Thirteenth International Conference on
Learning Representations, volume abs/2408.00714, 2025.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206-215, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv.org, abs/1707.06347, 2017.

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to
Compose Hierarchical Object-Centric Controllers for Robotic Manipulation. In Conference on
Robot Learning (CoRL), pp. 822-844, 2020.

Ibne Farabi Shihab, Sanjeda Akter, and Anuj Sharma. Detecting and mitigating reward hacking in
reinforcement learning systems: A comprehensive empirical study. arXiv preprint, 2025.

Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. Blendrl: A
framework for merging symbolic and neural policy learning. In The Thirteenth International
Conference on Learning Representations, 2025.

13

https://openreview.net/forum?id=IEduRUO55F

Under review as a conference paper at ICLR 2026

Andrew Silva, Taylor W. Killian, I. D. Rodriguez, Sung-Hyun Son, and M. Gombolay. Optimization
Methods for Interpretable Differentiable Decision Trees in Reinforcement Learning. arXiv:
Learning, 2019.

Dmitriy Smirnov, Michaél Gharbi, Matthew Fisher, Vitor Guizilini, Alexei A. Efros, and Justin M.
Solomon. Marionette: Self-Supervised Sprite Learning. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 5494-5505, 2021.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181-211,
1999.

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-Projected Pro-
grammatic Reinforcement Learning. In Conference on Neural Information Processing Systems

(NeurIPS), pp. 1572615737, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal Networks for Hierarchical Reinforcement Learning. In
International Conference on Machine Learning (ICML), pp. 3540-3549, 2017.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M. Mitchell. Read and
Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals. In Conference on
Neural Information Processing Systems (NeurIPS), 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024, 2024.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating Symbolic Planning
and Hierarchical Reinforcement Learning for Robust Decision-Making. In International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4860—4866, 2018.

Yupei Yang, Biwei Huang, Fan Feng, Xinyue Wang, Shikui Tu, and Lei Xu. Towards generalizable
reinforcement learning via causality-guided self-adaptive representations. In The Thirteenth

International Conference on Learning Representations, 2025.

Zihan Ye, O. Arenz, and Kristian Kersting. Learning from Less: Guiding Deep Reinforcement
Learning with Differentiable Symbolic Planning. arXiv, 2025.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding DQNs. In
International Conference on Machine Learning (ICML), pp. 1899-1908, 2016.

Chiyuan Zhang, O. Vinyals, R. Munos, and Samy Bengio. A Study on Overfitting in Deep Reinforce-
ment Learning. arXiv.org, abs/1804.06893, 2018.

A LLM USAGE

Beyond integration within the pipeline (cf. Section [G]), LLMs were used solely to improve text
readability and generate boilerplate code.

B MOTIVATION - INTERPRETABLE POLICY SIZES

We visualize the actual logic policies retrieved from existing interpretable RL methods in Listing
and Listing[2] While these policies have maximum transparency, they are difficult to interpret for
humans due to the massive size. NEXUS on the other hand presents a simple solution by incorporating
hierarchical abstraction and thus allowing for compact and truly interpretable policies, cf. Figure[5]

14

Under review as a conference paper at ICLR 2026

def play(state):
if state .Ball_0.prev_x <= 1.24:
if state .Ball 0.y — state .Enemy_O.prev_y <= —0.41:
if state .Ball_0.x — state .Ball_0.prev_x <= 0.09:
if state .Player_O.y — state .Enemy_0.y <= -0.91:
if state .Ball 0.x <= 0.73:
if state .Player_0.y — state .Ball_0.x <=-1.20:
return "LEFT"
else :
return "RIGHT"
else :
return "NOOP"
else :
if state .Ball_0.x <= -0.05:
return "NOOP"
else :
if state .Player_0.y — state .Player_O.prev_y <=-0.19:
return "NOOP"
else :
if state .Ball_O.prev_x — state .Ball_0.prev_y <=-0.38:
return "NOOP"
else :
if state .Ball_0.x — state .Ball_0.prev_x <=-0.09:
return "RIGHT"
else :
return "RIGHT"
else :
return "RIGHT"
else :
if state .Ball_0.x — state .Enemy_0.y <= —1.46:
if state .Player_0.y — state .Ball_0.prev_x <=-0.92:
return "LEFT"
else :
return "RIGHT"
else :
if state .Player_0.y — state .Ball_0.y <=-0.63:
if state .Ball_O.prev_x <= —-0.05:
return "LEFT"
else :
if state .Player_0.y — state .Ball_0.y <=-0.80:
return "LEFT"
else :
if state .Ball_0.prev_x <= 0.80:
return "LEFT"
else :
return "NOOP"
else :
if state .Ball_0.x <=-0.07:
if state .Ball_O.prev_y <= -0.15:
if state .Ball_0.prev_y <= -1.96:
return "LEFT"
else :
return "LEFT"
else :
return "NOOP"
else :
if state .Ball_ 0.y <= 1.24:
if state .Player_0.y — state .Ball_0.y <=-0.48:

