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(a) A generic hand shadow puppetry setup.

(b) Rabbit (c) Bird (d) Dog

Figure 1. Ombromanie in a nutshell.1

Abstract

Hand shadow puppetry, also known as shadowgraphy or
ombromanie, is a form of theatrical art and storytelling
where hand shadows are projected onto flat surfaces to cre-
ate illusions of living creatures. The skilled performers cre-
ate these silhouettes by hand positioning, finger movements,
and dexterous gestures to resemble shadows of animals and
objects. Due to the lack of practitioners and a seismic shift
in people’s entertainment standards, this art form is on the
verge of extinction. To facilitate its preservation and pro-
liferate it to a wider audience, we introduce HASPER, a
novel dataset consisting of 15,000 images of hand shadow
puppets across 15 classes extracted from both professional
and amateur hand shadow puppeteer clips. We provide
a detailed statistical analysis of the dataset and employ a
range of pretrained image classification models to establish
baselines. Our findings show a substantial performance

1The shadowgraphy cliparts are adapted from ClipArt ETC, Florida
Center for Instructional Technology, College of Education, University
of South Florida. Link: https://etc.usf.edu/clipart/
galleries/266-hand-shadow-puppetry

superiority of skip-connected convolutional models over
attention-based transformer architectures. We also find that
lightweight models, such as MOBILENETV2, suited for
mobile applications and embedded devices, perform com-
paratively well. We surmise that such low-latency archi-
tectures can be useful in developing ombromanie teach-
ing tools, and we create a prototype application to ex-
plore this surmission. Keeping the best-performing model
RESNET34 under the limelight, we conduct comprehensive
feature-spatial, explainability, and error analyses to gain
insights into its decision-making process and explore archi-
tectural improvements. To the best of our knowledge, this
is the first documented dataset and research endeavor to
preserve this dying art for future generations, with com-
puter vision approaches. Our code and data are publicly
available at https://github.com/Starscream-
11813/HaSPeR.

“Will he not fancy that the shadows which he formerly saw
are truer than the objects which are now shown to him?”

Plato, The Republic (Book VII, Allegory of the Cave)

1. Introduction
Ombromanie, the ancient art of hand shadow puppetry, is
a form of art that involves the mesmerizing interplay of
light and shadow through the construction and manipula-
tion of shadow figures or silhouettes on a surface, typically
a screen or a wall, using one’s hands, body, or props [1, 54].
The alias “cinema in silhouette”2 is sometimes used to re-
fer to this proto-cinematic medium of entertainment. Its
working principle is very straightforward—the puppeteer
adeptly positions their hands between a radiant light source
and a translucent screen, consequently conjuring shadows
and silhouettes that emulate different creatures, as shown in
Fig. 1. Despite its rich history and captivating allure across
many cultures,3 there exists a notable dearth of resources

2https://en.wikipedia.org/wiki/Shadowgraphy_
(performing_art)

3https://www.geniimagazine.com/wiki/index.php/
Shadowgraphy



Figure 2. A flowchart depicting the dataset construction process.

specifically tailored to this artistic domain. With properly
annotated and sourced data, researchers could study the in-
tricacies of hand silhouette movements, shapes, and sto-
rytelling techniques, thereby enabling the development of
sophisticated Artificial Intelligence (AI) systems for auto-
matic recognition, classification, or even generation of om-
bromanie performances [39]. The generation aspect is par-
ticularly relevant given the demonstrable impotency of AI
image generator models in accurately creating hands and
fingers [47]. Apart from that, the development of appli-
cations that can facilitate the learning of ombromanie has
the potential to breathe new life into this waning art form
[49]. In 2011, UNESCO recognized shadow puppetry as
an endangered artistic tradition by adding it to the Intangi-
ble Cultural Heritage list [36], which is why it necessitates
more preservatory apparatus and research efforts.

