

000 CE-SSL: COMPUTATION-EFFICIENT SEMI- 001 002 SUPERVISED LEARNING FOR ECG-BASED CARDIO- 003 VASCULAR DISEASES DETECTION 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 The label scarcity problem is the main challenge that hinders the wide application
014 of deep learning systems in automatic cardiovascular diseases (CVDs) detec-
015 tion using electrocardiography (ECG). Tuning pre-trained models alleviates this
016 problem by transferring knowledge learned from large datasets to downstream
017 small datasets. However, bottlenecks in computational efficiency and detection
018 performance limit its clinical applications. It is difficult to improve the detection
019 performance without significantly sacrificing the computational efficiency dur-
020 ing model training. Here, we propose a computation-efficient semi-supervised
021 learning paradigm (CE-SSL) for robust and computation-efficient CVDs detec-
022 tion using ECG. It enables a robust adaptation of pre-trained models on down-
023 stream datasets with limited supervision and high computational efficiency. First,
024 a random-deactivation technique is developed to achieve robust and fast low-rank
025 adaptation of pre-trained weights. Subsequently, we propose a one-shot rank al-
026 location module to determine the optimal ranks for the update matrices of the
027 pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is
028 introduced to enhance model performance by leveraging labeled and unlabeled
029 data with high computational efficiency. Extensive experiments on four down-
030 stream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art
031 methods in multi-label CVDs detection but also consumes fewer GPU footprints,
032 training time, and parameter storage space. As such, this paradigm provides an
033 effective solution for achieving high computational efficiency and robust detec-
034 tion performance in the clinical applications of pre-trained models under limited
035 supervision.

036 1 INTRODUCTION

037 Cardiovascular diseases have become the deadliest 'killer' of human health in recent years (Kelly
038 et al., 2010). As a non-invasive and low-cost tool, ECG provides a visual representation of the
039 electrical activity of the heart and is widely used in the detection of various CVDs (Kiyasseh et al.,
040 2021a; Lai et al., 2023). Benefiting from recent progress in computing hardware, ECG-based deep
041 learning systems have achieved notable success in automatic CVDs detection (Hannun et al., 2019;
042 Ribeiro et al., 2020; Al-Zaiti et al., 2023; Lu et al., 2024b). However, previous deep learning models
043 required sufficient labeled samples to achieve satisfactory performance when trained on new applica-
044 tion scenarios with unseen CVDs (Berthelot et al., 2019; Sohn et al., 2020). Unfortunately, collecting
045 well-labeled ECG recordings requires physicians' expertise and their laborious manual annotation,
046 and therefore is expensive and time-consuming in clinical practice (Zhang et al., 2022; Zhou et al.,
047 2023). Recent advancements in pre-trained models have enhanced the performance of deep learning
048 models on the downstream datasets without large-scale labeled data (Vaswani et al., 2017; Radford
049 et al., 2019; He et al., 2022). A commonly used pipeline consists of pre-training over-parameterized
050 backbone models on large-scale datasets and then fine-tuning them on small downstream datasets in
051 a supervised manner. However, two bottlenecks still greatly limit the clinical application of CVDs
052 detection systems based on pre-trained models under limited supervision.

053 **(1) The bottleneck in CVDs detection performance.** Fine-tuning of pre-trained models is cur-
054 rently conducted in a purely supervised manner. When the labeled data is very scarce in the down-

stream datasets, model performance may drop due to over-fitting (Wang et al., 2021). Fortunately, a large amount of unlabeled data in the medical domain is relatively easy to collect. Semi-supervised learning (SSL) is able to extract sufficient information from the unlabeled data and outperform the supervised models trained with the same amount of labeled data (Zhou et al., 2018; Sohn et al., 2020; Li et al., 2021; Zhang et al., 2021; Peiris et al., 2023). For example, self-tuning integrates the exploration of unlabeled data and the knowledge transfer of pre-trained models into a united framework, which significantly outperforms supervised fine-tuning on five downstream tasks (Wang et al., 2021). Despite their robust performance, existing SSL methods are mainly built on pseudo-label techniques and the weak-strong consistency training on unlabeled samples (Berthelot et al., 2019; 2020; Sohn et al., 2020; Zhang et al., 2021; Chen et al., 2023a), which greatly increases the GPU memory footprint and computation time during model training. This drawback results in a bottleneck of computational efficiency during the performance enhancement of pre-trained models using semi-supervised learning.

(2) The bottleneck in computational efficiency for parameter optimization. Nowadays, many studies have introduced large-scale foundation models to achieve better CVDs detection performance using ECG (Vaid et al., 2023; Han & Ding, 2024; Mathew et al., 2024; McKeen et al., 2024; Pham et al., 2024; Jin et al., 2025), greatly increasing the computation costs of modifying them for downstream applications. SSL methods and fine-tuning both update all the model parameters. Despite their effectiveness, both methods have a main drawback that they require saving the gradients of all the model parameters and even the momentum parameters, resulting in large GPU memory footprints when tuning large pre-trained models (Hu et al., 2022). Additionally, each tuned model can be regarded as a full copy of the original models, therefore leading to high storage consumption when simultaneously tuned on multiple datasets (Zhang et al., 2023b). To address this, parameter-efficient fine-tuning (PEFT) methods have been introduced to reduce the trainable parameters during model training and thus decrease the computational costs during model training (Houlsby et al., 2019; Zaken et al., 2021; Chen et al., 2023b). For example, Low-rank adaptation (LoRA) achieves this goal by updating the pre-trained weights with low-rank decomposition matrices. AdaLoRA and IncreLoRA overcome the performance bottleneck of LoRA by allocating different ranks to different pre-trained weights based on their importance (Zhang et al., 2023b;a). However, the above improvement is achieved at the cost of increased training time for iterative importance estimation.

Therefore, a dilemma is encountered: model performance improvement often comes at the expense of a large sacrifice of computational efficiency during model training. Specifically, semi-supervised learning enhances CVDs detection performance under limited supervision but at significantly increased computational costs. Conversely, methods that prioritize computational efficiency may compromise model performance (Ding et al., 2023). Consequently, achieving a superior detection performance with high computation efficiency poses a great challenge to the clinical application of pre-trained models in ECG-based CVDs detection. To the best of our knowledge, no prior study has designed and evaluated a framework to escape the dilemma.

Here, we propose a united paradigm capable of addressing the above two bottlenecks simultaneously. It is a computation-efficient semi-supervised learning paradigm (CE-SSL) for adapting pre-trained models on downstream datasets with high computational efficiency under limited supervision. Our method enables robust and low-cost detection of CVDs in clinical practice using ECG recordings. As shown in Figure 1, first, a base backbone is pre-trained on a large-scale 12-lead ECG dataset in a supervised manner. We also provide medium and large backbones for performance enhancement by increasing the backbone’s depth and width. Second, a random-deactivation low-rank adaptation (RD-LoRA) method formulates a low-cost and robust pipeline for updating the pre-trained backbone on downstream datasets. Specifically, it stochastically activates or deactivates low-rank adaptation in each trainable layer of the backbone with a probability p . To reduce GPU memory footprints, the pre-trained weights in each layer are always frozen. Theoretical analysis indicates that the random deactivation operation integrates various sub-networks generated during model training, thus overcoming the performance bottleneck in tuning pre-trained models. Additionally, deactivating low-rank adaptation in some layers reduces computation costs and speeds up the training process, especially when the backbone model size is large. Third, a one-shot rank allocation module determines the optimal ranks for the low-rank matrices in each layer. In contrast to AdaLoRA (Zhang et al., 2023b) and IncreLoRA (Zhang et al., 2023a), the proposed method can determine the optimal ranks using only one gradient backward iteration, improving the adaptation performance at low computational costs. Additionally, a lightweight semi-supervised learning

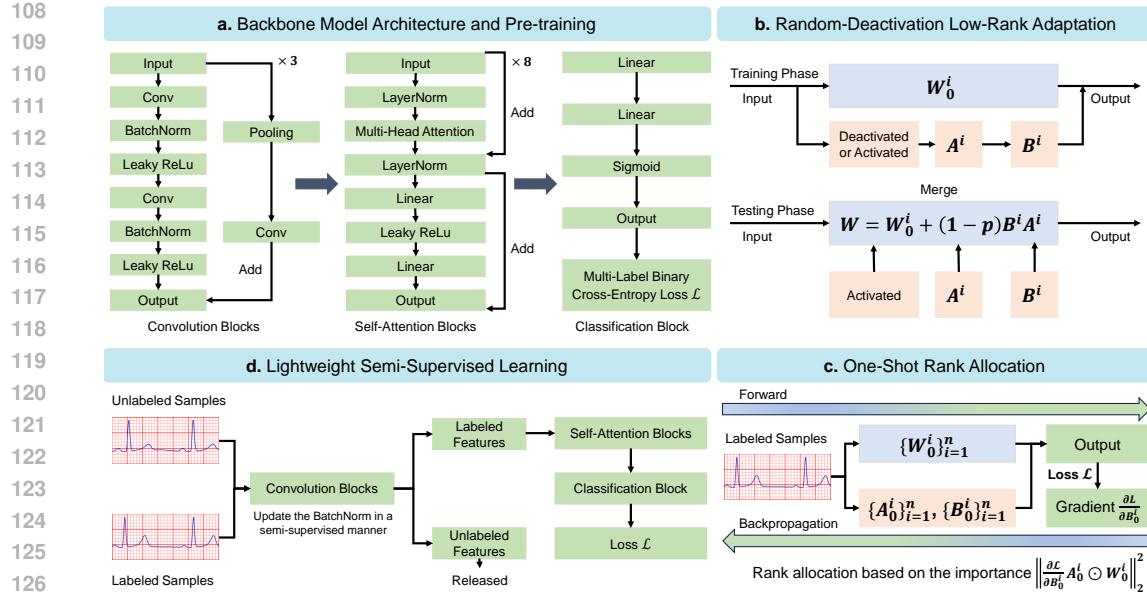


Figure 1: Overview of CE-SSL. **a.** Backbones are pre-trained on a public 12-lead ECG dataset using the supervised multi-label binary cross-entropy loss. **b.** On the downstream datasets, the pre-trained weights in the backbones are updated by the random-deactivation low-rank adaptation. All the low-rank matrices are activated and merged into the pre-trained weights in the testing stage, which generates an ensemble network combining all the sub-networks produced by the random deactivation operation. **c.** The ranks of the low-rank matrices are determined by the proposed one-shot rank allocation method using only one gradient backward on the labeled samples. **d.** This lightweight semi-supervised pipeline improves the model performance in a computationally efficient way.

module is utilized to leverage the abundant information within unlabeled data. This module uses unlabeled data to stabilize the statistics estimation process in batch normalization layers, enhancing their generalization performance on unseen data distributions. Compared to the pseudo-labeling and the weak-strong consistency training methods (Sohn et al., 2020; Chen et al., 2023a), the module can alleviate the label scarcity problem with significantly higher computational efficiency.

Finally, extensive experiments on four downstream datasets demonstrate the superior CVDs detection performance of the proposed CE-SSL against various state-of-the-art models under very limited supervision. Most importantly, our method only requires 66.5% training time, 70.7% GPU memory footprint, and 1.8%-5.8% trainable parameters of the state-of-the-art SSL methods. Furthermore, its computational costs can be minimized to adapt to resource-limited environments without a significant accuracy loss. In conclusion, our proposed computation-efficient semi-supervised learning paradigm provides an effective solution to overcome the two bottlenecks that limit the clinical applications of pre-trained models in ECG-based CVDs detection. We summarize the major contributions as follows:

- A random deactivation low-rank adaptation method is proposed to update the backbones with high computational efficiency and robust performance.
- A one-shot rank allocation module is present to determine the optimal rank distribution during low-rank adaptation at minimal costs.
- A lightweight semi-supervised method is utilized to leverage large-scale unlabeled ECG data without greatly sacrificing computational efficiency.
- A computation-efficient semi-supervised framework for low-cost and accurate CVDs detection is proposed, which is the first one to escape the dilemma between model performance and computational efficiency.

162 2 METHODOLOGY
163164 2.1 RANDOM-DEACTIVATION LOW-RANK ADAPTATION
165

166 Recent studies have demonstrated that low-rank adaptation (LoRA) can drastically decrease computation and storage costs in large-scale neural network fine-tuning while achieving promising performance on downstream tasks (Hu et al., 2022; Zhang et al., 2023b; Ding et al., 2023). The LoRA
167 method models the incremental update of the pre-trained weights by the matrix multiplication of
168 two low-rank matrices. For a hidden layer output $h = WX$, the LoRA forward process is defined
169 as,

$$171 \quad h = (W_0 + \Delta W)X = (W_0 + BA)X, \quad (1)$$

172 where $W_0, \Delta W \in \mathbb{R}^{d_1 \times d_2}$, $B \in \mathbb{R}^{d_1 \times r}$ and $A \in \mathbb{R}^{r \times d_2}$, and the rank $r \ll \min(d_1, d_2)$. The LoRA
173 freezes the pre-trained weight W_0 during model training and only optimizes the low-rank matrices
174 A and B , which greatly reduces the number of trainable parameters during model training (Hu
175 et al., 2022). However, the incremental updates of low-rank matrices are inadequate for achieving
176 optimal performance on downstream datasets (Zi et al., 2023; Zhang et al., 2023a). To bridge the
177 performance gap efficiently, we propose a novel random-deactivation low-rank adaptation (RD-
178 LoRA) method, which randomly activates or deactivates the low-rank matrices in each trainable
179 layer with a given probability p . To be specific, the forward process of the proposed RD-LoRA can
180 be defined as,

$$181 \quad h = (W_0 + \delta BA)X, \delta = \begin{cases} 1, & z \geq p \\ 0, & z < p \end{cases}, \quad (2)$$

182 where $\delta \sim Ber(\delta, 1 - p)$ can be regarded as a binary gate controlled by a random variable z
183 following a uniform distribution $U(0, 1)$, where Ber indicates the Bernoulli distribution. p is set to
184 0.2 in our experiments by default. In the training stage, the multi-label binary cross-entropy loss is
185 employed for parameter optimization. In the testing stage, for input data X_{test} and the pre-trained
186 weight W_0 , the expectation of h_{test} given by RD-LoRA over δ can be calculated as,

$$187 \quad \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [h_{test}] = \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [(W_0 + \delta BA)X_{test}]. \quad (3)$$

188 Considering that the low-rank matrices $\{A, B\}$ are fixed during the testing stage and δ is the only
189 one random variable, thus,

$$190 \quad \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [h_{test}] = (W_0 + \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [\delta] BA)X_{test} = (W_0 + (1 - p)BA)X_{test}. \quad (4)$$

$$195 \quad \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [h] \approx (W_0 + \mathbb{E}_{\delta \sim Ber(\delta, 1 - p)} [\delta] BA)X = (W_0 + (1 - p)BA)X. \quad (5)$$

196 Note that Eq.5 can only approximate the expectation of h during the training stage, because B
197 and A become variables and are not fully independent of δ . This approximation is commonly used
198 and works empirically (Huang et al., 2016; Srivastava et al., 2014). Similar to LoRA, the low-rank
199 matrices are merged into the pre-trained weight W_0 in the testing stage to avoid extra inference costs,
200 and the random-drop operation is deactivated. According to Eq.4, to ensure the expected output will
201 be the same as the output with RD-LoRA, the merged matrix should be computed as,

$$202 \quad W = W_0 + (1 - p)BA. \quad (6)$$

203 After merging the low-rank matrices into the pre-trained weights of different layers, the final network
204 can be viewed as an ensemble of all possible sub-networks during model training. In Appendix C.1,
205 we provide a brief explanation to discuss how the random-deactivation module improves the model's
206 generalization performance on unseen data during the test stage. Additionally, deactivating some
207 low-rank matrices avoids the computation of update matrices in some layers, increasing training
208 speed in the low-rank adaptation of large-scale models. The impact of p on model performance and
209 training speed is discussed in Appendix D.7.