15

Under review as a conference paper at ICLR 2026

if state .Ball_0.prev_x <= 0.68:
return "NOOP"
else :
return "NOOP"
else :
if state .Ball_0.x <= 0.54:
if state .Player_0.y <=-0.82:
return "NOOP"
else :
if state .Enemy_0.y — state . Enemy_O.prev_y <=
—-0.09:
return "RIGHT"
else :
return "RIGHT"
else :
if state .Ball_0.x — state .Ball_0.y <=-0.21:
return "NOOP"
else :
return "RIGHT"
else :
if state .Ball_0.y <= 1.54:
return "NOOP"
else :
return "LEFT"
else :
if state .Player_0.y — state .Ball_ 0.y <=-0.54:
if state .Player_0.y — state .Ball_0.y <=-0.88:
return "LEFT"
else :
if state .Ball_0.y <=-1.40:
return "RIGHT"
else :
return "NOOP"
else :
if state .Enemy_0.y — state .Enemy_0.prev_y <= 0.93:
return "RIGHT"
else :
return "LEFT"

Listing 1: Pong policy of SCoBots (Delfosse et al., 2024b)

up_air (X):—oxygen_low(B).

up_divers_collected (X):— all_divers_collected (D).
fire_left (X):—same_depth_enemy(P,E),visible_enemy(E), facing_left (P),right_of_enemy(P,E).
fire_right (X):—same_depth_enemy(P,E),visible_enemy(E), facing_right (P),left_of_enemy(P,E)

left_aim (X):-right_of_enemy(P,E), facing_right (P),same_depth_enemy(P,E),visible_enemy(E).
right_aim (X):-left_of_enemy(P,E), facing_left (P),same_depth_enemy(P,E),visible_enemy(E).
down_aim(X):—higher_than_enemy(P,E),visible_enemy(E).
up_aim(X):—deeper_than_enemy(P,E),visible_enemy(E).
up_evade(X):—close_by_enemy(P,E),same_depth_enemy(P,E),visible_enemy(E).
down_evade(X):—close_by_enemy(P,E),same_depth_enemy(P,E),visible_enemy(E).
up_evade(X):—close_by_missile (P,M),same_depth_missile(P,M), visible_missile (M).
down_evade(X):—close_by_missile(P,M),same_depth_missile(P,M), visible_missile (M).
left_to_diver (X):—right_of_diver (P,D),close_by_diver (P,D), visible_diver (D).
right_to_diver (X):— left_of_diver (P,D),close_by_diver (P,D), visible_diver (D).

up_to_diver (X):—deeper_than_diver (P,D), close_by_diver (P,D), visible_diver (D).
down_to_diver(X):—higher_than_diver (P,D), close_by_diver (P,D), visible_diver (D).

Listing 2: Seaquest policy of NUDGE (Delfosse et al., 2023a)

16

Under review as a conference paper at ICLR 2026

logits_noopl = —0.56xy_agent_1%%2 — 0.38xy_agent_1xy_agent_2 — 0.087xy_agent_1x
y_opponent_1 — 0.16xy_agent_1xy_opponent_2 — 0.76xy_agent_1xy_opponent_3 — 0.51x
y_agent_lxy_opponent_4 — 0.54xy_agent_1 — 0.24xy_agent 2xx2 — 0.073xy_agent_2 +
0.27+y_agent_4=x2 + 0.55xy_agent_4 — 0.078xy_opponent_1:%2 — 0.33:xy_opponent_1:
y_opponent_2 — 0.2xy_opponent_1 — 0.35xy_opponent_2:#x2 — 0.5xy_opponent_2 — (.34
y_opponent_3:x2 — 0.45xy_opponent_3:xy_opponent_4 — 0.32xy_opponent_3 — 0.15:x
y_opponent_4sx2 — 0.19xy_opponent_4 + 1.1

logits_noop2 = —0.074xy_agent_1=xy_opponent_2 + 0.059xy_agent_1xy_opponent_3 — 0.097x
y_agent_4 — 0.16xy_opponent_1:xy_opponent_2 — 0.18xy_opponent_2:#+2 — 0.27x
y_opponent_2 + 0.063:y_opponent_4

logits_upl = 0.23xy_agent_I*%2 + 0.59xy_agent_1xy_agent_2 + 0.4xy_agent_2#%2 + 0.11x
y_agent_2 — 1.5xy_agent_4=%2 — 3.6xy_agent_4 + 0.068xy_opponent_3 + 1.1

logits_downl = 0.09xx_ball_3 + 0.12«x_ball_4 — 0.21xy_agent_1=%2 + 0.12xy_agent_1=
y_opponent_1 + 0.27xy_agent_1lxy_opponent_2 — 0.43xy_agent_1xy_opponent_3 — 0.28x
y_agent_lxy_opponent_4 + 0.13xy_agent_2 + 0.14xy_agent_4#x2 + 0.43xy_agent_4 +
0.087:xy_ball_3 + 0.15xy_ball_4 + 0.14xy_opponent_1:2 + 0.6xy_opponent_1:
y_opponent_2 + 0.61xy_opponent_1 + 0.65xy_opponent_2x%2 + 1.1xy_opponent_2 — 0.2:x
y_opponent_3:#%2 — 0.26xy_opponent_3:y_opponent_4 — 2.8xy_opponent_3 — 0.085:
y_opponent_4sx2 — 0.14xy_opponent_4 — 2.3