In tandem with this motivation, this work introduces a
seminal addition to the realm of data resources, HASPER
(Hand Shadow Puppet Image Repository), a methodically
curated novel image dataset of hand shadow puppets. The
dataset comprises an assemblage of 15,000 samples, that
we painstakingly source and verify from 68 professional
shadowgraphist clips and 90 amateur shadowgraphist clips.
We label and categorize the images with utmost precision
to elicit robustness in the image classification models that
will undergo training with these images. The samples in
HASPER are diverse in nature since the source clips are
recorded in a plethora of different poses, orientations, and
background lighting conditions of the translucent screen.
We also inculcate silhouette motion diversity via optical
flow estimation [17] in the frame extraction process. We
conduct a detailed analysis of HASPER’s statistical char-
acteristics. We also employ a variety of state-of-the-art
(SOTA) pretrained image classification models to establish
a performance benchmark for validating the integrity of
the dataset. Additionally, we conduct a thorough evalua-
tion of several facets of the ace RESNET34 model, includ-
ing its feature representations, feature fusions, interpretabil-
ity, explainability, and classification errors that it encoun-
ters. In an effort to assess the potential of digitized ombro-
manie teaching tools, we create a simple and lightweight

Silhouette
Class

Clips Sample Distribution

Pro. Nov. Training Validation Total

Bird 6 6 600 400 1000
Chicken 2 6 600 400 1000
Cow 2 6 600 400 1000
Crab 4 6 600 400 1000
Deer 6 6 600 400 1000
Dog 7 6 600 400 1000
Elephant 5 6 600 400 1000
Horse 8 6 600 400 1000
Llama 2 6 600 400 1000
Moose 3 6 600 400 1000
Panther 2 6 600 400 1000
Rabbit 4 6 600 400 1000
Snail 4 6 600 400 1000
Snake 3 6 600 400 1000
Swan 10 6 600 400 1000

Total 68 90
9000 6000 15000

158

Table 1. Statistical summary of HASPER.

prototype Android application using Flutter for classifying
hand shadow puppet images from the phone’s camera feed.
We posit that our dataset possesses the potential to offer a
wealth of opportunities for exploration and analysis into the
artistic domain of hand shadow puppetry.

2. Dataset Construction

The series of steps involved in our data acquisition process
is broadly divided into three tasks—(a) procuring the per-
formance clips, (b) extraction of the frames, and (c) cate-
gorization of each sample frame with a proper label. Fig. 2
portrays this workflow behind our dataset preparation. We
incorporate manual oversight at each step of the dataset cre-
ation in order to reconcile any exigencies pertaining to the
quality of HASPER.

2.1. Collating Shadowgraphy Clips

At the outset of the process, we procure 68 different clips of
14 different professional shadowgraphists from YouTube.4

The video sources are licensed under fair use and a list con-
sisting of the links to all of them is available in our GitHub5

repository. We record the relevant portions of the per-
formance videos using the open-source recording software
OBS Studio.6 Six novice volunteer shadowgraphists collec-
tively produce 90 additional clips, with each contributing
one clip for every class. As a consequence, the total num-
ber of source clips aggregates to 68 + (15× 6) = 158.

4https://www.youtube.com
5GitHub repository—https://github.com/Starscream-

11813/HaSPeR
6Open Broadcaster Software® —https://obsproject.com/
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Figure 3. Samples from each class of the dataset.

2.2. Extracting Samples
To mitigate the presence of excessively similar and redun-
dant image samples, we extract frames from these clips at
reasonable intervals of k after downsampling the clips to a
resolution of 1438 × 1080. The values of k are judiciously
chosen for the clips of each class, and every kth frame is
selected as a candidate image sample (e.g., with k ≈ 180,
200, 220 for a 60 FPS clip). From this sequence of extracted
candidate frames, we prioritize those exhibiting significant
motion. To this end, we estimate the motion vector field
by calculating the optical flow between the consecutive tth
frame and the (t+k)th frame. The magnitude of this motion
is quantified by the mean L2 norm of the resulting flow field.
We retain the frame pairs with an average flow magnitude
surpassing a certain requisite threshold τ , thereby ensuring
the inclusion of dynamically distinct frames. We synergisti-
cally amalgamate two optical flow estimation methods: the
Lucas–Kanade (LK) method [37] and the Total Variation L1
Regularization (TV-L1) method [72]. The undergirding as-
sumption beneath the LK method is brightness constancy
and spatial coherence of the flow in a local neighbourhood
of the pixel (say, the patch W ) under consideration. It em-
ploys a multi-scale gradient descent optimization approach
for the constraint equation shown in Eq. (1).