210
211 2.2 EFFICIENT ONE-SHOT RANK ALLOCATION
212

213 Another limitation of LoRA is that it prespecifies the same rank for all low-rank incremental
214 matrices, neglecting that their importance in model training varies across layers. In response to this
215 limitation, AdaLoRA (Zhang et al., 2023a) and IncreLoRA (Zhang et al., 2023b) proposed to dy-
namically adjust the ranks of different incremental matrices during model training based on their

importance, which improved the low-rank adaptation performance. However, these dynamic methods require continuous calculation of the importance of all low-rank matrices in each iteration, significantly increasing the computation time. Additionally, their rank allocation processes are based on the singular value decomposition (SVD) theory and thus require an extra regularization loss to force the orthogonality of the low-rank matrices. This property introduces extra hyperparameters and computation costs. Here, we propose an efficient one-shot rank allocation method to overcome the computational inefficiency of the existing dynamic methods. Based on the first-order Taylor expansion, the importance of a weight matrix can be computed by the error induced by removing it from the network (Molchanov et al., 2019),

$$I(W^i) = \frac{1}{N_e} \sum_{j=1}^{N_e} (\mathcal{L}(Y, M(X)) - \mathcal{L}_{W^i(j)=0}(Y, M(X)))^2 \approx \left\| \frac{\partial \mathcal{L}(Y, M(X))}{\partial W^i} \odot W^i \right\|_2^2, \quad (7)$$

where $W^i(j)$ is the j -th element in the weight matrix W^i , N_e is the number of elements in W^i and \odot is the Hadamard product. However, the gradient matrix $\frac{\partial \mathcal{L}(Y, M(X))}{\partial W^i}$ can not be obtained because W^i is frozen during the low-rank training process. Here, we approximate it using its incremental update ΔW^i , which can be computed by low-rank matrices A^i and B^i using Eq.1.

$$\begin{aligned} \frac{\partial \mathcal{L}(Y, M(X))}{\partial W^i} &\propto -\frac{1}{\eta} \Delta W^i = \frac{1}{\eta} (B_t^i A_t^i - B_{t+1}^i A_{t+1}^i) \\ &= B_t^i \frac{\partial \mathcal{L}(Y, M(X))}{\partial B_t^i} + \frac{\partial \mathcal{L}(Y, M(X))}{\partial B_t^i} A_n^i - \eta \frac{\partial \mathcal{L}(Y, M(X))}{\partial B_t^i} \frac{\partial \mathcal{L}(Y, M(X))}{\partial A_t^i}, \end{aligned} \quad (8)$$

where A_t^i and B_t^i are the low-rank matrices at training round t , constant η is the learning rate and W_0 is the pre-trained weight. Although Eq.8 enables importance score estimation during model training, iterative matrix multiplication induces a heavy computation burden. Hence, we propose to simplify the estimation function Eq.8 and compute the importance score in a ‘one-shot’ manner. Specifically, we only use the first gradient-backpropagation process to achieve the entire rank allocation process and fix the ranks of different low-rank matrices during the remaining training iterations. In the first backpropagation process, the low-rank matrices $\{A^i\}_{i=1}^n$ are initialized from a normal distribution $N(0, \sigma^2)$ and $\{B^i\}_{i=1}^n$ are initialized to zero. Consequently, the gradient of $\{A^i\}_{i=1}^n$ at the 0-th (first) iteration is zero according to Eq.1. Based on the above initialization conditions, Eq.8 at the 0-th iteration can be rewritten as,

$$\frac{\partial \mathcal{L}(Y, M(X))}{\partial W_0^i} \propto -\frac{1}{\eta} \Delta W_0^i = \frac{\partial \mathcal{L}(Y, M(X))}{\partial B_0^i} A_0^i, \frac{\partial \mathcal{L}(Y, M(X))}{\partial A_0^i} = 0, B_0^i = 0, \quad (9)$$

where $\{W_0^i\}_{i=1}^n$ are the pre-trained weight matrices in the backbone model $M(X)$. Then, the importance score of the pre-trained weight W_0^i can be approximated as,

$$I(W_0^i) \approx \hat{I}(W_0^i) = \left\| \left(\frac{\partial \mathcal{L}(Y, M(X))}{\partial B_0^i} A_0^i \right) \odot W_0^i \right\|_2^2. \quad (10)$$

Eq.10 is computed using the labeled samples from the downstream dataset, which estimates the importance of W_0^i during fine-tuning. Then, we sort the importance $\hat{I}(W_0^i)$ of all pre-trained matrices in descending order and allocate different ranks for their low-rank matrices. Here, we assume the ranks of the incremental matrices corresponding to the important weights should be higher than those of the incremental matrices associated with the unimportant weights. The allocated rank r^i of the incremental matrices of the pre-trained weight W_0^i is defined as,

$$r^i = \begin{cases} r, & \hat{I}(W_0^i) \text{ in the top-}k \text{ of } \{\hat{I}(W_0^i)\}_{i=1}^n, k = nc, \\ \frac{1}{2}r, & \text{otherwise} \end{cases} \quad (11)$$

where r is an initial rank, and c is a hyper-parameter that controls the number of important weight matrices. The impacts of r and c on model performance are discussed in Appendix D.8 and D.10, respectively. Note that the allocated ranks $\{r^i\}_{i=1}^n$ are fixed during the remaining iterations, and the low-rank matrices $(\{B^i\}_{i=1}^n, \{A^i\}_{i=1}^n)$ are reset based on their allocated ranks. Eq.10 is only computed at the 0-th iteration, which avoids numerous matrix multiplications. In addition, the proposed rank allocation process does not require constraints on the orthogonality of low-rank matrices. In summary, the above advantages allow the proposed method to have a faster training speed compared to AdaLoRA (Zhang et al., 2023a) and IncreLoRA (Zhang et al., 2023b).

270 2.3 LIGHTWEIGHT SEMI-SUPERVISED LEARNING
271

272 Semi-supervised learning (SSL) is an efficient tool for model performance enhancement when large-
273 scale unlabeled data is available (Chapelle et al., 2006; Berthelot et al., 2019). Recently, many studies
274 utilized label guessing and consistency regularization to further improve the model performance
275 in SSL tasks, such as FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021) and SoftMatch
276 (Chen et al., 2023a). However, the above two techniques require the output predictions of the weak
277 and strong-augmented unlabeled samples, which induces extra computation costs. Consequently,
278 traditional SSL methods usually exhibit much higher memory costs and longer training time than
279 naive supervised models. Here, we utilize a lightweight but effective SSL method without extensive
280 consistency training and pseudo-label guessing. Motivated by Koçyigit et al. (2020), we can update
281 the batch normalization (BN) layers in a semi-supervised manner using both labeled and unlabeled
282 data. Subsequently, the unlabeled data is released, and only the labeled data is forwarded to the self-
283 attention and classification blocks for loss computation. Different from Koçyigit et al. (2020), we
284 integrate normalization and parameter optimization into one forward-backward step to avoid extra
285 computational costs. For labeled inputs $\{x_b^i\}_{i=1}^{N_B}$ and unlabeled inputs $\{x_u^i\}_{i=1}^{N_U}$, the mean value μ
286 and the variance σ of the semi-supervised BN layers in the convolution blocks can be updated as,
287

$$288 \mu = \frac{\gamma}{N_B} \sum_{i=1}^{N_B} x_b^i + \frac{1-\gamma}{N_U} \sum_{i=1}^{N_U} x_u^i, \sigma = \frac{\gamma}{N_B} \sum_{i=1}^{N_B} (x_b^i - \mu)^2 + \frac{1-\gamma}{N_U} \sum_{i=1}^{N_U} (x_u^i - \mu)^2, \quad (12)$$

289 where N_B and N_U are the numbers of labeled and unlabeled samples in the current mini-batch, and
290 $\gamma = \frac{N_B}{N_B + N_U}$. Note that N_B equals N_U in this study, thus $\gamma = 0.5$. The impact of $N_B : N_U$ on
291 model performance is discussed in Appendix D.11. With only limited labeled data x_b , the estimated
292 mean $\mu_B = \frac{1}{N_B} \sum_{i=1}^{N_B} x_b^i$ and variance $\sigma_B = \frac{1}{N_B} \sum_{i=1}^{N_B} (x_b^i - \mu_B)^2$ in traditional BN are prone to be
293 influenced by the over-fitting problem according to the law of large numbers. On the contrary, semi-
294 supervised BN can alleviate the problem by utilizing large-scale unlabeled data x_u for parameter
295 estimation, which improves the model performance on unseen distributions. Since the BN layers do
296 not exist in the self-attention and classification blocks, we only forward the labeled features to them
297 to reduce memory cost and training time. Compared with the SOTA methods in semi-supervised
298 learning, the proposed CE-SSL discards the label guessing and the consistency regularization mod-
299 ules. **However, the results demonstrate that it achieves comparable CVDS detection performance to**
300 **the SOTA methods on four downstream ECG datasets, while achieving less memory consumption**
301 **and faster training speed.** Finally, we present the pseudo-code of CE-SSL in Appendix Algorithm 1.

303 3 EXPERIMENTS AND DATASETS
304

305 As shown in Appendix C.2, the base, medium, and large backbones are pre-trained on a public and
306 large-scale dataset collected by Ribeiro et al. (2019; 2020), which have 9.505 million, 50.494 mil-
307 lion, and 113.490 million parameters, respectively. Subsequently, we use four downstream datasets
308 for model fine-tuning and evaluation: the Georgia 12-lead ECG Challenge (G12EC) database (Alday
309 et al., 2020), the Chapman-Shaoxing database (Zheng et al., 2020b), the Ningbo database (Zheng
310 et al., 2020a), and the Physikalisch-Technische Bundesanstalt (PTB-XL) database (Wagner et al.,
311 2020). Specifically, the G12EC database contains 10344 ECG recordings from 10,344 people, and
312 the PTB-XL database comprises 21837 recordings from 18885 patients. The Chapman database con-
313 tains 10,646 recordings from 10646 patients, and the Ningbo database encompasses 40258 record-
314 ings from 40258 patients. Only 34,905 recordings in the Ningbo database are publicly available
315 (Alday et al., 2020). The recordings from the four downstream databases are around 10 seconds,
316 and the sampling rate is 500 Hz. Additionally, each database contains over 17 different CVDs, and
317 multiple CVDs can be identified from one ECG segment simultaneously.

318 The pre-trained backbones are fine-tuned on the four downstream datasets using different methods
319 under limited supervision. Taking the G12EC database as an example, the ECG recordings are split
320 into a training set and a held-out test set in a ratio of 0.9: 0.1. Then, the training set is divided into
321 a labeled training set and an unlabeled training set in a ratio of 0.05: 0.95. How the ratio of training
322 labeled data impacts model performance is discussed in Appendix D.12. A validation set is randomly
323 sampled from the labeled training set and accounts for 20% of it, which is used for selecting the best-
324 performing model during training. For model comparisons, we reproduce several baseline models in

324 Table 1: Performance comparisons of CE-SSL and semi-supervised baselines on the base backbone.
 325 The average performance and the standard deviation of different metrics are shown across six seeds.
 326

327 328 329 330 331 332 333 334 335	G12EC Dataset			PTB-XL Dataset		Ningbo Dataset		Chapman Dataset	
	Methods	Macro $G_{\beta=2}$	Macro $F_{\beta=2}$	Macro $G_{\beta=2}$	Macro $F_{\beta=2}$	Macro $G_{\beta=2}$	Macro $F_{\beta=2}$	Macro $G_{\beta=2}$	Macro $F_{\beta=2}$
MixedTeacher	0.275 \pm 0.016	0.507 \pm 0.025	0.316 \pm 0.007	0.542 \pm 0.014	0.324 \pm 0.018	0.549 \pm 0.028	0.327 \pm 0.019	0.510 \pm 0.024	
FixMatch	0.280 \pm 0.010	0.510 \pm 0.016	0.322 \pm 0.007	0.541 \pm 0.007	0.321 \pm 0.014	0.545 \pm 0.020	0.339 \pm 0.012	0.518 \pm 0.025	
FlexMatch	0.274 \pm 0.019	0.497 \pm 0.035	0.316 \pm 0.008	0.536 \pm 0.007	0.318 \pm 0.012	0.544 \pm 0.019	0.325 \pm 0.010	0.495 \pm 0.019	
SoftMatch	0.276 \pm 0.017	0.504 \pm 0.021	0.317 \pm 0.009	0.540 \pm 0.011	0.321 \pm 0.014	0.552 \pm 0.020	0.335 \pm 0.011	0.511 \pm 0.021	
Adsh	0.268 \pm 0.009	0.489 \pm 0.013	0.322 \pm 0.008	0.543 \pm 0.015	0.318 \pm 0.010	0.545 \pm 0.012	0.335 \pm 0.013	0.517 \pm 0.020	
SAW	0.269 \pm 0.018	0.494 \pm 0.024	0.323 \pm 0.019	0.548 \pm 0.017	0.314 \pm 0.010	0.536 \pm 0.016	0.333 \pm 0.012	0.510 \pm 0.020	
CE-SSL _{r=16}	0.307\pm0.016	0.551\pm0.017	0.346\pm0.006	0.578\pm0.006	0.334\pm0.011	0.569\pm0.014	0.355\pm0.005	0.530\pm0.008	
CE-SSL _{r=4}	0.304\pm0.013	0.553\pm0.020	0.346\pm0.005	0.580\pm0.006	0.327\pm0.010	0.567\pm0.011	0.352\pm0.009	0.530\pm0.012	

336
 337
 338 semi-supervised learning: FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021), SoftMatch
 339 (Chen et al., 2023a), MixedTeacher (Zhang et al., 2022), Adsh (Guo & Li, 2022), SAW (Lai et al.,
 340 2022). Additionally, we integrate the state-of-the-art parameter-efficient methods (LoRA (Hu et al.,
 341 2022), DyLoRA (Valipour et al., 2023), AdaLoRA (Zhang et al., 2023b), IncreLoRA (Zhang et al.,
 342 2023a)) with FixMatch for comparisons.

4 RESULTS AND DISCUSSION

4.1 ANALYSIS OF THE CVDs DETECTION RESULTS

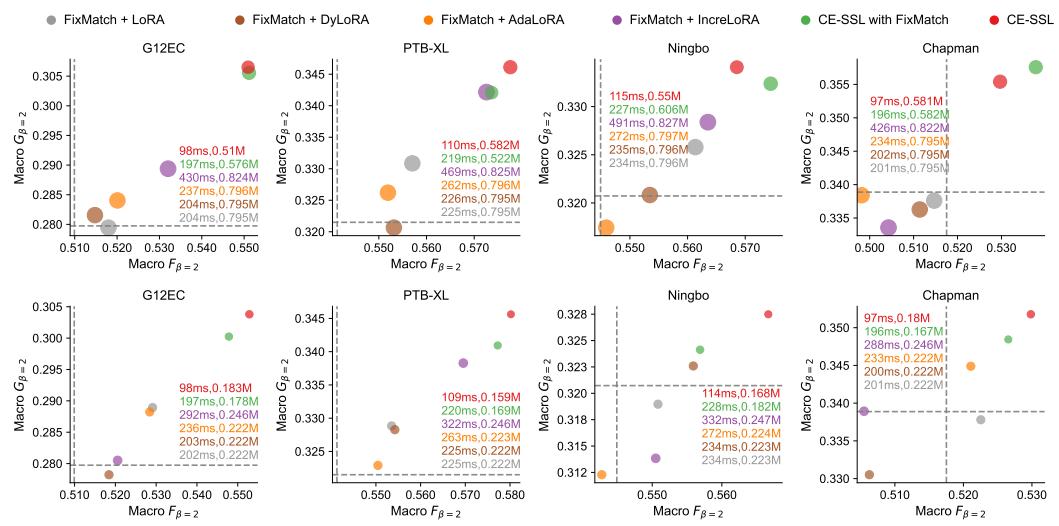
348 We comprehensively evaluate the model performance of various methods using multiple metrics and
 349 training costs. Since multiple CVDs can be detected from one recording simultaneously, we used
 350 metrics on multi-label classification, such as macro $G_{\beta=2}$ score, and macro $F_{\beta=2}$ score. In Ap-
 351 pendix D, we also include ranking loss, coverage, mean average precision (MAP), and macro AUC
 352 for comprehensive comparisons. Additionally, we report the training costs of different methods,
 353 including the peak GPU memory footprint during model training (Mem), the number of trainable
 354 parameters (Params), and the average training time for each optimization iteration (Time/iter). The
 355 higher the number of trainable parameters, the higher the parameter storage consumption. Note that
 356 the number of trainable parameters of CE-SSL can be adjusted by the initial rank r . Lower ranks
 357 indicate fewer trainable parameters. The AdamW optimizer (Loshchilov & Hutter, 2017) is used
 358 under a learning rate of 1e-3. By default, the batch sizes for labeled and unlabeled data are both
 359 64 for all the compared methods. All the experiments are conducted in a single NVIDIA A6000
 360 graphics processing unit using the Pytorch library.

361 Table 1 and Table 2 show that CE-SSL achieves superior detection performance on four down-
 362 stream datasets with the lowest computational costs compared with the SOTA methods. In Table
 363 13, we present a detailed model comparison using more metrics. In the G12EC dataset, CE-SSL
 364 with $r = 16$ achieves a macro $F_{\beta=2}$ of 0.551 ± 0.017 , which is 4.1% larger than the second-best
 365 model's (FixMatch) performance. In Appendix D.1, we present the detection performance of dif-
 366 ferent models on each CVD. The results demonstrate that CE-SSL ranks the best in some CVDs,
 367 such as atrial fibrillation and first-degree AV block. It also achieves comparable performance to the
 368 compared methods in the remaining CVDs. Regarding computational costs, it requires 33.5% less
 369 training time than MixedTeacher, occupies 29.3% less GPU memory than Adsh, and has only 5.8%
 370 of the trainable parameters found in them. When the initial rank r decreases to 4, CE-SSL shows a
 371 slight performance drop in four datasets, but the number of trainable parameters further decreases
 372 to 1.8% of the baseline models. This observation indicates the stability and robustness of the CE-
 373 SSL under extremely low parameter budgets. As shown in Appendix D.2, we demonstrate that the
 374 superiority of CE-SSL persists on the medium and the large backbones. Additionally, its robustness
 375 under resource-limited environments is also illustrated in Appendix D.4.

376 We further compare the proposed CE-SSL with the parameter-efficient methods, which are in-
 377 tegrated with FixMatch for parameter-efficient semi-supervised learning. For example, FixMatch with
 378 AdaLoRA is denoted as 'FixMatch+AdaLoRA'. Similar to CE-SSL, their budgets for the number
 379 of trainable parameters are controlled by the initial rank r . At the same time, the lightweight semi-

378 Table 2: Computational efficiency of CE-SSL and semi-supervised baselines on the base backbone.
379

380	G12EC Dataset			PTB-XL Dataset			Ningbo Dataset			Chapman Dataset		
	381 Methods	382 Params	383 Mem	384 Time/iter	385 Params	386 Mem	387 Time/iter	388 Params	389 Mem	390 Time/iter	391 Params	392 Mem
MixedTeacher	9.505 M	3.941 GB	147 ms	9.505 M	3.941 GB	164 ms	9.506 M	3.941 GB	173 ms	9.504 M	3.941 GB	148 ms
FixMatch	9.505 M	5.784 GB	187 ms	9.505 M	5.784 GB	208 ms	9.506 M	5.784 GB	217 ms	9.504 M	5.784 GB	186 ms
FlexMatch	9.505 M	5.784 GB	187 ms	9.505 M	5.784 GB	209 ms	9.506 M	5.784 GB	217 ms	9.504 M	5.784 GB	185 ms
SoftMatch	9.505 M	5.784 GB	187 ms	9.505 M	5.784 GB	209 ms	9.506 M	5.784 GB	217 ms	9.504 M	5.784 GB	187 ms
Adsh	9.505 M	3.887 GB	207 ms	9.505 M	3.887 GB	316 ms	9.506 M	3.887 GB	423 ms	9.504 M	3.887 GB	207 ms
SAW	9.505 M	5.784 GB	188 ms	9.505 M	5.784 GB	208 ms	9.506 M	5.784 GB	215 ms	9.504 M	5.784 GB	185 ms
CE-SSL _{r=16}	0.510 M	2.747 GB	98 ms	0.582 M	2.748 GB	110 ms	0.550 M	2.748 GB	115 ms	0.581 M	2.748 GB	97 ms
CE-SSL _{r=4}	0.183 M	2.743 GB	98 ms	0.159 M	2.744 GB	109 ms	0.168 M	2.744 GB	114 ms	0.180 M	2.743 GB	97 ms



408 Figure 2: Comparison between CE-SSL and parameter-efficient semi-supervised methods on the
409 base backbone. Circles with various colors denote different models, and their size represents the
410 number of trainable parameters. The training time for each optimization iteration (Time/iter) of
411 different methods is also reported. The gray dotted lines represent the performance of the FixMatch
412 baseline without parameter-efficient training (approximately 9.505M trainable parameters). The first
413 row of the figure presents the performance of different models with sufficient parameter budgets
414 ($r = 16$), while the second row reports their performance under limited parameter budgets ($r = 4$).

