
LMEMs for post-hoc analysis of HPO Benchmarking

Anton Geburek1,∗ Neeratyoy Mallik1,∗ Danny Stoll1,∗ Xavier Bouthillier2 Frank Hutter3,1

1
Machine Learning Lab, University of Freiburg

2
Mila, Montreal

3
ELLIS Institute Tübingen

∗Correspondence: {gebureka,mallik,stolld}@cs.uni-freiburg.de

Abstract The importance of tuning hyperparameters in Machine Learning (ML) and Deep Learning

(DL) is established through empirical research and applications, evident from the increase

in new hyperparameter optimization (HPO) algorithms and benchmarks steadily added by

the community. However, current benchmarking practices using averaged performance

across many datasets may obscure key differences between HPO methods, especially for

pairwise comparisons. In this work, we apply Linear Mixed-Effect Models-based (LMEMs)

significance testing for post-hoc analysis of HPO benchmarking runs. LMEMs allow flexible

and expressive modeling on the entire experiment data, including information such as

benchmark meta-features, offering deeper insights than current analysis practices. We

demonstrate this through a case study on the PriorBand paper’s experiment data to find

insights not reported in the original work.

1 Introduction

Hyperparameter Optimization (HPO) research has seen a surge in new benchmark contributions in

recent times (Eggensperger et al., 2021; Pineda Arango et al., 2021; Wang et al., 2021; Pfisterer et al.,

2022) that have led to improved HPO algorithm contributions too. This is a genuine attempt at

making hyperparameter optimization (HPO) research an empirical and reproducible science, which

is essential for the adoption of HPO in practice. The plethora of benchmarks can lead to large

experimental data collected. The usual modus operandi is to use relative ranks per run instance

to average the results across benchmarks for a seed, with the variance of this mean across seeds

accounting for the uncertainty in relative ranks, thus compressing the experiment data into one

easy-to-parse aggregated plot (Mallik et al., 2023). However, it is often observed that different

problem instances can be solved best by different types of HPO algorithms (Eggensperger et al.,

2021), akin to No free lunch (Wolpert and Macready, 1995).

In this work, we explore the application of model-based significance analysis to exploit the

rich HPO experimental data from benchmarking runs. We believe that the relative performance of

different HPO algorithms are strongly hierarchical in nature when considering different benchmarks

or different HPO budget horizons. Moreover, we believe that finding sub-groups of benchmarks

that capture different trends in relative performances can provide added insights.

The overall contribution of our work include: 1. Demonstrating application of LMEM-based

significance analysis in HPO Benchmarking. 2. Preset LMEM-based model recipes for sanity

checking experimental data and Autorank-like analysis. 3. Accounting for multiple benchmark

metafeatures in pairwise comparison of HPO algorithms.

Our code: https://github.com/automl/lmem-significance.

2 Related Work and Background

LMEM-based significance testing has been brought to the attention of the Natural Language

Processing community by (Riezler and Hagmann, 2022) to enable the joint analysis of both different

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:gebureka@cs.uni-freiburg.de
mailto:mallik@cs.uni-freiburg.de
mailto:stolld@cs.uni-freiburg.de
mailto:xavier.bouthillier@umontreal.ca
mailto:fh@cs.uni-freiburg.de
https://github.com/automl/lmem-significance
https://creativecommons.org/licenses/by/4.0/


Figure 1: (left) Fixed effects are fully observed and typically noise-free, i.e., loss (y-axis) recorded

against algorithms (x-axis); (right) Random effects assume samples to be from some random

distribution within each specific group, as described by (1|benchmark) and the 3 lines repre-

senting 3 groups benchmarks. Image sourced under CC BY-SA 4.0.

data sets and meta-parameter settings. Such tests were recommended especially when there was

a hierarchical structure within the data. LMEMs can account for both fixed effects and random
effects (see, Figure 1). For HPO Benchmarking data, let 𝑀0 : loss ∼ algorithm and 𝑀1 : loss ∼
algorithm+(1|benchmark)1, be two LMEMmodels fit on the same data. The Generalized Likelihood

Ratio test (GLRT) compares the likelihood of the data given the model, to determine if algorithm
can significantly effect the loss after accounting for random effects from different benchmark groups.