Ix · u+ Iy · v + It = 0 (1)

where, Ix = ∂I
∂x and Iy = ∂I

∂y are the spatial gradients of
the image intensity I , and It = ∂I

∂t is the temporal gradient.
u and v are the horizontal and vertical components of the
optical flow vector, respectively. The motion is then esti-
mated by iteratively minimizing the cost function in Eq. (2)
at increasingly granular image resolutions, from coarse to
fine.[
u
v

]
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u,v
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[Ix(i, j) · uij + Iy(i, j) · vij + It(i, j)]
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Eq. (3).
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(a) tth frame (b) (t+ k)th
frame

(c) LK
method

(d) TV-L1

method
(e)

max(LK, TV-L1)

Figure 4. Optical flow estimation of contiguous candidate frames
from the ‘Horse’ class.
As evident from Fig. 4c, the LK method can track the edge
movement of the homogeneous silhouette patches, given
the slight texture offered by the penumbral region of the
shadow. However, as it is limited by local window con-
straints, it fails to capture the global motion of the shadow
puppet. To ameliorate this issue, we resort to the TV-L1

method, which is a variational method that minimizes the
total variation of the flow field, subject to the L1 norm of
the data fidelity term, which together form the energy func-
tion E in Eq. (4).[
u
v

]
TV-L1

= argmin
u,v

E(u, v) (4)

= argmin
u,v

∫
Ω
(λ ‖∇I · #»w + It‖1︸ ︷︷ ︸

Data term

+ ‖∇u‖1 + ‖∇v‖1︸ ︷︷ ︸
L1 Regularization term

) dx dy

(5)

where #»w = 〈u, v〉 is the optical flow vector, ∇u and ∇v
are the spatial gradients of the flow, λ is the parameter for
balancing data fidelity and regularization, and Ω ⊆ R2 rep-
resents the spatial domain of the entire image. The TV-L1

method is more adept at capturing the global motion of the
homogeneous and spatially consistent inner portion of the
shadow puppet, as depicted in Fig. 4d. We then take the
element-wise maximum of the LK and TV-L1 flow fields’
L2 norms to obtain a more hoilistic optical flow field, as
portrayed in Fig. 4e.[
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Then from this maximum combination M ×N flow field,
we compute the mean L2 norm V using Eq. (7).

V =

M−1∑
i=0

N−1∑
j=0

√
u∗ 2
ij + v∗ 2

ij

MN
(7)



Figure 5. Light sources for background diversity in HASPER.

If V > τ , we retain the corresponding frame pair as can-
didate samples, otherwise we continue the process with the
(t + k)th and the (t + 2k)th frames. Tab. 1 encapsulates
some essential statistical information related to HASPER
and provides a superficial overview of the dataset.

2.3. Labeling
After the extraction of the frames, the samples undergo
manual scrutiny by 3 annotators who are pursuing un-
dergraduate studies in Computer Science and Engineering
(CSE). If a series of contiguous samples prima facie exhibit
substantial similarity, we only keep a single image from
that set of samples. The rest are discarded to avoid redun-
dancy and to instill diversity. Another criterion that dictates
the legitimacy of an image sample is its intelligibility. If
the majority of the annotators agree on the unintelligibil-
ity of a sample, they discard it in unison. After performing
this omission of unsuitable samples for each class, we end
up with 15 different directories of images, each containing
the curated samples of a particular class. The images in
these folders are then further partitioned into training and
validation sets, maintaining a 60:40 split. We also prag-
matically incorporate a proper distribution of the samples
sourced from amateur clips over both the training and val-
idation sets, to avoid making the latter unfairly difficult for
the classification models.

3. Dataset Description
To provide a tangible exposition of the diverse samples in
the dataset, Fig. 3 presents a collection of representative im-
ages across all 15 classes. With minimally astute perspicac-

(a) Sharp, high opacity (b) Diffuse, low opacity

Figure 6. Samples with different silhouette properties.

ity, we can observe that the samples vary in terms of the
nature of the backgrounds, the anatomical structure of the
puppeteers’ hands, the photometric opacity and sharpness
of the projected silhouettes, and a panoply of other aspects.

3.1. Background Variance
The hand shadow puppetry setup that a puppeteer’s crew
arranges before the performance greatly dictates the nature
of the background on which the shadow puppets are dis-
played. If the location of the light source is very near to
the wall or the translucent screen, then we can observe an
elliptical shadow contour on the background as evident in
Figs. 3a and 3m. The angular directionality of the light
also manifests a gradient effect on the background as can
be seen in Figs. 3d and 3h. The temperature and color of
the light emanated by the light sources onto the screens also
add to the diversity. To achieve this, we use six different
light sources—candlelight, an incandescent bulb, sunlight,
a CFL light, an Epson EB-972 XGA projector, and an LED
bulb—each with different color temperatures. Historically,
many other light sources were used by shadowgraphists
such as marrow-fat lamps, flame torches, halogen lamps,
lime lights, etc. Fig. 5 depicts an overarching illustration
of the monocular polychromatic background lighting diver-
sity that we maintain in HASPER. We avail the overhead
projector to emit light from across the visible spectral range
(380–750 nm). Additionally, we use a random-patterned
combination of these colors (colloquially referred to as the
psychedelic pattern) as the backdrop for a subset of the or-
ganically created samples.

