
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM OBJECTS TO SKILLS: INTERPRETABLE META-
POLICIES FOR NEURAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite its success in learning high-performing policies for diverse control and
decision-making tasks, deep reinforcement learning remains difficult to interpret
and align due to the black-box nature of its neural network representations. Neuro-
symbolic approaches improve transparency by incorporating symbolic reasoning,
but when applied to low-level actions, they result in overly complex policies. We in-
troduce NEXUS, a hierarchical Reinforcement Learning framework that integrates
neural skills with neuro-symbolic meta-policies to balance efficiency and inter-
pretability. In its core, it allows transparent reasoning on disentangled high-level
actions (i.e. interpretable skills), greatly reducing complexity of symbolic poli-
cies. Object-centric representations enable extracting rewards and meta-policies
from language models, while the hierarchical structure allow reasoning over skills
rather than atomic actions. We experimentally demonstrate that NEXUS agents are
interpretable, less prone to reward hacking, and more robust to environment simpli-
fications. We further evaluate how differing levels of meta-policy interpretability
(i.e. purely neural or symbolic) influences performance. Overall, NEXUS enables
interpretable and robust control via neuro-symbolic reasoning over high-level skills.

1 INTRODUCTION

Recent advancements in Deep Reinforcement Learning have led to highly capable agents on a diverse
set of tasks (Mnih et al., 2015; Schulman et al., 2017; Gallici et al., 2024); however, these policies are
most often based on neural networks that operate as black boxes and thus exhibit difficult to interpret
behaviors that may be misaligned (Rudin, 2019). Without interpretability, identifying misalignment
or correcting undesirable behaviors, remains a significant challenge for practitioners (Zahavy et al.,
2016; Zhang et al., 2018; Delfosse et al., 2024b).

Neuro-symbolic approaches address this issue by combining neural networks for perceptual grounding
with symbolic reasoning modules for decision-making (Delfosse et al., 2023a; Hazra & Raedt,
2023; Acharya et al., 2024; Delfosse et al., 2024b; Luo et al., 2024). These architectures aim to
enhance transparency by representing the policies through symbolic structures that are more readily
interpretable. Despite their promise, applying symbolic reasoning directly to low-level action spaces
often results in policies of prohibitive complexity (cf. Figure 1, Section B). The combinatorial
explosion of symbolic rules at fine-grained action levels undermines interpretability and scalability.

Hierarchical Reinforcement Learning offers an alternative by abstracting sequences of actions into
higher-level skills or options (Sutton et al., 1999; Dietterich, 2000; Barto & Mahadevan, 2003). While
the framework provides a natural structure, the resulting options, when learned autonomously, are
often entangled or have overlapping goals, and the meta-policy remains opaque, both hindering
interpretability.

To address these limitations, we draw inspiration from the dual-process theory of cognition (Kah-
neman, 2011), distinguishing fast, intuitive actions (System 1) from slow, deliberative reasoning
(System 2). We emulate this cognitive structure in our hierarchical framework NEXUS, Neural
EXecution Under Symbols, which preserves the effectiveness of low-level neural policies (System
1), while combining them with a meta-policy layer of simple, interpretable rule sets (System 2) to
maintain clarity about the reasoning behind the active skill in complex environments (cf. Figure 2).
We ensure disentangled skills, i.e. each skill corresponds to a distinct situation with clear semantics,
by defining their subgoals explicitly through reward functions on objects extracted from the image.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Neural Symbolic
Classic Logic Rules

Figure 1: Current RL policies are not interpretable. Neu-
ral network-based policies are non-modular black box models.
Hierarchical RL separates high-level skill selection and low-
level control, but the learned entangled skills. Transparent
symbolic approaches leverage logical rules or decision trees
on symbolic states, but quickly become excessively complex if
applied on low-level state features and actions.

To reduce the manual effort re-
quired, we leverage the reason-
ing capabilities of Large Language
Models (LLMs) to assist in iden-
tifying those skills, defining the
high-level meta-policy functions,
and generating the reward sig-
nals that guide the training of
the low-level neural controllers.
Both the low-level skills and the
meta-policy Q-function are learned
jointly in an off-policy manner.
Overall, our neuro-symbolic de-
sign enables true interpretability
on the abstract level of skills with-
out compromising the efficiency of
neural agents.

Our primary contributions are as follows:
(i) We extend Parallelised Q-Networks to the hierarchical setting for efficient and scalable meta-

policy and skill learning (Section 3.1).
(ii) We introduce 3 NEXUS variants balancing interpretability and flexibility (Section 3.1 - Sec-

tion 3.3).
(iii) We demonstrate that generated object-centric rewards and high-level meta-policy functions

guide training towards disentangled skills and interpretable policies (Section 4.2).
(iv) We provide evidence that NEXUS agents are less susceptible to reward hacking and generalize

better to small distribution shift than common algorithms (Section 4.3).

2 BACKGROUND

Let us introduce Deep Reinforcement Learning, that enables applying neural networks to sequential
decision-making tasks. and Hierarchical Reinforcement Learning, that decomposes complex tasks
into hierarchies of simpler sub-tasks, thereby abstracting actions into skills.

Deep Reinforcement Learning. Reinforcement Learning (RL) is a framework for sequential
decision making in which an agent learns to interact with an environment in order to maximize
cumulative reward. The environment is typically modeled as a Markov Decision Process (MDP),
defined by the tuple M = ⟨S,A, P,R, γ⟩, where S is the set of states, A is the set of actions,
P (s′ | s, a) is the transition probability from state s to state s′ under action a, R(s, a) is the reward
function and γ ∈ [0, 1) is the discount factor. The goal of the agent is to learn a policy π : S → A
that maximizes the expected discounted return: Eπ [

∑∞
t=0 γ

tR(st, at)].

In Q-learning, a value-based RL algorithm, the agent seeks to learn the optimal action-
value function Q∗(s, a), which satisfies the Bellman optimality equation: Q∗(s, a) =
Es′ [R(s, a) + γmaxa′ Q∗(s′, a′)]. This function is updated iteratively via the Q-learning update
rule: Q(st, at) ← Q(st, at) + α [rt + γmaxa′ Q(st+1, a

′)−Q(st, at)], where α is the learning
rate. With growing state space S, it becomes infeasible to store and update a tabular Q-function.
Deep Q-Networks (DQN) (Mnih et al., 2015) address this by using a deep neural network Qθ(s, a),
parameterized by θ, to approximate Q(s, a). DQN introduces several key modifications to stabi-
lize learning, including experience replay, where transitions (st, at, rt, st+1) are stored in a replay
buffer and sampled randomly to break correlations between consecutive updates and target networks,
where a separate network Qθ−(s, a) is used to compute the target value and is updated periodically:
yt = rt + γmaxa′ Qθ−(st+1, a

′).

More recently, Gallici et al. (2024) introduced Parallelised Q-Networks (PQN), a simplified variant
of DQN that eliminates the use of experience replay and target networks. Instead, PQN leverages a
large number of parallel (ideally vectorized) environments and applies normalization techniques to
mitigate training instabilities. This high degree of parallelization enables substantially faster training
while maintaining performance comparable to state-of-the-art RL algorithms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 x y o v

 80 72 -1 0

 48 16 0 60

 68 44 1 0

 46 73 1 0

 36 44 1 0

obj

observation symbolic state neurosymbolic meta policy neural skills actions distribution

Q
156
151
0Q

156
151
142

closeby(player, enemies)

available(divers)

low(oxygen) or full(divers) 0

1

1

: surface

rescue

shoot

Figure 2: NEXUS with a neuro-symbolic meta-policy. The symbolic state is extracted from
the observation. The LLM-generated meta policy selects potential relevant skills, then selected
using a trained meta Q-function. Finally, the selected neural skill outputs the final low-level action.
While the meta policy’s Q-function is trained using the environmental reward, each skill is trained
using its own LLM-generated reward signal, allowing for interpretable disentangled skills.

Hierarchical Reinforcement Learning. Hierarchical reinforcement learning (HRL) decomposes
complex tasks into simpler sub-tasks, often modeled as temporally extended actions or "options"
(Sutton et al., 1999). At inference time, a meta policy selects the option, enabling more efficient
exploration and transfer in environments with long horizons or sparse rewards. Sub-policies can
be learned autonomously using intrinsic objectives (Bacon et al., 2017; Vezhnevets et al., 2017) or
guided by manually designed reward functions (Sutton et al., 1999; Dietterich, 2000). However,
autonomous discovery often suffers from option entanglement or collapse. NEXUS instead enforces
disentangled options via explicit reward functions, which are LLM-generated.

3 NEURAL EXECUTION UNDER SYMBOLS

We address the challenge of building interpretable and high performing reinforcement learning agents
with NEXUS, a hierarchical framework that combines symbolic reasoning with neural skill execution.
The overall pipeline is described in Figure 2. At a high level, NEXUS decomposes decision-making
into two layers: (1) a high-level meta-policy and (2) a set of low-level neural skill policies optimized
for specific sub-goals. At each step, the decision process proceeds as follows. First, object-centric
representations are extracted from pixel-based inputs. Second, symbolic rules, encoding the activation
conditions of each skill, filter out skills without valid preconditions. Third, the learned meta-policy
Q-function selects the most suitable skill among the remaining candidates. Finally, the chosen skill
executes its policy to maximize the corresponding sub-goal. Object-centric representations are crucial
for enabling symbolic rule definition and skill-specific reward design, both of which are difficult
without such structured representations. Moreover, the explicit availability of object information
allows the use of LLMs for generating the rules and reward functions.

In the following, we describe three distinct meta-policy function type: purely neural, purely symbolic,
and neuro-symbolic. The first method, NEXUS (neural), corresponds to a hierarchical PQN method,
which learns both a neural meta-policy and neural skills (based on skill-specific rewards) and which
serves as the foundation for subsequent variants. While it offers high flexibility due to the learned
meta-policy, it is missing reasoning for why a given sub-goal (and its corresponding skill) is selected in
the current step. This shortcoming can be facilitated by replacing the learned meta-policy with a fixed,
interpretable function that can be either manually defined or LLM-generated. This variant, NEXUS
(symbolic), is fully symbolic at the meta-policy level, prioritizing transparency over adaptability.
Finally, we present the hybrid approach NEXUS (nesy) that filters candidate skills via predefined
symbolic rules and selects among them using Q-learning. This last variant results in a neuro-symbolic
meta-policy, symbolic in rule-based filtering and neural in value estimation, combined with neural
sub-policies, achieving a principled trade-off between interpretability and flexibility.