415
416
417 supervised learning module within CE-SSL is replaced with FixMatch for comparison, denoted as
418 'CE-SSL with FixMatch'. As illustrated in Figure 2, we report their macro- $F_{\beta=2}$ scores, macro-
419 $G_{\beta=2}$ scores, and Time/iter on four datasets at sufficient ($r = 16$) and limited ($r = 4$) budget levels.
420 The macro- $F_{\beta=2}$ and macro- $G_{\beta=2}$ scores of the FixMatch without parameter-efficient training are
421 denoted as gray dotted lines. The experiment results indicate that CE-SSL consistently outperforms
422 the other methods on four datasets at different budget levels. Under a sufficient parameter budget
423 ($r = 16$), CE-SSL achieves a macro- $G_{\beta=2}$ score of 0.307 ± 0.016 on the G12EC dataset, which is
424 2.8% higher than the FixMatch with LoRA. When the parameter budget is limited ($r = 4$), CE-SSL
425 still outperforms it by 1.5%. In Table 16, we present detailed comparison results on more eval-
426 uation metrics, which provide supplementary evidence on the efficiency of the proposed CE-SSL
427 in CVDs detection. Paired t-tests are conducted to evaluate the significance levels of the per-
428 formance difference between CE-SSL and the aforementioned SOTA methods (Figure 7). Based on the
429 calculated two-sided p -value, it can be observed that CE-SSL outperforms the baselines at a 0.05
430 significance level in most datasets and evaluation metrics, which indicates a significant superiority
431 for the proposed CE-SSL framework.

432 At the same time, with one-shot rank allocation, the proposed RD-LoRA is generally better than
433 other low-rank adaptation methods when integrated with FixMatch. Under a sufficient parameter

432 Table 3: **Ablation study using the base backbone.** 'RA: One-Shot Rank Allocation', 'RD: Random
 433 Deactivation', 'SSBN: Semi-Supervised BN', 'FixM: FixMatch'.

435	G12EC Dataset				PTB-XL Dataset				Ningbo Dataset				Chapman Dataset			
	436 Methods	Params	Time/iter	Macro $F_{\beta=2}$	Params	Time/iter	Macro $F_{\beta=2}$	Params	Time/iter	Macro $F_{\beta=2}$	Params	Time/iter	Macro $F_{\beta=2}$	Params	Time/iter	Macro $F_{\beta=2}$
437	LoRA	0.795M	78ms	0.520 \pm 0.011	0.795M	87ms	0.537 \pm 0.008	0.796M	92ms	0.546 \pm 0.019	0.795M	77ms	0.499 \pm 0.014			
438	+RA	0.510M	81ms	0.522 \pm 0.030	0.582M	91ms	0.554 \pm 0.008	0.550M	96ms	0.549 \pm 0.007	0.581M	81ms	0.521 \pm 0.013			
439	+RD	0.795M	76ms	0.530 \pm 0.024	0.795M	83ms	0.558 \pm 0.010	0.796M	88ms	0.566 \pm 0.018	0.795M	74ms	0.515 \pm 0.013			
440	+SSBN	0.795M	99ms	0.530 \pm 0.013	0.795M	111ms	0.558 \pm 0.012	0.796M	116ms	0.557 \pm 0.021	0.795M	100ms	0.512 \pm 0.011			
441	+SSBN+RA	0.510M	104ms	0.536 \pm 0.021	0.582M	115ms	0.554 \pm 0.011	0.550M	121ms	0.553 \pm 0.017	0.581M	102ms	0.514 \pm 0.015			
442	+SSBN+RD	0.795M	97ms	0.537 \pm 0.019	0.795M	108ms	0.560 \pm 0.014	0.796M	114ms	0.563 \pm 0.014	0.795M	96ms	0.514 \pm 0.018			
443	+RA+RD	0.510M	78ms	0.536 \pm 0.029	0.582M	87ms	0.565 \pm 0.007	0.550M	92ms	0.559 \pm 0.018	0.581M	77ms	0.527 \pm 0.026			
444	+RA+RD+FixM	0.576M	197ms	0.551 \pm 0.016	0.522M	219ms	0.574 \pm 0.006	0.606M	227ms	0.574 \pm 0.008	0.582M	196ms	0.538 \pm 0.014			
445	CE-SSL	0.510M	98ms	0.551 \pm 0.017	0.582M	110ms	0.578 \pm 0.006	0.550M	115ms	0.569 \pm 0.014	0.581M	97ms	0.530 \pm 0.008			

447 budget ($r = 16$), 'CE-SSL with FixMatch' achieves an average macro- $G_{\beta=2}$ score of 0.334 and av-
 448 erage macro- $F_{\beta=2}$ score of 0.559 across four datasets, outperforming 'FixMatch + LoRA' by 1.6%
 449 and 2.2%. Under a tight parameter budget ($r = 4$), 'CE-SSL with FixMatch' achieves an average
 450 macro- $G_{\beta=2}$ score of 0.325 and average macro- $F_{\beta=2}$ score of 0.546 across four datasets, outper-
 451 ferring 'FixMatch + DyLoRA' by 1.3% and 1.8%. Additionally, it achieves the highest training
 452 speed and the best performance with the least trainable parameters compared to other parameter-
 453 efficient semi-supervised learning frameworks. In summary, the experiments demonstrate the ro-
 454 bustness and computational efficiency of the CE-SSL in cardiovascular disease detection under lim-
 455 ited supervision. In other words, CE-SSL can enhance the detection performance of ECG-based
 456 CVDs detection models without introducing heavy computation burdens.

457 4.2 ABLATION STUDY

458 As shown in Table 3, we conducted an ablation study to evaluate the contribution of the modules
 459 in CE-SSL. Specifically, we add the one-shot rank allocation (RA), random deactivation (RD), and
 460 semi-supervised BN (SSBN) to LoRA and record the corresponding model performance. Note that
 461 the initial rank r is set to 16 for LoRA. **(1) The random-deactivation low-rank adaptation im-**
 462 **proves model performance and computational efficiency.** In the G12EC dataset, removing it from
 463 CE-SSL decreases the macro $F_{\beta=2}$ from 0.551 ± 0.017 (CE-SSL) to 0.536 ± 0.021 (+SSBN+RA). Its
 464 effectiveness can also be supported by directly adding it to LoRA, where macro $F_{\beta=2}$ increases from
 465 0.537 ± 0.008 (LoRA) to 0.558 ± 0.010 (+RD) in the PTB-XL dataset. Additionally, the Time/iter is
 466 slightly reduced compared with LoRA when the deactivation probability p is set to 0.2. As shown
 467 in Appendix D.7, the Time/iter can be significantly reduced by increasing p . As illustrated in Ap-
 468 pendix D.5, the improvements in training speed become more significant on larger backbones. **(2)**
 469 **The one-shot rank allocation improves fine-tuning performance.** In the PTB-XL dataset, re-
 470 moving it from CE-SSL decreases the macro $F_{\beta=2}$ from 0.578 ± 0.006 (CE-SSL) to 0.560 ± 0.014
 471 (+SSBN+RD). It can be observed that it does not introduce heavy computational burdens (Time/iter
 472 only increases by 1-2ms) while further reducing the number of trainable parameters, demonstrating
 473 its high computational efficiency. Its effectiveness can also be supported by directly adding it to full
 474 fine-tuning, where macro $F_{\beta=2}$ increases from 0.499 ± 0.014 (LoRA) to 0.521 ± 0.013 (+RA) in the
 475 Chapman dataset. **(3) The proposed lightweight semi-supervised learning benefits model per-**
 476 **formance without greatly increasing the training time.** It utilizes the unlabeled data to stabilize
 477 the statistics within the BN layers in the convolution blocks, preventing them from over-fitting to
 478 small amounts of labeled data. Removing it from CE-SSL decreases its detection performance on
 479 all the datasets. Compared to RA+RD+FixMatch, such as FixMatch, the extra computational costs
 480 caused by SSBN are significantly lower, while their detection performance is comparable.

481 4.3 EXTERNAL VALIDATION

482 In this section, an external validation is conducted using the medium backbone, where four down-
 483 stream datasets (G12EC, Chapman, PTB-XL, Ningbo) are used for fine-tuning, and one held-out
 484 dataset provided by (Lai et al., 2023) is used for evaluation. Additional results for the base and
 485 large backbones are presented in Appendix D.6. We integrate the proposed one-shot rank allocation

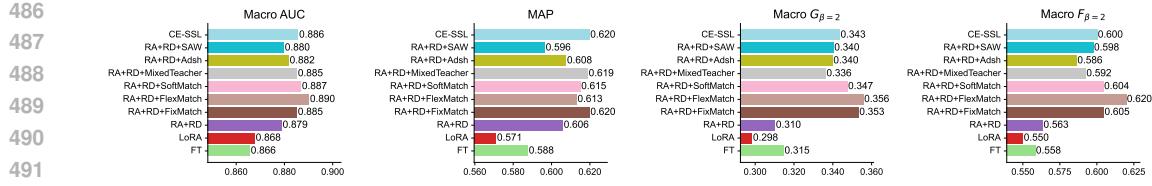


Figure 3: External validation results. 'RA: One-Shot Rank Allocation', 'RD: Random Deactivation'

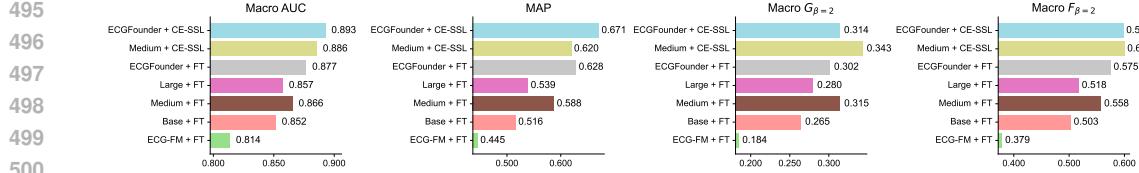


Figure 4: Effect of the pretrained backbones on the model generalization performance.

(RA) and random-deactivation low-rank adaptation modules (RD) as a powerful supervised baseline (RA+RD). Subsequently, we combine the baseline with various semi-supervised methods, including FixMatch, FlexMatch, SoftMatch, Adsh, SAW, MixedTeacher, as well as the proposed semi-supervised BN (CE-SSL). In addition, LoRA and full fine-tuning (FT) are also used for benchmarking. We calculate the average detection performance across six random seeds. More implementation details are provided in Appendix D.6. The experiment results provide two critical insights. First, the CVDs detection system powered by CE-SSL can generalize well to unseen data collected by different devices and medical centers. As shown in Figure 3, CE-SSL achieves a macro AUC of 0.886 on the external dataset and demonstrates better cross-distribution robustness than LoRA (0.866) and FT (0.868). Second, the semi-supervised BN enhances the model’s generalization performance on unseen data without introducing heavy computational burdens. Specifically, CE-SSL outperforms the powerful supervised baseline (RA+RD) by 3.67% on macro $F_{\beta=2}$ score. It achieves comparable performance to the baseline with SOTA semi-supervised methods and demonstrates significantly lower computational costs (Table 7).

Pretrained backbones are critical factors that determine the generalization performance of the fine-tuned models. We fine-tune different pretrained backbones using full fine-tuning (FT) on four downstream datasets and evaluate them on the external dataset. We include five backbones for benchmarking, including the backbones (base, medium, large) provided in our study and two external backbones: ECG-FM (McKeen et al., 2024) and ECGFounder (Li et al., 2025). As shown in Figure 4, ECGFounder and our medium backbone demonstrate the best and the second-best generalization performance on the external dataset. More importantly, we can observe that CE-SSL can consistently improve their performance, which indicates its effectiveness across various backbones.

5 CONCLUSION

Bottlenecks in model performance and computational efficiency have become great challenges in the clinical application of CVDs detection systems based on pre-trained models, especially when the supervised information is scarce in the downstream ECG datasets. In this paper, we propose a computationally efficient semi-supervised learning paradigm (CE-SSL) for adapting pre-trained models on downstream datasets with limited supervision and high computational efficiency. Experiment results on four downstream ECG datasets and three backbone settings indicate that CE-SSL achieves superior CVDs detection performance and computational efficiency compared to state-of-the-art methods. In conclusion, our study offers a fast and robust semi-supervised learning paradigm for ECG-based CVDs detection under limited supervision. It provides a feasible solution for efficiently adapting pre-trained models to downstream ECG datasets. We hope this learning paradigm will pave the way for the application of automatic CVDs detection systems and broaden their applicability to various ECG-based tasks.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure reproducibility, we give a derivation of the ensemble optimization properties of the RD-
543 LoRA in Appendix C.1. All datasets used in our experiments are publicly available and clearly
544 specified in Section 3. The evaluation metrics used in our experiments are defined in Appendix
545 C.4. We provide the algorithm of the proposed CE-SSL in Algorithm 1 and the anonymous source
546 codes in a supplementary .zip file. The pretrained backbones with various sizes will be released after
547 publication.

548
549 REFERENCES
550

551 Salah S Al-Zaiti, Christian Martin-Gill, Jessica K Zègre-Hemsey, Zeineb Bouzid, Ziad Faramand,
552 Mohammad O Alrawashdeh, Richard E Gregg, Stephanie Helman, Nathan T Riek, Karina
553 Kraevsky-Phillips, et al. Machine learning for ecg diagnosis and risk stratification of occlusion
554 myocardial infarction. *Nature Medicine*, 29(7):1804–1813, 2023.

555 Erick A Perez Alday, Annie Gu, Amit J Shah, Chad Robichaux, An-Kwok Ian Wong, Chengyu
556 Liu, Feifei Liu, Ali Bahrami Rad, Andoni Elola, Salman Seyed, et al. Classification of 12-lead
557 ECGs: the physionet/computing in cardiology challenge 2020. *Physiological measurement*, 41
558 (12):124003, 2020.

559 David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
560 Raffel. Mixmatch: A holistic approach to semi-supervised learning, 2019.

562 David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and
563 Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmenta-
564 tion anchoring, 2020.

565 Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. *Semi-Supervised Learning*, volume 2.
566 The MIT Press, 09 2006. ISBN 9780262255899. doi: 10.7551/mitpress/9780262033589.001.
567 0001.

569 Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj,
570 and Marios Savvides. Softmatch: Addressing the quantity-quality tradeoff in semi-supervised
571 learning, 2023a.

573 Yuyan Chen, Qiang Fu, Ge Fan, Lun Du, Jian-Guang Lou, Shi Han, Dongmei Zhang, Zhixu Li, and
574 Yanghua Xiao. Hadamard adapter: An extreme parameter-efficient adapter tuning method for
575 pre-trained language models, 2023b.

576 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
577 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
578 language models. *Nature Machine Intelligence*, 5(3):220–235, 2023.

579 Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive threshold-
580 ing. In *International Conference on Machine Learning*, pp. 8082–8094. PMLR, 2022.

582 Yu Han and Cheng Ding. Foundation models in electrocardiogram: A review. *arXiv preprint*
583 *arXiv:2410.19877*, 2024.

585 Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie Bourn,
586 Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection and classification
587 in ambulatory electrocardiograms using a deep neural network. *Nature medicine*, 25(1):65–69,
588 2019.

589 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
590 autoencoders are scalable vision learners, 2022.

592 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
593 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
594 2019.

594 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2022.

596

597 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
 598 stochastic depth. In *European conference on computer vision*, pp. 646–661. Springer, 2016.

599

600 Yu Huang, Gary G Yen, and Vincent S Tseng. Snippet policy network v2: Knee-guided neuroevolu-
 601 tion for multi-lead ECG early classification. *IEEE Transactions on Neural Networks and Learning*
 602 *Systems*, 2022.

603

604 Jiarui Jin, Haoyu Wang, Hongyan Li, Jun Li, Jiahui Pan, and Shenda Hong. Reading your heart:
 605 Learning ECG words and sentences via pre-training ECG language model. In *The Thirteenth*
 606 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=6Hz1Ko087B>.

607

608 Bridget B Kelly, Valentin Fuster, et al. *Promoting cardiovascular health in the developing world: a*
 609 *critical challenge to achieve global health*. National Academies Press, 2010.

610

611 Dani Kiyasseh, Tingting Zhu, and David Clifton. A clinical deep learning framework for contin-
 612 ually learning from cardiac signals across diseases, time, modalities, and institutions. *Nature*
 613 *Communications*, 12(1):4221, 2021a.

614

615 Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
 616 across space, time, and patients, 2021b.

617

618 Mustafa Taha Koçigit, Laura Sevilla-Lara, Timothy M Hospedales, and Hakan Bilen. Unsuper-
 619 vised batch normalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 620 *Pattern Recognition Workshops*, pp. 918–919, 2020.

621

622 Jiewei Lai, Huixin Tan, Jinliang Wang, Lei Ji, Jun Guo, Baoshi Han, Yajun Shi, Qianjin Feng, and
 623 Wei Yang. Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised
 624 learning on large-scale dataset. *Nature Communications*, 14(1):3741, 2023.

625

626 Zhengfeng Lai, Chao Wang, Henrry Gunawan, Sen-Ching S Cheung, and Chen-Nee Chuah.
 627 Smoothed adaptive weighting for imbalanced semi-supervised learning: Improve reliability
 628 against unknown distribution data, 2022.