This is in contrast to the commonly used Friedman test that doesn’t assume normally distributed

data groups or homogeneous variances (Demšar, 2006) but also cannot handle hierarchical relations

in the data. The Wilcoxon test is also used to compare two algorithms over multiple benchmarks,

collecting each significant win, tie, or loss as a ratio (Eggensperger et al., 2021). Dror et al. (2017)

proposes to use a partial conjunction hypotheses to account for comparisons across multiple

datasets, answering the question “does on algorithm 𝐴 significantly outperform another algorithm

𝐵 on at least 𝑢 datasets out of 𝑁 ”.

For methodological details, refer to Riezler and Hagmann (2022) and Appendix A.

3 Empirical setup
We directly demonstrate the application and utility of LMEM-based testing through a case study

on real HPO Benchmarking data. We use experiment data from Mallik et al. (2023) containing

runs of more than 5 different HPO algorithms, on more than 30 benchmark instances, repeated

for 50 different seeds. For a focused study, we look at the main hypothesis and result in Mallik

et al. (2023), that shows PriorBand to be better than HyperBand under different expert prior quality
scenarios (see, Figure 6). Subsequently, our focus would be on the comparison of Random Search
(RS), HyperBand (HB) and PriorBand (PB) over the benchmark instances comprising of good (at25)

and bad expert prior input. To serve as a simple baseline simulating current standard practice,

we use Autorank2 as the baseline to perform Friedman test on the same experiment data. We use

Critical-Difference (CD) (see, Fig. 2) plots to show pairwise significance difference in performance.

4 Application
In this section, we apply the method discussed to experiment data from Mallik et al. (2023).

4.1 Drop-in replacement for Autorank
Figure 2 highlights how a simple LMEM model can be used to model the entire experimental data

for the 3 algorithms of concern , to yield the exact conclusion as current standard practice would

1
here, loss is the target, algorithm is the fixed effect and benchmark is the random effect

2https://sherbold.github.io/autorank/

2

https://sherbold.github.io/autorank/


Figure 2: LMEMs can Autorank: (left) output of Autorank; (right) output of LMEMs on the same data

with the simple model: loss ∼ algorithm.

Figure 3: Preset sanity check are run on the experiment data to conclude that there is no algorithm

where the seed explains the performance variation. There is also no benchmark where there

is no performance difference across algorithms. It was also found that the used budget should

be used as an interaction effect for LMEM models on this data.

yield using Autorank. Here, the data seen by both setups is the same. Note, the difference in scale

of the variance. This can be attributed to the difference in methodologies (refer to Appendix A).

Figure 2 validates the use of model-based testing using LMEMs for the given data.

4.2 Sanity checks

Given that most HPO benchmarking runs will share a common set of metadata
3
, LMEM models can

be predefined given a data format to construct a sequence of LMEM models, that can be executed in

a sequential decision-tree or workflow, checking for simple hypotheses. These are designed to catch

potential erroneous algorithms, uninformative benchmarks, or buggy results from a vast collection

of benchmarking runs. Some examples include: i) Is any algorithm performance explained by seeds

ii) Is there any benchmark that shows no variation across algorithms iii) Find a complex model

(hierarchically deep) that explains the data the best (see, Appendix C).

Figure 3 is an example run on the PriorBand experiment data. This forms an early check into

the veracity of the experimentation setup and components. The Appendix C gives more details and

verifies such preset recipes by means of synthetic datasets simulating such scenarios to catch.

4.3 Leveraging benchmark metafeatures with significance testing

The ability of LMEMs to capture hierarchical relations in the data given an expressive model opens

up the potential to analyze HPO benchmarking runs with various metafeatures in consideration.

In our case, for each benchmark, we find if PriorBand is significantly better than HyperBand,
equivalent, or worse. To achieve this, the user can select an LMEMmodel of their choice. Given this

information, and the metadata information per benchmark (in this case, we know if a benchmark

instance is a good (at25) prior or a bad prior), we test if the relative performance of HyperBand

3
typically: algorithm name, benchmark name, HPO budget spent, seed info, miscellaneous information

3



Figure 4: Clustering of benchmarks over prior qualities

Figure 5: (left) Autorank at three different HPO budget horizons (5×, 10×, 15×); (right) LMEM trained

on all available data from 5 − 15× budget, including the budget as a random effect: loss ∼
algorithm + (1|budget) + (1|benchmark).

and PriorBand are significantly different or not for the two instances of the same benchmark task.