3.1 HIERARCHICAL PQN

We accommodate the hierarchical learning setup by modeling the environment as two layers of MDPs.
On the action level, we define a collection of MDPs M = {⟨S,A, P,Rn, γ⟩}Nn=1 for N skills, each
associated with a distinct option policy πn ∈ Π that decides over the actual environment actions. The
meta-level MDPMmeta = ⟨S,Π, P,Renv, γ⟩ governs option selection through a meta-policy πmeta
that selects over the options Π. Note that the option-level MDPs differ only in their reward functions
Rn, while the meta-level MDP retains the environment’s original reward Renv.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To enable learning across sub-policies even when they are not actively selected, we adopt off-policy
Q-learning. This allows all the skills to learn from trajectories generated by the active skill and
meta-policy while optimizing for their respective reward structures. Exploration within each skill
is conducted via ϵ-greedy action selection. For scalability through vectorization, we build our
hierarchical training approach upon PQL with λ-returns (Gallici et al., 2024). However, instead
of learning a single shared Q-network Qϕ as in PQL, we learn separate Q-functions Qϕn

for each
low-level skill, along with a meta-level Q-network Qϕmeta . Each Q-network thus predicts the returns
of its own reward function.

For updating, we roll out trajectories (s0, ..., sT) following the global policy by selecting the next
active skill πn ∈ Π using the meta-policy Q-function Qϕmeta and find the most promising action
according to the active skill’s Q-function Qϕn

:
πn = argmax

πn∈Π
Qϕmeta(st, πn), a′ = argmax

a′∈A
Qϕn

(st, a
′). (1)

By executing the action in the environment, we obtain the rewards and the next environmental state for
the next iteration. We employ ϵ-greedy for exploration during both the skill and the action selection.

Next to the environment reward renv,t, we require skill-specific reward functions rn,t that are based
on the object-centric state st and may be automatically generated by LLMs (cf. Section G), which
we use to compute the λ-returns recursively back in time (for details, we refer the reader to Gallici
et al. (2024); Daley & Amato (2019)):

Rλ
n,t = rn,t + γ

[
λRλ

n,t+1 + (1− λ)max
a′

Qϕn
(st+1, a

′)
]
, (2)

and similarly, for the learned meta-policy using environment rewards:

Rλ
env,t =renv,t+γ

[
λRλ

env,t+1+(1−λ)max
πn

Qϕmeta(st+1, πn)

]
, (3)

or, if st is terminal Rλ
n,t = rn,t and Rλ

env,t = renv,t. All learned Q-functions are updated towards their
λ-returns. We provide the full algorithm in Section C.

3.2 INTERPRETABLE META-POLICY FUNCTION

While the hierarchical structure allows to identify the active skill, it does not expose the decision
process that leads to its selection. To make this process transparent, we introduce interpretable
meta-policy functions implemented as rule-based programs. We choose this representation for two
key reasons. First, rule-based programs offer simplicity and accessibility since conditional statements
can typically be understood and modified even by users with limited programming background.
Second, LLMs are highly effective at generating and editing code-like structures due to extensive
pretraining on programming data. This enables generation of human-interpretable meta-policies and
greatly reduces manual effort. Further details on how we employ LLMs to generate the meta-policy
function are available in Section G.

Formally, instead of relying on a learned Q-function Qϕmeta , we define a meta-policy πmeta : S → Π
as a set of human-readable rules that directly maps the current object-centric state st ∈ S to the
selected low-level policy πn ∈ Π:

πn = πmeta(st), (4)

We hereby constrain πmeta to simple rules that are mutually exclusive to enable transparent inspection
of policy decisions. The selected skill can be traced back to the specific rule that evaluates to true
given the current state (cf. Figure 5, left side).

3.3 NEURO-SYMBOLIC META-POLICY FUNCTION

The symbolic meta-policy is a deterministic function that selects skills based on the rule with the
highest priority. However, this approach may become inefficient in situations where multiple skills
are simultaneously applicable. Consider an agent controlling a submarine that can shoot a nearby
enemy or surface to replenish oxygen. The most viable depends on the specific context: if the oxygen
level is critically low, resurfacing may be prioritized; if an enemy is dangerously close, attacking may
take precedence. Crafting hard-coded rules to handle such trade-offs would quickly lead to growing,
less interpretable policies.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 NEXUS Variants

Require: Skill policies {πn}Nn=1 with Q-functions
{Qϕn

}Nn=1, meta-policy Qϕmeta (for learned/soft)
1: for each episode do
2: for each environment step (in parallel) do
3: Extract object-centric state st
4: Select skill πn,t as follows:

A) Neural: πn,t = argmaxπn
Qϕmeta(st, πn)

B) Symbolic: πn,t = πmeta(st)
C) NeSy: πn,t=argmaxπn(ct ⊙Qϕmeta(st, πn))

5: Select action at using ϵ-greedy from πn,t

6: Execute at and observe transition
({rn,t}Nn=0, renv,t, st+1)

7: end for
8: for each gradient step do
9: Compute Rλ

n,t and Rλ
env,t (if A or C)

10: Update each Qϕn using skill-specific Rλ
n,t

11: Update Qϕmeta using Rλ
env,t (if A or C)

12: end for
13: end for

Instead, we propose a neuro-symbolic
(NeSy) approach, by maintaining a set
of high-level, interpretable conditions
(e.g., “go to surface if oxygen is low”,
“fight if enemy is close”), represented as
a binary condition vector ct ∈ {0, 1}N ,
where each entry indicates whether a
particular condition is active at time
t. We formulate these rule-sets again
as simple code functions and leverage
LLMs for their generation (cf. Figure 5,
right side). However, this time we allow
multiple conditions to be active concur-
rently. The skill selection is then mod-
ulated by these conditions using a bi-
nary mask applied to the meta-policy
Q-values:

πn = arg max
πn∈Π

(ct ⊙Qϕmeta(st, πn))

(5)
where ⊙ denotes element-wise multipli-
cation, Qϕmeta(st, ·) ∈ RN is the vector
of meta-policy Q-values for each interpretable condition, and Π is the set of available skills.

This way, we can preserve interpretability at the symbolic level while enabling the agent to resolve
ambiguous scenarios adaptively based on learned preferences. An overview of the different meta-
policy variations is provided in Algorithm 1.

Prior knowledge requirements. There are two components of NEXUS that require prior knowl-
edge. The first is the specification of skill reward functions. The second is the definition of meta-policy
rules for the symbolic and the neuro-symbolic variants. Although these elements can be provided
manually, we leverage LLMs to minimize expert input. Given the prompts in Section G, only the
game manual is ultimately required.

4 EXPERIMENTAL EVALUATION

This work aims to develop an object-centric pipeline for agents capable of solving complex environ-
ments while maintaining interpretability of high-level goals. We assess this objective by addressing
the following research questions:
(Q1) Does NEXUS learn meaningful disentangled skills?
(Q2) Are NEXUS policies interpretable?
(Q3) Can NEXUS compete with other deep methods?
(Q4) Does NEXUS improve robustness to game simplifications?
(Q5) How does noise in the object extractor influence NEXUS?

4.1 EXPERIMENTAL SETUP

Our experiments assume access to pre-extracted object representations and attributes. We therefore
provide the agent with symbolic environment states directly, allowing us to remain agnostic to the
specific object extraction pipeline. We conduct experiments on JAXAtari1, a JAX-based reimple-
mentation of the Atari Learning Environment (ALE) (Bellemare et al., 2013), specifically using the
games Kangaroo and Seaquest, with object-centric representations similar to OCatari (Delfosse
et al., 2024a). These games are selected because their gameplay naturally decomposes into low-level
skills that must be combined to solve the overall task. In Kangaroo, the objective is to ascend
through platforms while avoiding enemies and collecting berries. In Seaquest, the player navigates
a submarine to rescue divers and return them to the surface, while avoiding hazards such as sharks

1https://github.com/k4ntz/JAXAtari

5

https://github.com/k4ntz/JAXAtari

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

10

12
Rescue Divers

0 1 2 3 4 5
Steps 1e7

0

20

40

60

80

Shoot Enemies

0 1 2 3 4 5
Steps 1e7

0.0

0.5

1.0

1.5

2.0

2.5
Surface

0 1 2 3 4 5
Steps 1e7

0.0

2.5

5.0

7.5

10.0

12.5

Move Up

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

Handle Threats

0 1 2 3 4 5
Steps 1e7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Collect Fruits

Sk
ill

Re
tu

rn
s

Sk
ill

Re
tu

rn
s

Se
aq

ue
st

Ka
ng

ar
oo

PPO (baseline) PQN (baseline) HPQN (baseline) NEXUS (neural) NEXUS (symbolic) NEXUS (nesy)

Figure 3: NEXUS learns disentangled skills from off-policy data. In Seaquest (top), the baseline
methods mainly focus on shooting enemies, while the NEXUS approaches acquire the target skills
more evenly. Similarly, in Kangaroo (bottom), the NEXUS approaches learn ’Move Up’ and ’Collect
Fruits’ reliably, while the baselines focus mostly on ’Handle Threats’.

and enemy submarines. These two games are known to exhibit reward hacking behavior, meaning
that the agents find simple shortcuts of increasing their return rather than the intended way that
humans would typically choose. Examples include exclusively shooting enemies in Seaquest and
only catching falling apples or boxing monkeys in Kangaroo. Additionally, we evaluate on Crafter
(Hafner, 2021), using the JAX reimplementation by Matthews et al. (2024), an environment that
integrates elements from the games Minecraft and NetHack. Unlike Atari games, Crafter presents a
more complex, open-ended challenge that requires agents to acquire and coordinate multiple skills,
including navigation, combat, resource collection, and crafting. While primarily designed as a
benchmark for open-ended learning, Crafter’s task diversity makes it well-suited for evaluating the
generalization and skill composition capabilities of RL methods.