logits_up2 = 0.063xx_ball_4 — 0.078+y_agent_1 + 0.18«y_agent_2#x2 + 0.52xy_agent_2:x
y_agent_3 + 0.35xy_agent_2xy_opponent_1 + 0.29:xy_agent_2xy_opponent_2 + 0.26:
y_agent_2 + 0.38«y_agent_3=x2 + 0.51xy_agent_3xy_opponent_1 + 0.42xy_agent_3=
y_opponent_2 + 1.6xy_agent_3 — 8.2xy_agent_4 — 0.085xy_ball_3 + 0.17xy_opponent_1::2
+ 0.28xy_opponent_1:y_opponent_2 + 0.25:y_opponent_1 + 0.11xy_opponent_2:##2 +
0.15%y_opponent_2 — 0.074x=y_opponent_3 + 0.26 logits_down2 = —0.052:x_ball_1 — 0.068:
x_ball_3 — 0.093%x_ball_4 + 0.18xy_agent_1 — 0.17+y_agent_2#%2 — 0.49xy_agent_2:x
y_agent_3 — 0.33xy_agent_2xy_opponent_1 — 0.27+y_agent_2xy_opponent_2 — 0.39:x
y_agent_2 — 0.35«y_agent_3x%2 — 0.48+y_agent_3:xy_opponent_1 — 0.4xy_agent_3:
y_opponent_2 — 0.38xy_agent_3 + 0.15xy_agent_4sx2 + 0.54xy_agent_4 — 0.06xy_ball_1 —
0.064xy_ball_3 — 0.11xy_ball_4 — 0.17xy_opponent_1:#:%2 — 0.28+y_opponent_1:
y_opponent_2 — 0.58«y_opponent_1 — 0.13xy_opponent_2x2 — 0.38:xy_opponent_2 + 2.2
y_opponent_3 — 0.052xy_opponent_4 — 3.6

action_noop = [exp(logits_noopl) + exp(logits_noop2)] / sum(exp(logits))
action_up = [exp(logits_upl) + exp(logits_up2)] / sum(exp(logits))
action_down = [exp(logits_downl) + exp(logits_down2)] / sum(exp(logits))

Listing 3: Pong policy of INSIGHT (Luo et al.| 2024)

C HIERARCHICAL PQN ALGORITHM

The complete algorithm for hierarchical PQN with a neural meta-policy is provided in Algorithm 2]

D IMPLEMENTATION DETAILS

Setup. We base our implementations on CleanRL (Huang et al.,[2022) and PureJaxRL (Lu et al.},
2022)), adapting them to object-centric inputs by replacing convolutional encoders with lightweight

MLPs for feature extraction. Hyperparameters are listed in Table[T]and Table 2] and remain largely
consistent with the original implementations, except for an increased number of parallel environments
enabled by the efficiency of JAX-based code.

The exploration parameter € was selected via a brief hyperparameter sweep in the range [1,0.001],
using final test return as the selection criterion.

Each experiment is run with three random seeds (0, 1, 2) to ensure reproducibility. Reported plots
include the corresponding standard deviation.

All experiments were conducted on a single NVIDIA Tesla V100-SXM3-32GB-H GPU on an
NVIDIA DGX Server (Version 5.1.0) with CUDA 12.4.

17

Under review as a conference paper at ICLR 2026

Algorithm 2 Hierarchical PQN

Require: Update period U, number of parallel environments E, number of skills N, exploration
probability e

Ensure: Learned Q-network parameters ¢n}nN:1, Pmeta

1: Initialize Q-network parameters {¢, } 1, @meta

2: Sample initial states s§ ~ P, fore € {0,...,F — 1}

3:t+0

4: for each episode do

5: foralle € {0,...,F — 1} in parallel do
6: Sample skill ¢ ~ Tmeta
7
8

With probability e: af ~ Unif, else af ~ 7f
Sample rewards 1§ ~ Pr(s¢,af), skill rewards r;""" ~ Pg (s, af) for all n

9: Sample next state s§, ; ~ Ps(sf,af)
10: t+—t+1
11: end for
12: if ¢t mod U = 0 then
13: Compute meta \-returns Rf\’Fl to Rf\)th forall e
14: Compute skill A-returns Ri’,?—l to Ri’;l_U foralle, n
15: for number of epochs do
16: for number of minibatches do
17: Sample minibatch B of size b < EU from {(t — U,0),...,(t—1,FE — 1)}
18: Update meta:

o) .\ 2
¢meta < Gmeta T ?;vqﬁmm Z (Rg\,q— - Q‘bme(a(szf'))

(3,7)EB

19: Update skills:

o j,m 7,n 2
On < but 5 Vo, D (R-;;T—qun(s;»)) . Vne{l,... N}

(3,7)EB
20: end for
21: end for
22: end if
23: end for

18

Under review as a conference paper at ICLR 2026

00000300
L

(a) Crafter (b) Seaquest (c) Kangaroo
Figure 10: The evaluation environments: Crafter, Seaquest and Kangaroo.

We provide an anonymized code repositoryﬂ that includes all necessary code and config files to
reproduce the results from the experiments section, including plots.