As shown in Figure 4, there is significant performance difference between the two algorithms

for the good-bad instances of each benchmark. This post-hoc analysis reveals two anamolous

benchmarks that on further investigation appears to not have a bad enough expert prior designed

(see, Figure 13). Mallik et al. (2023) did not consider this and such post-hoc analysis could have

potentially prompted the authors to either omit these 2 benchmarks from result aggregation or

redesign the priors. When benchmarking over large collection of benchmarks, we believe that such

post-hoc analysis into which benchmarks contribute to the aggregated outcome is important for

complete empirical understanding of results.

4.4 Further extensions and applications

The analysis from the previous section can be further expanded to a set of metafeatures. Forward-

selection could determine the metafeature(s) that when included as a random effect(s) explains the

experiment data the best. Looking into these subsets can provide useful information. Similarly,

using the HPO budget spent as an effect can bring out nuances of how algorithms perform given

an HPO budget window. We explore this briefly in Figure 5 but note that it still requires work to be

the go-to analysis choice for anytime performance.

5 Conclusion

In this work, we propose and demonstrate the flexible application of LMEM-based significance

testing in the context of HPO Benchmarking. More specifically, we show how LMEMs allow the

modeling of potential hierarchical patterns in the benchmarking data, by accounting for random

effects that can be attributed to different benchmark problems. We also show case how the HPO

budget could be modeled as a fixed effect and allow for a novel compressed anytime performance

analysis using a single CD plot. Moreoever, LMEMs offer the use of metafeatures for deeper analysis

4



into relative performance of algorithms on subsets of benchmarks. LMEM-based methods such as

these offer both the HPO researcher and practitioner to construct diverse hypotheses and obtain a

different perspectives on their experiment data. Given standard data, our open-sourced Python

package offers off-the-shelf recipes for the analysis presented in this work.

6 Limitations

In this paper, we aim to demonstrate the rich potential of applying flexible LMEM-based testing on

standard HPO benchmarking data. We propose using these to supplement and aid existing analysis

methods. To be the gold standard of significance testing for HPO, this warrants a longer and more

scientific discussion.

While linearmixed-effects models (LMEMs) offer a powerful and flexible approach, their training

and testing can be significantly slower than standard methods, especially for complex models or

large datasets. This is partly due to our current implementation using the pymer4 package, which
relies on R in the background. We’re actively working on a full Python implementation to address

both speed and user-friendliness.

However, the flexibility of LMEMs also comes with a potential downside: the ease of modifying

formulas can lead to misuse by inexperienced users. To mitigate this, we recommend using only

basic formulas, employing the GLRT (Generalized Likelihood Ratio Test) to validate new effects,

consulting with statisticians for complex models, and fully reporting all details when using LMEMs

for significance testing in publications. It’s important to acknowledge that the complexity of the

model fit and potential limitations in the available data might lead to incorrectly rejecting the null

hypothesis (essentially, finding a false difference). When in doubt, a simple ANOVA may be initially

preferred.

Relatedly, we lack a statistical power analysis and did not extend the application of LMEM-based

significance testing further than what is proposed by Riezler and Hagmann (2022) to include any

control over Type II error. Further guidelines could be provided based on works such as the one of

Matuschek et al. (2017).

7 Broader Impact

This paper applies an existing method in a post-hoc manner on existing benchmarking runs and,

therefore, has no direct impact beyond the interested HPO researchers and practitioners. However,

there is a possibility that the insights gained through the contributions of this paper can lead to

more directed experiments, potentially saving computational resources and energy.