Finally, for generalization we also test the pre-trained agents on slightly modified versions of the
games. These modifications are designed to highlight the sensitivity of standard reinforcement
learning agents to minor changes in the environment, including simplifications. For example,
removing enemies from Seaquest to reduce the task’s complexity already leads to a substantial drop
in many deep agents performances (Delfosse et al., 2025).

We compare all three variations of NEXUS to the default, non-interpretable PQN (Gallici et al.,
2024), and, in case of the Atari games, with the actor-critic PPO (Schulman et al., 2017) as baselines.
Additionally, we compare to HPQN, a hierarchical PQN variation that does not employ skill-specific
rewards and has a purely neural meta-policy. All results (including baselines) are directly trained on
object-centric inputs, which may affect performance compared to image based training. We adhere to
the standard frame budgets of both games: 200M frames for JAXAtari and 1B frames for Crafter.
Further implementation details are available in Section D.

4.2 INTERPRETABILITY RESULTS

Disentangled skill learning (Q1). We first evaluate whether NEXUS enables efficient learning
of meaningful skills. Since each skill requires its own reward function, we leverage the reasoning
capabilities of LLMs to generate them based on the game manual, skill definitions, and the object-
centric state (cf. Section G for further information).

Figure 3 demonstrates that NEXUS is able to learn most target skills successfully from a single source
of off-policy data. This means that a skill can learn from another skills action and is not required to be
activated to do so. Unlike the baselines, which tend to mostly focus on a single skill that maximizes
environment reward (e.g., Shoot Enemies for Seaquest, Handle Threats for Kangaroo), NEXUS
approaches promote balanced skill acquisition. Especially the symbolic meta-policy approach seems
to learn all skills most reliably.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Steps 1e9

80

75

70

65

60

55

50

Survival

0.00 0.25 0.50 0.75 1.00
Steps 1e9

0

200

400

600

800

1000

1200
Combat

0.00 0.25 0.50 0.75 1.00
Steps 1e9

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Craft

0.00 0.25 0.50 0.75 1.00
Steps 1e9

0

20

40

60

80

100

120
Collect Resources

0.00 0.25 0.50 0.75 1.00
Steps 1e9

25
50
75

100
125
150
175
200

Exploration

Sk
ill

Re
tu

rn
s

PQN (baseline) NEXUS (neural) NEXUS (symbolic) NEXUS (nesy)

Figure 4: NEXUS succesfully learns LLM-proposed Crafter skills. Compared to the baseline,
NEXUS approaches often converge faster on the proposed skills.

def meta_policy(st: state):
if enemy_close(st.enemies,
st.player):

return fight_enemies()
elif is_available(st.divers):

return rescue_divers()
elif is_low(st.oxygen):

return surface()
elif all_collected(st.divers):

return surface()
return rescue_divers()

def meta_policy_rules(st: state):
fight_enemies = False
rescue_divers = True
surface = False
if enemy_close(st.enemies,
st.player):

fight_enemies = True
if is_low(st.oxygen) or
all_collected(st.divers):

surface = True
return [fight_enemies,
rescue_divers, surface]

Figure 5: NEXUS policies and rules are clear and interpretable. A symbolic meta-policy (left)
and similar filtering rules for the neuro-symbolic meta-policy (right) for the Atari game Seaquest.

We experience a similar picture when evaluating on Crafter. Using the game manual and state
description, we query an LLM for essential skills. Recurrent versions of NEXUS are then trained
explicitly for these skills and compared to a recurrent PQN baseline. Results are presented in Figure 4,
where we compare the ability to learn the skills between the different methods. Similar to before,
NEXUS approaches are able to learn the five skills with symbolic being the fastest.

Interpretability of NEXUS policies (Q2). To assess the interpretability of NEXUS, we visualize
a fixed meta-policy for Seaquest on the left side in Figure 5. By abstracting raw observations into
object-centric representations and low-level actions into high-level skills, the decision-making process
becomes transparent. Each option has a clear, mutually exclusive activation condition, enabling
unambiguous skill selection. For example, the combat skill activates if and only if an enemy is in
close proximity. This simplicity offers two advantages: technical users can design fully interpretable
policies, and LLMs can autonomously generate such meta-policies, which remain editable due to
their transparency. We illustrate LLM-based meta-policy generation in Section G.

Full transparency is not guaranteed for neuro-symbolic meta-policies, as multiple conditions may
be simultaneously satisfied (e.g., an enemy is nearby and oxygen is low; cf. Figure 5, right side).
Nonetheless, such overlaps are rare, and interpretability is largely preserved. In ambiguous cases,
interpretability is traded for flexibility, allowing the agent to select the skill with the highest expected
return based on the meta-policy Q-values. An example of a Seaquest agent operating under a
neuro-symbolic meta-policy is available in Figure 6.

4.3 PERFORMANCE RESULTS

Comparison to other approaches (Q3). We evaluate NEXUS against baselines using two metrics:
Game returns and aligned environment goals, which track progress toward goals defined in game
manuals (e.g. , divers rescued in Seaquest, level completion in Kangaroo). The latter aims to capture
the overall alignment with the intended game objectives, which differ from just maximizing the
reward for these environments, where deep agents usually perform reward hacking (Shihab et al.,
2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
156.10

rescue_divers:
151.42

surface:
0.0

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
273.32

rescue_divers:
277.47

surface: 0.0

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
395.02

rescue_divers:
0.0

surface:
405.52

Figure 6: NEXUS produces interpretable yet flexible high-level plans for ambiguous scenarios.
Left: Both "enemy_closeby" and "diver_available" rules evaluate to true; the learned meta-policy
prioritizes fighting, likely due to the diver’s proximity to the enemy. Middle: Under similar conditions,
rescuing the diver is preferred, reason could be the easier access. Right: With all divers collected and
an enemy nearby, the meta-policy opts to return to the surface due to the higher estimated return.

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000
G

am
e

Re
w

ar
d

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

2000

4000

6000

8000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

20

40

60

80

Le
ve

l C
om

pl
et

io
n

(%
)

Figure 7: NEXUS is competitive. In Seaquest, NEXUS out-
performs the baselines on both HNS and rescuing divers. In
Kangaroo, NEXUS approaches are better aligned to the actual
game objective.

As shown in Figure 7, NEXUS
approaches are competitive to
the baselines. In most cases,
they achieve comparable or even
higher HNS and notably outper-
form the baselines on the actual
games’ main goal, demonstrat-
ing the baselines reward hack-
ing tendency. The results sug-
gest that NEXUS mitigates re-
ward misalignment by incorpo-
rating domain priors into the
decision-making process, while
still achieving good performance.
We provide further comparisons
to neuro-symbolic and interpretable RL methods in Section E.

Robustness to game simplifications (Q4). Most RL algorithms struggle to adapt to even minor
variations in the environment (Delfosse et al., 2025). Surprisingly, their performances drop even in
settings that simplify the game for humans, such as removing deadly threats like enemies and their
projectiles in Seaquest and Kangaroo. We assess whether NEXUS agents can generalize to such
simplified variants by training the agents on the standard versions of the games and evaluating on the
unseen simplifications. In Seaquest and Kangaroo we remove all threats, while in Crafter we remove
the need to drink water for survival. Figure 8 presents the results. As expected, the baselines suffer
substantial performance degradation under the simplifications in all three games.

All NEXUS variants exhibit distinct robustness characteristics. In Atari, only the symbolic variant
demonstrates improved robustness, with smaller performance drops in Kangaroo and even gains in
Seaquest, while the fully neural and neuro-symbolic variants show limited robustness. In Crafter all
NEXUS variants maintain or improve performance. We attribute this robustness to symbolic steering
of the meta-policy, which deactivates unnecessary skills such as handling enemies or drinking water.

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

10

20

30

Di
ve

rs
 R

es
cu

ed

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

20

40

60

80

Le
ve

l C
om

pl
et

io
n

(%
) Kangaroo

PQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0.0

0.5

1.0

HN
S

Crafter

Original Modified

Figure 8: Symbolic NEXUS remains practical on simplified games. While baseline performance
drops significantly, neuro-symbolic and fully symbolic NEXUS improve in the modified Seaquest
(left) and symbolic NEXUS shows smaller performance drops in modified Kangaroo (middle).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Seaquest

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

4000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

25

50

75

100

125

Le
ve

l C
om

pl
et

io
n

(%
)

Game Reward Alignment Score Original Noisy

Figure 9: Effect of noisy detections. In Seaquest, the neural
and the symbolic meta-policy take a performance hit in both
reward and alignment score, while the NeSy variation is robust.
In Kangaroo, all approaches improve with the added noise.

Influence of noisy detections
on NEXUS (Q5). While ob-
ject detection methods become
increasingly reliable, misdetec-
tions still happen. With the fol-
lowing ablation, we test whether
NEXUS is robust to misdetec-
tions and noise in the detec-
tions. For that, we incorporate
a 10% misdetection chance and
add gaussian noise with a stan-
dard deviation of 3px to each ob-
ject attribute during training. The
results are visualized in Figure 9.
We observe that both the neu-
ral and the symbolic approaches
lose performance when the noise is applied in Seaquest, while the neuro-symbolic meta-policy
remains reliable. Surprisingly, the experiments on Kangaroo indicate that all approaches increase
the level completion score and often times the game reward. Most notably, the neuro-symbolic
meta-policy is able to increase the level completion rate from ∼70% to above 125% and always
finishes level one. Further details and results are available in Section F.

On the choice of the meta-policy. Drawing from our findings, we can now offer recommendations
regarding the optimal design of the meta-policy. The purely neural meta-policy presents the simplest
training paradigm as it does not need a separate symbolic meta-policy, and it demonstrates strong per-
formance in terms of training environment reward. However, this approach sacrifices interpretability
and also performance when evaluated on simplified environments. In contrast, the purely symbolic
meta-policy necessitates an additional step of rule definition. Since this can be largely automated
with LLMs, this investment is often justified by its enhanced interpretability and robustness. Lastly,
the neuro-symbolic approach eases the definition of the additional rules, since they do not need to be
mutually exclusive. While the performance is often similar to the symbolic policy, it is less robust to
game simplification, but more robust to noise in the detection method. Considering these trade-offs,
we advocate for both, the purely symbolic and the neuro-symbolic meta-policies as effective choices,
offering a compelling balance of strong performance, interpretability, and generalizability.