629

630 Jun Li, Aaron D Aguirre, Valdery Moura Junior, Jiarui Jin, Che Liu, Lanhai Zhong, Chenxi Sun,
 631 Gari Clifford, M Brandon Westover, and Shenda Hong. An electrocardiogram foundation model
 632 built on over 10 million recordings. *NEJM AI*, 2(7):A1033, 2025.

633

634 Junnan Li, Caiming Xiong, and Steven C.H. Hoi. Comatch: Semi-supervised learning with con-
 635 trastive graph regularization, October 2021.

636

637 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 638 *preprint arXiv:2101.00190*, 2021.

639

640 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 641 *arXiv:1711.05101*, 2017.

642

643 Lei Lu, Tingting Zhu, Antonio H Ribeiro, Lei Clifton, Erying Zhao, Jiandong Zhou, Antonio Luiz P
 644 Ribeiro, Yuan-Ting Zhang, and David A Clifton. Decoding 2.3 million ECGs: interpretable deep
 645 learning for advancing cardiovascular diagnosis and mortality risk stratification. *European Heart*
 646 *Journal - Digital Health*, pp. ztae014, 02 2024a. ISSN 2634-3916. doi: 10.1093/ehjdh/ztae014.

647

648 Lei Lu, Tingting Zhu, Antonio H Ribeiro, Lei Clifton, Erying Zhao, Jiandong Zhou, Antonio Luiz P
 649 Ribeiro, Yuan-Ting Zhang, and David A Clifton. Decoding 2.3 million ecgs: interpretable deep
 650 learning for advancing cardiovascular diagnosis and mortality risk stratification. *European Heart*
 651 *Journal-Digital Health*, 5(3):247–259, 2024b.

652

653 George Mathew, Daniel Barbosa, John Prince, and Subramaniam Venkatraman. Foundation models
 654 for cardiovascular disease detection via biosignals from digital stethoscopes. *npj Cardiovascular*
 655 *Health*, 1(1):25, 2024.

648 Kaden McKeen, Laura Oliva, Sameer Masood, Augustin Toma, Barry Rubin, and Bo Wang. Ecg-fm:
 649 An open electrocardiogram foundation model. *arXiv preprint arXiv:2408.05178*, 2024.
 650

651 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 652 for neural network pruning, 2019.

653 Petr Nejedly, Adam Ivora, Radovan Smisek, Ivo Viscor, Zuzana Koscova, Pavel Jurak, and Filip
 654 Plesinger. Classification of ECG using ensemble of residual CNNs with attention mechanism,
 655 2021.

656

657 Himashi Peiris, Munawar Hayat, Zhaolin Chen, Gary Egan, and Mehrtash Harandi. Uncertainty-
 658 guided dual-views for semi-supervised volumetric medical image segmentation. *Nature Machine
 659 Intelligence*, 5(7):724–738, 2023.

660 Manh Pham, Aaqib Saeed, and Dong Ma. C-melt: Contrastive enhanced masked auto-encoders for
 661 ecg-language pre-training. *arXiv preprint arXiv:2410.02131*, 2024.

662

663 Bahareh Pourbabaee, Mehrsan Javan Roshtkhari, and Khashayar Khorasani. Deep convolutional
 664 neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients.
 665 *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 48(12):2095–2104, 2018. doi:
 666 10.1109/TSMC.2017.2705582.

667

668 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 669 models are unsupervised multitask learners, 2019.

670

671 Antônio H Ribeiro, Manoel Horta Ribeiro, Gabriela MM Paixão, Derick M Oliveira, Paulo R
 672 Gomes, Jéssica A Canazart, Milton PS Ferreira, Carl R Andersson, Peter W Macfarlane, Wagner
 673 Meira Jr, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. *Nature
 674 communications*, 11(1):1760, 2020.

675

676 Antonio Luiz P Ribeiro, Gabriela MM Paixao, Paulo R Gomes, Manoel Horta Ribeiro, Antônio H
 677 Ribeiro, Jessica A Canazart, Derick M Oliveira, Milton P Ferreira, Emilly M Lima, Jer-
 678 mania Lopes de Moraes, et al. Tele-electrocardiography and bigdata: the code (clinical outcomes
 679 in digital electrocardiography) study. *Journal of electrocardiology*, 57:S75–S78, 2019.

680

681 Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-
 682 the-shelf: an astounding baseline for recognition. In *Proceedings of the IEEE conference on
 683 computer vision and pattern recognition workshops*, pp. 806–813, 2014.

684

685 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
 686 Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
 687 learning with consistency and confidence, 2020.

688

689 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 690 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine
 691 learning research*, 15(1):1929–1958, 2014.

692

693 Nils Strodthoff, Patrick Wagner, Tobias Schaeffter, and Wojciech Samek. Deep learning for ECG
 694 analysis: Benchmarks and insights from PTB-XL. *IEEE Journal of Biomedical and Health
 695 Informatics*, 25(5):1519–1528, 2020.

696

697 Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
 698 Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image anal-
 699 ysis: Full training or fine tuning? *IEEE transactions on medical imaging*, 35(5):1299–1312,
 2016.

700

701 Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label data. *Data mining
 702 and knowledge discovery handbook*, pp. 667–685, 2010.

Akhil Vaid, Joy Jiang, Ashwin Sawant, Stamatios Lerakis, Edgar Argulian, Yuri Ahuja, Joshua Lam-
 pert, Alexander Charney, Hayit Greenspan, Jagat Narula, et al. A foundational vision transformer
 improves diagnostic performance for electrocardiograms. *NPJ Digital Medicine*, 6(1):108, 2023.

702 Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. DyLoRA: Parameter-
 703 efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Andreas
 704 Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th Conference of the European
 705 Chapter of the Association for Computational Linguistics*, pp. 3274–3287, Dubrovnik, Croatia,
 706 May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.239.

707 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 708 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 709 tion processing systems*, 30, 2017.

710 Patrick Wagner, Nils Strothoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Wojciech
 711 Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocardiography dataset.
 712 *Scientific data*, 7(1):154, 2020.

713 Ximei Wang, Jinghan Gao, Mingsheng Long, and Jianmin Wang. Self-tuning for data-efficient
 714 deep learning. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International
 715 Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*,
 716 pp. 10738–10748. PMLR, 18–24 Jul 2021.

717 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 718 Cutmix: Regularization strategy to train strong classifiers with localizable features, 2019.

719 Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
 720 for transformer-based masked language-models. *arXiv preprint arXiv:2106.10199*, 2021.

721 Bowen Zhang, Yidong Wang, Wenxin Hou, HAO WU, Jindong Wang, Manabu Okumura, and
 722 Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
 723 beling, 2021.

724 Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
 725 crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. *arXiv
 726 preprint arXiv:2308.12043*, 2023a.

727 Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. *IEEE transactions
 728 on knowledge and data engineering*, 26(8):1819–1837, 2013.

729 Peng Zhang, Yuting Chen, Fan Lin, Sifan Wu, Xiaoyun Yang, and Qiang Li. Semi-supervised
 730 learning for automatic atrial fibrillation detection in 24-hour holter monitoring. *IEEE Journal of
 731 Biomedical and Health Informatics*, 26(8):3791–3801, 2022.

732 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 733 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning, 2023b.

734 Jianwei Zheng, Huimin Chu, Daniele Struppa, Jianming Zhang, Sir Magdi Yacoub, Hesham El-
 735 Askary, Anthony Chang, Louis Ehwerhemuepha, Islam Abudayyeh, Alexander Barrett, et al.
 736 Optimal multi-stage arrhythmia classification approach. *Scientific reports*, 10(1):2898, 2020a.

737 Jianwei Zheng, Jianming Zhang, Sidy Danioko, Hai Yao, Hangyuan Guo, and Cyril Rakovski. A
 738 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients.
 739 *Scientific data*, 7(1):48, 2020b.

740 Hong-Yu Zhou, Avital Oliver, Jianxin Wu, and Yefeng Zheng. When semi-supervised learning meets
 741 transfer learning: Training strategies, models and datasets. *arXiv preprint arXiv:1812.05313*,
 742 2018.

743 Rushuang Zhou, Lei Lu, Zijun Liu, Ting Xiang, Zhen Liang, David A. Clifton, Yining Dong, and
 744 Yuan-Ting Zhang. Semi-supervised learning for multi-label cardiovascular diseases prediction: A
 745 multi-dataset study. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–17,
 746 2023. doi: 10.1109/TPAMI.2023.3342828.

747 Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
 748 lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. *arXiv preprint
 749 arXiv:2309.02411*, 2023.

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
757758
759 In this paper, LLMs are only used as tools for spell checking and grammar suggestions. The authors
760 take full responsibility for the contents within the paper.
761
762763 B APPENDIX: RELATED WORK
764765 B.1 AI-ENABLED CVDs PREDICTION USING ECG
766767 Benefiting from the development of deep learning, AI-enabled systems have shed light on automatic
768 ECG screening and cardiovascular disease diagnosis (Pourbabae et al., 2018; Hannun et al., 2019;
769 Ribeiro et al., 2020; Strothoff et al., 2020; Kiyasseh et al., 2021b; Huang et al., 2022; Vaid et al.,
770 2023; Han & Ding, 2024; Mathew et al., 2024). Tracing the development of the systems, it can be
771 observed that the prediction models they used are continuously scaling up. In the first stage, small-
772 scale models demonstrated promising diagnosis performance in ECG analysis and CVDs detection.
773 For example, Pourbabae et al. (2018) designed a deep convolutional neural network to extract fea-
774 tures from ECG signals and utilize standard classifiers for screening paroxysmal atrial fibrillation.
775 Hannun et al. (2019) proposed an end-to-end deep convolutional neural network to achieve auto-
776 matic single-lead ECG screening. The results demonstrated that the network achieved similar diag-
777 nosis performance compared with common cardiologists. In the second stage, pre-trained models
778 with a prohibitive number of parameters were introduced, which demonstrated better transferability
779 than previous networks. This advantage reduces their requirement for supervision information on
780 downstream datasets. For instance, Vaid et al. (2023) pre-trained a large-scale vision transformer
781 (HeartBEiT) on a huge ECG dataset and fine-tuned it on downstream datasets. The experiment re-
782 sults demonstrated the superiority of HeartBEiT in CVDs detection compared with traditional CNN
783 architectures. In the current stage, many studies have proposed various kinds of foundation mod-
784 els for more advanced ECG screening and cardiac healthcare, inspired by their success in natural
785 language processing (Han & Ding, 2024; Mathew et al., 2024). However, pre-trained models might
786 experience a performance drop on downstream datasets when the labeled samples are very scarce
787 there. Additionally, the computational costs of adapting them to various tasks significantly increase
788 as their sizes scale up.
789790 B.2 SEMI-SUPERVISED LEARNING FOR PERFORMANCE ENHANCEMENT UNDER LIMITED
791 SUPERVISION.
792793 Semi-supervised learning offers an effective solution to address the label scarcity problem by lever-
794 aging unlabeled samples (Wang et al., 2021; Berthelot et al., 2019; Sohn et al., 2020; Zhang et al.,
795 2021; Chen et al., 2023a). For example, Sohn et al. (2020) combined consistency regularization
796 and pseudo-labeling to formulate a powerful algorithm (FixMatch). Extensive experiments demon-
797 strate the superiority of FixMatch against the supervised baselines under the label scarcity condition.
798 Subsequently, Zhang et al. (2021) proposed curriculum pseudo labeling (CPL) to flexibly adjust the
799 thresholds for pseudo label selection, aiming at utilizing unlabeled data based on the model’s train-
800 ing progress. Using a truncated Gaussian function, Chen et al. (2023a) designed a soft threshold
801 to weight unlabeled samples according to their prediction confidence, which achieved a balance
802 between pseudo-label quality and quantity. Compared with FixMatch, FlexMatch, and SoftMatch
803 demonstrate better performance in various datasets. However, Wang et al. (2021) pointed out that
804 the performance of semi-supervised models will be influenced by inaccurate pseudo labels, espe-
805 cially in a large label space. Hence, they proposed a self-tuning technique to explore the potential
806 of the transfer of pre-trained models and a pseudo-label group contrast mechanism to increase the
807 model’s tolerance to inaccurate labels. Experiments on five tasks demonstrated the superiority of the
808 proposed framework against previous semi-supervised and supervised methods. In summary, mas-
809 sive unlabeled data and powerful pre-trained models led to the success of semi-supervised methods.
However, high computation burdens are the side effects of leveraging them, greatly limiting their
applications in resource-limited settings.

810 B.3 PARAMETER-EFFICIENT METHODS FOR HIGHER COMPUTATIONAL EFFICIENCY.
811812 Parameter-efficient training has demonstrated great potential in decreasing the computational costs
813 of fine-tuning pre-trained models (Zaken et al., 2021; Hu et al., 2022; Valipour et al., 2023; Zhang
814 et al., 2023b). For example, Zaken et al. (2021) proposed BitFit to fine-tune the bias terms of the
815 pre-trained models and freeze the other parameters, greatly reducing the computational costs. How-
816 ever, BitFit sacrifices the performance of the fine-tuned models because most of their parameters
817 are not well adapted to downstream tasks. Hu et al. (2022) designed a low-rank adaptation method
818 (LoRA) to inject trainable low-rank matrices into the transformer architecture, decreasing the perfor-
819 mance gap between parameter-efficient methods and full fine-tuning. However, Zhang et al. (2023b)
820 pointed out that LoRA ignored the varying importance of different pre-trained weights and allo-
821 cated the same rank for all the trainable matrices, which led to suboptimal fine-tuning performance.
822 Consequently, they designed AdaLoRA to address this problem, which dynamically allocates dif-
823 ferent ranks to the low-rank matrices according to their importance during fine-tuning. During this
824 process, the trainable parameters of the matrices with low importance are pruned. Different from
825 AdaLoRA, IncreLoRA adaptively adds trainable parameters to the low-rank matrices with high im-
826 portance (Zhang et al., 2023a). As a non-pruning method, its performance is not limited by the
827 preset parameter budget. Although IncreLoRA and AdaLoRA surpass LoRA in some scenarios,
828 they result in high computation costs for weight importance estimation. Consequently, advancing
829 fine-tuning performance without sacrificing computational efficiency remains challenging when de-
830 signing parameter-efficient methods.
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 C APPENDIX: METHODOLOGY DETAILS
865866 C.1 ENSEMBLE OPTIMIZATION PROPERTIES OF THE RD-LoRA
867

868 In this section, we briefly analyze the ensemble properties of the proposed RD-LoRA. Here, we
869 simply consider a network M with n fully-connected layers, defined as $M(X) = \prod_{i=1}^n W_0^i X$,
870 where X is the input data and $W_0^i \in \mathbb{R}^{c_{out} \times c_{in}}$ is the pre-trained weight matrix at the i -th layer.
871 During model training, a convex loss function $\mathcal{L}(Y, M(X))$ is employed for parameter optimization.
872 When the RD-LoRA is activated, the expectation of the loss function $\mathbb{E}_{\delta \sim Ber(\delta, 1-p)} [\mathcal{L}(Y, M(X))]$
873 at the iteration t can be given as,

$$874 \mathbb{E}_{\delta \sim Ber(\delta, 1-p)}^t [\mathcal{L}(Y, M(X))] = (1-p)^n \mathcal{L}(Y, \prod_{i=1}^n (W_0^i + B_t^i A_t^i) X) \\ 875 + \sum_{j=1}^n \left[p(1-p)^{n-1} \mathcal{L}(Y, \prod_{i=1, i \neq j}^n (W_0^i + B_t^i A_t^i) W_0^j X) \right] \\ 876 + \dots + p^n \mathcal{L}(Y, \prod_{i=1}^n W_0^i X), \quad (13)$$

877 where the low-rank matrices $\{A_t^i\}_{i=1}^n$ and $\{B_t^i\}_{i=1}^n$ are trainable while the pre-trained weights
878 $\{W_0^i\}_{i=1}^n$ are frozen. Eq.13 can be regarded as a weighted mean of the losses of 2^n sub-networks,
879 which are minimized during model training. The number of activated low-rank matrices np of
880 the sub-networks is lower than the entire network n . Consequently, the training costs of the sub-
881 networks are lower than those of the entire network. In the testing stage, all the low-rank matrices are
882 merged into the pre-trained weights, which generates an ensemble model combining all the possible
883 sub-networks. After that, the low-rank matrices $\{A, B\}$ are fixed and only δ is a random variable.
884 Hence, given the testing data X_{test} and the ground truth Y_{test} , the testing loss can be estimated as
885

$$886 \mathcal{L}(Y_{test}, \mathbb{E}_{\delta \sim Ber(\delta, 1-p)} [M(X_{test})]) = \mathcal{L}(Y_{test}, \prod_{i=1}^n (W_0^i + (1-p)B^i A^i) X_{test}). \quad (14)$$

887 In this paper, the multi-label binary cross-entropy loss with sigmoid activation $\sigma(M(X)) = [\sigma(M(X))_1, \sigma(M(X))_2, \dots, \sigma(M(X))_C]$ is convex according to the second-order condition of
888 convexity, where C is the number of categories. Specifically, the Hessian matrix of $\mathcal{L}(Y, \sigma(M(X)))$ is
889 diagonal and the c -th element of the main diagonal can be given as,

$$890 \frac{\partial^2 \mathcal{L}(Y, \sigma(M(X)))}{\partial M(X)_c^2} = \sigma(M(X))_c(1 - \sigma(M(X))_c) \geq 0, \quad (15)$$

891 where $Y = [y_1, y_2, \dots, y_C]$, $y_c \in \{0, 1\}$ and $\sigma(M(X)) = (1 + e^{-M(X)})^{-1}$. According to Eq 15, the
892 Hessian matrix of $\mathcal{L}(Y, \sigma(M(X)))$ is positive semidefinite, demonstrating the convexity of the loss
893 function. Based on Jensen's inequality, the loss of any ensemble average is smaller than the average
894 loss of the ensemble components,

$$895 \mathcal{L}(Y_{test}, \mathbb{E}_{\delta \sim Ber(\delta, 1-p)} [M(X_{test})]) \leq \mathbb{E}_{\delta \sim Ber(\delta, 1-p)} [\mathcal{L}(Y_{test}, M(X_{test}))]. \quad (16)$$

900 In the training stage, the proposed RD-LoRA optimizes the parameters of multiple sub-networks
901 and generates an ensemble network in the testing stage, improving the model performance on the
902 testing data.