3.2. Nature of the Silhouettes
The positioning of the light source with respect to the pup-
peteer’s hands plays a role in shaping the shadows’ qual-
ity. As per the natural laws of optics, proximity to the light
source yields crisp, well-defined shadows (e.g., Fig. 6a),
while increasing the distance fosters softer, more diffuse
shadows (e.g., Fig. 6b) with a central umbra and periph-
eral penumbra. The higher the contrast between the silhou-
ettes and their respective backdrops, the more visible and
well-contoured the shadow puppets are. The direction of
the light source influences the orientation and shape of the
shadows. Shadows cast by overhead lighting sources may
appear elongated, while shadows cast by low-angle lighting
sources may exhibit softer edges and less pronounced con-



Figure 7. ‘Deer’ samples with different artistic representations.

trast and sharpness. Similarly, due to varied values of the
lateral incident angle at which the light sources are kept rel-
ative to the screen’s normal, we see horizontally elongated
and compressed shadows. The shadows also differ in terms
of the magnitude of their opacity, i.e., the degree to which
the hands prevent the transmission of light being projected
onto the screen.

3.3. Puppeteers’ Hand Anatomy and Stylistic Flair
The physiological properties of the puppeteers’ hands can
vary significantly due to a combination of genetic factors,
environmental influences, and lifestyle choices. These nu-
anced anatomical variations of the wrists, palms, and digits
of the puppeteers, along with the different stylistic choices
they employ in their choreography, contribute as yet another
avenue of diversity of the image samples in HASPER. Hu-
man beings, by nature, exhibit morphometric variations in
finger length, palm width, and forearm thickness based on
age and gender. As such, the cohort of novice shadow-
graphists (n = 6) that we employ for the creation of am-
ateur samples comprises a balanced gender representation
of 3 males and 3 females, spanning an age range from 9 to
25 years. Among the adults, the hand anthropometric mea-
surements are of 18.75± 1.55 cm in length and 8.66± 0.77
cm in width. For the minors, who obviously have propor-
tionally smaller hand dimensions, these measurements are
14.23± 1.16 cm and 6.73± 0.82 cm respectively. The gen-
der representation among the 14 professional shadow pup-
peteers is however imbalanced, with 12 male and 2 female
shadowgraphists. Fig. 7 pristinely demonstrates the mor-
phological variations of hand shadow puppets belonging to
the ‘Deer’ class due to anatomical and stylistic diversity.

3.4. Comparative Analysis
3.4.1. Inter-class Similarity
Due to the conspicuous resemblance in the anatomical
structures of certain animal species, the samples belonging
to the classes corresponding to those animals exhibit a no-
table degree of similarity as well. Figs. 3e and 3j are prime
examples of such structural similitude that can be observed
between the ‘Deer’ and ‘Moose’ classes. These similarities
make the image classification task on HASPER quite chal-
lenging and culminate to being the reason behind a lot of
misclassifications, as discussed in Sec. 4.3.

3.4.2. Intra-class Dissimilarity
Some classes include samples of multiple species of the
same animal, and these samples are starkly different in ap-
pearance from one another. Given the presence of such

Input
Layer

Output
Layer

Figure 8. Classifier block attached to the tail-end of the pre-
trained models. Here, d is the feature dimension of the anterior
model. The output features of layer l is z[l] = W [l]a[l−1], where
a[l−1] denotes the activation values of the preceding (l − 1)th
layer. The batch normalized value of the ith output feature z[l]

i

is ẑ[l]
i = γ[l]z

[l](i)
norm + β[l], where γ and β are learnable parame-

ters. The activation values of layer l are denoted by a[l] = g(ẑ[l])
which is computed using the activation function g = ReLU. The
predicted probabilities are determined by using the softmax func-
tion on the logits, i.e., P (ŷi = 1|x) = softmax(y)i =

eyi∑15
j=1 e

yj

quasi-disparate samples, along with the individualistic flair
that manifests through the puppeteers’ stylistic choices, a
particular class may show a lot of intra-class dissimilarity.
As aforementioned, Fig. 7 portrays the heterogeneity of this
nature among the samples from the ‘Deer’ class.