Limitations. NEXUS relies on object-centric scene decoders that accurately provide the agent with
objects and their positions and sizes from raw images, which we assume to exist in this work. For
Atari games, multiple approaches are viable (Li et al., 2017; Locatello et al., 2020; Lin et al., 2020;
Delfosse et al., 2023b) with some achieving near-perfect sprite extraction (Smirnov et al., 2021).
For real-world data, recent advancements have significantly improved robustness, with models like
SAM2 (Ravi et al., 2025) reaching up to 90% J&F accuracy on zero-shot segmentation.

NEXUS requires a pre-defined description of the task, i.e. the game’s manual, for the reward
generation (as done in Wu et al. (2023)). This limits it’s applicability to tasks that can be explained
in language. Moreover, while the LLM-generated reward functions and meta-policies generally
capture valid semantics and are logically consistent, some manual adjustments to align them with the
implementation framework are still necessary. Prior work on LLM-based reward design (e.g., Xie et al.
(2024), Ma et al. (2024), Kaufmann et al. (2024)) has documented recurring issues such as reward
misspecification, proxy objective selection, and over- or under-constrained preconditions, highlighting
the need for careful verification. NEXUS currently addresses these risks through manual inspection of
the generated code, but does not incorporate automated diagnostics or iterative improvements during
learning. Extending our framework by incorporating more refined mechanisms is a crucial direction
for enhancing robustness and scalability. Lastly, the presented approach is based on Q-learning and
thus currently limited to discrete action space, however, extension to continuous action spaces seems
viable by adopting an off-policy actor critic instead of ϵ-greedy action selection (Lillicrap et al.,
2016; Haarnoja et al., 2018).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Interpretable and Hierarchical Reinforcement Learning. Interpretability in RL can be introduced
at various stages of the pipeline (Glanois et al., 2024), often by deriving symbolic state representations
from raw observations via object recognition or segmentation (Li et al., 2017; Locatello et al., 2020;
Kirillov et al., 2023; Lin et al., 2020; Delfosse et al., 2023b). Such object-centric states have enabled
interpretable policies through decision trees (Silva et al., 2019; Likmeta et al., 2020; Delfosse et al.,
2024b), logic rules (Maes et al., 2012; Akrour et al., 2019; Delfosse et al., 2023a), parametric
functions (Luo et al., 2024) or programmatic policies and trees (Verma et al., 2019; Anderson et al.,
2020; Kohler et al., 2024). Neural and logical policies can also be efficiently combined (Shindo et al.,
2025). Complementary efforts introduce hierarchical decompositions, where high-level interpretable
policies select among low-level sub-policies, leveraging annotated task sketches (Andreas et al.,
2017) or (differentiable) symbolic planning (Leonetti et al., 2016; Yang et al., 2018; Jin et al.,
2022; Lyu et al., 2019; Ye et al., 2025). Hierarchical symbolic planning based on object-centric
representations has been shown to be beneficial for task transferability (James et al., 2022) and
robotics applications (Sharma et al., 2020). Our work extends these directions by enforcing semantic
separation of skills, introducing a neurosymbolic meta-policy to balance interpretability and flexibility,
and integrating LLMs throughout the pipeline. Unlike prior approaches, we validate on challenging
Atari and Crafter environments.

Relation to the Options framework. HRL has been studied extensively, with the Options framework
(Sutton et al., 1999) as the most prominent formulation. NEXUS instantiates the Options framework
by performing intra-option learning, where multiple options are learned simultaneously from shared
off-policy experience, using sub-policies guided by option-specific reward functions and coordinated
by a neuro-symbolic meta-policy. Key differences arise in temporal abstraction and in the treatment
of initiation and termination conditions. Rather than executing an option until termination, the
meta-policy selects the active option at every time step, jointly determining activation and termination.
The logical rule set used to filter Q-values before selection serves as a generalized initiation set,
enabled by the object-centric encoding of observations. NEXUS’ key innovations to HRL are: (1)
disentangled neural options through specialized rewards and (2) interpretable meta-policies.

6 CONCLUSION

In this work, we present NEXUS, a hierarchical RL method that combines high interpretability on
meta-policy level with neural, low-level action execution. The evaluation suggest several advantages
of our approach. It learns disentangled sub-policies corresponding to identifiable skills, provides
interpretable and modular structures for inspection and intervention, reduces reward-hacking through
fine-grained control, and remains robust to environment simplifications where standard deep RL
agents fail. We also demonstrate that LLMs can be integrated into the NEXUS pipeline to generate
skill decompositions, reward functions, and symbolic meta-policies, enabling dynamic adaptation to
novel objects, evolving environments, or shifting task objectives. Future work should increase the
autonomy of policy adaptation by incorporating mechanisms to detect when new skills or meta-policy
updates are required, e.g. via causal world models (Yang et al., 2025; Dillies et al., 2025), which could
enable scaling to complex, open-ended environments. Updates to the skills or meta-policy could be
retrieved by re-querying an LLM. Additionally, future work should evaluate the actual interpretability
of NEXUS in a user-study. Overall, this work advances RL interpretability and modularity through
symbolic and object-centric reasoning while supporting human-in-the-loop control at the skill level,
offering a promising path toward transparent, adaptable, and aligned agents.

Reproducibility Statement. We have taken several measures to ensure reproducibility of our
results. Details of the proposed method, including model architectures, training procedures, evaluation
protocols, hyperparameters, implementation details and LLM interactions are provided in the main
paper and the appendix. Additionally, we release source code and configuration files to reproduce all
experiments, along with environment setup instructions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kamal Acharya, Waleed Raza, Carlos M. J. M. Dourado Júnior, Alvaro Velasquez, and Houbing Her-
bert Song. Neurosymbolic Reinforcement Learning and Planning: A Survey. IEEE Transactions
on Artificial Intelligence, 5(5):1939–1953, 2024.

Riad Akrour, Davide Tateo, and Jan Peters. Towards reinforcement learning of human readable
policies. In The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases: The 1st Workshop on Deep Continuous-Discrete Machine
Learning, 2019.

Greg Anderson, Abhinav Verma, Işıl Dillig, and Swarat Chaudhuri. Neurosymbolic Reinforcement
Learning with Formally Verified Exploration. In Neural Information Processing Systems, volume
abs/2009.12612, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches. In International Conference on Machine Learning (ICML), pp. 166–175, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. In AAAI Conference
on Artificial Intelligence (AAAI), pp. 1726–1734, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark.
In International Conference on Machine Learning (ICML), pp. 507–517, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research (JAIR), 47:253–279, 2013.

Brett Daley and Christopher Amato. Reconciling λ-Returns with Experience Replay. In Conference
on Neural Information Processing Systems (NeurIPS), 2019.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable and
Explainable Logical Policies via Neurally Guided Symbolic Abstraction. In Conference on Neural
Information Processing Systems (NeurIPS), 2023a.

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbächer, Dwarak Vittal, and Kristian Kersting.
Boosting Object Representation Learning via Motion and Object Continuity. Springer Nature
Switzerland, 2023b.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting. Ocatari:
Object-Centric Atari 2600 Reinforcement Learning Environments. Reinforcement Learning
Conference (RLC), 1:400–449, 2024a.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kersting.
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents. In Conference on
Neural Information Processing Systems (NeurIPS), volume abs/2401.05821, 2024b.

Quentin Delfosse, Jannis Blüml, Fabian Tatai, Théo Vincent, Bjarne Gregori, Elisabeth Dillies, Jan
Peters, Constantin Rothkopf, and Kristian Kersting. Deep reinforcement learning agents are not
even close to human intelligence. arXiv preprint, 2025.

Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227–303, 2000.

Elisabeth Dillies, Quentin Delfosse, Jannis Blüml, Raban Emunds, Florian Peter Busch, and Kristian
Kersting. Better decisions through the right causal world model. 2025.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, B. Pou, Ivan Masmitja, J. Foerster, and Mario Martin.
Simplifying Deep Temporal Difference Learning. arXiv.org, abs/2407.04811, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu.
A survey on interpretable reinforcement learning. Machine Learning, 113(8):5847–5890, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML). Pmlr, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Rishi Hazra and Luc De Raedt. Deep Explainable Relational Reinforcement Learning: A Neuro-
Symbolic Approach. In European Conference on Machine Learning and Knowledge Discovery in
Databases (PKDD), pp. 213–229, 2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Steven James, Benjamin Rosman, and George Konidaris. Autonomous Learning of Object-Centric
Abstractions for High-Level Planning. In International Conference on Learning Representations
(ICLR), 2022.

Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity of AI:
Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning. In AAAI
Conference on Artificial Intelligence (AAAI), pp. 7042–7050, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Timo Kaufmann, Jannis Blüml, Antonia Wüst, Quentin Delfosse, Kristian Kersting, and Eyke Hüller-
meier. Ocalm: Object-centric assessment with language models. arXiv preprint arXiv:2406.16748,
2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment Anything. In IEEE International Conference on Computer Vision (ICCV), pp. 3992–4003,
2023.

Hector Kohler, Quentin Delfosse, R. Akrour, Kristian Kersting, and Philippe Preux. Interpretable
and Editable Programmatic Tree Policies for Reinforcement Learning. arXiv.org, abs/2405.14956,
2024.

Matteo Leonetti, Luca Iocchi, and Peter Stone. A synthesis of automated planning and reinforcement
learning for efficient, robust decision-making. Artificial Intelligence, 241:103–130, 2016.

Yuezhang Li, Katia P. Sycara, and Rahul Iyer. Object-sensitive Deep Reinforcement Learning. In
Global Conference on Artificial Intelligence (GCAI), pp. 20–35, 2017.

Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and
Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent and
general decision-making in autonomous driving. Robotics and Autonomous Systems, 131:103568,
2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR), 2016.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised Object-Oriented Scene Representation via Spatial
Attention and Decomposition. In International Conference on Learning Representations (ICLR),
2020.

12

http://jmlr.org/papers/v23/21-1342.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot
Attention. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-End
Neuro-Symbolic Reinforcement Learning with Textual Explanations. In International Conference
on Machine Learning (ICML), 2024.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: Interpretable and Data-Efficient
Deep Reinforcement Learning Leveraging Symbolic Planning. In AAAI Conference on Artificial
Intelligence (AAAI), pp. 2970–2977, 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=IEduRUO55F.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents (extended abstract). In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, 2018.