911 C.2 BACKBONE MODEL PRE-TRAINING
912

913 The base backbone model is pre-trained on a public 12-lead ECG dataset (CODE-15% (Ribeiro
914 et al., 2019; 2020)), where 345779 ECG recordings from 233770 patients are provided. The medium
915 and large backbones are pre-trained on a restricted dataset with 2,322,513 ECG recordings from
916 1,558,772 patients (CODE-full (Ribeiro et al., 2019; Lu et al., 2024a)). The specific settings of the
917 backbone models with different sizes are shown in Table 4. Note that multiple abnormalities could be
918 identified from one ECG recording simultaneously, which indicates that a multi-label classification

918 **Algorithm 1** CE-SSL algorithm

919

920 **Require:**

921 - Labeled dataset $D_B = \{X_b, Y_b\}$ and unlabeled dataset $D_U = \{X_u\}$;

922 - Pre-trained model $M_0 = \{W_0^i\}_{i=1}^n$; Initial rank r ; The ratio of important weights c ; The

923 random-deactivation probability p ; Batch sizes of the labeled samples ($N_B = 64$) and the unlabeled samples ($N_U = 64$).

924 **Ensure:** Adapted model M with the updated parameters $\{W^i = W_0^i + (1 - p)A^iB^i\}_{i=1}^n$;

925 1: One-shot rank allocation

926 2: Compute the importance of each pre-trained weight using the Eq.10 and the labeled dataset D_B ;

927 3: Based on the initial rank r and the ratio c , allocate the final rank r^i of the incremental matrices

928 (A^i, B^i) of the pre-trained weight W_0^i using Eq.11.

929 4: **for** 1 to *iteration do*

930 5: sample labeled data $\{x_b, y_b\}$ from D_B ;

931 6: sample unlabeled data $\{x_u\}$ from D_U ;

932 7: apply data augmentation to x_b and x_u ;

933 8: Lightweight semi-supervised learning

934 9: Based on Eq.12, update the semi-supervised batch-normalization layers in the convolution

935 blocks using the labeled data x_b and the unlabeled data x_u .

936 10: release the unlabeled data x_u in the GPU memory

937 11: Random-deactivation low-rank adaptation

938 12: initialize $h_0 = x_b$

939 13: **for** $i = 1, 2, \dots, n$ **do**

940 14: sample δ_i from the Bernoulli distribution $B(\delta, 1 - p)$

941 15: $h_i = (W_0^i + \delta_i B^i A^i)h_{i-1}$

942 16: **end for**

943 17: Based on the model output h_n and the ground-truth y_b , compute the supervised multi-label

944 binary cross-entropy loss using Eq.17. Apply an early-stop strategy to avoid overfitting.

945 18: **end for**

946 19: Merge the incremental matrices into the pre-trained weights, as $\{W^i = W_0^i + (1 - p)B^i A^i\}_{i=1}^n$;

947 model should be implemented for ECG-based CVDs detection. As shown in Figure 1, the backbone

948 model $M(X)$ consists of three parts: (1) Convolution blocks, (2) Self-attention blocks, and (3)

949 Classification blocks. Specifically, the convolution blocks comprise multiple convolution layers

950 (Conv) and batch normalization layers. The Leaky-Relu function is used as the activation function

951 and skip-connection is implemented (Nejedly et al., 2021). In addition, a simple but efficient self-

952 attention pipeline is employed in the self-attention blocks (Radford et al., 2019) and two successive

953 fully-connected layers with sigmoid activation are used for label prediction in the classification

954 block. A multi-label binary cross-entropy function is employed for model training, defined as,

$$\mathcal{L}(Y, M(X)) = -\frac{1}{BC} \sum_{i=1}^B \sum_{c=1}^C (1 - y_{i,c}) \log(1 - p_{i,c}) + y_{i,c} \log p_{i,c}, \quad (17)$$

955 where $X = \{x_i\}_{i=1}^B, x_i \in \mathbb{R}^{12 \times L}$ are the ECG recordings in the current mini-batch, L is the signal

956 length and $Y = \{y_i\}_{i=1}^B$ is the corresponding ground truths. $p_{i,c}$ is the model prediction on class c

957 and C is the number of categories. During model training, a held-out validation set is used for early-

958 stop model validation. The best-performing model on the validation set is used for downstream tasks

959 on small-scale datasets.

960

C.3 SIGNAL PRE-PROCESSING AND DATA AUGMENTATION

961 Artifact removal and data augmentation are two factors that play important roles in model perfor-

962 mance. Firstly, we introduce the signal pre-processing pipeline employed in the proposed frame-

963 work. The ECG recordings from the CODE-15% and CODE-full databases are first resampled to a

964 400Hz sampling rate following the configuration of the dataset provider (Ribeiro et al., 2020). The

965 sampling rate of the recordings from the four downstream databases remains unchanged. Firstly, the

966 length of all recordings is normalized into 6144 samples by zero-padding. Subsequently, a band-

967 pass filter (1-47Hz) is applied to remove the power-line interference and baseline drift. Then, the

972 Table 4: Backbone model specifications. N_{conv} indicates the number of convolution blocks, N_{att}
 973 indicates the number of self-attention blocks, and N_{cls} indicates the number of classification blocks.
 974 C is the number of convolution channels. Hidden size is the hidden layer dimension of the self-
 975 attention blocks. Head Num is the number of heads in multi-head self-attention. Params is the total
 976 number of parameters in the backbone.

Backbone Size	N_{conv}	N_{att}	N_{cls}	C	Hidden size	Head Num	Params
Base	3	8	1	256	256	16	9.505M
Medium	3	12	1	512	512	16	50.494M
Large	3	12	1	768	768	16	113.490M

983
 984 Table 5: Description of the cardiovascular diseases analyzed in our study. The abbreviations (Abb)
 985 and the total number of instances (Nums) of a certain class are denoted as 'Abb (Nums)'.
 986

Original annotation	Abb (Nums)	Original annotation	Abb (Nums)
G12EC Dataset			
atrial fibrillation	AF (570)	1st degree av block	IAVB (769)
incomplete right bundle branch block	IRBBB (407)	left axis deviation	LAD (940)
left bundle branch block	LBBB (231)	low qrs voltages	LQRSV (374)
nonspecific intraventricular conduction disorder	NSIVCB (203)	sinus rhythm	NSR (1752)
premature atrial contraction	PAC (639)	prolonged qt interval	LQT (1391)
qwave abnormal	QAb (464)	right bundle branch block	RBBB (542)
sinus arrhythmia	SA (455)	sinus bradycardia	SB (1677)
sinus tachycardia	STach (1261)	t wave abnormal	TAb (2306)
t wave inversion	TInv (812)	ventricular premature beats	VPB (357)
PTB-XL Dataset			
atrial fibrillation	AF (1514)	complete right bundle branch block	CRBBB (542)
1st degree av block	IAVB (797)	incomplete right bundle branch block	IRBBB (1118)
left axis deviation	LAD (5146)	left anterior fascicular block	LAnFB (1626)
left bundle branch block	LBBB (536)	nonspecific intraventricular conduction disorder	NSIVCB (789)
sinus rhythm	NSR (18092)	premature atrial contraction	PAC (398)
pacing rhythm	PR (296)	prolonged pr interval	LPR (340)
qwave abnormal	QAb (548)	right axis deviation	RAD (343)
sinus arrhythmia	SA (772)	sinus bradycardia	SB (637)
sinus tachycardia	STach (826)	t wave abnormal	TAb (2345)
t wave inversion	TInv (294)		
Ningbo Dataset			
atrial flutter	AFL (7615)	bundle branch block	BBB (385)
complete left bundle branch block	CLBBB (213)	complete right bundle branch block	CRBBB (1096)
1st degree av block	IAVB (893)	incomplete right bundle branch block	IRBBB (246)
left axis deviation	LAD (1163)	left anterior fascicular block	LAnFB (380)
low qrs voltages	LQRSV (794)	nonspecific intraventricular conduction disorder	NSIVCB (536)
sinus rhythm	NSR (6299)	premature atrial contraction	PAC (1054)
pacing rhythm	PR (1182)	poor R wave Progression	PRWP (638)
premature ventricular contractions	PVC (1091)	prolonged qt interval	LQT (337)
qwave abnormal	QAb (828)	right axis deviation	RAD (638)
sinus arrhythmia	SA (2550)	sinus bradycardia	SB (12670)
sinus tachycardia	STach (5687)	t wave abnormal	TAb (5167)
t wave inversion	TInv (2720)		
Chapman Dataset			
atrial fibrillation	AF (1780)	atrial flutter	AFL (445)
1st degree av block	IAVB (247)	left axis deviation	LAD (382)
left bundle branch block	LBBB (205)	low qrs voltages	LQRSV (249)
nonspecific intraventricular conduction disorder	NSIVCB (235)	sinus rhythm	NSR (1826)
premature atrial contraction	PAC (258)	qwave abnormal	QAb (235)
right axis deviation	RAD (215)	right bundle branch block	RBBB (454)
sinus bradycardia	SB (3889)	sinus tachycardia	STach (1568)
t wave abnormal	TAb (1876)	ventricular premature beats	VPB (294)

1021
 1022
 1023 pre-processed signals are normalized using z-score normalization. Secondly, CutMix (Yun et al.,
 1024 2019) is employed for labeled data augmentation. Since the sample generation process of CutMix
 1025 requires true labels that are absent in the unlabeled data, we employed the ECGAugment (Zhou
 et al., 2023) for unlabeled data augmentation, which generates new samples by randomly selecting a

1026 transformation to perturb the pre-processed signals. Note that only the weak-augmentation module
 1027 in the ECGAugment is employed.
 1028

1029 **C.4 EVALUATION METRICS**
 1030

1031 In the model evaluation section, we evaluate the CVDs detection performance of different models
 1032 using six metrics: ranking loss, coverage, mean average precision (MAP), macro AUC, macro G_{beta} ,
 1033 and macro F_{beta} . Here, we provide detailed descriptions of how to compute the metrics based on the
 1034 model predictions $P = M(X)$, $P \in \mathbb{R}^{N \times C}$ and the multi-label ground truths $Y \in \mathbb{R}^{N \times C}$. N is the
 1035 sample size and C is the number of categories. Each row $y_n = [y_n^1, y_n^2, \dots, y_n^C]$, $y_n^C \in \{0, 1\}$ in
 1036 Y indicates the multi-label ground-truth of sample n . Specifically, if $y_n^1 == 1, y_n^2 == 1, y_n^3 == 0$,
 1037 sample n belongs to class 1 and class 2 simultaneously, but it does not belong to class 3. Each row
 1038 $p_n = [p_n^1, p_n^2, \dots, p_n^C]$, $p_n^C \in [0, 1]$ in P indicates the multi-label CVDs predictions of sample n .

1039 (1) The Ranking Loss calculates the average count of label pairs that are reversely ordered (Zhang
 1040 & Zhou, 2013; Tsoumakas et al., 2010). For given predictions P and ground-truth Y , it is weighted
 1041 by the size of the label set and the number of labels not in the label set. The best performance is
 1042 achieved with a ranking loss of zero. The computation process of the ranking loss can be found in
 1043 Zhang & Zhou (2013).

1044 (2) The coverage evaluates the steps needed to go through the ranked label list to cover all the
 1045 ground-truth labels Zhang & Zhou (2013); Tsoumakas et al. (2010). The smaller the coverage is, the
 1046 better the performance. The best value is the average number of positive labels in Y per sample.
 1047 The computation process of the coverage can also be found in Zhang & Zhou (2013).

1048 (3) Macro AUC calculates the average Area Under Curve (AUC) across all the CVDs categories,
 1049 defined as

$$1050 \quad \text{Macro AUC} = \frac{1}{C} \sum_{c=1}^C \text{AUC}_c, \quad (18)$$

1053 where AUC_c is AUC on CVD class c . The higher the Macro AUC is, the better the performance.
 1054 The best performance is achieved with a ranking loss of one.

1055 (4) MAP indicates the mean average precision across all CVDs. The computation process of the
 1056 average precision on a given class can also be found in Zhang & Zhou (2013). The higher the MAP
 1057 is, the better the performance. The best performance is achieved with a ranking loss of one.

1058 (5) Macro $F_{\beta=2}$ calculates the average $F_{\beta=2}$ score across all the CVDs categories, defined as

$$1060 \quad \text{Macro } F_{\beta=2} = \frac{1}{C} \sum_{c=1}^C F_{\beta=2}^c, \quad (19)$$

$$1063 \quad F_{\beta} = \frac{(1 + \beta^2) \text{TP}}{(1 + \beta^2) \text{TP} + \text{TP} + \beta^2 \text{FN}} \quad (20)$$

1065 where $F_{\beta=2}^c$ is $F_{\beta=2}$ score on CVD class c . TP represents the number of true positive predictions,
 1066 while FN represents the number of false negative predictions. The β value is set to 2 for all the
 1067 corresponding experiments following the configurations provided in Strothoff et al. (2020). The
 1068 higher the macro $F_{\beta=2}$ is, the better the performance. The best performance is achieved with a
 1069 macro $F_{\beta=2}$ of one.

1070 (6) Macro $G_{\beta=2}$ calculates the average $G_{\beta=2}$ score across all the CVDs categories, defined as

$$1072 \quad \text{Macro } G_{\beta=2} = \frac{1}{C} \sum_{c=1}^C G_{\beta=2}^c, \quad (21)$$

$$1075 \quad G_{\beta} = \frac{\text{TP}}{\text{TP} + \text{FP} + \beta \text{FN}} \quad (22)$$

1077 where $G_{\beta=2}^c$ is $G_{\beta=2}$ score on CVD class c . FP represents the number of false positive predictions.
 1078 The β value is set to 2 for all the corresponding experiments following the configurations provided
 1079 in Strothoff et al. (2020). The higher the macro $G_{\beta=2}$ is, the better the performance. The best
 performance is achieved with a macro $G_{\beta=2}$ of one.

1080 **D APPENDIX: EXTENDED EXPERIMENTS**
10811082 **D.1 DETAILED MODEL PERFORMANCE FOR EACH CVD**
10831084 Here, we provide the detailed model performance for each CVD using the base backbone. The
1085 CVDs analyzed in our study can be found in Table 5. Note that different datasets contain various
1086 CVD classes, and there is a class imbalance issue with all datasets. Then, we report the $F_{\beta=2}$ score
1087 of each compared model on each CVD class. We also present the macro $F_{\beta=2}$ score, which is
1088 an average of the $F_{\beta=2}$ score across all CVDs. In this section, state-of-the-art methods in semi-
1089 supervised learning are used for comparisons, including FixMatch (Sohn et al., 2020), FlexMatch
1090 (Zhang et al., 2021), SoftMatch (Chen et al., 2023a), MixedTeacher (Zhang et al., 2022), Adsh
1091 (Guo & Li, 2022), SAW (Lai et al., 2022). The experiment results on four datasets are shown in
1092 Table 9, Table 10, Table 11 and Table 12. Compared with other semi-supervised models, CE-SSL
1093 demonstrates the best detection performance in some CVDs and achieves on-par performance in the
1094 remaining CVDs.
10951096 **D.2 PERFORMANCE COMPARISONS UNDER VARIOUS BACKBONE SIZES**
10971098 In the previous sections, we have already proved the robustness and computation efficiency of the
1099 proposed CE-SSL under a base backbone with 9.505 million parameters. Here, we compare its
1100 performance with other baseline models under medium and large backbones, which share the same
1101 architecture as the base backbone but have more parameters (Table 4). Specifically, the medium
1102 backbone has 50.494 million parameters, and the large backbone has 113.490 million parameters.
1103 They are pre-trained on the CODE-full dataset, a huge but restricted ECG dataset with 2,322,513
1104 ECG recordings from 1,558,772 patients (Ribeiro et al., 2019; 2020). In Table 14 and 15, we report
1105 the performance of CE-SSL and semi-supervised baselines on the medium and the large backbones,
1106 respectively. The results demonstrate that CE-SSL achieves similar and even better CVDs detec-
1107 tion performance than the semi-supervised baselines and exhibits the lowest computation costs. For
1108 example, using the medium backbone, CE-SSL achieves a macro $F_{\beta=2}$ of 0.599 ± 0.010 , which is
1109 3.7% larger than the second-best model’s (SAW) performance in the PTB-XL dataset. Using the
1110 large backbone, CE-SSL achieves a macro $F_{\beta=2}$ of 0.565 ± 0.010 in the G12EC dataset, outper-
1111 forming SAW by 3.1%. Regarding the computational costs, the number of trainable parameters
1112 of CE-SSL is 0.9% to 3.1% of the other baselines on the medium backbone and 0.6% to 2.1%
1113 on the large backbone. In addition, CE-SSL demonstrates the lowest GPU memory consumption
1114 and the highest training speed compared to the other semi-supervised baselines. For the memory
1115 footprint, CE-SSL achieves an average GPU memory usage of 6.16 GB using the medium back-
1116 bone and 9.22 GB using the large backbone, 3.09 GB and 4.59 GB less than the second-best model
1117 (Adsh). Furthermore, CE-SSL achieves an average training time per iteration of 259.25 ms using
1118 the medium backbone and 485.5 ms using the large backbone, 162.5 ms and 289.75 ms faster than
1119 the second-best model (MixedTeacher). These phenomena demonstrate that as the number of model
1120 parameters increases, the computational efficiency advantage of CE-SSL over other models be-
1121 comes increasingly apparent. In Table 17 and Table 18, we present the performance of CE-SSL and
1122 parameter-efficient semi-supervised methods on the medium and large backbones, respectively. It
1123 can be observed that CE-SSL outperforms the other models in CVDs detection on both medium and
1124 large backbones. Additionally, CE-SSL demonstrates the fastest training speed across four datasets
1125 compared with other parameter-efficient methods. In Figure 8 and Figure 9, we provide the paired
1126 t-test results of the model performance on the two backbones. The statistical results indicate that
1127 CE-SSL outperforms the above baselines in ECG-based CVDs detection at a 0.05 significance level
1128 in most conditions.
11291130 **D.3 DETAILED RESULTS ON STATISTICAL ANALYSIS**
11311132 In this section, we provide detailed statistical analysis results to evaluate the significance levels
1133 of the performance difference between CE-SSL and the aforementioned baselines using different
backbones. Applying paired t-tests, we compare their performance on four datasets and present the
two-sided p -value in Figure 7, Figure 8 and Figure 9. For each dataset, the model performance
under six random seeds is used for the paired t-tests. Note that the initial ranks for LoRA, Dy-
LoRA, AdaLoRA, IncreLoRA, and CE-SSL are set to 16. Based on the calculated p -value, it can

1134 be observed that CE-SSL outperforms the baselines at a 0.05 significance level in most datasets and
 1135 evaluation metrics, which indicates a significant superiority for the proposed CE-SSL framework.
 1136

1137 D.4 TOWARD HIGHER COMPUTATIONAL EFFICIENCY IN CLINICAL PRACTICES

1139 Although deploying the CE-SSL paradigm with the base backbone on low-level devices (4-6 GB
 1140 GPU memory) is easy, implementing the paradigm with the medium and large backbones is still
 1141 challenging. To overcome this limitation, we adopt a simple but effective approach to boost the
 1142 computational efficiency of the CE-SSL. Specifically, we freeze the first two convolution blocks
 1143 in the backbones during the CE-SSL training process. The new paradigm is denoted as 'CE-SSL-
 1144 F' in the following analysis. We present the CVDs detection performance and the computational
 1145 efficiency of CE-SSL-F, CE-SSL, and the SOTA methods in semi-supervised learning in Figure 10.
 1146 Note that the batch sizes for all the compared methods are set to 64. The initial rank for CE-SSL
 1147 and CE-SSL-F is set to 16 and 4, respectively.

