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Abstract

The next generation of Visual Question Answering (VQA) systems should handle
a broad range of questions over many VQA benchmarks. Therefore we aim to
develop a single system for a varied suite of VQA tasks including counting, spatial
reasoning, OCR-based reasoning, visual pointing, external knowledge, and more.
In this setting, we demonstrate that naively applying a LLM+tools approach using
the combined set of all tools leads to poor results. This motivates us to introduce
HAMMR: HierArchical MultiModal React. We start from a multimodal ReAct-
based [1] system and make it hierarchical by enabling our HAMMR agents to call
upon other specialized agents. This enhances the compositionality, which we show
to be critical for obtaining high accuracy. On our generic VQA suite, HAMMR
outperforms a naive LLM+tools approach by 16.3% and outperforms the generic
standalone PaLI-X VQA model [2] by 5.0%.

1 Introduction

Visual question answering (VQA) (e.g. [2, 3, 4, 5, 6, 7]) is a key multimodal and reasoning problem
in artificial intelligence. The standard approach for VQA uses Vision+Language Models (VLMs)
[8, 2, 9, 10] to generate a textual answer given a question and image. However, an alternative
paradigm has recently emerged: combine Large Language Models (LLMs) and computer vision tools
to create flexible programs tailored to a given question [5, 6, 11]. The LLM+tools approach can
tackle new problems through in-context instructions instead of expensive model finetuning.

VQA problems have been evaluated mostly on individual benchmarks, each with specialized methods
for specific question types (e.g. [9, 3, 6, 11, 12, 13, 5, 14]). However, it is crucial for real-world
systems to handle a broad range of multimodal questions in the wild. Therefore we pose the VQA
problem from a unified perspective, where systems have to handle diverse question types. We explore
the LLM+tools approach for this generic VQA setting for the first time – in contrast to [5, 6, 11], we
want a single method to answer any VQA question. We show that naively applying the LLM+tools
approach in this generic setting by using the combined set of all tools leads to poor results.

To address this, we propose HAMMR (HierArchical MultiModal React). HAMMR leverages a
multimodal ReAct-based [1] system, where LLM agents can be prompted to select the most suitable
tools to answer a given question. Departing from previous work [6, 11, 5], our agents may call
upon other specialized agents effectively reusing specialized agents as tools. This enhances the
compositionality of the LLM+tools approach by enabling reuse of tool combinations that are effective
for complex tasks (Fig. 1). Careful experimentation on our generic VQA suite shows that this
hierarchical setup is critical for achieving high performance in this generic setting, outperforming
naive extensions of existing LLM+tools methods by 16.3%. Additionally, HAMMR achieves state-
of-the-art results, outperforming the recent PaLI-X VLM [2] by 5.0%.

An extended version of the paper can be found at https://arxiv.org/abs/2404.05465.
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Question: 
What is the Köppen 
climate classification 
for the city where this 
mosque is located?

[Thought]:This question requires knowledge 
 about a specific object. It is an 
 Encyclopedic question. The image 
 depicts a mosque, and the 
 question is about the city where 
 the mosque is located. It 
 requires visiting the Wikipedia 
 page of the mosque, then the city 
 and finding its climate 
 classification. It is therefore a 
 two hop Encyclopedic question.

[Act]:  TwoHopEncyclopedicAgent(image,
      question)

[Observe]:BWh
[Finish]: BWh

[Thought]:I need to decompose the question into 
simpler questions.

[Act]: DecomposeQuestion(question)
[Observe]:In which city is this mosque located? What 

is the Köppen climate classification for 
this city?

[Thought]:I need to answer the first question.
[Act]: SingleHopEncyclopedicAgent(image, ‘In which 

city is this mosque located?’)
[Observe]:Alexandria
[Thought]:Now I need to retrieve the Wikipedia 

article for Alexandria.
[Act]: article = WikipediaArticle(‘Alexandria’)
[Observe]:The result is stored in the following 

variable: article.
[Thought]:I need to answer the second question using 

the article.
[Act]: AnswerWithContext(‘What is the Köppen 

climate classification for this city?’, 
context=article)

[Observe]:BWh.
[Finish]: BWh.

[Thought]:I need to identify the mosque 
in the image.