Francis Maes, Raphael Fonteneau, Louis Wehenkel, and Damien Ernst. Policy Search in a Space of
Simple Closed-form Formulas: Towards Interpretability of Reinforcement Learning. In Interna-
tional Conference on Discovery Science (DS), pp. 37–51, 2012.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A Lightning-Fast Benchmark for Open-Ended Rein-
forcement Learning. In International Conference on Machine Learning, volume abs/2402.16801,
2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Feichtenhofer.
Sam 2: Segment Anything in Images and Videos. In The Thirteenth International Conference on
Learning Representations, volume abs/2408.00714, 2025.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv.org, abs/1707.06347, 2017.

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to
Compose Hierarchical Object-Centric Controllers for Robotic Manipulation. In Conference on
Robot Learning (CoRL), pp. 822–844, 2020.

Ibne Farabi Shihab, Sanjeda Akter, and Anuj Sharma. Detecting and mitigating reward hacking in
reinforcement learning systems: A comprehensive empirical study. arXiv preprint, 2025.

Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. Blendrl: A
framework for merging symbolic and neural policy learning. In The Thirteenth International
Conference on Learning Representations, 2025.

13

https://openreview.net/forum?id=IEduRUO55F

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andrew Silva, Taylor W. Killian, I. D. Rodriguez, Sung-Hyun Son, and M. Gombolay. Optimization
Methods for Interpretable Differentiable Decision Trees in Reinforcement Learning. arXiv:
Learning, 2019.

Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Alexei A. Efros, and Justin M.
Solomon. Marionette: Self-Supervised Sprite Learning. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 5494–5505, 2021.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–211,
1999.

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-Projected Pro-
grammatic Reinforcement Learning. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 15726–15737, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal Networks for Hierarchical Reinforcement Learning. In
International Conference on Machine Learning (ICML), pp. 3540–3549, 2017.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M. Mitchell. Read and
Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals. In Conference on
Neural Information Processing Systems (NeurIPS), 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024, 2024.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating Symbolic Planning
and Hierarchical Reinforcement Learning for Robust Decision-Making. In International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4860–4866, 2018.

Yupei Yang, Biwei Huang, Fan Feng, Xinyue Wang, Shikui Tu, and Lei Xu. Towards generalizable
reinforcement learning via causality-guided self-adaptive representations. In The Thirteenth
International Conference on Learning Representations, 2025.

Zihan Ye, O. Arenz, and Kristian Kersting. Learning from Less: Guiding Deep Reinforcement
Learning with Differentiable Symbolic Planning. arXiv, 2025.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding DQNs. In
International Conference on Machine Learning (ICML), pp. 1899–1908, 2016.

Chiyuan Zhang, O. Vinyals, R. Munos, and Samy Bengio. A Study on Overfitting in Deep Reinforce-
ment Learning. arXiv.org, abs/1804.06893, 2018.

A LLM USAGE

Beyond integration within the pipeline (cf. Section G), LLMs were used solely to improve text
readability and generate boilerplate code.

B MOTIVATION - INTERPRETABLE POLICY SIZES

We visualize the actual logic policies retrieved from existing interpretable RL methods in Listing 1
and Listing 2. While these policies have maximum transparency, they are difficult to interpret for
humans due to the massive size. NEXUS on the other hand presents a simple solution by incorporating
hierarchical abstraction and thus allowing for compact and truly interpretable policies, cf. Figure 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

def play(state) :
if state .Ball_0 .prev_x <= 1.24:

if state .Ball_0 .y − state .Enemy_0.prev_y <= −0.41:
if state .Ball_0 .x − state .Ball_0 .prev_x <= 0.09:

if state .Player_0 .y − state .Enemy_0.y <= −0.91:
if state .Ball_0 .x <= 0.73:

if state .Player_0 .y − state .Ball_0 .x <= −1.20:
return "LEFT"

else :
return "RIGHT"

else :
return "NOOP"

else :
if state .Ball_0 .x <= −0.05:

return "NOOP"
else :

if state .Player_0 .y − state .Player_0 .prev_y <= −0.19:
return "NOOP"

else :
if state .Ball_0 .prev_x − state .Ball_0 .prev_y <= −0.38:

return "NOOP"
else :

if state .Ball_0 .x − state .Ball_0 .prev_x <= −0.09:
return "RIGHT"

else :
return "RIGHT"

else :
return "RIGHT"

else :
if state .Ball_0 .x − state .Enemy_0.y <= −1.46:

if state .Player_0 .y − state .Ball_0 .prev_x <= −0.92:
return "LEFT"

else :
return "RIGHT"

else :
if state .Player_0 .y − state .Ball_0 .y <= −0.63:

if state .Ball_0 .prev_x <= −0.05:
return "LEFT"

else :
if state .Player_0 .y − state .Ball_0 .y <= −0.80:

return "LEFT"
else :

if state .Ball_0 .prev_x <= 0.80:
return "LEFT"

else :
return "NOOP"

else :
if state .Ball_0 .x <= −0.07:

if state .Ball_0 .prev_y <= −0.15:
if state .Ball_0 .prev_y <= −1.96:

return "LEFT"
else :

return "LEFT"
else :

return "NOOP"
else :

if state .Ball_0 .y <= 1.24:
if state .Player_0 .y − state .Ball_0 .y <= −0.48:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

if state .Ball_0 .prev_x <= 0.68:
return "NOOP"

else :
return "NOOP"

else :
if state .Ball_0 .x <= 0.54:

if state .Player_0 .y <= −0.82:
return "NOOP"

else :
if state .Enemy_0.y − state .Enemy_0.prev_y <=

−0.09:
return "RIGHT"

else :
return "RIGHT"

else :
if state .Ball_0 .x − state .Ball_0 .y <= −0.21:

return "NOOP"
else :

return "RIGHT"
else :

if state .Ball_0 .y <= 1.54:
return "NOOP"

else :
return "LEFT"

else :
if state .Player_0 .y − state .Ball_0 .y <= −0.54:

if state .Player_0 .y − state .Ball_0 .y <= −0.88:
return "LEFT"

else :
if state .Ball_0 .y <= −1.40:

return "RIGHT"
else :

return "NOOP"
else :

if state .Enemy_0.y − state .Enemy_0.prev_y <= 0.93:
return "RIGHT"

else :
return "LEFT"

Listing 1: Pong policy of SCoBots (Delfosse et al., 2024b)

up_air (X):−oxygen_low(B).
up_divers_collected (X):− all_divers_collected (D).
fire_left (X):−same_depth_enemy(P,E),visible_enemy(E), facing_left (P) , right_of_enemy(P,E).
fire_right (X):−same_depth_enemy(P,E),visible_enemy(E), facing_right (P) , left_of_enemy(P,E)

.
left_aim (X):−right_of_enemy(P,E), facing_right (P) ,same_depth_enemy(P,E),visible_enemy(E).
right_aim (X):−left_of_enemy(P,E), facing_left (P) ,same_depth_enemy(P,E),visible_enemy(E).
down_aim(X):−higher_than_enemy(P,E),visible_enemy(E).
up_aim(X):−deeper_than_enemy(P,E),visible_enemy(E).
up_evade(X):−close_by_enemy(P,E),same_depth_enemy(P,E),visible_enemy(E).
down_evade(X):−close_by_enemy(P,E),same_depth_enemy(P,E),visible_enemy(E).
up_evade(X):−close_by_missile (P,M),same_depth_missile(P,M), visible_missile (M).
down_evade(X):−close_by_missile(P,M),same_depth_missile(P,M), visible_missile (M).
left_to_diver (X):− right_of_diver (P,D), close_by_diver (P,D), visible_diver (D).
right_to_diver (X):− left_of_diver (P,D), close_by_diver (P,D), visible_diver (D).
up_to_diver (X):−deeper_than_diver (P,D), close_by_diver (P,D), visible_diver (D).
down_to_diver(X):−higher_than_diver (P,D), close_by_diver (P,D), visible_diver (D).

Listing 2: Seaquest policy of NUDGE (Delfosse et al., 2023a)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

logits_noop1 = −0.56*y_agent_1**2 − 0.38*y_agent_1*y_agent_2 − 0.087*y_agent_1*
y_opponent_1 − 0.16*y_agent_1*y_opponent_2 − 0.76*y_agent_1*y_opponent_3 − 0.51*
y_agent_1*y_opponent_4 − 0.54*y_agent_1 − 0.24*y_agent_2**2 − 0.073*y_agent_2 +
0.27*y_agent_4**2 + 0.55*y_agent_4 − 0.078*y_opponent_1**2 − 0.33*y_opponent_1*
y_opponent_2 − 0.2*y_opponent_1 − 0.35*y_opponent_2**2 − 0.5*y_opponent_2 − 0.34*
y_opponent_3**2 − 0.45*y_opponent_3*y_opponent_4 − 0.32*y_opponent_3 − 0.15*
y_opponent_4**2 − 0.19*y_opponent_4 + 1.1

logits_noop2 = −0.074*y_agent_1*y_opponent_2 + 0.059*y_agent_1*y_opponent_3 − 0.097*
y_agent_4 − 0.16*y_opponent_1*y_opponent_2 − 0.18*y_opponent_2**2 − 0.27*
y_opponent_2 + 0.063*y_opponent_4

logits_up1 = 0.23*y_agent_1**2 + 0.59*y_agent_1*y_agent_2 + 0.4*y_agent_2**2 + 0.11*
y_agent_2 − 1.5*y_agent_4**2 − 3.6*y_agent_4 + 0.068*y_opponent_3 + 1.1

logits_down1 = 0.09*x_ball_3 + 0.12*x_ball_4 − 0.21*y_agent_1**2 + 0.12*y_agent_1*
y_opponent_1 + 0.27*y_agent_1*y_opponent_2 − 0.43*y_agent_1*y_opponent_3 − 0.28*
y_agent_1*y_opponent_4 + 0.13*y_agent_2 + 0.14*y_agent_4**2 + 0.43*y_agent_4 +
0.087*y_ball_3 + 0.15*y_ball_4 + 0.14*y_opponent_1**2 + 0.6*y_opponent_1*
y_opponent_2 + 0.61*y_opponent_1 + 0.65*y_opponent_2**2 + 1.1*y_opponent_2 − 0.2*
y_opponent_3**2 − 0.26*y_opponent_3*y_opponent_4 − 2.8*y_opponent_3 − 0.085*
y_opponent_4**2 − 0.14*y_opponent_4 − 2.3

logits_up2 = 0.063*x_ball_4 − 0.078*y_agent_1 + 0.18*y_agent_2**2 + 0.52*y_agent_2*
y_agent_3 + 0.35*y_agent_2*y_opponent_1 + 0.29*y_agent_2*y_opponent_2 + 0.26*
y_agent_2 + 0.38*y_agent_3**2 + 0.51*y_agent_3*y_opponent_1 + 0.42*y_agent_3*
y_opponent_2 + 1.6*y_agent_3 − 8.2*y_agent_4 − 0.085*y_ball_3 + 0.17*y_opponent_1**2
+ 0.28*y_opponent_1*y_opponent_2 + 0.25*y_opponent_1 + 0.11*y_opponent_2**2 +