3.5. Statistical Analysis
Tab. 1 presents the statistical properties of the HASPER
dataset. It tabulates the proportion of samples belonging
to each of the 15 classes and their corresponding training-
validation splits. While searching for hand shadow pup-
petry performances, we anecdotally observe that certain
classes of puppets are more popular than others. Irrespec-
tive of this fact, we make sure all 15 classes of puppets are
equitably represented in our dataset, with each class having
1,000 image samples (≈ 6.6̇%). As evident in Tab. 1, the
image samples are evenly distributed across all 15 classes.
The proportions of professionally sourced samples belong-
ing to the ‘Llama’ and ‘Snake’ classes (14% and 27.3% re-
spectively) are slightly low due to a scarcity of performance
clips starring hand shadow puppets of these classes. For
cases such as these, we supplement the classes with sam-
ples organically created by our novice shadowgraphist co-
hort. Each class has≈ 47.827±1.414% samples from clips
of professional performers, and the rest≈ 52.172±1.414%
samples are sourced from amateur clips. Of the 15,000
samples, approximately 76.53% feature male hands, while
23.64% represent female hands. In tandem, considering the
target demographic of ombromanie, around 28.33% of the
samples in HASPER consist of children’s hands. In totality,
we end up with 9,000 samples in the training set and 6,000
samples in the validation set, thereby partitioning HASPER
by maintaining a 60:40 ratio.



Models Params.
Vanilla w/ Classifier Block

Top-k Accuracy (%) Precision Recall F1-score Top-k Accuracy (%) Precision Recall F1-score
Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

SHUFFLENETV2X10 [38] 2.3M 61.73 78.41 86.10 0.6559 0.6173 0.5970 88.73 93.98 96.10 0.8995 0.8873 0.8853
VITB16 [9] 86.6M 69.71 77.60 83.28 0.7276 0.6972 0.6969 68.88 76.65 81.36 0.7192 0.6868 0.6851
VITL32 [9] 306.5M 85.10 91.56 94.48 0.8720 0.8510 0.8509 84.71 91.80 94.08 0.8632 0.8472 0.8465
ALEXNET [27] 61.1M 87.01 93.61 95.46 0.8840 0.8702 0.8708 88.18 92.58 94.80 0.8887 0.8818 0.8809
SQUEEZENET1 1 [24] 1.2M 87.56 92.45 94.15 0.8880 0.8757 0.8744 86.21 92.48 94.65 0.8754 0.8622 0.8637
MOBILENETV3SMALL [18] 2.5M 89.48 94.31 95.76 0.9038 0.8948 0.8942 89.85 94.35 96.48 0.9082 0.8985 0.8976
SWINB [32] 87.8M 90.50 95.38 97.40 0.9128 0.9050 0.9042 90.20 95.40 97.08 0.9097 0.9020 0.9006
GOOGLENET [58] 6.6M 90.73 94.65 95.70 0.9105 0.9073 0.9059 92.18 95.65 96.58 0.9283 0.9218 0.9206
RESNET18 [15] 11.7M 90.91 95.28 96.60 0.9176 0.9092 0.9069 91.25 95.43 97.05 0.9229 0.9125 0.9119
MOBILENETV3LARGE [18] 5.5M 91.20 94.48 95.98 0.9185 0.9120 0.9110 90.40 94.53 95.26 0.9147 0.9040 0.9024
CONVNEXT [34] 88.6M 91.46 96.33 98.05 0.9220 0.9147 0.9140 92.55 96.36 97.96 0.9306 0.9255 0.9246
SWINV2B [33] 87.9M 91.58 96.25 97.61 0.9210 0.9158 0.9151 91.48 96.00 97.55 0.9209 0.9148 0.9144
VGG16 [52] 138.4M 91.61 95.08 96.65 0.9248 0.9162 0.9168 91.00 95.21 96.45 0.9235 0.9100 0.9119
MNASNET13 [62] 6.3M 91.66 95.65 97.01 0.9240 0.9167 0.9149 91.45 95.86 97.26 0.9231 0.9145 0.9133
CONVNEXTLARGE [34] 197.8M 91.88 95.90 97.70 0.9254 0.9188 0.9181 88.00 94.70 96.56 0.8942 0.8800 0.8782
EFFICIENTNETB0 [60] 5.3M 91.93 95.26 96.71 0.9257 0.9193 0.9178 90.40 93.75 95.10 0.9131 0.9040 0.9022
MAXVIT [68] 30.9M 92.01 96.50 97.81 0.9268 0.9202 0.9214 92.08 95.98 97.36 0.9320 0.9208 0.9237
EFFICIENTNETV2S [61] 21.5M 92.31 95.75 96.76 0.9375 0.9232 0.9245 94.45 97.35 98.30 0.9498 0.9445 0.9438
VGG19 [52] 143.7M 92.36 95.13 96.10 0.9354 0.9237 0.9242 91.80 95.06 96.15 0.9296 0.9180 0.9187
MOBILENETV2 [48] 3.5M 92.38 94.98 96.05 0.9303 0.9238 0.9233 92.31 95.38 96.91 0.9311 0.9232 0.9225
WIDERESNET50 2 [73] 68.9M 92.46 96.28 97.28 0.9331 0.9247 0.9235 93.35 95.73 97.15 0.9421 0.9335 0.9330
RESNET50 [15] 25.6M 92.58 95.56 96.75 0.9332 0.9258 0.9252 93.08 96.48 97.20 0.9363 0.9308 0.9299
REGNETX32GF [45] 107.8M 92.86 95.71 96.93 0.9348 0.9287 0.9269 92.91 95.71 96.95 0.9366 0.9292 0.9282
DENSENET121 [21] 8.0M 92.93 95.75 96.88 0.9367 0.9293 0.9282 92.95 95.51 96.56 0.9360 0.9295 0.9285
RESNEXT101 32X8D [70] 88.8M 93.00 96.41 97.23 0.9364 0.9310 0.9303 94.20 96.61 97.58 0.9520 0.9420 0.9423
WIDERESNET101 2 [73] 126.9M 93.36 95.81 96.90 0.9423 0.9337 0.9332 92.73 96.35 97.63 0.9337 0.9273 0.9267
INCEPTIONV3 [59] 27.2M 93.50 96.48 97.35 0.9401 0.9350 0.9338 93.71 96.36 97.06 0.9446 0.9372 0.9371
DENSENET201 [21] 20.0M 93.56 95.78 96.73 0.9450 0.9357 0.9353 94.43 97.00 97.61 0.9492 0.9443 0.9442
RESNET101 [15] 44.5M 93.81 96.23 97.71 0.9432 0.9382 0.9406 93.23 96.93 98.13 0.9386 0.9323 0.9321
RESNET152 [15] 60.2M 94.06 97.06 98.05 0.9447 0.9407 0.9394 93.05 96.73 97.48 0.9374 0.9305 0.9297
RESNET34 [15] 21.8M 94.97 97.23 98.23 0.9516 0.9497 0.9491 91.98 95.95 97.20 0.9266 0.9198 0.9189