D.1 ENVIRONMENTS

Screenshots of the environments Crafter, Seaquest and Kangaroo are available in Figure 10}

D.2 EVALUATION METRICS

We empirically evaluate agent performance using three metrics: (1) Skill Returns to test whether the
skills were learned successfully, (2) Human-Normalized Score (HNS) for absolute performance
relative to human and random baselines and (3) Aligned Environment Goal Scores that measure
performance based on the main goals described in the game’s manual.

Human Normalized Score. Human-Normalized Score standardizes agent performance across
Atari environments by accounting for differences in reward scales (Mnih et al, 2015} [Machado et al.,

. Given the average agent score A, human score H, and random score R, HNS is defined as:
A—R

|H — R

A value of 1.0 indicates human-level performance, values greater than 1.0 indicate superhuman

performance, and values below 0 denote sub-random behavior. We adopt the human and random
baselines from Badia et al.| (2020), derived from professional human play.

HNS =

Aligned Environment Goal Scores. Environment reward signals may not always align with the
intended task objectives and can be susceptible to reward hacking. In such cases, agents may learn
high-reward behaviors that are non-intuitive and deviate from human-like solutions. To better capture
progress toward the actual environment goals, we define two aligned goal-based metrics grounded in
the objectives stated in the game manuals.

For Seaquest, the goal is to rescue as many divers as possible; for Kangaroo, it is to help the mother
kangaroo reach and rescue her baby, located on the topmost platform. Accordingly, we track the
number of divers retrieved and the number of platforms reached, respectively.

E ADDITIONAL RESULTS

To assess the generality of NEXUS, we extend our evaluation to three additional Atari environments:
Pong, Breakout, and Freeway. Skill learning curves for these environments are shown in Figurelm

2https ://anonymous.4open.science/r/symbolic_options-302C/

19

https://anonymous.4open.science/r/symbolic_options-302C/

Under review as a conference paper at ICLR 2026

Table 1: Atari Hyperparameters

Parameter PQN(-based) PPO
Total Timesteps 5 x 107 5 x 107
Num Environments 1024 128
Num Steps per Update 128 128
Learning Rate 1.0 x 107% 2.5 x 1074
Max Grad Norm 10 0.5
Discount Factor () 0.99 0.99
GAE Lambda () 0.65 (0.5 with learned meta) 0.95
GAE Meta Lambda (A\) 0.9 -

Num Epochs 5 2

Num Minibatches 128 4
Hidden Size 64 -

Num Layers 3 -
Normalization Layer Norm -

Clip € - 0.2
Entropy Coef - 0.01
Value Function Coef - 0.5
Anneal LR False True
e-Start/End/Decay 1.0/0.1/0.3 -

Meta e-Start/End/Decay

1.0/0.001/0.3

Table 2: Crafter Hyperparameters

Parameter PQN(-based)
Total Timesteps 1 x 10°
Num Environments 512

Num Steps per Update 128
Learning Rate 3.0 x 1074
Max Grad Norm 0.5
Discount Factor () 0.99

GAE Lambda () 0.5

GAE Meta Lambda (\) 0.5

Num Epochs 4

Num Minibatches 4

Hidden Size 512

Num Layers 1
Normalization Layer Norm
Anneal LR True

1.0/0.005/0.1
1.0/0.005/0.1

e-Start/End/Decay
Meta e-Start/End/Decay

while comparisons to baseline agents and ablations—evaluated via human-normalized scores—are
presented in Figure [[2] Note that these games are generally less complex than Kangaroo and
Seaquest, and the learned skills are not strictly necessary to achieve the environment goals. In
particular, the skills "Move Up" and "Avoid Crash" in Freeway largely correspond to atomic actions
such as forward or noop. As such, a simple fixed meta-policy operating directly on primitive
actions could suffice for solving this task.

Neuro-symbolic RL baselines. For improved comparison, we also provide baseline scores of
existing interpretable and neuro-symbolic methods on both the default games (cf. Figure[I3a) and
the simplifications (cf. Figure . The methods are NUDGE (Delfosse et al.,[2023a) and BlendRL
(Shindo et al.l|2025). We also provide a tabular overview of our results and also add the reported
scores from SCoBots (Delfosse et al.,|2024b)) (game simplification scores from Delfosse et al.| (2025)))
in Table[3]

20

Under review as a conference paper at ICLR 2026

Track Ball Return Ball
400 80 600
60 500
300
2 400
200 300
20
200
100
0 100
0 -20 0
0 1 2 3 4 5 0 1 2 3 4 5 4
Steps le7 Steps le7
Track Ball Return Ball
1500
100
1250
1000 80
750 60
500 a0
250 20
0 0
0 1 2 3 4 5
Steps le7

Evade Crash
1500

1250

2 1000

—— PPO (baseline)

—— PQN (baseline) HPQN (baseline)

—— NEXUS (neural)

—— NEXUS (symbolic)

Defensive Positioning

1 2 3 4 5

Steps le7

Defensive Positioning

le7

0.4 0.6 0.8 1.0

—— NEXUS (nesy)

Figure 11: NEXUS successfully learns skills in Pong (top), Breakout (middle), and Freeway (bottom).