0.15*y_opponent_2 − 0.074*y_opponent_3 + 0.26 logits_down2 = −0.052*x_ball_1 − 0.068*
x_ball_3 − 0.093*x_ball_4 + 0.18*y_agent_1 − 0.17*y_agent_2**2 − 0.49*y_agent_2*
y_agent_3 − 0.33*y_agent_2*y_opponent_1 − 0.27*y_agent_2*y_opponent_2 − 0.39*
y_agent_2 − 0.35*y_agent_3**2 − 0.48*y_agent_3*y_opponent_1 − 0.4*y_agent_3*
y_opponent_2 − 0.38*y_agent_3 + 0.15*y_agent_4**2 + 0.54*y_agent_4 − 0.06*y_ball_1 −
0.064*y_ball_3 − 0.11*y_ball_4 − 0.17*y_opponent_1**2 − 0.28*y_opponent_1*
y_opponent_2 − 0.58*y_opponent_1 − 0.13*y_opponent_2**2 − 0.38*y_opponent_2 + 2.2*
y_opponent_3 − 0.052*y_opponent_4 − 3.6

action_noop = [exp(logits_noop1) + exp(logits_noop2)] / sum(exp(logits))
action_up = [exp(logits_up1) + exp(logits_up2)] / sum(exp(logits))
action_down = [exp(logits_down1) + exp(logits_down2)] / sum(exp(logits))

Listing 3: Pong policy of INSIGHT (Luo et al., 2024)

C HIERARCHICAL PQN ALGORITHM

The complete algorithm for hierarchical PQN with a neural meta-policy is provided in Algorithm 2.

D IMPLEMENTATION DETAILS

Setup. We base our implementations on CleanRL (Huang et al., 2022) and PureJaxRL (Lu et al.,
2022), adapting them to object-centric inputs by replacing convolutional encoders with lightweight
MLPs for feature extraction. Hyperparameters are listed in Table 1 and Table 2 and remain largely
consistent with the original implementations, except for an increased number of parallel environments
enabled by the efficiency of JAX-based code.
The exploration parameter ϵ was selected via a brief hyperparameter sweep in the range [1, 0.001],
using final test return as the selection criterion.
Each experiment is run with three random seeds (0, 1, 2) to ensure reproducibility. Reported plots
include the corresponding standard deviation.
All experiments were conducted on a single NVIDIA Tesla V100-SXM3-32GB-H GPU on an
NVIDIA DGX Server (Version 5.1.0) with CUDA 12.4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Hierarchical PQN

Require: Update period U , number of parallel environments E, number of skills N , exploration
probability ϵ

Ensure: Learned Q-network parameters {ϕn}Nn=1, ϕmeta
1: Initialize Q-network parameters {ϕn}Nn=1, ϕmeta
2: Sample initial states se0 ∼ P0 for e ∈ {0, . . . , E − 1}
3: t← 0
4: for each episode do
5: for all e ∈ {0, . . . , E − 1} in parallel do
6: Sample skill πe

t ∼ πmeta
7: With probability ϵ: aet ∼ Unif, else aet ∼ πe

t
8: Sample rewards ret ∼ PR(s

e
t , a

e
t), skill rewards re,nt ∼ PR,n(s

e
t , a

e
t) for all n

9: Sample next state set+1 ∼ PS(s
e
t , a

e
t)

10: t← t+ 1
11: end for
12: if t mod U = 0 then
13: Compute meta λ-returns Re

λ,t−1 to Re
λ,t−U for all e

14: Compute skill λ-returns Re,n
λ,t−1 to Re,n

λ,t−U for all e, n
15: for number of epochs do
16: for number of minibatches do
17: Sample minibatch B of size b ≤ EU from {(t− U, 0), . . . , (t− 1, E − 1)}
18: Update meta:

ϕmeta ← ϕmeta +
αt

2b
∇ϕmeta

∑
(j,τ)∈B

(
Rj

λ,τ −Qϕmeta(s
j
τ)
)2

19: Update skills:

ϕn ← ϕn +
αt

2b
∇ϕn

∑
(j,τ)∈B

(
Rj,n

λ,τ −Qϕn(s
j,n
τ)

)2

, ∀n ∈ {1, . . . , N}

20: end for
21: end for
22: end if
23: end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Crafter (b) Seaquest (c) Kangaroo

Figure 10: The evaluation environments: Crafter, Seaquest and Kangaroo.

We provide an anonymized code repository2 that includes all necessary code and config files to
reproduce the results from the experiments section, including plots.

D.1 ENVIRONMENTS

Screenshots of the environments Crafter, Seaquest and Kangaroo are available in Figure 10.

D.2 EVALUATION METRICS

We empirically evaluate agent performance using three metrics: (1) Skill Returns to test whether the
skills were learned successfully, (2) Human-Normalized Score (HNS) for absolute performance
relative to human and random baselines and (3) Aligned Environment Goal Scores that measure
performance based on the main goals described in the game’s manual.

Human Normalized Score. Human-Normalized Score standardizes agent performance across
Atari environments by accounting for differences in reward scales (Mnih et al., 2015; Machado et al.,
2018). Given the average agent score A, human score H , and random score R, HNS is defined as:

HNS =
A−R

|H −R|
A value of 1.0 indicates human-level performance, values greater than 1.0 indicate superhuman
performance, and values below 0 denote sub-random behavior. We adopt the human and random
baselines from Badia et al. (2020), derived from professional human play.

Aligned Environment Goal Scores. Environment reward signals may not always align with the
intended task objectives and can be susceptible to reward hacking. In such cases, agents may learn
high-reward behaviors that are non-intuitive and deviate from human-like solutions. To better capture
progress toward the actual environment goals, we define two aligned goal-based metrics grounded in
the objectives stated in the game manuals.

For Seaquest, the goal is to rescue as many divers as possible; for Kangaroo, it is to help the mother
kangaroo reach and rescue her baby, located on the topmost platform. Accordingly, we track the
number of divers retrieved and the number of platforms reached, respectively.

E ADDITIONAL RESULTS

To assess the generality of NEXUS, we extend our evaluation to three additional Atari environments:
Pong, Breakout, and Freeway. Skill learning curves for these environments are shown in Figure 11,

2https://anonymous.4open.science/r/symbolic_options-302C/

19

https://anonymous.4open.science/r/symbolic_options-302C/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 1: Atari Hyperparameters

Parameter PQN(-based) PPO

Total Timesteps 5× 107 5× 107

Num Environments 1024 128
Num Steps per Update 128 128
Learning Rate 1.0× 10−4 2.5× 10−4

Max Grad Norm 10 0.5
Discount Factor (γ) 0.99 0.99
GAE Lambda (λ) 0.65 (0.5 with learned meta) 0.95
GAE Meta Lambda (λ) 0.9 –
Num Epochs 5 2
Num Minibatches 128 4
Hidden Size 64 –
Num Layers 3 –
Normalization Layer Norm –
Clip ϵ – 0.2
Entropy Coef – 0.01
Value Function Coef – 0.5
Anneal LR False True
ϵ-Start/End/Decay 1.0 / 0.1 / 0.3 –
Meta ϵ-Start/End/Decay 1.0 / 0.001 / 0.3 –

Table 2: Crafter Hyperparameters

Parameter PQN(-based)

Total Timesteps 1× 109

Num Environments 512
Num Steps per Update 128
Learning Rate 3.0× 10−4

Max Grad Norm 0.5
Discount Factor (γ) 0.99
GAE Lambda (λ) 0.5
GAE Meta Lambda (λ) 0.5
Num Epochs 4
Num Minibatches 4
Hidden Size 512
Num Layers 1
Normalization Layer Norm
Anneal LR True
ϵ-Start/End/Decay 1.0 / 0.005 / 0.1
Meta ϵ-Start/End/Decay 1.0 / 0.005 / 0.1

while comparisons to baseline agents and ablations—evaluated via human-normalized scores—are
presented in Figure 12. Note that these games are generally less complex than Kangaroo and
Seaquest, and the learned skills are not strictly necessary to achieve the environment goals. In
particular, the skills "Move Up" and "Avoid Crash" in Freeway largely correspond to atomic actions
such as forward or noop. As such, a simple fixed meta-policy operating directly on primitive
actions could suffice for solving this task.

Neuro-symbolic RL baselines. For improved comparison, we also provide baseline scores of
existing interpretable and neuro-symbolic methods on both the default games (cf. Figure 13a) and
the simplifications (cf. Figure 13b). The methods are NUDGE (Delfosse et al., 2023a) and BlendRL
(Shindo et al., 2025). We also provide a tabular overview of our results and also add the reported
scores from SCoBots (Delfosse et al., 2024b) (game simplification scores from Delfosse et al. (2025))
in Table 3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Steps 1e7

0

100

200

300

400

Track Ball

0 1 2 3 4 5
Steps 1e7

20

0

20

40

60

80
Return Ball

0 1 2 3 4 5
Steps 1e7

0

100

200

300

400

500

600

Defensive Positioning

0 1 2 3 4 5
Steps 1e7

0

250

500

750

1000

1250

1500
Track Ball

0 1 2 3 4 5
Steps 1e7

0

20

40

60

80

100

Return Ball

0 1 2 3 4 5
Steps 1e7

0

250

500

750

1000

1250

1500

1750
Defensive Positioning

0 1 2 3 4 5
Steps 1e7

2

0

2

4

Evade Crash

0 1 2 3 4 5
Steps 1e7

0

250

500

750

1000

1250

1500
Go

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PPO (baseline) PQN (baseline) HPQN (baseline) NEXUS (neural) NEXUS (symbolic) NEXUS (nesy)

Figure 11: NEXUS successfully learns skills in Pong (top), Breakout (middle), and Freeway (bottom).