RESNET34 w/ Silhouette Polygonization 21.8M 92.72 96.41 97.51 0.9328 0.9272 0.9257 92.95 (+1.05%) 95.75 96.61 0.9352 (+0.93%) 0.9295 (+1.05%) 0.9283 (+1.02%)

RESNET34 w/ Topological Features 21.8M 93.72 96.43 97.78 0.9432 0.9372 0.9359 94.05 (+2.25%) 96.45 (+0.52%) 97.53 (+0.34%) 0.9476 (+2.27%) 0.9405 (+2.25%) 0.9401 (+2.31%)

Table 2. Performance comparison of the vanilla and modified versions of the image classification models.

4. Methodology for Benchmarking HASPER
A series of pretrained models are used as feature extractors
to develop a benchmark for the dataset. The models are
pretrained on the IMAGENET [8] dataset and fine-tuned on
HASPER. We implement the training pipeline using the Py-
torch7 framework. This section presents an overview of the
models, evaluation metrics, and experimental results.

4.1. Experimental Setup
4.1.1. Baseline Models
For this classification task, we use 31 feature extractor mod-
els as baselines, which are listed in Tab. 2. Some of these
models have a track record of good performance across var-
ious other image classification tasks [41]. We examine both
conventional Convolutional Neural Networks (CNNs) and
CNNs augmented with attention mechanisms. Some mod-
els have multiple variants in terms of size or number of pa-
rameters, and we compare the performance among those
variants as well. We fuse silhouette-specific features ob-
tained via topological descriptors [3] and polygonization
[10] with the extracted features from the best-performing
vanilla model (see Appendix B for more information).

