[Proposal] Rethinking OCR-based Long-Context
Modeling via Hybrid Visual-Textual Inputs

Yuxiang Huang Jiahua Chen Fangzhou Xiong
Student ID 2025310728 Student ID 2025210768 Student ID 2025210764
Dept. of CS&T Dept. of CS&T, Dept. of CS&T,
Tsinghua University Tsinghua University Tsinghua University

1 Introduction

In recent years, Large Language Models (LLMs) have demonstrated rapidly growing capabili-
ties [5,19, [18,151]. Advances in model architectures [8] and training methodologies [15] have signifi-
cantly expanded the boundaries of natural language understanding, forming a solid foundation for
complex Atrtificial Intelligence (AI) applications [34]], such as LLM-based multi-agent systems [21],
autonomous coding agents [39], and solving complex problems through reasoning [20]. These
scenarios place increasing demands on an LLM’s ability to process long-context input sequences, as
accurately understanding extended context is crucial for generating high-quality responses.

Pursuing longer input sequences has been a persistent objective in enhancing the core capabilities of
LLMs. Early models such as BERT [[12] were restricted to a maximum input length of 512 tokens,
whereas state-of-the-art systems like Gemini-2.5-Pro [11] now theoretically support context windows
of up to 1M tokens [10]. A widely adopted practice for enabling long-context understanding is
continuous pretraining [[16}|3]] combined with positional embedding interpolation or extrapolation [13]],
which typically extends the context length from 4K or 8K tokens in the original pretraining stage to
>128K tokens after long-context adaptation. However, this conventional paradigm faces challenges
in both efficiency and performance. Naively feeding long-context inputs into Transformer-based
models causes a quadratic increase in computation and memory access, thereby raising the latency
of next-token prediction [44]]. This leads to exorbitant computation costs, making both training
and inference with long sequences particularly difficult. Moreover, such methods often struggle
to generalize. For instance, existing video generative models are usually trained on short clips,
since long sequences of visual tokens consume excessive memory, which in turn causes generated
videos to lose temporal consistency over extended durations [19]. Consequently, limited context
windows remain a bottleneck that constrains LLM performance on a wide range of complex tasks,
highlighting the urgent need for an effective solution to overcome this limitation.

One alternative solution is the family of OCR-based long-context processing methods [435, [7]]. These
approaches leverage the compression and reconstruction capabilities of visual encoders [14] by
rendering long-context inputs into images, which are then encoded into visual embeddings and fed
into the LLM backbone. Compared with traditional foken-based methods, OCR-based approaches
can achieve higher and more adaptive compression ratios, enabling models to handle inputs longer
than those seen during training (at the cost of slightly more aggressive compression). However, these
methods completely discard token-level embeddings and rely solely on visual representations, which
leads to significant performance degradation on tasks requiring precise long-context retrieval and
fine-grained reasoning. Thus, long-context processing continues to be a core bottleneck for LLMs,
with the following key issues standing in the way of further progress:

Challenge 1: The trade-off between length generalizability and fine-grained detail comprehension.
Token-based methods preserve all tokens in the input sequence, thus excelling at tasks that require pre-
cise fine-grained information retrieval, such as RULER [24]]. Howeyver, they struggle to generalize to
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Figure 1: Our method’s framework. Both visual and token embeddings are fed into the backbone.

substantially longer contexts, since unseen positional embeddings lead to out-of-distribution errors [4]].
In contrast, OCR-based methods can flexibly adjust the compression ratio and thereby generalize
to longer inputs with ease; yet, when the compression ratio of the visual encoder becomes high,
they lose the ability to retain fine-grained details. As a result, no existing approach simultaneously
achieves strong length generalizability and high-fidelity fine-grained recall.