Pong Breakout Freeway
8 0.8
0.6
[%] ll) w
=2 =z 4 =
B I i ﬁ i B ' I ' I I
0.2
0.0
N o} N\ 3 N \ al N
I T AR L e S e
R \‘,z\ R \)c) \,,\,«‘ *“ o \v'o o \)c)\x\ \ql‘(\ *\3 N \“3 o \)9\‘\ \,;p“ *\3
I I R @ o © R R @ o W ®O T gt o o o «

Figure 12: NEXUS achieves performance comparable to baseline methods across the three evaluated

environments.

F NoIsy DETECTIONS

We evaluate the robustness of NEXUS on noise in the object detections both during training and
testing. We conduct experiments with 5% and 10% misdetection rate. To emulate the effect of a
kalman filter estimating the objects movements during each step, instead of zeroing out the detected
objects, we keep the previous time step detections. On top of that, we add gaussian noise with a
standard deviation of 3 at each attribute. We show the results with the noisy detection during training
in Figure[T4] Experiencing noise only during testing is evaluated in Figure [I3}

Seaquest Kangaroo :\S
T 125 ~
T 5 ° c
0 ® 8000 i
\’E 3000 2 3 "ﬁ \ 0o g
% 158 ag) 6000 5 @
o 2000 2 5
g i | 10 o QE, 4000 50 g
1000 -
© [i , 5 °>" © 2000 | i 25 E
© 50 o]
ol 0
]
5 RN \g\zﬁ\m@\ ‘:\\ Qe D AP \\‘fe\\\fe\\me\ & \\c,\eg;\ 2

a PR '= e
‘9 \SRg\st \Sg\st
2% “Q‘\Qeg} *\‘c’ @ % “d‘;&&% \P‘:’

(a) Comparison to other interpretable RL methods on
default environments.

Figure 13: Additional neuro-symbolic RL baselines.

21

Seaquest

Kangaroo

N
& 3 8

Divers Rescued
3

ol [

\\(\e\e\\& 569500 0B e\‘a\‘\e?‘\
e \vﬂs‘“ RS
«° Q\\ Qxx u&e RS e

Original

S
8

Level Completion (%)
«
3

0+
2\“\2 -

RN ©
o \\ wx\ffga\‘ﬁ»\"w%\ "“e*"c’
\\

== Modified

(b) Comparison to other interpretable RL methods on

simplified games.

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison on Seaquest and Kangaroo

Algorithm Seaquest Kangaroo
8 Default Divers Collected implification Divers Collected Default Level C (%) implification Level C (%)
PPO 9153 £ 825 67 =0.0) 0.0£0.0 @7£03) 750.0 £ 450.0 (333 £ 0.0) 0.0 £0.0 (333 £ 0.0)
PQN 14283 + 232.1 (5.1+£32) 0.0+ 0.0 (3.0+2.8) 4300.0 -+ 4833.2 (33.3 £ 0.0) 200.0 + 141.4 (222+15.7)
NEXUS (neural) 2887.6 + 322.4 (11.2£0.3) 0.0+ 0.0 (43 +25) 2033.3 + 899.4 (66.7 % 0.0) 666.7 + 94.3 (40.7 £ 10.5)
NEXUS (symbolic) | 2697.1 +77.7 (13.4 £ 0.1) 18533 + 2621.0 (21.0+11.8) 1042.9 + 454.9 (65.0 = 3.6) 1346.5 + 1042.9 (55.0 £ 15.6)
NEXUS (nesy) 2637.1 + 309.9 (10.4 £ 0.7) 0.0 £ 0.0 (3.7+0.5) 83334943 (70.4 +5.2) 400.0 £ 141.4 (33.3 £ 0.0)
NUDGE 46.7 £ 18.9 (4.1+0.6) 1133+ 813 (73 +3.7) 1522.2 4+ 540.5 (110.0 £ 14.1) 1966.7 + 2373 (101.7 £2.4)
BlendRL 21389 £ 13358 (15.8+7.0) 24755.6 240364 (55.6 + 35.1) 1955.6 + 724.9 (101.7 £ 2.4) 1944.4 +245.5 (118.3 £ 22.5)
SCoBots 1055.3 + 272.6 (-£-) 0.0 £ 0.0 (-+-) 2776.6 + 1332.4 (£-) 0.0 £ 0.0 (-£-)
Seaquest Kangaroo ;\3 Seaquest Kangaroo ;\3
T I - <
? 03 150 ¢ T @ P 4000 125 €
© 28 2 © 28 2
H 0 3 ° H 0w 2 3000 1009
] U@ =] [2
3 " o 3 -1 [}
P v e £ P w g 2000 £
£ £ £ £
[$s v [$s v
(U] a9] o a© 7]
0 H 0 0 H
SN S} 2 ® O) - S S} 2 ® O 2 -
K * o 2 w® S o o N « - o o 2~ w® 3 o o ° «
«F @g\x" W «F ‘\Y}\ﬁ W «F ﬁd\"’ W «F ‘\Y}\ﬁ W
BB GameReward NI Alignment Score [Original ~ ZZI Noisy BB GameReward NI Alignment Score [Original ~ ZZI Noisy

(a) 5% misdetection rate

(b) 10% misdetection rate

Figure 14: Misdetection and noise applied during both training and evaluation.