[Act]: GoogleLens(image)
[Observe]:Sidi Morsi Abu al-Abbas Mosque
[Thought]:I need to retrieve the Wikipedia 

article.
[Act]: article = WikipediaArticle(‘Sidi 

Morsi Abu al-Abbas Mosque’)
[Observe]:The result is stored in

variable: article.
[Thought]:I need to answer the question 

using the article.
[Act]: AnswerWithContext(‘In which city 

is this mosque located?’, 
context=article)

[Observe]:Alexandria.
[Finish]: Alexandria.

Tools

In-context examples
…

Tools

In-context examples
…

SingleHopEncyclopedicAgent, TextVqaAgent, 
TwoHopEncyclopedicAgent,PointQALocalAgent,…

DecomposeQuestion, SingleHopEncyclopedicAgent, 
WikipediaArticle, AnswerWithContext, …

Tools
GoogleLens, WikipediaArticle, 
AnswerWithContext, …

In-context examples
…

HAMMR 🔨 : HierArchical MultiModal React

HAMMR: QuestionDispatcherAgent

HAMMR: TwoHopEncyclopedicAgent HAMMR: SingleHopEncyclopedicAgent

Figure 1: Example of HAMMR. We propose HAMMR, an evolution of the LLM+tools approach [6, 11, 5],
where a single system can handle a large variety of VQA tasks. Concretely, HAMMR is a multimodal extension
of ReAct [1] where agents themselves can act as tools. This results in a hierarchical and highly compositional
approach where high-level HAMMR agents call lower-level agents dedicated to more specific tasks.

2 Method

Related work. Several works in VQA have proposed retrieval-augmented models [3, 4, 15, 16,
17, 18]. Complementary, other approaches show that LLMs can solve VQA tasks by translating the
image into text which is given as context to the question asked [19, 20, 21, 17]. Building upon these,
recent works [6, 5, 11] leverage iterative planning in LLMs [1, 22, 23, 24, 25, 26, 27] in combination
with tool-use [28, 29, 30, 31, 32] to solve complex visual tasks.

Multimodal ReAct for generic VQA. To make ReAct multimodal, we give it access to variables,
which could contain images, text, or other data types. In the prompt we provide in-context examples
of function calls that input and return variables in an [Act] step. The returned variable is stored,
and its name is mentioned in the [Observe] step, so that it is available for further reasoning and
actions. The input image is immediately made available as a variable called image. For example:

[Thought]: I need to crop the top left corner of the image to detect ...
[Act]: crop = CropImage(image, [0,0,50,50])
[Observe]: Output of ‘CropImage‘ is stored in the variable: ‘crop‘

Now subsequent tools can access the data stored in the variable crop. This principle allows tools to
return and consume various data types, including bounding-boxes or a whole Wikipedia page.

Tools for VQA. For solving VQA tasks we provide the following tools: fine-grained entity recog-
nition with Google Lens [33], Object Detection using OwlViTv2 [34, 35], OCR, Captioning, and
ObjectInImage using either BLIP-2 [36] or PaLI-X [2], image cropping and bounding box tools,
retrieving a Wikipedia page, answer a question from context, and decomposing a question (both using
LLMs). Finally, analog to [6] we also include VQA as a tool through the provided VLMs.

Naive generic ReAct agent. A ReAct agent for a task with a certain question type is constructed by
specifying a prompt with a list of tool descriptions and in-context examples showing how to solve a
few questions by using those tools. Hence the straightforward way to make a generic ReAct agent
working on a broad set of question types is to create a long prompt listing all tools and all in-context
examples across all question types. Such generic ReAct agent is shown in Fig. 2 and acts as our main
baseline, representing the most direct extension of current LLM + Tools approaches to generic VQA.

HAMMR: HierArchical MultiModal React. The naive generic ReAct agent has all the necessary
information to solve generic VQA. However, as the number of question types increase, it leads to an
increasingly long prompt with many reasoning patterns. This makes it difficult for the orchestrator to
attend to the relevant parts of the prompt given a new input question. Furthermore, if the orchestrator
makes planning mistakes, their cause is hard to identify which makes the system difficult to debug.
Therefore we introduce HAMMR: To answer a broad range of question types, we enable agents to
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…
[Question]:What color is this shirt?

  Point at (10,10)
[Thought]: First I will make a crop  

  around the point.
[Act]:    crop = CropImage(image, xywh= 

  [0, 0, 100, 100])
[Observe]: I have stored the result in  

  variable ‘crop’.
   [...]

[Question]:What is the seating capability 
  of this stadium?

[Thought]: First I need to identify the 
  stadium in the image.