Acknowledgements. FH is a Hector Endowed Fellow at the ELLIS Institute Tübingen and acknowl-

edges the financial support of the Hector Foundation. AG, NM, DS and FH acknowledge funding by

the state of Baden-Württemberg through bwHPC, the German Research Foundation (DFG) through

grant numbers INST 39/963-1 FUGG and 417962828, and the European Union (via ERC Consolidator

Grant Deep Learning 2.0, grant no. 101045765), TAILOR, a project funded by EU Horizon 2020

research and innovation programme under GA No 952215. Views and opinions expressed are

however those of the author(s) only and do not necessarily reflect those of the European Union or

the European Research Council. Neither the European Union nor the granting authority can be

held responsible for them.

5



References

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. 7:1–30.

Dror, R., Baumer, G., Bogomolov, M., and Reichart, R. (2017). Replicability analysis for natural

language processing: Testing significance with multiple datasets. Transactions of the Association
for Computational Linguistics, 5:471–486.

Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M., and

Hutter, F. (2021). HPOBench: A collection of reproducible multi-fidelity benchmark problems for

HPO. In Vanschoren and Yeung (2021).

Mallik, N., Hvarfner, C., Bergman, E., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., and Hutter,

F. (2023). PriorBand: Practical hyperparameter optimization in the age of deep learning. In

Proceedings of the 37th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’23).

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., and Bates, D. (2017). Balancing type i error and

power in linear mixed models. Journal of memory and language, 94:305–315.

Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., and Bischl, B. (2022). YAHPO Gym – an

efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In Guyon,

I., Lindauer, M., van der Schaar, M., Hutter, F., and Garnett, R., editors, Proceedings of the First
International Conference on Automated Machine Learning. Proceedings of Machine Learning

Research.

Pineda Arango, S., Jomaa, H., Wistuba, M., and Grabocka, J. (2021). HPO-B: A large-scale repro-

ducible benchmark for black-box HPO based on OpenML. In Vanschoren and Yeung (2021).

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-Plus. Springer. ISBN

0-387-98957-0.

Riezler, S. and Hagmann, M. (2022). Validity, Reliability, and Significance: Empirical Methods for NLP
and Data Science. Synthesis Lectures on Human Language Technologies. Morgan & Claypool

Publishers.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2):99–114.

Vanschoren, J. and Yeung, S., editors (2021). Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks.

Wang, Z., Dahl, G., Swersky, K., Lee, C., Mariet, Z., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani,

Z. (2021). Pre-trained Gaussian processes for Bayesian optimization. arXiv:2207.03084v4 [cs.LG].

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search. Technical Report

SFI-TR-95-02-010, Santa Fe Institute.

6



Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [N/A]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [N/A]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [N/A]

(e) Did you report the statistical significance of your results? [N/A]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [N/A]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [No] The URL will be released as part of the non-

anonymized version of the paper.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [N/A]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

7

https://2022.automl.cc/ethics-accessibility/


4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

8



A LMEMs and GLRTs overview

A.1 Short version

This likelihood-based testing approach trains an LMEM on the experimental data and estimates

the mean of each algorithm based on the model’s parameters. The results are normal distributions

that can be compared via statistical tests, here we employ pairwise Tukey HSD tests. The model

itself is used to capture additional information, disregarded in classical testing. We include the

respective benchmark, seed, fidelity, and meta-features like the prior quality of each result. LMEMs

are especially fit for this use case as they model inherent hierarchies in the data through the use of

random effects. A variable like benchmark as random effect is assumed to be not fully observed but

a sample from a zero-mean random distribution with an internally estimated variance-covariance

matrix. As a result, they account for any variation caused by e.g. a different benchmark, effectively

unifying the data. The approach therefore seeks to produce general results beyond what statistical

tests normally could.

Additionally, two LMEMs𝑀0 and𝑀1 (with likelihoods 𝑙0 and 𝑙1 and numbers of parameters 𝑘0 and

𝑘1) can function as representations of hypotheses to be compared with the Generalized Likelihood

Ratio Test (GLRT). As the models are fit by maximum likelihood, their likelihoods are normally

distributed, producing a 𝜒2-testing distribution.