Challenge 2: Adaptive performance—cost trade-off. In real-world applications, a scalable perfor-
mance—cost trade-off is preferred for long-context processing, as one should be able to simply allocate
more compute when higher precision is required. Traditional token-based methods cannot satisfy
this requirement, since the computational cost for a given input length is fixed and non-adaptive.
OCR-based approaches offer some flexibility by adjusting the compression ratio: lowering the com-
pression ratio increases computation and improves performance. However, when the compression
ratio becomes too high, these methods fail catastrophically on long documents, even in simple
retrieval tasks. Therefore, a more reasonable performance—cost trade-off curve, i.e., maintaining
acceptable performance even under higher compression ratios, is still lacking.

To this end, we propose a method that leverages the strengths of both paradigms: the fine-grained
detail preservation of token-based approaches and the strong length generalizability of OCR-based
methods. Specifically, we embed long documents in a hybrid manner to achieve higher performance in
long-context processing: first converting them into visual embeddings, followed by token embeddings
placed before the query. The resolution of the rendered images can be adjusted based on computational
budgets or task requirements, while token embeddings provide precise lexical details that visual
representations may fail to capture. The framework is shown in Figure

2 Related Work

Here, we briefly introduce existing efficient approaches for extending the context length of LLMs.
These methods can be broadly categorized into three groups: long-context modeling techniques,
attention and K'V-cache optimizations, and OCR-based long-context processing.

Long-Context Modeling. To avoid the data scarcity and high computational cost of pretraining on
long documents, recent studies focus on extending the context length of short-context pretrained LLMs
through training-free or lightweight adaptation. RoPE [41]] encodes relative positional information by
rotating query and key vectors in the complex plane, which makes it naturally compatible with context



length extension via interpolation or extrapolation. Building on RoPE, various methods [38} 13} 40,
56, 32]] extend the context length by adjusting the base rotary frequency along different dimensions,
thereby enabling models to handle input sequences over 4x longer. Such extending is always
conducted via a lightweight long-context continuous pretraining stage utilizing specially crafted
datasets [6, 13, [16], and the extended models are evaluated on long-context benchmarks [12} 14} 24} |S3L [11].

Attention and KV-cache Optimizations. To alleviate the O(n?) complexity of long-context mod-
eling, numerous methods have been proposed to optimize the attention mechanism and KV-cache,
which can be broadly categorized into sparse attention, KV-cache reduction, and token reduction.
Sparse attention methods introduce sparsity patterns to reduce computation and memory access.
Static sparsity [22} 48] [17] relies on manually designed patterns to minimize accuracy drop on long
inputs, whereas dynamic sparse attention [28} 150} 52] selects relevant context blocks for each query
in a block-sparse manner. More recently, trainable sparse attention [25, 149} 55,136} 159] aligns sparsity
between training and inference, offering near-lossless performance while significantly reducing
computation and KV-cache access. KV-cache reduction seeks to reduce KV memory to enable faster
inference or higher throughput: quantization methods [35} 23] store KV entries in low-bit formats;
offloading-based approaches [47} 42, 26] load only activated KV blocks to the GPU, making them
friendly to long-context extrapolation; and compression strategies such as selective retention [30, [58]]
or dimensionality reduction [33| 27] further shrink KV size. Token reduction [37} 46]] reduces the
input length by removing uninformative tokens before feeding into the LLM. For more comprehensive
summaries, please refer to recent surveys [31} 43].

OCR-based Long-Context Processing. Among efficient long-context modeling approaches, OCR-
based methods have recently gained attention for achieving strong task performance while com-
pressing input sequences to improve efficiency. DeepSeek-OCR [45] scales the OCR model to 3B
parameters and achieves state-of-the-art performance, offering a promising foundation for treating
long documents as images for processing. Glymph [7] further bridges visual and textual long-context
processing by adapting a multimodal LLM to handle long documents, where the input is first con-
verted into visual embeddings. These methods leverage the bidirectional attention available in visual
encoders and benefit from high compression ratios to achieve a favorable efficiency—performance
trade-off; however, their performance drops considerably when higher compression is applied,
particularly on documents requiring fine-grained textual understanding.