[Act]:   GoogleLens(image)
[Observe]: The Hive Stadium 

   [...]

[Question]:True or False? There are the  
  same number of cows in the 
  left and right image.

[Thought]: I need to find how many cows 
  are in each image.

[Act]:   VQA(image_left, 'How many cows 
  are in this image?')

[Observe]: 1
   [...]

[Question]:How many giraffes  
  are drinking water?

[Thought]: This question requires 
   counting specific 

  objects and is thus
  a counting question.

[Act]:   TallyQAAgent(image, 'How 
  many giraffes are  
  drinking water?')

[Observe]: 3

        

[...]

[Question]:True or False? 
…

[Question]:What is the seating 
  capability of this 
  stadium?

[Question]:What color is this 
  shirt? Point at (10,10)

[Thought]: First I will make a 
     crop around the point.

Figure 2: Our approach. Top: the common non-generalist approach [11, 6, 5] with a specialist agent for each
task. Bottom left: The naive approach to create a generalist agent is to collect together all tool descriptions and
in-context examples of each individual specialist. Bottom right: Our HAMMR approach consists of a high-level
orchestrator agent capable of calling specialized agents for each required task.

call upon other specialized agents focused on a specific question type – each specialized agent can be
reused as a tool. This leads to a compositional approach which enables solving increasingly complex
tasks, while limiting the complexity that each individual agent needs to handle. HAMMR modularizes
generic reasoning by relying on specialized agents, each requiring a much smaller prompt involving a
single reasoning pattern and a small number of tools. This makes the task of each agent in HAMMR
simpler, since the solution to the problem is distributed across agents at different reasoning levels.

We start by creating a specialized agent for each VQA question type. Each specialized agent is
created via prompts with few-shot examples taken from the training set, which we refine via multiple
iterations on a validation set (disjoint from the final test set). Specialized agents may also reuse other
specialized agents as part of their reasoning chain, as visualized in Fig. 1.

To tackle generic VQA, we create a high-level dispatcher agent which determines the question type
and calls the appropriate specialist HAMMR agent. We create our question dispatcher via prompts,
which we refine on a small validation set consisting of a few dozen examples per question type.
To quickly iterate we only verify whether the correct specialist agent is identified without actually
invoking it, highlighting how the compositionality of HAMMR speeds up development. Fig 2
(bottom-right) visualizes our approach. In Fig. 1 HAMMR solves a question using 3 reasoning levels.

Our design with a high-level dispatcher and specialized agents has multiple benefits over naive generic
ReAct: (1) Agents are task-specific, enabling researchers to focus on a single problem at a time; (2)
Improving a task-specific agent will improve the overall system, since it will more often solve that
task successfully when invoked. In contrast, for generic ReAct progress on one task may mean a
regression on another, since the reasoning process for all tasks is entangled. (3) The compositionality
of HAMMR means it is easier to debug since failure modes can be attributed to specific agents.

3 Results

Experimental setup. We evaluate on multiple VQA datasets which focus on different question
types: PointQA [37] local and look twice questions, Encyclopedic-VQA [17] single hop and two hop
questions, NLVR2 [38], TallyQA [39], TextVQA [40] and GQA [41]. We follow [6, 5] and select
1000 random samples from each test set. We use the suggested metric per dataset; exact match (EM)
accuracy, VQA accuracy [42], or BERT Matching accuracy [43, 17]. The final metric is the average
of the per-dataset accuracies. As the orchestrator LLM we use PaLM 2 [44], publicly available
as text-bison@001 [45]. Most of our experiments use BLIP-2 T5-XXL [36] for asking image
questions. When comparing to state-of-the-art VLMs in Sec. 3.2 we use PaLI-X 55B multitask VQA
finetuning [2]. We use the publicly available object detector OWL-ViTv2 CLIP L/14 ST+FT [46].
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Table 1: Comparison to generic VLMs. We compare HAMMR to BLIP-2 [36], Gemini Pro 1.0 [47], and
PaLI-X [2]. HAMMR outperforms PaLI-X by 5.0%, showing that it is a strong approach for generic VQA.