2 log

𝑙0

𝑙1
∼ 𝜒2

𝑘0−𝑘1

A.2 Linear Mixed Effect Models

This work showcases the use of Linear Mixed Effect Models (LMEMs) for a model-based significance

testing approach. These models have long been in use for their effectiveness at handling grouped

data and within-group correlation, which is why they are now applied to HPO settings (Pinheiro

and Bates, 2000). Briefly explained LMEMs extend the simple Linear Model ((1)) by additional

components.

Y = X𝜷 + 𝝐 , where 𝝐 ∼ N (0,𝚲𝜃 ) (1)

In LMEMs, the vector 𝛽 is called fixed effects to contrast the second, random effects-vector b,
which has its own design-matrix Z.

Y = X𝜷 + Zb + 𝝐 (2)

Contrary to 𝜷 , the random vector is assumed to consist only of samples from a normal distribution,

similar to the error vector, instead of fully and reliably observed values, such that:

b ∼ N (0, 𝝍𝜃 ) (3)

LMEMs now optimize the fixed effects matrix X directly, while the random effects matrix Z is

determined from the distribution of b, by estimating its variance-covariance matrix 𝝍𝜃 through

likelihood-maximization.

Now assume a model using the algorithm as fixed and the benchmark as a random effect ((4)). It

has a grand intercept 𝜇 and for each algorithm 𝑎 an effect 𝜈𝑎 that gets activated by its indicator

function I𝑎 . The same counts for the random effect benchmark, with its effects 𝜈𝑏 and indicator

function I𝑏 .
𝑌 = 𝜇 +

∑︁
𝑎∈𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠

𝜈𝑎 ∗ I𝑎 +
∑︁

𝑏∈𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠

𝜈𝑏 ∗ I𝑏 + 𝜖𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (4)

This is logically extended to an ordinal variable 𝑥 , where the sum over indicator functions is

replaced by 𝜈𝑥 ∗ 𝑥 and interaction effects, with double sums and 𝜈𝑥𝑦 ∗ I𝑥∧𝑦 . This can introduce

9



levels of hierarchy, which is an essential use case of LMEMs. As an example, for a categorical

meta-parameter (or fidelity) 𝑝 we can introduce a fixed effect 𝜈𝑝 and an interaction effect 𝜈𝑎𝑝 to

retrieve individual performances under each value of 𝑝:

𝑌 = 𝜇 + 𝜈𝑝
∑︁

𝑎∈𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠

(
𝜈𝑎 ∗ I𝑎 +

∑︁
𝑝∈𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝜈𝑎𝑝 ∗ I𝑝

)
+ 𝜖𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (5)

A.3 Estimated Marginal Means and Tukey-HSD
Estimated Marginal Means. Having built the model, we use Estimated Marginal Means (EMMs) to

generate the testing data. In this process, an EMM grid is generated containing all unique values of

all effects. Over this EMM grid, we can calculate the mean and standard error for each algorithm,

again using the variance-covariance matrix 𝝍𝜃 . The resulting means and standard errors are then

used as the basis for the actual significance test.

This is a unique property of model-based testing methods because we do not test on the data

itself but rather use it as response variable for the model. This has considerable benefits, as it

alleviates any restrictions on the distributional properties of the data like being normally distributed

or having homogeneous variances. Any data can train the model while the model parameters

themselves asymptotically follow a normal distribution, as they have been obtained by maximizing

the likelihood (Demšar, 2006).

Pairwise comparisons with Tukey HSD. This understanding allows for a simple t-test for pairwise

comparisons of each algorithm. As recommended by Riezler and Hagmann (2022) we use the

Tukey HSD test to control the per-experiment Type-I error, as it is well suited for larger numbers of

algorithms, contrary to the Bonferroni correction. The Tukey HSD test is a multiple testing corrected

t-test introduced by Tukey (1949). We obtain the test statistic from the distance of two algorithms’

estimated means and their common standard error:

𝑞𝑠 =
|𝑚1 −𝑚2 |
𝑆𝐸𝑚1,𝑚2

(6)

The critical value𝑞∗ of this distribution is retrieved from the studentized range distribution, depending
on the elected Type I error rate, the number of algorithms 𝑘 and the number of observations per

algorithm 𝑁𝑎 , which give the degrees of freedom per algorithm as 𝑑 𝑓𝑎 = 𝑁𝑎 − 𝑘 . Using the

cumulative studentized range distribution we can determine the p-value for this comparison of

algorithms.