1148 First, freezing the convolution blocks greatly reduces the cached activation during the forward pass,
 1149 significantly decreasing the GPU memory footprints. As shown in Figure 10a, it can be observed
 1150 that the CE-SSL-F requires nearly 50% less GPU memory footprints compared to the CE-SSL,
 1151 generalizing its applications in low-level devices (NVIDIA RTX 3050 laptops and RTX 4060 GPU
 1152 cards). Specifically, CE-SSL-F is deployable on RTX 3050 laptops with both base and medium
 1153 backbones, and it is the only method that can be implemented on the RTX 4060 GPU cards with
 1154 a large backbone. In contrast, deploying the CE-SSL with a large backbone requires medium-level
 1155 devices (NVIDIA RTX 4070 GPU cards), while other semi-supervised methods require high-level
 1156 devices with GPU memory larger than 12 GB. Second, the parameters of the frozen blocks are not
 1157 updated during the backward pass, which increases the training speed of CE-SSL-F. The larger the
 1158 backbone is, the more parameters are frozen, and thus the more gradient backward time is saved. As
 1159 shown in Figure 10b, CE-SSL-F demonstrates the fastest training speed compared with other mod-
 1160 els, and its advantages become more significant along with the increase in backbone sizes. Third,
 1161 CE-SSL-F only sacrifices 1-2% CVDs detection performance compared with CE-SSL. More im-
 1162 portantly, it consistently outperforms the other semi-supervised methods across different backbones
 1163 (Figure 10c), demonstrating its effectiveness in CVDs detection. This phenomenon can be explained
 1164 by the strong transferability of the pre-trained convolution blocks located in the first few layers of
 1165 the backbone (Sharif Razavian et al., 2014; Tajbakhsh et al., 2016). Specifically, they mainly contain
 1166 domain-invariant knowledge for CVDs detection, and their parameters will not be changed signifi-
 1167 cantly during the fine-tuning process. Therefore, freezing them does not greatly decrease the model
 1168 performance. In summary, the experiment results illustrate that the computational efficiency of the
 1169 CE-SSL can be increased to adapt to low-level devices without losing its superior CVDs detection
 1170 performance compared to other semi-supervised methods. This advantage demonstrates CE-SSL's
 1171 flexibility in different clinical application scenarios with various computational resources.

1172 D.5 EXTENDED RESULTS ON ABLATION STUDY

1173 In this section, we provide the ablation study of CE-SSL using medium and large backbones in
 1174 Table 20 and Table 21. Note that the initial rank r is 16 for all the compared models. (1) It can be observed
 1175 that removing the random-deactivation technique from CE-SSL increases the Time/iter and decreases the CVDs detection performance on the four datasets. For example, with the
 1176 medium backbone, the Time/iter increases from 243ms to 259ms and the macro F_{beta} decreases from
 1177 0.561 ± 0.024 to 0.540 ± 0.022 on the G12EC database. With the large backbone, the Time/iter increases
 1178 from 451ms to 480ms and the macro F_{beta} decreases from 0.552 ± 0.018 to 0.529 ± 0.021 on the Chapman
 1179 database. (2) It is demonstrated that the one-shot rank allocation increases the
 1180 detection performance with high computation efficiency. For instance, with the medium back-
 1181 bone, the macro $F_{beta=2}$ increases from 0.515 ± 0.022 to 0.540 ± 0.019 , and the MAP increases from
 1182 0.537 ± 0.010 to 0.553 ± 0.013 on the Chapman dataset. With the large backbone, the macro $F_{beta=2}$
 1183 increases from 0.562 ± 0.019 to 0.587 ± 0.008 , and the macro $G_{beta=2}$ increases from 0.340 ± 0.016
 1184 to 0.358 ± 0.005 on the PTB-XL database. More importantly, the proposed method completes the
 1185 rank allocation process without introducing high computational costs (Time/iter only increases by
 1186 1-7ms). (3) Removing the lightweight semi-supervised learning module from CE-SSL decreases
 1187 the CVDs diagnostic performance on different backbone sizes. With the medium backbone, the
 1188 macro $F_{beta=2}$ score decreases from 0.588 ± 0.021 to 0.576 ± 0.024 and macro $G_{beta=2}$ decreases from

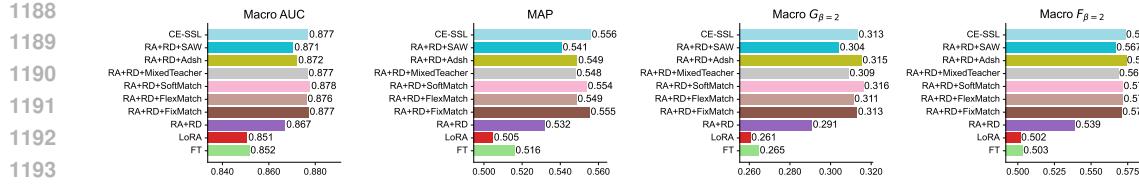


Figure 5: External validation results (base backbone). 'RA: One-Shot Rank Allocation', 'RD: Random Deactivation'

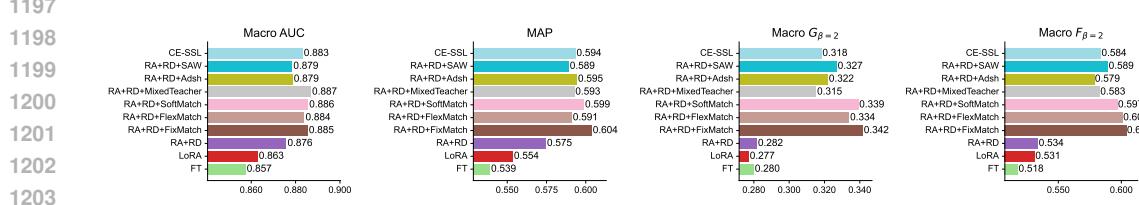


Figure 6: External validation results (large backbone). 'RA: One-Shot Rank Allocation', 'RD: Random Deactivation'

0.356 \pm 0.013 to 0.346 \pm 0.018 on the Ningbo dataset. With the large backbone, the macro $F_{\beta=2}$ score decreases from 0.565 \pm 0.010 to 0.552 \pm 0.018 and macro $G_{\beta=2}$ decreases from 0.322 \pm 0.009 to 0.314 \pm 0.014 on the G12EC dataset.

D.6 DETAILS ABOUT EXTERNAL VALIDATION

A main advantage of semi-supervised learning is increasing the model's generalization performance on unseen samples, especially when the labeled data is expensive to collect. Here, we conduct an external validation on the model trained by various methods to highlight the contribution of introducing semi-supervised BN for improving the model's generalization performance. Specifically, we combine the G12EC, PTB-XL, Ningbo, and Chapman datasets as a joint dataset for model training. It is divided into a labeled training set and an unlabeled training set in a ratio of 0.05: 0.95. An internal validation set is randomly sampled from the labeled training set and accounts for 20% of it, which is used for selecting the best-performing model during training. Then, an external validation set provided by (Lai et al., 2023) is used to evaluate the model's generalization performance on unseen samples, which contains 7000 wearable 12-lead ECG recordings. The CVDs that co-exist in the external dataset and the joint dataset are used for evaluation, including NSR, QAb, TAb, IAVB, BBB, CRBBB, IRBBB, CLBBB, SB, SA, PAC, AF, AFL, PVC, and PR. For all the compared methods, the batch sizes of labeled and unlabeled data for CE-SSL and all compared SOTA SSL methods are set to 64 ($N_B : N_U = 1 : 1$). The deactivation probability for random deactivation low-rank adaptation is set to $p = 0.2$ and the initial rank r for one-shot rank allocation is set to 16. All the compared methods are equipped with a medium backbone for training. In terms of fine-tuning costs before validation (Table 6), top semi-supervised methods (FixMatch, FlexMatch) increase the training time per iteration and GPU memory consumption by 2.27 times and 2.88 times, respectively. In contrast, semi-supervised BN only increases the training time per iteration and GPU memory consumption by 1.18 times and 1.41 times, demonstrating higher computation efficiency.

D.7 EFFECT OF THE DEACTIVATION PROBABILITY

For each pre-trained weight W_i^0 in the CE-SSL, the proposed RD-LoRA deactivates its low-rank matrices (A^i, B^i) in the current iteration at a probability of p , which produces multiple sub-networks during model training. All the low-rank matrices are activated in the testing stage, generating an ensemble network that combines all the sub-networks. Consequently, the probability p is an important parameter that controls the training time and the final performance of the proposed CE-SSL. In Figure 11, we adjust p from 0.1 to 0.5 and present the averaged model performance across four datasets, including the training time for each iteration. Note that the labeled ratio is set to 5%, and the initial ranks for all the low-rank matrices are set to 16. The results show that the CE-SSL with

1242 Table 6: Fine-tuning efficiency of different methods before external validation (base backbone).
1243

Method	RA+RD	+FixMatch	+FlexMatch	+SoftMatch	+MixedTeacher	+Adsh	+SAW	CE-SSL
Time/iter	110 ms	250 ms	250 ms	250 ms	200 ms	180 ms	240 ms	130 ms
Memory	1.95 GB	5.62 GB	5.62 GB	5.62 GB	3.82 GB	3.77 GB	5.62 GB	2.75 GB

1248 Table 7: Fine-tuning efficiency of different methods before external validation (medium backbone).
1249

Method	RA+RD	+FixMatch	+FlexMatch	+SoftMatch	+MixedTeacher	+Adsh	+SAW	CE-SSL
Time/iter	240 ms	640 ms	630 ms	630 ms	520 ms	440 ms	630 ms	310 ms
Memory	4.71 GB	12.96 GB	12.96 GB	12.96 GB	8.97 GB	8.76 GB	12.96 GB	6.16 GB

1256 $p = 0.2$ demonstrates the best detection performance compared with the model with other settings.
1257 In addition, it can be observed that the training time of the CE-SSL decreases as p increases. The
1258 reason is that the larger the p is, the more low-rank matrices are deactivated during model training,
1259 which speeds up the forward-backward propagation.

1260 D.8 RANK INITIALIZATION IN THE ONE-SHOT RANK ALLOCATION

1262 Rank initialization is an important component in low-rank adaptation, which controls the number of
1263 trainable parameters during model training. In this section, we adjust the initial rank from 4 to 32
1264 and present the averaged model performance on the four datasets in Figure 12. Note that the labeled
1265 ratio is set to 5%. The results indicate that CE-SSL with high initial ranks ($r = 16, 32$) achieves
1266 better performance than that with low initial ranks ($r = 4, 8$). This is because the model with higher
1267 ranks has more trainable parameters and thus demonstrates a larger capacity during training.

1269 D.9 EFFECT OF WARM-UP EPOCHS FOR RANK ALLOCATION

1271 Once the initial rank is determined, the proposed one-shot rank allocation module will determine
1272 the optimal ranks for the update matrices of the pre-trained weights using Eq.10. The allocation
1273 process only utilizes the gradient information at the 0-th (first) iteration. It is worth discussing
1274 whether determining the optimal ranks before fine-tuning would hinder the model’s performance
1275 or not. Here, we first fine-tune the pre-trained model for T warm-up epochs using LoRA with the
1276 initial rank $r = 16$. Then, we determine the optimal ranks using the fine-tuned parameters and
1277 the one-shot rank allocation. As shown in Figure 13, we adjust T from 0 to 3 and compute the
1278 averaged model performance on four downstream datasets. Note that the labeled ratio is set to 5%.
1279 The results demonstrate that increasing the number of warmup epochs has a limited impact on the
1280 performance of the proposed CE-SSL. It can be observed that the fluctuations of macro $F_{\beta=2}$ score
1281 and macro $G_{\beta=2}$ score are within 0.4% when T increases from 0 to 3. It indicates that determining
1282 the optimal ranks before fine-tuning would not hinder the model’s performance. Specifically, during
1283 the pre-training and fine-tuning stages, the models’ training objectives are correlated. Hence, the pre-
1284 trained models carry rigorous information for the downstream tasks. Additionally, the importance of
1285 each low-rank matrix is calculated using the labeled samples from the downstream datasets, which
1286 provide sufficient information for effective rank allocation without extra warm-up epochs.

1287 D.10 EFFECT OF THE NUMBER OF IMPORTANT WEIGHT MATRICES

1288 Based on the proposed one-shot rank allocation, CE-SSL allocates a rank r to the incremental
1289 matrices with high importance and a rank $r/2$ to the matrices with low importance. The ratio of the
1290 important matrices to the total number of pre-trained matrices is defined as the coefficient c . The
1291 higher the coefficient is, the higher the ratio of the important matrices. In Figure 14, we adjust the
1292 coefficient from 0.2 to 0.8 and report the averaged model performance across four datasets. Note
1293 that the labeled ratio is set to 5%, and the initial ranks r for all the low-rank matrices are set to 16. It
1294 can be observed that the performance of the proposed model is relatively insensitive to the changes
1295 in the c . In Figure 18, we visualize the rank distribution generated by the proposed method under
various coefficients c . When the ratio of important matrices decreases from 0.8 to 0.2, the proposed

1296 Table 8: Fine-tuning efficiency of different methods before external validation (large backbone).
1297

Method	RA+RD	+FixMatch	+FlexMatch	+SoftMatch	+MixedTeacher	+Adsh	+SAW	CE-SSL
Time/iter	430 ms	1200 ms	1200 ms	1200 ms	960 ms	820 ms	1200 ms	580 ms
Memory	7.1 GB	18.94 GB	18.96 GB	18.95 GB	13.37 GB	12.92 GB	18.95 GB	9.23 GB

1302
1303 method allocates more ranks to the self-attention and classification blocks than to the convolution
1304 blocks. This phenomenon indicates that the deep modules exhibit higher importance than the shal-
1305 low modules during model training, which aligns with the conclusions made by previous studies (Li
1306 & Liang, 2021; Zhang et al., 2023b).
1307

1308 D.11 EFFECT OF THE BATCH SIZE OF UNLABELED DATA 1309

1310 In this section, we investigate the effect of the batch size of unlabeled data during semi-supervised
1311 learning. By default, the batch sizes of labeled and unlabeled data for CE-SSL and all compared
1312 SOTA SSL methods are set to 64 ($N_B : N_U = 1 : 1$) in our experiments, aiming at reducing the
1313 GPU memory consumption during model training. According to previous studies (Sohn et al., 2020;
1314 Chen et al., 2023a; Guo & Li, 2022), 1:2 and 1:7 are also two common ratios for implementing the
1315 SOTA semi-supervised methods. To investigate their effects on model performance, we adjust the
1316 ratio from 1:1 to 1:2 and 1:7 and present the performance of different SSL methods in Figure 15.
1317 It can be observed that the CVDs detection performance of different semi-supervised methods is
1318 insensitive to the ratio between the batch sizes of labeled and unlabeled data.
1319

1320 D.12 EFFECT OF THE RATIO OF LABELED SAMPLES

1321 Here, we compare the proposed CE-SSL and baseline models under various ratios of labeled samples
1322 in the datasets. Specifically, we adjust the ratio of the labeled samples in the dataset from 5% to 15%
1323 and present the averaged performance of different models on the four datasets in Figure 16. The
1324 experiment results demonstrate the superiority of the proposed CE-SSL compared with FixMatch
1325 and FixMatch with LoRA under various ratios of the labeled data, especially when the ratio is low.
1326 As the ratio decreases from 15% to 5%, the performance advantage of CE-SSL over other models
1327 becomes more significant. When using 15% labeled data, CE-SSL achieves improvements of 1.3%
1328 on the macro $F_{\beta=2}$ compared to FixMatch with LoRA. In contrast, CE-SSL outperforms it by 1.9%
1329 on the macro $F_{\beta=2}$ using 5% labeled data. In Figure 17, we also compare CE-SSL with other
1330 baseline models, where CE-SSL consistently outperforms them in CVDs detection under various
1331 labeled ratios.
1332

1350

1351

1352 Table 9: Detailed model performance for each CVD within the G12EC dataset using the base back-
1353 bone. For each CVD, the averaged $F_{\beta=2}$ and standard deviations are shown across six seeds. The
1354 model with the best performance is denoted in **bold**.