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0.0

0.5

1.0

HN
S

Pong

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

2

4

6

8

HN
S

Breakout

PPO (baseline)

PQN (baseline)

HPQN (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0.0

0.2

0.4

0.6

0.8

HN
S

Freeway

Figure 12: NEXUS achieves performance comparable to baseline methods across the three evaluated
environments.

F NOISY DETECTIONS

We evaluate the robustness of NEXUS on noise in the object detections both during training and
testing. We conduct experiments with 5% and 10% misdetection rate. To emulate the effect of a
kalman filter estimating the objects movements during each step, instead of zeroing out the detected
objects, we keep the previous time step detections. On top of that, we add gaussian noise with a
standard deviation of 3 at each attribute. We show the results with the noisy detection during training
in Figure 14. Experiencing noise only during testing is evaluated in Figure 15.

PPO (baseline)

PQN (baseline)

HPQN (baseline)

Nudge (baseline)

BlendRL (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

Nudge (baseline)

BlendRL (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

2000

4000

6000

8000

G
am

e
Re

w
ar

d

Kangaroo

0

5

10

15

20

D
iv

er
s

Re
sc

ue
d

0

25

50

75

100

125

Le
ve

l C
om

pl
et

io
n

(%
)

(a) Comparison to other interpretable RL methods on
default environments.

PPO (baseline)

PQN (baseline)

HPQN (baseline)

Nudge (baseline)

BlendRL (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

20

40

60

80

Di
ve

rs
 R

es
cu

ed

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

Nudge (baseline)

BlendRL (baseline)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

50

100

Le
ve

l C
om

pl
et

io
n

(%
) Kangaroo

Original Modified

(b) Comparison to other interpretable RL methods on
simplified games.

Figure 13: Additional neuro-symbolic RL baselines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison on Seaquest and Kangaroo

Algorithm Seaquest Kangaroo
Default Divers Collected Simplification Divers Collected Default Level Completion (%) Simplification Level Completion (%)

PPO 915.3 ± 82.5 (6.7 ± 0.1) 0.0 ± 0.0 (4.7 ± 0.5) 750.0 ± 450.0 (33.3 ± 0.0) 0.0 ± 0.0 (33.3 ± 0.0)
PQN 1428.3 ± 232.1 (5.1 ± 3.2) 0.0 ± 0.0 (3.0 ± 2.8) 4300.0 ± 4833.2 (33.3 ± 0.0) 200.0 ± 141.4 (22.2 ± 15.7)
NEXUS (neural) 2887.6 ± 322.4 (11.2 ± 0.3) 0.0 ± 0.0 (4.3 ± 2.5) 2033.3 ± 899.4 (66.7 ± 0.0) 666.7 ± 94.3 (40.7 ± 10.5)
NEXUS (symbolic) 2697.1 ± 77.7 (13.4 ± 0.1) 1853.3 ± 2621.0 (21.0 ± 11.8) 1042.9 ± 454.9 (65.0 ± 3.6) 1346.5 ± 1042.9 (55.0 ± 15.6)
NEXUS (nesy) 2637.1 ± 309.9 (10.4 ± 0.7) 0.0 ± 0.0 (3.7 ± 0.5) 833.3 ± 94.3 (70.4 ± 5.2) 400.0 ± 141.4 (33.3 ± 0.0)
NUDGE 46.7 ± 18.9 (4.1 ± 0.6) 113.3 ± 81.3 (7.3 ± 3.7) 1522.2 ± 540.5 (110.0 ± 14.1) 1966.7 ± 237.3 (101.7 ± 2.4)
BlendRL 2138.9 ± 1335.8 (15.8 ± 7.0) 24755.6 ± 24036.4 (55.6 ± 35.1) 1955.6 ± 724.9 (101.7 ± 2.4) 1944.4 ± 245.5 (118.3 ± 22.5)
SCoBots 1055.3 ± 272.6 (- ± -) 0.0 ± 0.0 (- ± -) 2776.6 ± 1332.4 (- ± -) 0.0 ± 0.0 (- ± -)

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Seaquest

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

50

100

150

Le
ve

l C
om

pl
et

io
n

(%
)

Game Reward Alignment Score Original Noisy

(a) 5% misdetection rate

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d
Seaquest

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

4000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

25

50

75

100

125

Le
ve

l C
om

pl
et

io
n

(%
)

Game Reward Alignment Score Original Noisy

(b) 10% misdetection rate

Figure 14: Misdetection and noise applied during both training and evaluation.

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Seaquest

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

4000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

50

100

150

Le
ve

l C
om

pl
et

io
n

(%
)

Game Reward Alignment Score Original Noisy

(a) 5% misdetection rate

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

G
am

e
Re

w
ar

d

Seaquest

NEXUS (neural)

NEXUS (sy
mbolic)

NEXUS (nesy)
0

1000

2000

3000

4000

G
am

e
Re

w
ar

d

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

D
iv

er
s

Re
sc

ue
d

0

50

100

150

Le
ve

l C
om

pl
et

io
n

(%
)

Game Reward Alignment Score Original Noisy

(b) 10% misdetection rate

Figure 15: Misdetection and noise applied only during evaluation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G LLM INTERACTION

We outline the procedure for leveraging an LLM to generate task-relevant skills, associated reward
functions, and a fixed meta-policy rule set. The LLM is conditioned on the game’s original manual
and structured type information describing the object-centric observations available to the agent.

Initially, the LLM is queried for a set of skills and corresponding reward functions. These outputs
can be manually refined before querying the LLM for a meta-policy function that selects which skill
to execute. Prior prompts and responses are retained to maintain conversational context, consistent
with standard chat behavior. We provide the entire prompt for the game Kangaroo in Figure 16. The
prompt for Seaquest was generated equivalently.

Unedited responses from GPT-4o (via chatgpt.com on 21-07-2025) for the games Kangaroo and
Seaquest are included in Figure 17–Figure 20.

For Crafter, we used the LLM to generate the list of important tasks, as well as the symbolic meta-
policy function. Prompt and answers are available in Figure 21 and Figure 22. Rewards for the
specific skills were crafted manually.

Final implementations were modified to align with our framework constraints (e.g., JAX compatibility,
indexing conventions). For full details, please refer to the code repository3.

3https://anonymous.4open.science/r/symbolic_options-302C/

23

https://anonymous.4open.science/r/symbolic_options-302C/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

You are a RL expert and develop a hierarchical agent to play the atari game Seaquest. Below, I have provided
a detailed description of the game. Your task is to come up with a short list of essential skills (3-4) that are
needed to solve the game.
Game Description:
—
<Atari game manuala>
—
Think about what the main goal of this game is, then come up with a list of the required skills to solve the
game and provide it in the output. Finally, create a pseudo reward function for each of these skills that a RL
agent can use to learn the skills.
The reward functions are called at each step in the environment and retrieve the current and previous
symbolic observation of the game. Here is the type definition for the observation:
—

class KangarooObservation(NamedTuple):
player_x : chex.Array
player_y : chex.Array
player_o : chex.Array
platform_positions : chex.Array
ladder_positions : chex.Array
fruit_positions : chex.Array
bell_position : chex.Array
child_position : chex.Array
falling_coco_position : chex.Array

monkey_positions: chex.Array
coco_positions : chex.Array

—
Each skill and it’s reward function should be as simple as possible that achieves the wanted behavior.
Provide: List of skills and description, pseudo-code reward functions for each skill.

acopied entirely from https://www.atariage.com/manual_html_page.php?
SoftwareLabelID=923

You are now creating a function that decides at each time step in the game, which skill to choose. The skills
area:

• Obstacle Avoidance

• Vertical Navigation

• Fruit Collection

• Goal Reaching (Child Rescue)

The function again has access to the current and previous observation.
Think about at what point in the game you want to use which skill, then provide the function.

acopied from answer to previous prompt, see Figure 18.

Figure 16: Subsequent prompts (chat-function) to generate a skill-list and corresponding reward
functions (top) and meta-policy function (bottom) for the game Kangaroo.

24

https://www.atariage.com/manual_html_page.php?SoftwareLabelID=923
https://www.atariage.com/manual_html_page.php?SoftwareLabelID=923

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Kangaroo (Atari 2600)

A hierarchical RL agent for Kangaroo can be built upon the following four primitive skills:

1. Obstacle Avoidance
Description: Avoid contact with apples or monkeys via dodging or punching.
Reward Function:

def reward_obstacle_avoidance (obs, prev_obs) :
collided = any(np. array_equal (obs. player_x , x) and

np. array_equal (obs. player_y , y)
for (x, y) in obs. apple_positions + obs.monkey_positions)

return −1.0 if collided else 0.0

2. Vertical Navigation
Description: Climb ladders to ascend levels and progress.
Reward Function:

def reward_vertical_navigation (obs, prev_obs) :
dy = prev_obs. player_y − obs. player_y
return 0.1 if dy > 0 else 0.0

3. Fruit Collection
Description: Collect fruits and optionally ring a bell to regenerate them.
Reward Function:

def reward_fruit_collection (obs, prev_obs) :
reward = 0.0
if len (obs. fruit_positions) < len (prev_obs. fruit_positions) :

reward += 0.5
if np. array_equal (obs. player_x , obs. bell_position [0]) and \

np. array_equal (obs. player_y , obs. bell_position [1]) :
reward += 0.2

return reward

4. Goal Reaching (Child Rescue)
Description: Reach the child’s location to complete the level.
Reward Function:

def reward_reach_child (obs, prev_obs) :
return 1.0 if np. array_equal (obs. player_x , obs. child_position [0]) and \

np. array_equal (obs. player_y , obs. child_position [1]) else 0.0

These modular rewards enable a high-level controller to invoke appropriate behaviors depend-
ing on context.