Seaquest
B
(]
3
]
o
]
£
©
o
N © N
«© @ *‘(\“0\\ \ﬁ\(\,ﬁl
&j\“"' d\ﬁ\(’ W
W

I Game Reward

Divers Rescued

[Alignment Score

Game Reward

0

O
«
o
N

@
o

3 original

Kangaroo

00\\0

N

s’

« o\
o)

o

ZZ3 Noisy

(a) 5% misdetection rate

Level Completion (%)
Game Reward

Seaquest Kangaroo 9

3

- [

[c

Bl 2

0w 3 °

U@ 2

43 %

oo]

[£ (v]

> ® =

av g

o]

o 0O & IR C R -l

o e o FCOMEC d\f’\
& W S W

B Game Reward [Alignment Score [Original [ZZ1 Noisy

(b) 10% misdetection rate

Figure 15: Misdetection and noise applied only during evaluation.

22

Under review as a conference paper at ICLR 2026

G LLM INTERACTION

We outline the procedure for leveraging an LLM to generate task-relevant skills, associated reward
functions, and a fixed meta-policy rule set. The LLM is conditioned on the game’s original manual
and structured type information describing the object-centric observations available to the agent.

Initially, the LLM is queried for a set of skills and corresponding reward functions. These outputs
can be manually refined before querying the LLM for a meta-policy function that selects which skill
to execute. Prior prompts and responses are retained to maintain conversational context, consistent
with standard chat behavior. We provide the entire prompt for the game Kangaroo in Figure[T6] The
prompt for Seaquest was generated equivalently.

Unedited responses from GPT-40 (via chatgpt.com on 21-07-2025) for the games Kangaroo and
Seaquest are included in Figure [[7}-Figure [20]

For Crafter, we used the LLM to generate the list of important tasks, as well as the symbolic meta-
policy function. Prompt and answers are available in Figure 21] and Figure 22] Rewards for the
specific skills were crafted manually.

Final implementations were modified to align with our framework constraints (e.g., JAX compatibility,
indexing conventions). For full details, please refer to the code repositor

3https ://anonymous.4open.science/r/symbolic_options-302C/

23

https://anonymous.4open.science/r/symbolic_options-302C/

Under review as a conference paper at ICLR 2026

You are a RL expert and develop a hierarchical agent to play the atari game Seaquest. Below, I have provided

a detailed description of the game. Your task is to come up with a short list of essential skills (3-4) that are
needed to solve the game.

Game Description:

<Atari game manua]ﬂ>

Think about what the main goal of this game is, then come up with a list of the required skills to solve the
game and provide it in the output. Finally, create a pseudo reward function for each of these skills that a RL
agent can use to learn the skills.

The reward functions are called at each step in the environment and retrieve the current and previous
symbolic observation of the game. Here is the type definition for the observation:

class KangarooObservation(NamedTuple):

player_x: chex.Array

player_y: chex.Array

player_o: chex.Array
platform_positions : chex.Array
ladder_positions : chex.Array
fruit_positions : chex.Array
bell_position : chex.Array
child_position : chex.Array
falling_coco_position : chex.Array

monkey_positions: chex.Array
coco_positions : chex.Array

Each skill and it’s reward function should be as simple as possible that achieves the wanted behavior.
Provide: List of skills and description, pseudo-code reward functions for each skill.

“copied entirely from

https://www.atariage.com/manual_html_page.php?
SoftwareLabelID=923

You are now creating a function that decides at each time step in the game, which skill to choose. The skills

arefl}
* Obstacle Avoidance
* Vertical Navigation
¢ Fruit Collection

* Goal Reaching (Child Rescue)

The function again has access to the current and previous observation.
Think about at what point in the game you want to use which skill, then provide the function.

“copied from answer to previous prompt, see Figure

Figure 16: Subsequent prompts (chat-function) to generate a skill-list and corresponding reward

functions (top) and meta-policy function (bottom) for the game Kangaroo.

24

https://www.atariage.com/manual_html_page.php?SoftwareLabelID=923
https://www.atariage.com/manual_html_page.php?SoftwareLabelID=923

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Kangaroo (Atari 2600)

A hierarchical RL agent for Kangaroo can be built upon the following four primitive skills:

1. Obstacle Avoidance
Description: Avoid contact with apples or monkeys via dodging or punching.
Reward Function:

def reward_obstacle_avoidance (obs, prev_obs):
collided = any(np.array_equal (obs.player_x, x) and
np. array_equal (obs. player_y, y)
for (x, y) in obs. apple_positions + obs.monkey_positions)
return —1.0 if collided else 0.0

2. Vertical Navigation
Description: Climb ladders to ascend levels and progress.
Reward Function:

def reward_vertical_navigation (obs, prev_obs):
dy = prev_obs.player_y — obs.player_y
return 0.1 if dy >0 else 0.0

3. Fruit Collection
Description: Collect fruits and optionally ring a bell to regenerate them.
Reward Function:

def reward_fruit_collection (obs, prev_obs):

reward = 0.0

if len(obs. fruit_positions) < len(prev_obs. fruit_positions):
reward += 0.5

if np.array_equal (obs. player_x, obs. bell_position [0]) and \
np. array_equal (obs. player_y, obs. bell_position [1]) :
reward += 0.2

return reward

4. Goal Reaching (Child Rescue)
Description: Reach the child’s location to complete the level.
Reward Function:

def reward_reach_child (obs, prev_obs):
return 1.0 if np.array_equal (obs.player_x, obs. child_position [0]) and \
np. array_equal (obs. player_y, obs. child_position [1]) else 0.0

These modular rewards enable a high-level controller to invoke appropriate behaviors depend-
ing on context.