4.1.2. Classifier Network
We adopt two approaches to arrive at the final 15-
dimensional layer since there are a total of 15 classes to
predict from. The first approach is to directly append a
15-dimensional fully connected layer at the tail-end of the

7https://pytorch.org/vision/stable/models.html

vanilla models. The second approach incorporates the clas-
sifier block portrayed in Fig. 8.

4.2. Results and Findings
4.2.1. Performance Analysis
The RESNET34 model yields the best performance with a
top-1 accuracy of 94.97%. The vanilla version of the model
also yields the highest top-2 accuracy, top-3 accuracy, Pre-
cision, Recall, and F1-scores of 97.23%, 98.23%, 0.9516,
0.9497, and 0.9491 respectively. Upon being equipped with
the classifier block shown in Fig. 8, the EFFICIENTNETV2S
model yields the highest top-k accuracies and Recall. In
contrast, the RESNEXT101 32X8D and DENSENET201
models demonstrate the best performance across Precision
and F1-score metrics respectively. At this recess of the per-
formance analysis, we consider the top-1 accuracy metric
to be the most statistically significant metric. As evident in
Tab. 2, the vanilla models listed in the upper part’s penulti-
mate row and above lag behind the RESNET34 model when
it comes to the top-1 accuracy value (as well as the other
metrics), which is why we adjudicate that RESNET34 is
the best-performing model. We hypothesize that residual
connections in ResNets help preserve low-level edge and
contour information through identity mappings, ensuring
that crucial silhouette boundaries aren’t lost as the network
deepens, making them better at capturing subtle variations.

4.2.2. Qualitative Analysis and Explainability
As depicted in Fig. 9, we adopt a plethora of explainable
AI (XAI) techniques for the best-performing RESNET34
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Figure 9. The juxtaposition of original image samples from the
HASPER dataset with their corresponding GradCAM Heatmaps,
LIME Visualizations, and Saliency Maps (for the best-performing
vanilla RESNET34 model).

model to understand its decision-making. While viewing
the GradCAM (Gradient-weighted Class Activation Map-
ping) [50] attention heatmaps, it becomes apparent that the
model puts more gravitas on the common-sense distinguish-
ing traits. For example, in Fig. 9b, we observe the regions
of the image samples predominantly influencing their re-
spective classification scores—the wingspan and beak of
a bird, the gallinaceous comb of a chicken, the horns and
concave head of a cow, the appendages of a crab, the horns
of a deer, the long-slanted head of a dog, the tusks of an

(a) Camera
feed

(b)
Prediction

Figure 10. Android application for shadow puppet recognition.

elephant, the long maxilla-mandibular jaw of a horse, the
long-eared and tapered head of a llama, the upright horns of
a moose, the big eyes and small ears of a panther, the petite
hands and head of a rabbit, the shell and antennae of a snail,
the lateral hood expansion of a snake, as well as the slender
neck and wing feathers of a swan. As human beings, we
evoke these same distinguishing characteristics while clas-
sifying the images using our own visual reasoning facul-
ties. As exemplified in Fig. 9c, for local interpretation, we
use the model-agnostic technique called LIME (Local In-
terpretable Model-agnostic Explanations) [46]. The green
highlights indicate regions of the image that contribute pos-
itively to the probability of the assigned label, while the
red highlights signify areas that reduce this probability. We
also demonstrate the spatial support of the top-1 predicted
classes by generating the saliency maps [53] in Fig. 9d.
These maps are rendered using a solitary back-propagation
pass through the RESNET34 model, and they accentuate the
salient areas of the given image, characterized by their dis-
criminative attributes with respect to the given class.

4.2.3. Practicality Analysis as a Teaching Tool

It is noteworthy to point out that MOBILENETV2, with
only 3.5 million parameters, managed to surpass many of
the other models in terms of performance. This indicates
the suitability of this image classification task for lighter,
low-latency models that can be used in mobile applica-
tions and embedded devices. We create a simple proto-
type Android application using Flutter to test the efficacy
of MOBILENETV2 in classifying hand shadow puppet im-
ages from the phone’s camera feed. In order to make the
prototype work as seamlessly as intended, we make sure
the vicinity is well-lit, and the camera accurately captures
a sharply focused silhouette. We find that the model has
a memory footprint of 29 MB and achieves an average in-
ference time of 880 µs on the Snapdragon 8 Gen 2 mobile
chipset featured in the Samsung Galaxy S23 smartphone.
Fig. 10 portrays the snapshots of the prototype application.
There are several other practical implementation challenges
involved in this endeavor that we can identify for an edu-
cational mobile application to comport well with the target
demographics [2] and real-world settings.
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Figure 11. Confusion Matrix of vanilla RESNET34.