Figure 17: Generated reward functions for Kangaroo by GPT4-O

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Kangaroo Skill Selection Function

To select appropriate skills, the agent follows a fixed priority:

1. Obstacle Avoidance: If any apple or monkey is in close proximity.
2. Goal Reaching: If the player is near the child on the top platform.
3. Fruit Collection: If fruit is visible and reachable.
4. Vertical Navigation: Default behavior to explore or ascend.

Skill Selector Function:

def select_skill (obs, prev_obs) :
player_pos = np. array ([obs. player_x , obs. player_y])

def in_danger () :
danger_entities = obs. apple_positions + obs.monkey_positions
return any(np. linalg .norm(player_pos − np. array ([x, y])) <= 1.0

for (x, y) in danger_entities)

def near_child () :
child_pos = np. array ([obs. child_position [0], obs. child_position [1]])
return np. linalg .norm(player_pos − child_pos) <= 1.5

def fruit_visible () :
return any(abs(y − obs. player_y) <= 1 and

abs(x − obs. player_x) <= 3
for (x, y) in obs. fruit_positions)

if in_danger () :
return obstacle_avoidance

elif near_child () :
return goal_reaching

elif fruit_visible () :
return fruit_collection

else :
return vertical_navigation

This rule-based selection policy balances safety, progression, and reward acquisition, enabling
effective hierarchical control.

Figure 18: Generated fixed meta-policy function for Kangaroo by GPT4-O

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Seaquest (Atari 2600)

To solve Seaquest effectively, a hierarchical RL agent must master the following four core
skills:

1. Avoid Obstacles (Survival Navigation)
Description: Avoid collisions with sharks, enemy submarines, missiles, and the patrol sub,
both underwater and when surfacing.
Reward Function (pseudo-code):

def avoid_obstacles_reward (prev_obs, curr_obs) :
if player_collided (curr_obs) :

return −1.0
return 0.0

def player_collided (obs) :
return check_collision_with_sharks (obs) or \

check_collision_with_subs (obs) or \
check_collision_with_missiles (obs) or \
check_collision_with_surface_sub (obs)

2. Collect Divers
Description: Navigate to and collect divers to accumulate score and progress.
Reward Function (pseudo-code):

def collect_divers_reward (prev_obs, curr_obs) :
prev_count = count_nearby_divers (prev_obs)
curr_count = count_nearby_divers (curr_obs)
return float (prev_count > curr_count) * 1.0

def count_nearby_divers (obs) :
return sum(is_near(obs. player_x , obs. player_y , dx, dy)

for dx, dy in obs. diver_positions)

3. Surface Strategically
Description: Surface safely when carrying six divers or when oxygen is low, to drop off
divers and replenish oxygen.
Reward Function (pseudo-code):

def surface_reward (prev_obs, curr_obs) :
surfaced_now = prev_obs. player_y > 0 and curr_obs . player_y == 0
has_6_divers = num_divers_collected (prev_obs) == 6
low_oxygen = prev_obs.oxygen < OXYGEN_THRESHOLD
if surfaced_now and (has_6_divers or low_oxygen):

return 2.0 if has_6_divers else 0.5
return 0.0

def num_divers_collected (obs) :
return 6 − sum(is_valid (dx, dy) for dx, dy in obs. diver_positions)

4. Eliminate Threats (Combat)
Description: Fire missiles to destroy sharks and enemy submarines, clearing paths and
increasing score.
Reward Function (pseudo-code):

def eliminate_threats_reward (prev_obs, curr_obs) :
num_enemies_prev = count_enemies(prev_obs)
num_enemies_curr = count_enemies(curr_obs)
return float (num_enemies_curr < num_enemies_prev) * 0.5

def count_enemies(obs) :
return sum(is_valid (dx, dy) for dx, dy in obs. shark_positions) + \

sum(is_valid (dx, dy) for dx, dy in obs. sub_positions)

Figure 19: Generated reward functions for Seaquest by GPT4-O

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Seaquest Skill Selection Function

Here is a skill selection function that chooses the appropriate control skill at each time step
based on game context.

Skill Selection Function (pseudo-code):

def select_skill (prev_obs, curr_obs) :
Skill names
AVOID = "obstacle_avoidance"
COLLECT = "collect_divers"
SURFACE = " surface_strategically "
COMBAT = "eliminate_threats"

=== Utility Functions ===
def is_threat_near (obs: SeaquestObservation) −> bool:

return check_collision_with_sharks (obs) or \
check_collision_with_subs (obs) or \
check_collision_with_missiles (obs) or \
check_collision_with_surface_sub (obs)

def num_divers_collected (obs: SeaquestObservation) −> int :
return 6 − sum(is_valid (x, y) for x, y in obs. diver_positions)

def low_oxygen(obs: SeaquestObservation) −> bool:
return obs.oxygen < 20 # adjustable threshold

def at_surface (obs: SeaquestObservation) −> bool:
return obs. player_y == 0

=== Skill Selection Logic ===
if is_threat_near (curr_obs) :

return AVOID

if (num_divers_collected (curr_obs) == 6 or low_oxygen(curr_obs)) and \
not at_surface (curr_obs) :
return SURFACE

if has_nearby_enemies(curr_obs) : # e .g. visible on screen in front
return COMBAT

return COLLECT

Explanation of Logic:
• Obstacle Avoidance is triggered immediately when any nearby threat is detected.
• Surface Strategically is invoked if the agent has collected 6 divers or is low on

oxygen, and is not already at the surface.
• Eliminate Threats is used when enemies are visible but not an immediate threat.
• Collect Divers is the default skill when no critical conditions are active.

This rule-based selection mechanism allows a high-level controller to choose among primitive
skills in a safety-first manner while still enabling reward-driven exploration and progress.

Figure 20: Generated fixed meta-policy for Seaquest by GPT4-O

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

You are a reinforcement learning specialist. The following is the basic description of the game Crafter, which
you are trying to solve.
—-
Crafter is a game about exploring dungeons, mining, crafting and fighting enemies. The player can move in
the four cardinal directions using WASD and can interact using SPACE. Interacting can cause the player to
attempt to mine (a block), attack (a creature), drink (water or from a fountain), or eat (fruit).
The player has the ’intrinsics’ health, hunger, thirst and energy. Hunger, thirst and energy will naturally
decrease and must be replenished by eating, drinking and sleeping respectively. Health will recover when
hunger, thirst and energy are non-zero and will decrease if any of these are 0. If the players health falls
beneath 0 they will die and the game will restart.
—-
First, come up with 5 basic skills that can be used to solve the game. Only provide necessary skills without
duplications. After that, please come up with a simple function (pseudo code) that gets the game-state as
input and returns an integer deciding on the active skill to select in the current state. The skills correspond to
the ones that you chose before. Try to solve the game as far as possible.
The game-state looks like this:

@struct . dataclass
class Inventory :

wood: int = 0
stone : int = 0
coal : int = 0
iron : int = 0
diamond: int = 0
sapling : int = 0
wood_pickaxe: int = 0
stone_pickaxe : int = 0
iron_pickaxe : int = 0
wood_sword: int = 0
stone_sword: int = 0
iron_sword: int = 0

@struct . dataclass
class Mobs:

position : jnp . ndarray
health : int
mask: bool
attack_cooldown: int

@struct . dataclass
class EnvState:

map: jnp . ndarray
mob_map: jnp.ndarray
player_position : jnp . ndarray
player_direction : int

Intrinsics
player_health : int
player_food : int
player_drink : int
player_energy : int
is_sleeping : bool
Second order intrinsics
player_recover : float
player_hunger : float
player_thirst : float
player_fatigue : float
inventory : Inventory
zombies: Mobs
cows: Mobs
skeletons : Mobs
arrows: Mobs
arrow_directions : jnp . ndarray
growing_plants_positions : jnp . ndarray
growing_plants_age: jnp . ndarray
growing_plants_mask: jnp . ndarray

Figure 21: Prompt used to generate a skill-list and meta-policy function for Crafter.
29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Essential Skills for Solving Crafter

Basic Skills. We identify the following five skills as sufficient building blocks for solving
Crafter:

1. Gather Resources: Mine wood, stone, coal, iron, or other materials when available.
2. Craft Tools/Weapons: Use gathered resources to craft pickaxes and swords for

efficiency and combat readiness.
3. Eat/Drink/Sleep: Replenish food, water, or energy to maintain survival.
4. Fight/Defend: Attack hostile mobs when they are nearby and health is sufficient.
5. Explore/Move: Traverse unexplored areas to discover resources, water, and safe

locations.

Policy Function. The following pseudo-code outlines a rule-based strategy for selecting the
active skill based on the current game state.

def select_skill(state: EnvState) -> int:
"""
Returns the skill index:
0 = Gather Resources
1 = Craft Tools/Weapons
2 = Eat/Drink/Sleep
3 = Fight/Defend
4 = Explore/Move
"""

--- Survival priority ---
if state.player_food <= 2 or state.player_drink <= 2 or state.

player_energy <= 2:
return 2 # Eat/Drink/Sleep

--- Combat ---
if mob_nearby(state) and state.player_health > 3:

return 3 # Fight/Defend

--- Resource management ---
if resources_nearby(state) and inventory_needs_tools(state.

inventory):
return 0 # Gather Resources

if can_craft_better_tools(state.inventory):
return 1 # Craft Tools/Weapons

--- Default action ---
return 4

Figure 22: Generated list of essential skills and a rule-based policy for solving Crafter by GPT4-O.
The policy prioritizes survival, then combat, followed by resource gathering and crafting, and defaults
to exploration otherwise.

30

	Introduction
	Background
	Neural Execution Under Symbols
	Hierarchical PQN
	Interpretable Meta-Policy Function
	Neuro-symbolic Meta-Policy Function

	Experimental Evaluation
	Experimental Setup
	Interpretability Results
	Performance Results

	Related Work
	Conclusion
	LLM Usage
	Motivation - Interpretable Policy Sizes
	Hierarchical PQN Algorithm
	Implementation Details
	Environments
	Evaluation Metrics

	Additional Results
	Noisy Detections
	LLM Interaction