3 Early Method

3.1 Task Definition

In this section, we first introduce the task formulation of long-context processing with OCR-based
inputs, followed by a detailed description of our proposed method. A summary of the notations used
throughout the paper is provided in Table[T]

Task Description. We formalize the long-context instruction-following task as a triplet (I, C, R),

where I denotes a concise user instruction specifying the primary goal, C = {c1, ..., cr} represents
the long textual context, and R is the desired response. The conventional objective can be written as:
P(R[1,C),

that is, generating an accurate response conditioned on the given instruction and the complete
context. This work aims to enhance large language models’ ability to understand long contexts by
introducing visual-augmented representations that exploit structural and glyph information from the
visual modality to improve comprehension and robustness in long-text scenarios.

Rendering Pipeline. To explicitly incorporate layout and glyph information into the model, we
render the long text C' into a sequence of visual pages or images:

V = Render(C; 0) = {v1,...,vn},

where the rendering configuration is parameterized by a vector 8, which defines typography, layout,
and overall visual style. Given context C' and configuration 6, the rendering pipeline produces a
sequence of images that serve as the long-context input to a vision-language model (VLM).

The rendered visual pages are encoded by a visual encoder into visual token embeddings:

Vemp = fr (V) € RVvxdv,



Meanwhile, the original text C' is encoded by a text encoder to obtain token-level textual embeddings:
Temb = fT(C) S RNthta
preserving fine-grained semantic information at the textual level.

Cross-modal Enhancement and Concatenation Fusion. We leverage the OCR capability of the
VLM to obtain text-aligned visual tokens, which are then projected into the textual space to form
visually enhanced features. Formally, the projection function is defined as:

T, = ¢(Vems) € RV 7%,
where ¢(-) denotes a mapping from the visual token space to the text-aligned space.
Finally, we adopt a fusion strategy to combine textual and visual-enhanced representations:
T = Concat(Temb, Tv) € RWetNo)xde
which preserves the original textual representation while explicitly appending visual signals.

Generation Objective. The enhanced and projected text representation T, together with the instruc-
tion [, is fed into the decoder or language model to generate the final response. The overall objective
can thus be expressed as:

R~ P(R|I,T).

Table 1: The summary of notations.

Symbol | Description
1 User instruction / prompt
C Long textual context
R Target response
0 Rendering configuration vector (DPI, font, layout, spacing, etc.)
V ={v1,...,vn} | Sequence of rendered visual pages

Vemp € RNvXdv Visual token embeddings from the visual encoder
Topmp € RNeX e Textual token embeddings from the text encoder

T, € RNvxdt Visual features projected into the text-aligned space
T € RWt+Nv)xdt | Vigually enhanced textual representation
¢ Projection function

3.2 Training

Since our method modifies the long-context processing pipeline of Glyph [7], additional training is
required to eliminate the mismatch between training and inference. We adopt the following training
pipeline.

Continuous Pretraining. We are planing to pretrain our method on ProLong [16] or LongAlign [3]
to enhance the model’s understanding of long-context inputs and the alignment of visually augmented
representations. The main objective of the pretraining stage is to enable the visual encoder and text
encoder to align semantic information across large-scale long-text inputs, while adapting to different
rendering styles and layouts.

Supervised Fine-Tuning (SFT). Building upon continuous pretraining, we are plaining to perform
supervised fine-tuning on the UltraChat [57]] dataset to further improve the model’s performance on
instruction-following tasks. The SFT stage aims to teach the model to generate accurate responses by
leveraging visually enhanced text representations, especially for complex or structured long texts.

3.3 Benchmarks and Expected Outcomes

Benchmarks. The model’s performance will be evaluated on multiple long-context understanding
and reasoning benchmarks, including LongBench [2] , RULER [24], HELMET [54], NIAH [29].

Model Baselines and Expected Outcomes. The goal of our method is to outperform Glyph [7] and
GLM-4-9B-base [18] on LongBench [2] and other long-context benchmarks.
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