4.3. Error Analysis
The confusion matrix for the RESNET34 model on our
dataset, presented in Fig. 11, reveals that the ‘Crab’ class
exhibits the highest count of misclassifications. One obvi-
ous reason for this is the somewhat significant inter-class
similarity among the ‘Bird’, ‘Moose’, ‘Rabbit’, and ‘Crab’
classes. Most of the misclassified samples are from visu-
ally similar classes. We can posit that navigating the intri-
cacies of visually similar classes poses a significant chal-
lenge in this image classification task, as evident from the
other pale-red entries of the confusion matrix in Fig. 11.
Even to the keen human eye, distinguishing between these
classes may be perplexing, as they share common visual
features, shapes, or color patterns that result in a high de-
gree of resemblance. We examine various aspects, such as
the distinctive features or characteristics that might have led
to confusion and the degree of similarity between the mis-
classified classes. Figs. 12a and 12f show the confusion
between a ‘Crab’ sample and a ‘Rabbit’ sample which look
visually quite similar. The same holds for one of the six
‘Moose’ samples that are misclassified as ‘Bird’ samples
by the RESNET34 model, as depicted in Figs. 12b and 12g.
We observe that misclassifications of this type occur when
images belonging to different, but visually akin categories,
are erroneously assigned to the wrong class. Another rea-
son for misclassifications is the ambiguity of shape present
in mid-action frames. For instance, the ‘Bird’ sample in
Fig. 12h is a transition frame between two successive wing
flaps. However, due to the presence of this ambiguous sam-
ple in the training set of the ‘Bird’ class, the RESNET34
ends up misclassifying the ‘Panther’ sample in Fig. 12c as
a ‘Bird’ sample. The misclassification portrayed by the pair
of Figs. 12d and 12i is due to the combination of poor light-
ing and ineptitude of the amateur child puppeteer in cre-
ating ‘Llama’ shadows. The model confuses the ear pro-

(a) Label:
Crab,

Predicted:
Rabbit

(b) Label:
Moose,

Predicted:
Bird

(c) Label:
Panther,

Predicted:
Bird

(d) Label:
Llama,

Predicted:
Snail

(e) Label:
Snail,

Predicted:
Bird

(f) ‘Rabbit’
sample

(g) ‘Bird’
sample

(h) ‘Bird’
sample

(i) ‘Snail’
sample

(j) ‘Bird’
sample

Figure 12. Misclassified samples with visually similar samples of
the predicted class.

trusions of the ‘Llama’ sample to be the tentacular eyes of a
‘Snail’ sample. For Fig. 12e, we can pontificate the misclas-
sification reasons to be the overlapping of the fingers and
the distorted angle at which the sample was captured. The
‘Snail’ sample thereby gets wrongly classified as a ‘Bird’
sample due to the existence of the analogous sample por-
trayed in Fig. 12j. The green entries along the diagonal of
the confusion matrix in Fig. 11 indicate the reasonably good
classwise prediction performance of the RESNET34 model,
which is, to some extent, due to the perfectly balanced sam-
ple distribution in HASPER.

5. Conclusion and Future Work
This paper introduces HASPER, a 15,000-image dataset
for hand shadow puppet recognition, curated from expert
and amateur performances via optical flow-based frame ex-
traction. We establish a benchmark by fine-tuning 31 pre-
trained image classification models on the dataset. We
analyze the performance of our top-performing model,
RESNET34, by visualizing its feature space using t-SNE
and conducting comprehensive qualitative and error analy-
ses. We envisage the possibility of developing applications
for imparting the art of shadowgraphy, via mobile and em-
bedded devices. We claim that this work is novel and signif-
icant since it is the first publicly available dataset and study
on image classification benchmarking that focuses only on
ombromanie. There are many avenues in our work that
warrant further investigation. We hope to reconcile those
desiderata by enriching our dataset with numerous permuta-
tions of arm positions and finger movements, preferably by
employing more skilled individuals with varying palm and
wrist structures, thereby creating more diverse silhouettes.
We also plan to experiment with a gesture detection technol-
ogy such as MediaPipe8 or Microsoft Kinect9 for leveraging
depth coordinates of hand landmarks [40], and assess their
efficacy in classifying hand shadow puppets.

8MediaPipe—developers.google.com/mediapipe
9Kinect for Windows—learn . microsoft . com / en - us /

windows/apps/design/devices/kinect-for-windows
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