CD-Diagrams. From the Tukey HSD test we obtain an individual p-value for each comparison.

This is ideal for constructing a CD-Diagram, a method introduced by Demšar (2006), using the

Estimated Means as algorithm ranks. Importantly, we also obtain an individual Critical Difference
for each comparison, which is why we extended the CD-Diagram to show the range from smallest

to largest Critical Difference above.

A.4 Generalized Likelihood Ratio Testing
These LMEMs can in principle be extended by any possible factor but this comes at the cost of

complexity and ability to generalize. To optimize this trade-off, we follow the approach of Riezler

et al. to employ the Generalized Likelihood Ratio Test (GLRT) to compare models, specifically one

with (𝑀1) against one without (𝑀0) the effect in question (Riezler and Hagmann, 2022). The GLRT

compares the two models’ likelihood 𝑙1 and 𝑙0 (Equation A.4) which in turn are both approximately

normal, as they come from a maximum likelihood optimization. Therefore their ratio is 𝜒2 dis-

tributed with 𝑘0 − 𝑘1 degrees of freedom for 𝑘𝑖 parameters of model 𝑀𝑖 (Riezler and Hagmann,

2022).

2 log

𝑙0

𝑙1
∼ 𝜒2

𝑘0−𝑘1

10



Using the critical value from this distribution, we can decide on which effects to add per the

significance of the resulting p-value of the GLRT. A significant p-value lets us reject the null

hypothesis that both models perform the same and, when additionally 𝑙0 > 𝑙1, conclude that the

effect increases the model’s power significantly.

B Data from PriorBand

In this section, we refer to all the relevant information from the original PriorBand work (Mallik

et al., 2023) that supplements our case study of applying LMEM-based significant testing.

B.1 Subset considered

Figure 6 shows the primary result of concern in our case study. We want to understand the role of

the different benchmarks, the quality of the default prior for that benchmark and how HyperBand
and PriorBand differ in performance on them.

Figure 6: Relative Ranks plot from the PriorBand Paper: On the top: Relative ranks under both good

(at25) and bad priors combined. On the bottom: Performance under individual priors. (Figure

sourced from Mallik et al. (2023))

B.2 Metadata of experiment data

In this section we illustrate the structure of the HPO Benchmarking data we inherited. The original

data from (Mallik et al., 2023) is shown in Figure 7. For Section 4.1 we use only the information

about the loss and algorithm (Figure 8). For anytime performance analysis, we additionally include

information about the training budget (Figure 9). In the sanity checks (Section 4.2), we also include

the seed to analyze for seed dependencies (Figure 10). Finally in the benchmark clustering (Section

4.3), we include the loss, algorithm, benchmark, budget and prior quality (Figure 11).

11



Figure 7: Excerpt from the PriorBand paper’s data (Mallik et al., 2023)

The data contains information on the loss and algorithm and on which benchmark, seed,

fidelity, and prior it was acquired on.

Figure 8: Data used for comparing LMEMs to Autorank
The data contains the loss and the algorithm.

Figure 9: Data used for anytime analysis
The data contains the loss, algorithm and training budget.

12



Figure 10: Data used in the sanity checks
The data contains information on the loss and algorithm and on which benchmark, seed,

and fidelity it was acquired on.

Figure 11: Data used for benchmark clustering
The data contains information on the loss and on which benchmark, fidelity, and prior it

was acquired on.

B.3 Supporting plots borrowed

Figure 13 shows the distribution of error given a prior configuration to sample around. The

different violins indicate different prior inputs. These particular 2 benchmarks from Mallik et al.

(2023) were marked in our analysis to be the odd ones under expected behaviour and trends with

other benchmarks. On looking deeper, it turned out these 2 benchmarks have bimodal bad prior

distributions. With one of the modes at a similar performance level as the good prior mode. Thus,

suggesting that these benchmarks could have been dropped from the aggregation results or the

prior qualities should have been reassessed.

13



Figure 12: Benchmark compared under good and bad priors via clustering: Two benchmarks, LC-
Bench 167190 and LC-Bench 168910 show no significant difference between their prior

variants.