Methods	MixedTeacher	FixMatch	FlexMatch	SoftMatch	Adsh	SAW	$CE-SSL_{r=4}$	$CE-SSL_{r=32}$
AF	0.508 \pm 0.078	0.523 \pm 0.083	0.529 \pm 0.072	0.521 \pm 0.059	0.443 \pm 0.133	0.566 \pm 0.067	0.659 \pm 0.075	0.668\pm0.036
IAVB	0.729 \pm 0.030	0.670 \pm 0.066	0.597 \pm 0.129	0.679 \pm 0.044	0.589 \pm 0.194	0.654 \pm 0.077	0.747\pm0.022	0.719 \pm 0.081
IRBBB	0.467 \pm 0.067	0.435 \pm 0.071	0.425 \pm 0.058	0.410 \pm 0.092	0.381 \pm 0.126	0.436 \pm 0.090	0.536\pm0.022	0.533 \pm 0.040
LAD	0.659\pm0.065	0.627 \pm 0.094	0.642 \pm 0.031	0.604 \pm 0.084	0.601 \pm 0.077	0.608 \pm 0.070	0.633 \pm 0.045	0.636 \pm 0.043
LBBB	0.581 \pm 0.236	0.624 \pm 0.193	0.557 \pm 0.255	0.544 \pm 0.201	0.588 \pm 0.126	0.598 \pm 0.221	0.706 \pm 0.121	0.713\pm0.191
LQRSV	0.208 \pm 0.069	0.212\pm0.025	0.167 \pm 0.068	0.202 \pm 0.051	0.160 \pm 0.065	0.205 \pm 0.030	0.184 \pm 0.062	0.197 \pm 0.064
NSIVCB	0.119 \pm 0.090	0.058 \pm 0.044	0.080 \pm 0.070	0.077 \pm 0.075	0.030 \pm 0.035	0.051 \pm 0.059	0.260\pm0.030	0.208 \pm 0.026
NSR	0.759 \pm 0.020	0.754 \pm 0.024	0.764 \pm 0.029	0.771\pm0.018	0.755 \pm 0.009	0.738 \pm 0.031	0.748 \pm 0.020	0.766 \pm 0.014
PAC	0.313 \pm 0.027	0.310 \pm 0.031	0.299 \pm 0.025	0.324 \pm 0.046	0.329 \pm 0.035	0.292 \pm 0.056	0.388\pm0.043	0.376 \pm 0.033
LQT	0.548 \pm 0.055	0.578 \pm 0.013	0.579\pm0.022	0.559 \pm 0.037	0.524 \pm 0.070	0.516 \pm 0.066	0.576 \pm 0.034	0.570 \pm 0.037
QAb	0.315 \pm 0.029	0.322\pm0.031	0.298 \pm 0.088	0.305 \pm 0.033	0.306 \pm 0.040	0.260 \pm 0.042	0.319 \pm 0.020	0.305 \pm 0.052
RBBB	0.702 \pm 0.073	0.721 \pm 0.075	0.749 \pm 0.119	0.766\pm0.044	0.753 \pm 0.028	0.732 \pm 0.083	0.737 \pm 0.031	0.755 \pm 0.022
SA	0.214 \pm 0.032	0.205 \pm 0.025	0.172 \pm 0.043	0.179 \pm 0.086	0.220 \pm 0.017	0.189 \pm 0.050	0.266 \pm 0.034	0.268\pm0.024
SB	0.874 \pm 0.033	0.879 \pm 0.036	0.902\pm0.014	0.891 \pm 0.021	0.882 \pm 0.033	0.865 \pm 0.044	0.891 \pm 0.039	0.891 \pm 0.020
STach	0.891 \pm 0.018	0.894 \pm 0.025	0.882 \pm 0.035	0.885 \pm 0.025	0.898 \pm 0.014	0.893 \pm 0.023	0.911\pm0.011	0.896 \pm 0.020
Tab	0.731 \pm 0.010	0.722 \pm 0.020	0.719 \pm 0.028	0.737\pm0.012	0.722 \pm 0.017	0.720 \pm 0.024	0.713 \pm 0.018	0.707 \pm 0.023
TInv	0.288 \pm 0.062	0.310 \pm 0.045	0.306 \pm 0.063	0.318 \pm 0.038	0.283 \pm 0.044	0.297 \pm 0.057	0.352\pm0.032	0.339 \pm 0.012
VPB	0.222 \pm 0.138	0.334 \pm 0.055	0.280 \pm 0.111	0.304 \pm 0.079	0.343 \pm 0.061	0.277 \pm 0.048	0.326 \pm 0.041	0.369\pm0.024
Average	0.507 \pm 0.025	0.510 \pm 0.016	0.497 \pm 0.035	0.504 \pm 0.021	0.489 \pm 0.013	0.494 \pm 0.024	0.553\pm0.020	0.551 \pm 0.017

1374

1375

1376

1377

1378

1379 Table 10: Detailed model performance for each CVD within the PTB-XL dataset using the base
1380 backbone. For each CVD, the averaged $F_{\beta=2}$ and standard deviations are shown across six seeds.
1381 The model with the best performance is denoted in **bold**.

Methods	MixedTeacher	FixMatch	FlexMatch	SoftMatch	Adsh	SAW	$CE-SSL_{r=4}$	$CE-SSL_{r=32}$
AF	0.882 \pm 0.009	0.890 \pm 0.010	0.846 \pm 0.042	0.880 \pm 0.018	0.864 \pm 0.048	0.890 \pm 0.019	0.908\pm0.007	0.904 \pm 0.014
CRBBB	0.667 \pm 0.145	0.714 \pm 0.068	0.697 \pm 0.084	0.711 \pm 0.082	0.646 \pm 0.121	0.696 \pm 0.127	0.814\pm0.042	0.790 \pm 0.045
IAVB	0.604 \pm 0.038	0.616 \pm 0.026	0.577 \pm 0.037	0.635 \pm 0.030	0.635 \pm 0.050	0.646 \pm 0.039	0.682\pm0.030	0.679 \pm 0.019
IRBBB	0.557 \pm 0.061	0.535 \pm 0.043	0.515 \pm 0.040	0.512 \pm 0.049	0.551 \pm 0.021	0.541 \pm 0.025	0.594\pm0.032	0.561 \pm 0.062
LAD	0.769 \pm 0.016	0.764 \pm 0.020	0.758 \pm 0.017	0.772 \pm 0.017	0.777 \pm 0.009	0.754 \pm 0.005	0.774 \pm 0.007	0.779\pm0.004
LAnFB	0.788 \pm 0.019	0.800\pm0.007	0.789 \pm 0.015	0.780 \pm 0.018	0.776 \pm 0.024	0.747 \pm 0.035	0.771 \pm 0.018	0.784 \pm 0.010
LBBB	0.844 \pm 0.046	0.789 \pm 0.078	0.797 \pm 0.043	0.848\pm0.043	0.820 \pm 0.074	0.810 \pm 0.031	0.804 \pm 0.037	0.761 \pm 0.063
NSIVCB	0.176 \pm 0.044	0.221 \pm 0.028	0.244\pm0.037	0.155 \pm 0.087	0.190 \pm 0.061	0.225 \pm 0.055	0.219 \pm 0.054	0.208 \pm 0.068
NSR	0.968 \pm 0.013	0.972 \pm 0.005	0.968 \pm 0.006	0.972 \pm 0.003	0.973\pm0.002	0.968 \pm 0.004	0.970 \pm 0.009	0.965 \pm 0.013
PAC	0.156 \pm 0.037	0.107 \pm 0.078	0.120 \pm 0.050	0.183 \pm 0.028	0.148 \pm 0.054	0.219 \pm 0.071	0.272\pm0.039	0.262 \pm 0.026
PR	0.588 \pm 0.054	0.737 \pm 0.028	0.698 \pm 0.049	0.638 \pm 0.102	0.733 \pm 0.048	0.715 \pm 0.059	0.728 \pm 0.027	0.747\pm0.026
LPR	0.527 \pm 0.035	0.525 \pm 0.026	0.450 \pm 0.063	0.509 \pm 0.025	0.458 \pm 0.081	0.488 \pm 0.112	0.583 \pm 0.042	0.600\pm0.026
QAb	0.135 \pm 0.041	0.121 \pm 0.054	0.152 \pm 0.044	0.154 \pm 0.055	0.082 \pm 0.065	0.128 \pm 0.039	0.185\pm0.020	0.169 \pm 0.037
RAD	0.428 \pm 0.068	0.373 \pm 0.025	0.415 \pm 0.057	0.361 \pm 0.111	0.482\pm0.052	0.416 \pm 0.068	0.408 \pm 0.056	0.412 \pm 0.041
SA	0.172 \pm 0.052	0.144 \pm 0.041	0.150 \pm 0.076	0.164 \pm 0.027	0.165 \pm 0.046	0.175 \pm 0.047	0.245 \pm 0.029	0.281\pm0.042
SB	0.557 \pm 0.026	0.549 \pm 0.022	0.548 \pm 0.032	0.526 \pm 0.042	0.554 \pm 0.034	0.568\pm0.029	0.566 \pm 0.049	0.558 \pm 0.032
STach	0.817 \pm 0.051	0.809 \pm 0.055	0.818 \pm 0.049	0.770 \pm 0.031	0.787 \pm 0.082	0.729 \pm 0.054	0.853 \pm 0.024	0.860\pm0.016
Tab	0.518 \pm 0.050	0.497 \pm 0.019	0.515 \pm 0.028	0.549 \pm 0.026	0.519 \pm 0.020	0.516 \pm 0.011	0.549 \pm 0.035	0.561\pm0.013
TInv	0.141 \pm 0.051	0.123 \pm 0.014	0.124 \pm 0.046	0.132 \pm 0.027	0.159 \pm 0.035	0.182\pm0.039	0.100 \pm 0.052	0.093 \pm 0.044
Average	0.542 \pm 0.014	0.541 \pm 0.007	0.536 \pm 0.007	0.540 \pm 0.011	0.543 \pm 0.015	0.548 \pm 0.017	0.580\pm0.006	0.578 \pm 0.006

1402

1403

1404

1405
1406
1407
Table 11: Detailed model performance for each CVD within the Ningbo dataset using the base
backbone. For each CVD, the averaged $F_{\beta=2}$ and standard deviations are shown across six seeds.
The model with the best performance is denoted in **bold**.

1408

1409

Methods	MixedTeacher	FixMatch	FlexMatch	SoftMatch	Adsh	SAW	CE-SSL _{r=4}	CE-SSL _{r=32}
AFL	0.959±0.008	0.962±0.007	0.957±0.007	0.966±0.002	0.959±0.006	0.963±0.005	0.963±0.005	0.965±0.005
BBB	0.266±0.160	0.291±0.145	0.295±0.111	0.280±0.120	0.287±0.105	0.317±0.093	0.391±0.040	0.397±0.054
CLBBB	0.713±0.143	0.749±0.045	0.707±0.135	0.708±0.102	0.725±0.051	0.745±0.050	0.719±0.065	0.721±0.080
CRBBB	0.760±0.027	0.766±0.017	0.722±0.118	0.706±0.067	0.761±0.020	0.712±0.085	0.777±0.029	0.764±0.036
IAVB	0.677±0.053	0.686±0.030	0.675±0.044	0.672±0.026	0.698±0.047	0.690±0.042	0.710±0.040	0.704±0.040
IRBBB	0.138±0.092	0.094±0.039	0.191±0.060	0.168±0.039	0.167±0.056	0.203±0.129	0.186±0.044	0.153±0.064
LAD	0.628±0.033	0.605±0.046	0.596±0.056	0.603±0.050	0.623±0.022	0.585±0.084	0.590±0.037	0.603±0.039
LAnFB	0.418±0.081	0.426±0.051	0.368±0.113	0.474±0.050	0.419±0.025	0.401±0.089	0.417±0.059	0.435±0.052
LQRSV	0.221±0.045	0.198±0.051	0.222±0.047	0.208±0.025	0.195±0.066	0.174±0.054	0.245±0.030	0.255±0.028
NSIVCB	0.432±0.056	0.388±0.087	0.447±0.030	0.413±0.057	0.436±0.052	0.397±0.146	0.468±0.076	0.476±0.061
NSR	0.857±0.009	0.859±0.013	0.853±0.009	0.851±0.020	0.842±0.017	0.841±0.019	0.828±0.013	0.852±0.011
PAC	0.413±0.040	0.401±0.038	0.408±0.037	0.428±0.043	0.389±0.050	0.346±0.061	0.512±0.018	0.501±0.030
PR	0.804±0.031	0.772±0.079	0.793±0.080	0.819±0.045	0.786±0.063	0.818±0.036	0.810±0.039	0.839±0.022
PRWP	0.281±0.105	0.289±0.059	0.214±0.096	0.253±0.119	0.227±0.094	0.232±0.064	0.251±0.086	0.260±0.072
PVC	0.613±0.055	0.637±0.037	0.640±0.040	0.652±0.050	0.596±0.043	0.582±0.083	0.638±0.048	0.643±0.025
LQT	0.151±0.045	0.197±0.049	0.136±0.083	0.188±0.063	0.134±0.068	0.175±0.045	0.123±0.071	0.161±0.030
QAb	0.385±0.041	0.352±0.046	0.350±0.035	0.328±0.050	0.303±0.084	0.333±0.041	0.362±0.042	0.359±0.063
RAD	0.362±0.030	0.319±0.120	0.335±0.033	0.389±0.051	0.365±0.019	0.360±0.064	0.366±0.063	0.351±0.059
SA	0.461±0.077	0.475±0.058	0.497±0.070	0.518±0.056	0.530±0.043	0.417±0.050	0.548±0.048	0.536±0.060
SB	0.971±0.004	0.975±0.003	0.975±0.002	0.974±0.003	0.970±0.005	0.968±0.004	0.974±0.002	0.974±0.003
STach	0.919±0.014	0.895±0.031	0.920±0.016	0.912±0.008	0.916±0.014	0.899±0.046	0.934±0.009	0.926±0.012
Tab	0.575±0.039	0.591±0.029	0.575±0.037	0.596±0.019	0.598±0.033	0.586±0.029	0.607±0.025	0.597±0.028
TInv	0.614±0.034	0.604±0.033	0.627±0.034	0.598±0.048	0.597±0.034	0.590±0.067	0.615±0.020	0.605±0.050
Average	0.549±0.028	0.545±0.020	0.544±0.019	0.552±0.020	0.545±0.012	0.536±0.016	0.567±0.011	0.569±0.014

1433

1434

1435

1436
1437
1438
Table 12: Detailed model performance for each CVD within the Chapman dataset using the base
backbone. For each CVD, the averaged $F_{\beta=2}$ and standard deviations are shown across six seeds.
The model with the best performance is denoted in **bold**.

1439

1440

Methods	MixedTeacher	FixMatch	FlexMatch	SoftMatch	Adsh	SAW	CE-SSL _{r=4}	CE-SSL _{r=32}
AF	0.926±0.018	0.944±0.008	0.917±0.018	0.925±0.031	0.938±0.007	0.935±0.015	0.945±0.014	0.948±0.010
AFL	0.482±0.026	0.507±0.034	0.463±0.060	0.523±0.028	0.487±0.015	0.466±0.051	0.473±0.012	0.489±0.042
IAVB	0.356±0.111	0.357±0.175	0.308±0.170	0.418±0.173	0.412±0.131	0.390±0.156	0.524±0.151	0.383±0.185
LAD	0.390±0.173	0.397±0.128	0.455±0.029	0.406±0.098	0.410±0.176	0.478±0.057	0.438±0.059	0.445±0.054
LBBC	0.455±0.122	0.295±0.157	0.265±0.081	0.375±0.123	0.420±0.092	0.203±0.169	0.328±0.127	0.339±0.114
LQRSV	0.081±0.069	0.072±0.073	0.144±0.026	0.091±0.083	0.105±0.065	0.133±0.077	0.105±0.022	0.053±0.025
NSIVCB	0.337±0.129	0.329±0.063	0.272±0.087	0.310±0.044	0.313±0.072	0.399±0.064	0.207±0.071	0.370±0.047
NSR	0.869±0.046	0.944±0.004	0.930±0.042	0.893±0.046	0.920±0.030	0.937±0.009	0.930±0.026	0.946±0.015
PAC	0.111±0.092	0.140±0.050	0.106±0.062	0.147±0.051	0.135±0.078	0.111±0.056	0.211±0.020	0.209±0.075
QAb	0.150±0.114	0.114±0.125	0.067±0.080	0.065±0.098	0.137±0.103	0.096±0.109	0.052±0.083	0.064±0.101
RAD	0.288±0.097	0.375±0.051	0.276±0.090	0.240±0.100	0.287±0.092	0.285±0.114	0.342±0.060	0.305±0.051
RBBB	0.786±0.066	0.814±0.069	0.729±0.091	0.774±0.073	0.787±0.064	0.790±0.076	0.858±0.016	0.879±0.033
SB	0.961±0.028	0.974±0.016	0.970±0.017	0.970±0.014	0.963±0.026	0.980±0.009	0.969±0.012	0.978±0.007
STach	0.943±0.010	0.941±0.011	0.928±0.022	0.939±0.016	0.943±0.005	0.928±0.041	0.950±0.016	0.954±0.007
Tab	0.607±0.036	0.646±0.032	0.643±0.029	0.647±0.026	0.656±0.020	0.620±0.036	0.651±0.018	0.667±0.016
VPB	0.422±0.098	0.431±0.147	0.443±0.138	0.450±0.221	0.356±0.192	0.407±0.133	0.494±0.053	0.447±0.039
Average	0.510±0.024	0.518±0.025	0.495±0.019	0.511±0.021	0.517±0.020	0.510±0.020	0.530±0.012	0.530±0.008

1457

1458
1459
1460
1461
1462
1463
1464
14651466 Table 13: Performance comparisons between CE-SSL and semi-supervised baselines on the base
1467 backbone. The average performance on all CVDs within each dataset is shown across six seeds.
1468 The standard deviation is also reported for the evaluation metrics.