Dataset Specialist React Generic React HAMMR-BLIP-2 BLIP-2 Gemini Pro 1.0 PaLI-X HAMMR-PaLI-X
[36] [47] [2]

PointQA local 48.1 8.7 47.8 25.3 16.2 48.2 69.1
PointQA look twice 55.0 46.1 55.0 54.0 59.3 54.8 59.5
EncVQA single hop 51.8 9.8 45.0 15.3 22.1 18.5 47.8
EncVQA two hop 25.9 13.9 22.8 14.3 16.6 10.2 22.8
NLVR2 61.0 37.2 55.4 52.2 70.5 64.8 63.3
GQA 50.7 41.5 50.5 52.9 61.3 76.4 72.7
TallyQA 28.6 25.4 29.2 25.1 50.5 73.2 72.0
TextVQA 22.0 9.7 16.3 26.3 72.0 70.1 49.4

Average performance 42.9 24.0 40.3 33.2 46.1 52.0 57.0

3.1 LLM+Tools for generic VQA

Specialist ReAct agents. First we develop and evaluate specialist ReAct agents for each question
type and dataset separately, in line with previous LLM+Tools works [11, 6, 5]. These specialist
agents serve as an approximate upper-bound for the much harder generic VQA problem, because
each specialist is developed and evaluated only on its own specific VQA question type. Tab. 1, left
column, shows results. For context, on NLVR2 VisProg [6] reports 62.4%, vs 61.0% for our specialist
agents. On GQA we report 50.7% whereas VisProg [6] reports 50.5% and ViperGPT [5] reports
48.1%. While the numbers are not directly comparable due to using different yet approximately
equally powerful tools, it shows we have a solid implementation of the LLM+Tools approach.

Naive generic ReAct agent. We build a generic ReAct agent by collecting all tool descriptions
and in-context examples from all specialists agents into a single long prompt (Fig. 2 bottom-left).
Results over the whole benchmark, Tab. 1 column 2, are poor (24.0%) compared to the approximate
upper-bound of specialist agents 42.9%. Manual inspection showed that generic ReAct often makes
many reasoning errors by confusing question types while frequently hallucinating non-existent tools.

HAMMR. To address generic VQA using HAMMR, we implement a ‘question dispatcher’ agent
which determines the type of question and dispatches it to the appropriate specialist (Fig 2 bottom-
right). Furthermore, HAMMR enables specialist agents to call other specialist agents as in Fig. 1.
Results in Tab. 1 show that HAMMR outperforms naive generic ReAct by 16.3% (40.3% vs 24.0%).
Hence our hierarchical and compositional approach is superior for generic VQA. Furthermore,
HAMMR performs close to the approximate upper-bound of the specialist agents (40.3% vs 42.9%).

3.2 Comparison to SOTA VLMs

We compare HAMMR against several modern generic Vision+Languages models [2, 47, 36] which
were trained on a large variety of tasks (including VQA) and report emerging capabilities on tasks
not present in their training mix. In particular, we compare to BLIP-2 [36] (FlanT5-XXL), Gemini
Pro 1.0 Multimodal [47], and PaLI-X [2] (55B parameter version, finetuned specifically for VQA).
For this comparison, we replace BLIP-2 with the more powerful PaLI-X [2] in our tool calls.

Results (Tab. 1, right) reveal that HAMMR outperforms PaLI-X by 5.0% on average across all
datasets, demonstrating its strength for generic VQA. PaLI-X only outperforms HAMMR on datasets
it was trained on, whereas HAMMR is superior on the others (on NLVR2 they perform comparably).
HAMMR performs especially well on encyclopedic questions because it can leverage Google Lens
and Wikipedia to access specific information which is hard to memorize for generic VLMs. PaLI-X
outperforms Gemini Pro 1.0 likely because we use the VQA-specific PaLI-X [2]. Overall, this
experiment shows (1) HAMMR enables easy replacement of tools (i.e. PaLI-X for BLIP-2). (2)
HAMMR leverages the best of both worlds: the wealth of implicit knowledge stored in a VLM, and
the complementary knowledge that can be accessed by explicitly calling tools.

4 Conclusions

We introduced HAMMR, an evolution of the LLM+tools approach capable of tackling generic VQA.
We start from a multimodal ReAct-based system and make it hierarchical by enabling our HAMMR
agents to call upon other specialized agents, enhancing the compositionality of the LLM+tools
approach. We demonstrate that the hierarchical agent setup is critical for obtaining high accuracy on
generic VQA: Using BLIP-2, HAMMR outperforms naive generic ReAct by 16.3%. The improved
HAMMR-PaLI-X version outperforms the strong generic PaLI-X VQA model by 5.0%.
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