Figure 13: Violin plots from the PriorBand Paper: Both benchmarks that showed insignificant differ-

ences in prior qualities turn out to have strongly bimodal bad prior distributions with good

quality secondary modes.

C Sanity checks on synthetic data

In Section 4.2 we present several sanity checks that the PriorBand data passed. We now create

synthetic datasets, to show other results of these checks.

Seed-Independency. We have generated a small synthetic dataset of three algorithms at 50 seeds

that share the same mean (2.5) and variance (0.55), but where algorithm A-1 is influenced by the

seed (Figure 14). A GLRT compares two models, with (Equation 7) and without seed effect (Equation

8), to see whether an algorithm performance might depend on the seed chosen.

loss ∼ algorithm (7)

loss ∼ algorithm + (0 + algorithm|seed) (8)

The second model fits a random effect for each seed and algorithm. If this does not increase the

significance of the model, the GLRT will reject it meaning we cannot make a significant connection

between seed and algorithm performance. In this case, it accepts the complex model, so we look for

large variances in this random effect. These variances show exactly which algorithm is affected.

Benchmark relevance. For each benchmark, we train a model with (Equation 9) and without

(Equation 10) algorithm effect, so assuming either significant or insignificant differences between

the algorithms.

loss ∼ 1 (9)

loss ∼ algorithm (10)

Again we show this using a test set where the algorithm’s mean performance depends on the

Benchmark:

14



Figure 14: Seed-dependent synthetic dataset We create a synthetic dataset with three algorithms

where for some seeds algorithm A-1 uses 0.1 ∗ 𝑠𝑒𝑒𝑑 as mean.

Figure 15: Test on Seed dependency We use a GLRT to compare a model that includes the seed as

a factor against one that does not (Simple model). The p-value is significant and the seed

model is more likely than the simple one, so the seed is a significant effect. In the second

step, we analyze the effect’s variances and correctly determine algorithm A-1 to be the only

affected algorithm.

Figure 16: Multi-Benchmark dataset: For Benchmark B-0, all algorithms perform similar, for B-1 and

B-2, performances vary.

15



Additionally (but more compute-intensively) we can rank the benchmarks according to their

relevance, by using a model with individual algorithm-benchmark random effects (Figure 11)

and again looking at the variance of these effects, where higher variance corresponds to larger

performance differences.

loss ∼ (0 + benchmark|algorithm) (11)

Figure 17: Benchmark relevance test Left: Individual tests, Right: Variance ranking

As Figure 17 shows, benchmark B-0 is uninformative as in the algorithms do not vary signifi-

cantly within the benchmark and the ranking suggests the largest performance gap for B-2, which

corresponds to our data.

Budget relevance. LMEMs can natively integrate the HPO budget into the model training process.

To test whether a fidelity or other Meta-Parameter variation helps understand the data, we propose

Figure 18: Budget dependent dataset: The training budget loosely affects the mean of each algorithm.

a set of GLRTs that compares a simple model (Equation 12), a model with fixed fidelity effect

16



(Equation 13) and a model with interaction effect (Equation 14) to each other.

loss ∼ algorithm + (1|benchmark) (12)

loss ∼ algorithm + budget + (1|benchmark) (13)

loss ∼ algorithm + algorithm:budget + (1|benchmark) (14)

Figure 19: Testing budget effect After comparing models with and without the effects, we conclude

that budget is significantly improving the model both as a simple and as an interaction

effect. However, as an interaction effect introduces higher complexity, the simple effect

performed better of the two.

17


	Introduction
	Related Work and Background
	Empirical setup
	Application
	Drop-in replacement for Autorank
	Sanity checks
	Leveraging benchmark metafeatures with significance testing
	Further extensions and applications

	Conclusion
	Limitations
	Broader Impact
	LMEMs and GLRTs overview
	Short version
	Linear Mixed Effect Models
	Estimated Marginal Means and Tukey-HSD
	Generalized Likelihood Ratio Testing

	Data from PriorBand
	Subset considered
	Metadata of experiment data
	Supporting plots borrowed

	Sanity checks on synthetic data