Figure 17: Generated reward functions for Kangaroo by GPT4-O

25

Under review as a conference paper at ICLR 2026

Kangaroo Skill Selection Function

To select appropriate skills, the agent follows a fixed priority:

1. Obstacle Avoidance: If any apple or monkey is in close proximity.
2. Goal Reaching: If the player is near the child on the top platform.
3. Fruit Collection: If fruit is visible and reachable.

4. Vertical Navigation: Default behavior to explore or ascend.

SKkill Selector Function:

def

select_skill (obs, prev_obs):
player_pos = np.array ([obs.player_x, obs.player_y])

def in_danger():
danger_entities = obs. apple_positions + obs.monkey_positions
return any(np. linalg .norm(player_pos — np.array ([x, y])) <=1.0
for (x, y) in danger_entities)

def near_child () :
child_pos = np. array ([obs. child_position [0], obs. child_position [1]])
return np. linalg .norm(player_pos — child_pos) <= 1.5

def fruit_visible ():
return any(abs(y — obs.player_y) <=1 and
abs(x — obs.player_x) <=3
for (x, y) in obs. fruit_positions)

if in_danger():

return obstacle_avoidance
elif near_child ():

return goal_reaching
elif fruit_visible ():

return fruit_collection
else :

return vertical_navigation

This rule-based selection policy balances safety, progression, and reward acquisition, enabling
effective hierarchical control.

Figure 18: Generated fixed meta-policy function for Kangaroo by GPT4-O

26

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Seaquest (Atari 2600)

To solve Seaquest effectively, a hierarchical RL agent must master the following four core
skills:

1. Avoid Obstacles (Survival Navigation)

Description: Avoid collisions with sharks, enemy submarines, missiles, and the patrol sub,
both underwater and when surfacing.

Reward Function (pseudo-code):

def avoid_obstacles_reward (prev_obs, curr_obs):
if player_collided (curr_obs):
return —1.0
return 0.0

def player_collided (obs):
return check_collision_with_sharks (obs) or \
check_collision_with_subs (obs) or \
check_collision_with_missiles (obs) or \
check_collision_with_surface_sub (obs)

2. Collect Divers
Description: Navigate to and collect divers to accumulate score and progress.
Reward Function (pseudo-code):

def collect_divers_reward (prev_obs, curr_obs):
prev_count = count_nearby_divers (prev_obs)
curr_count = count_nearby_divers (curr_obs)
return float (prev_count > curr_count) * 1.0

def count_nearby_divers (obs):
return sum(is_near(obs.player_x, obs.player_y, dx, dy)
for dx, dy in obs. diver_positions)

3. Surface Strategically

Description: Surface safely when carrying six divers or when oxygen is low, to drop off
divers and replenish oxygen.

Reward Function (pseudo-code):

def surface_reward (prev_obs, curr_obs):
surfaced_now = prev_obs.player_y > 0 and curr_obs.player_y ==0
has_6_divers = num_divers_collected (prev_obs) ==
low_oxygen = prev_obs.oxygen < OXYGEN_THRESHOLD
if surfaced_now and (has_6_divers or low_oxygen):
return 2.0 if has_6_divers else 0.5
return 0.0

def num_divers_collected (obs):
return 6 — sum(is_valid (dx, dy) for dx, dy in obs. diver_positions)

4. Eliminate Threats (Combat)

Description: Fire missiles to destroy sharks and enemy submarines, clearing paths and
increasing score.

Reward Function (pseudo-code):

def eliminate_threats_reward (prev_obs, curr_obs):
num_enemies_prev = count_enemies(prev_obs)
num_enemies_curr = count_enemies(curr_obs)
return float (num_enemies_curr < num_enemies_prev) * 0.5

def count_enemies(obs):
return sum(is_valid (dx, dy) for dx, dy in obs. shark_positions) + \
sum(is_valid (dx, dy) for dx, 2l in obs. sub_positions)

Under review as a conference paper at ICLR 2026

Seaquest Skill Selection Function

Here is a skill selection function that chooses the appropriate control skill at each time step
based on game context.

Skill Selection Function (pseudo-code):

def select_skill (prev_obs, curr_obs):
Skill names
AVOID = "obstacle avoidance"
COLLECT = "collect_divers"
SURFACE = "surface_strategically "
COMBAT = "eliminate_threats"

=== Utility Functions ===
def is_threat_near (obs: SeaquestObservation) —> bool:
return check_collision_with_sharks (obs) or \
check_collision_with_subs (obs) or \
check_collision_with_missiles (obs) or \
check_collision_with_surface_sub (obs)

def num_divers_collected (obs: SeaquestObservation) —> int:
return 6 — sum(is_valid (x, y) for x, y in obs. diver_positions)

def low_oxygen(obs: SeaquestObservation) —> bool:
return obs.oxygen < 20 # adjustable threshold

def at_surface (obs: SeaquestObservation) —> bool:
return obs.player_y ==0

=== Skill Selection Logic ===
if is_threat_near (curr_obs):
return AVOID

if (num_divers_collected (curr_obs) == 6 or low_oxygen(curr_obs)) and \
not at_surface (curr_obs):
return SURFACE

if has_nearby_enemies(curr_obs): # e.g. visible on screen in front
return COMBAT

return COLLECT

Explanation of Logic:
* Obstacle Avoidance is triggered immediately when any nearby threat is detected.

» Surface Strategically is invoked if the agent has collected 6 divers or is low on
oxygen, and is not already at the surface.

¢ Eliminate Threats is used when enemies are visible but not an immediate threat.
* Collect Divers is the default skill when no critical conditions are active.

This rule-based selection mechanism allows a high-level controller to choose among primitive
skills in a safety-first manner while still enabling reward-driven exploration and progress.

Figure 20: Generated fixed meta-policy for Seaquest by GPT4-O

28

Under review as a conference paper at ICLR 2026

You are a reinforcement learning specialist. The following is the basic description of the game Crafter, which
you are trying to solve.

Crafter is a game about exploring dungeons, mining, crafting and fighting enemies. The player can move in
the four cardinal directions using WASD and can interact using SPACE. Interacting can cause the player to
attempt to mine (a block), attack (a creature), drink (water or from a fountain), or eat (fruit).

The player has the ’intrinsics’ health, hunger, thirst and energy. Hunger, thirst and energy will naturally
decrease and must be replenished by eating, drinking and sleeping respectively. Health will recover when
hunger, thirst and energy are non-zero and will decrease if any of these are 0. If the players health falls
beneath O they will die and the game will restart.

First, come up with 5 basic skills that can be used to solve the game. Only provide necessary skills without
duplications. After that, please come up with a simple function (pseudo code) that gets the game-state as
input and returns an integer deciding on the active skill to select in the current state. The skills correspond to
the ones that you chose before. Try to solve the game as far as possible.

The game-state looks like this:

@struct. dataclass

class Inventory :
wood: int =0
stone: int =0
coal: int =0
iron: int =0
diamond: int =0
sapling: int =0
wood_pickaxe: int =0
stone_pickaxe: int =0
iron_pickaxe: int =0
wood_sword: int = 0
stone_sword: int =0
iron_sword: int =0

@struct. dataclass

class Mobs:
position : jnp.ndarray
health : int
mask: bool
attack_cooldown: int

@struct. dataclass

class EnvState:
map: jnp.ndarray
mob_map: jnp.ndarray
player_position : jnp.ndarray
player_direction : int
Intrinsics
player_health : int
player_food: int
player_drink : int
player_energy: int
is_sleeping : bool
Second order intrinsics
player_recover : float
player_hunger: float
player_thirst : float
player_fatigue : float
inventory : Inventory
zombies: Mobs
cows: Mobs
skeletons : Mobs
arrows: Mobs
arrow_directions : jnp.ndarray
growing_plants_positions : jnp.ndarray
growing_plants_age: jnp.ndarray
growing_plants_mask: jnp.ndarray

29
Figure 21: Prompt used to generate a skill-list and meta-policy function for Crafter.

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Crafter

Basic Skills. We identify the following five skills as sufficient building blocks for solving
Crafter:

1. Gather Resources: Mine wood, stone, coal, iron, or other materials when available.

2. Craft Tools/Weapons: Use gathered resources to craft pickaxes and swords for
efficiency and combat readiness.

3. Eat/Drink/Sleep: Replenish food, water, or energy to maintain survival.
4. Fight/Defend: Attack hostile mobs when they are nearby and health is sufficient.

5. Explore/Move: Traverse unexplored areas to discover resources, water, and safe
locations.

Policy Function. The following pseudo-code outlines a rule-based strategy for selecting the
active skill based on the current game state.

def select_skill (state: EnvState) —-> int:
Returns the skill index:

= Gather Resources

= Craft Tools/Weapons

= Eat/Drink/Sleep

= Fight/Defend

= Explore/Move

nun

S W N e O

Survival priority ---

if state.player_food <= 2 or state.player_drink <= 2 or state.
player_energy <= 2:

m

return 2 # Eat/Drink/Sleep

i
it

——— Combat -—-—
if mob_nearby (state) and state.player_health > 3:

i

return 3 # Fight/Defend

——— Resource management ---—

if resources_nearby (state) and inventory_needs_tools (state.
inventory) :

4

return 0 # Gather Resources

if can_craft_better_tools(state.inventory) :
return 1 # Craft Tools/Weapons

——— Default action ———

return 4

Figure 22: Generated list of essential skills and a rule-based policy for solving Crafter by GPT4-O.
The policy prioritizes survival, then combat, followed by resource gathering and crafting, and defaults
to exploration otherwise.

30

	Introduction
	Background
	Neural Execution Under Symbols
	Hierarchical PQN
	Interpretable Meta-Policy Function
	Neuro-symbolic Meta-Policy Function

	Experimental Evaluation
	Experimental Setup
	Interpretability Results
	Performance Results

	Related Work
	Conclusion
	LLM Usage
	Motivation - Interpretable Policy Sizes
	Hierarchical PQN Algorithm
	Implementation Details
	Environments
	Evaluation Metrics

	Additional Results
	Noisy Detections
	LLM Interaction