Methods	Params ↓	Mem ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset									
MixedTeacher	9.505 M	3.941 GB	147 ms	0.107±0.009	4.224±0.236	0.835±0.010	0.464±0.003	0.275±0.016	0.507±0.025
FixMatch	9.505 M	5.784 GB	187 ms	0.107±0.006	4.292±0.163	0.829±0.004	0.468±0.009	0.280±0.010	0.510±0.016
FlexMatch	9.505 M	5.784 GB	187 ms	0.113±0.005	4.365±0.133	0.829±0.009	0.450±0.022	0.274±0.019	0.497±0.035
SoftMatch	9.505 M	5.784 GB	187 ms	0.110±0.006	4.313±0.128	0.834±0.004	0.457±0.010	0.276±0.017	0.504±0.021
Adsh	9.505 M	3.887 GB	207 ms	0.111±0.003	4.387±0.129	0.827±0.005	0.458±0.007	0.268±0.009	0.489±0.013
SAW	9.505 M	5.784 GB	188 ms	0.112±0.003	4.369±0.105	0.827±0.005	0.459±0.017	0.269±0.018	0.494±0.024
CE-SSL _{r=16}	0.510 M	2.747 GB	98 ms	0.092±0.002	3.867±0.088	0.855±0.005	0.476±0.006	0.307±0.016	0.551±0.017
CE-SSL _{r=4}	0.183 M	2.743 GB	98 ms	0.089±0.003	3.804±0.095	0.853±0.004	0.467±0.006	0.304±0.013	0.553±0.020
PTB-XL Dataset									
MixedTeacher	9.505 M	3.941 GB	164 ms	0.037±0.003	2.841±0.095	0.884±0.008	0.509±0.008	0.316±0.007	0.542±0.014
FixMatch	9.505 M	5.784 GB	208 ms	0.038±0.001	2.905±0.061	0.882±0.004	0.510±0.006	0.322±0.007	0.541±0.007
FlexMatch	9.505 M	5.784 GB	209 ms	0.039±0.001	2.937±0.048	0.887±0.005	0.505±0.005	0.316±0.008	0.536±0.007
SoftMatch	9.505 M	5.784 GB	209 ms	0.039±0.003	2.919±0.097	0.885±0.006	0.508±0.007	0.317±0.009	0.540±0.011
Adsh	9.505 M	3.887 GB	316 ms	0.038±0.002	2.879±0.054	0.886±0.004	0.511±0.005	0.322±0.008	0.543±0.015
SAW	9.505 M	5.784 GB	208 ms	0.037±0.003	2.855±0.093	0.889±0.005	0.520±0.007	0.323±0.019	0.548±0.017
CE-SSL _{r=16}	0.582 M	2.748 GB	110 ms	0.031±0.000	2.641±0.020	0.901±0.003	0.530±0.005	0.346±0.006	0.578±0.006
CE-SSL _{r=4}	0.159 M	2.744 GB	109 ms	0.030±0.001	2.626±0.026	0.899±0.004	0.526±0.005	0.346±0.005	0.580±0.006
Ningbo Dataset									
MixedTeacher	9.506 M	3.941 GB	173 ms	0.035±0.002	2.982±0.077	0.925±0.006	0.496±0.020	0.324±0.018	0.549±0.028
FixMatch	9.506 M	5.784 GB	217 ms	0.035±0.003	3.025±0.121	0.922±0.009	0.493±0.023	0.321±0.014	0.545±0.020
FlexMatch	9.506 M	5.784 GB	217 ms	0.037±0.002	3.078±0.090	0.921±0.007	0.489±0.024	0.318±0.012	0.544±0.019
SoftMatch	9.506 M	5.784 GB	217 ms	0.035±0.001	3.018±0.049	0.923±0.005	0.496±0.024	0.321±0.014	0.552±0.020
Adsh	9.506 M	3.887 GB	423 ms	0.035±0.002	3.007±0.090	0.921±0.004	0.492±0.023	0.318±0.010	0.545±0.012
SAW	9.506 M	5.784 GB	215 ms	0.037±0.001	3.064±0.036	0.924±0.004	0.492±0.024	0.314±0.010	0.536±0.016
CE-SSL _{r=16}	0.550 M	2.748 GB	115 ms	0.030±0.001	2.805±0.063	0.928±0.002	0.505±0.019	0.334±0.011	0.569±0.014
CE-SSL _{r=4}	0.168 M	2.744 GB	114 ms	0.030±0.001	2.776±0.028	0.929±0.001	0.500±0.017	0.327±0.010	0.567±0.011
Chapman Dataset									
MixedTeacher	9.504 M	3.941 GB	148 ms	0.047±0.002	2.615±0.068	0.889±0.012	0.519±0.018	0.327±0.019	0.510±0.024
FixMatch	9.504 M	5.784 GB	186 ms	0.046±0.004	2.626±0.096	0.897±0.006	0.520±0.009	0.339±0.012	0.518±0.025
FlexMatch	9.504 M	5.784 GB	185 ms	0.047±0.004	2.659±0.103	0.895±0.006	0.518±0.008	0.325±0.010	0.495±0.019
SoftMatch	9.504 M	5.784 GB	187 ms	0.047±0.004	2.649±0.079	0.898±0.006	0.525±0.012	0.335±0.011	0.511±0.021
Adsh	9.504 M	3.887 GB	207 ms	0.046±0.004	2.621±0.117	0.896±0.005	0.528±0.008	0.335±0.013	0.517±0.020
SAW	9.504 M	5.784 GB	185 ms	0.049±0.003	2.699±0.072	0.897±0.007	0.524±0.009	0.333±0.012	0.510±0.020
CE-SSL _{r=16}	0.581 M	2.748 GB	97 ms	0.040±0.002	2.483±0.055	0.896±0.006	0.536±0.004	0.355±0.005	0.530±0.008
CE-SSL _{r=4}	0.180 M	2.743 GB	97 ms	0.038±0.002	2.418±0.049	0.898±0.005	0.526±0.006	0.352±0.009	0.530±0.012

1504
1505
1506
1507
1508
1509
1510
1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519

1520 Table 14: Performance comparisons between CE-SSL and semi-supervised baselines on the medium
 1521 backbone. The average performance on all CVDs within each dataset is shown across six seeds. The
 1522 standard deviation is also reported for the evaluation metrics.

Methods	Params ↓	Mem ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset									
MixedTeacher	50.493 M	9.461 GB	396 ms	0.096±0.003	4.016±0.060	0.846±0.008	0.499±0.009	0.303±0.014	0.537±0.018
FixMatch	50.493 M	13.589 GB	499 ms	0.096±0.006	4.027±0.109	0.850±0.009	0.499±0.014	0.299±0.016	0.529±0.016
FlexMatch	50.493 M	13.589 GB	498 ms	0.104±0.003	4.216±0.070	0.848±0.008	0.499±0.009	0.294±0.019	0.521±0.020
SoftMatch	50.493 M	13.589 GB	498 ms	0.097±0.003	4.096±0.093	0.853±0.007	0.505±0.008	0.309±0.010	0.536±0.013
Adsh	50.493 M	9.251 GB	524 ms	0.098±0.003	4.107±0.090	0.845±0.008	0.493±0.011	0.298±0.014	0.531±0.020
SAW	50.493 M	13.589 GB	499 ms	0.100±0.003	4.129±0.083	0.847±0.004	0.490±0.007	0.293±0.014	0.526±0.012
CE-SSL _{r=16}	1.568 M	6.158 GB	243 ms	0.086±0.004	3.740±0.134	0.862±0.006	0.507±0.007	0.317±0.022	0.561±0.024
CE-SSL _{r=4}	0.458 M	6.146 GB	241 ms	0.085±0.002	3.741±0.068	0.862±0.007	0.503±0.006	0.316±0.013	0.560±0.015
PTB-XL Dataset									
MixedTeacher	50.494 M	9.459 GB	440 ms	0.032±0.001	2.706±0.049	0.898±0.004	0.539±0.005	0.340±0.013	0.559±0.012
FixMatch	50.494 M	13.589 GB	553 ms	0.034±0.002	2.767±0.053	0.898±0.003	0.536±0.006	0.340±0.006	0.556±0.010
FlexMatch	50.494 M	13.589 GB	553 ms	0.034±0.001	2.747±0.047	0.901±0.004	0.529±0.004	0.348±0.013	0.559±0.008
SoftMatch	50.494 M	13.589 GB	553 ms	0.034±0.001	2.790±0.026	0.898±0.003	0.533±0.004	0.341±0.007	0.553±0.009
Adsh	50.494 M	9.251 GB	796 ms	0.033±0.002	2.757±0.079	0.901±0.003	0.537±0.007	0.339±0.008	0.557±0.014
SAW	50.494 M	13.589 GB	554 ms	0.034±0.001	2.778±0.050	0.899±0.001	0.531±0.010	0.344±0.011	0.562±0.009
CE-SSL _{r=16}	1.485 M	6.161 GB	271 ms	0.027±0.001	2.539±0.033	0.913±0.003	0.550±0.004	0.369±0.005	0.588±0.003
CE-SSL _{r=4}	0.505 M	6.150 GB	270 ms	0.027±0.001	2.529±0.019	0.914±0.003	0.547±0.003	0.372±0.006	0.599±0.010
Ningbo Dataset									
MixedTeacher	50.496 M	9.459 GB	457 ms	0.031±0.002	2.856±0.078	0.926±0.009	0.525±0.023	0.342±0.016	0.571±0.023
FixMatch	50.496 M	13.589 GB	572 ms	0.031±0.002	2.869±0.081	0.931±0.003	0.531±0.021	0.349±0.014	0.575±0.015
FlexMatch	50.496 M	13.589 GB	573 ms	0.031±0.002	2.853±0.081	0.930±0.002	0.524±0.012	0.347±0.013	0.575±0.018
SoftMatch	50.496 M	13.589 GB	574 ms	0.031±0.002	2.877±0.094	0.927±0.002	0.525±0.019	0.344±0.014	0.573±0.017
Adsh	50.496 M	9.251 GB	1061 ms	0.031±0.002	2.868±0.061	0.927±0.004	0.523±0.013	0.342±0.012	0.571±0.017
SAW	50.496 M	13.589 GB	572 ms	0.032±0.002	2.911±0.105	0.930±0.003	0.525±0.017	0.342±0.013	0.578±0.016
CE-SSL _{r=16}	1.705 M	6.172 GB	282 ms	0.027±0.001	2.701±0.051	0.933±0.003	0.531±0.018	0.356±0.013	0.588±0.021
CE-SSL _{r=4}	0.507 M	6.160 GB	282 ms	0.026±0.001	2.661±0.058	0.934±0.004	0.525±0.018	0.352±0.013	0.587±0.020
Chapman Dataset									
MixedTeacher	50.492 M	9.461 GB	394 ms	0.037±0.002	2.420±0.071	0.909±0.010	0.539±0.007	0.348±0.016	0.513±0.026
FixMatch	50.492 M	13.589 GB	495 ms	0.038±0.004	2.439±0.092	0.905±0.010	0.538±0.011	0.357±0.009	0.522±0.020
FlexMatch	50.492 M	13.589 GB	495 ms	0.041±0.003	2.519±0.077	0.901±0.004	0.531±0.011	0.345±0.016	0.512±0.030
SoftMatch	50.492 M	13.589 GB	495 ms	0.043±0.004	2.546±0.101	0.902±0.009	0.535±0.008	0.355±0.015	0.526±0.026
Adsh	50.492 M	9.251 GB	527 ms	0.039±0.004	2.440±0.073	0.909±0.006	0.546±0.007	0.356±0.007	0.530±0.013
SAW	50.492 M	13.589 GB	493 ms	0.043±0.003	2.549±0.073	0.901±0.006	0.531±0.008	0.357±0.013	0.532±0.027
CE-SSL _{r=16}	1.601 M	6.159 GB	241 ms	0.035±0.002	2.362±0.049	0.909±0.007	0.553±0.013	0.367±0.008	0.540±0.019
CE-SSL _{r=4}	0.402 M	6.145 GB	240 ms	0.034±0.001	2.334±0.033	0.908±0.008	0.538±0.014	0.361±0.009	0.531±0.019

1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566

1567

1568

1569

1570

1571

1572

1573

Table 15: Performance comparisons between CE-SSL and semi-supervised baselines on the large backbone. The average performance on all CVDs within each dataset is shown across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods	Params ↓	Mem ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset									
MixedTeacher	113.489 M	14.257 GB	728 ms	0.111±0.022	4.365±0.447	0.835±0.026	0.489±0.018	0.285±0.017	0.517±0.029
FixMatch	113.489 M	20.061 GB	966 ms	0.100±0.005	4.147±0.113	0.843±0.007	0.493±0.008	0.293±0.011	0.518±0.015
FlexMatch	113.489 M	20.061 GB	966 ms	0.099±0.006	4.088±0.149	0.847±0.003	0.489±0.005	0.299±0.011	0.534±0.015
SoftMatch	113.489 M	20.061 GB	943 ms	0.100±0.007	4.138±0.194	0.847±0.004	0.498±0.005	0.297±0.004	0.532±0.013
Adsh	113.489 M	13.815 GB	951 ms	0.103±0.003	4.240±0.073	0.843±0.008	0.496±0.007	0.294±0.010	0.521±0.023
SAW	113.489 M	20.061 GB	939 ms	0.102±0.002	4.189±0.070	0.842±0.003	0.490±0.005	0.300±0.007	0.534±0.019
CE-SSL _{r=16}	2.658 M	9.217 GB	472 ms	0.085±0.005	3.778±0.140	0.857±0.004	0.509±0.007	0.322±0.009	0.565±0.010
CE-SSL _{r=4}	0.761 M	9.206 GB	453 ms	0.084±0.003	3.742±0.117	0.859±0.004	0.506±0.007	0.323±0.004	0.561±0.002
PTB-XL Dataset									
MixedTeacher	113.490 M	14.257 GB	809 ms	0.035±0.001	2.831±0.032	0.895±0.006	0.522±0.004	0.334±0.006	0.556±0.008
FixMatch	113.490 M	20.061 GB	1072 ms	0.035±0.003	2.805±0.102	0.894±0.004	0.521±0.006	0.342±0.007	0.560±0.012
FlexMatch	113.490 M	20.061 GB	1071 ms	0.041±0.004	3.016±0.124	0.893±0.004	0.519±0.006	0.342±0.010	0.557±0.010
SoftMatch	113.490 M	20.061 GB	1047 ms	0.038±0.003	2.886±0.094	0.893±0.004	0.523±0.007	0.334±0.007	0.542±0.011
Adsh	113.490 M	13.815 GB	1432 ms	0.036±0.003	2.848±0.114	0.892±0.002	0.527±0.005	0.343±0.009	0.563±0.010
SAW	113.490 M	20.061 GB	1039 ms	0.035±0.002	2.825±0.068	0.899±0.006	0.532±0.006	0.347±0.007	0.560±0.010
CE-SSL _{r=16}	2.235 M	9.220 GB	508 ms	0.030±0.002	2.618±0.061	0.909±0.004	0.537±0.004	0.358±0.005	0.587±0.008
CE-SSL _{r=4}	0.712 M	9.211 GB	506 ms	0.029±0.001	2.602±0.028	0.908±0.003	0.535±0.004	0.356±0.006	0.582±0.008
Ningbo Dataset									
MixedTeacher	113.493 M	14.257 GB	840 ms	0.033±0.002	2.934±0.079	0.929±0.003	0.518±0.021	0.341±0.018	0.572±0.026
FixMatch	113.493 M	20.061 GB	1111 ms	0.033±0.002	2.962±0.070	0.926±0.004	0.513±0.024	0.337±0.018	0.563±0.027
FlexMatch	113.493 M	20.061 GB	1083 ms	0.035±0.002	3.038±0.076	0.926±0.004	0.511±0.023	0.332±0.012	0.562±0.017
SoftMatch	113.493 M	20.061 GB	1080 ms	0.034±0.002	2.999±0.081	0.924±0.005	0.513±0.023	0.333±0.014	0.561±0.022
Adsh	113.493 M	13.815 GB	1896 ms	0.035±0.003	3.003±0.111	0.927±0.003	0.511±0.023	0.342±0.011	0.570±0.014
SAW	113.493 M	20.061 GB	1077 ms	0.035±0.002	3.009±0.083	0.925±0.005	0.509±0.025	0.337±0.014	0.565±0.025
CE-SSL _{r=16}	2.234 M	9.235 GB	530 ms	0.029±0.001	2.779±0.027	0.931±0.002	0.523±0.027	0.344±0.010	0.578±0.013
CE-SSL _{r=4}	0.740 M	9.223 GB	528 ms	0.028±0.001	2.741±0.039	0.930±0.002	0.513±0.018	0.346±0.007	0.584±0.009
Chapman Dataset									
MixedTeacher	113.487 M	14.257 GB	724 ms	0.040±0.003	2.493±0.077	0.904±0.009	0.544±0.011	0.341±0.007	0.516±0.022
FixMatch	113.487 M	20.061 GB	960 ms	0.042±0.002	2.545±0.048	0.900±0.008	0.534±0.014	0.350±0.013	0.518±0.026
FlexMatch	113.487 M	20.061 GB	937 ms	0.045±0.003	2.620±0.079	0.895±0.014	0.523±0.024	0.333±0.018	0.495±0.025
SoftMatch	113.487 M	20.061 GB	931 ms	0.043±0.003	2.555±0.068	0.894±0.008	0.536±0.011	0.345±0.010	0.518±0.021
Adsh	113.487 M	13.815 GB	957 ms	0.046±0.003	2.649±0.075	0.893±0.009	0.533±0.010	0.341±0.010	0.511±0.014
SAW	113.487 M	20.061 GB	933 ms	0.044±0.004	2.599±0.093	0.900±0.007	0.533±0.011	0.344±0.015	0.518±0.029
CE-SSL _{r=16}	2.205 M	9.223 GB	451 ms	0.037±0.001	2.417±0.035	0.904±0.004	0.556±0.006	0.371±0.010	0.552±0.018
CE-SSL _{r=4}	0.716 M	9.206 GB	451 ms	0.036±0.001	2.404±0.041	0.902±0.006	0.550±0.008	0.365±0.006	0.548±0.010

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620 Table 16: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-
 1621 lines on the base backbone. The average performance on all CVDs within each dataset is shown
 1622 across six seeds. The standard deviation is also reported for the evaluation metrics.

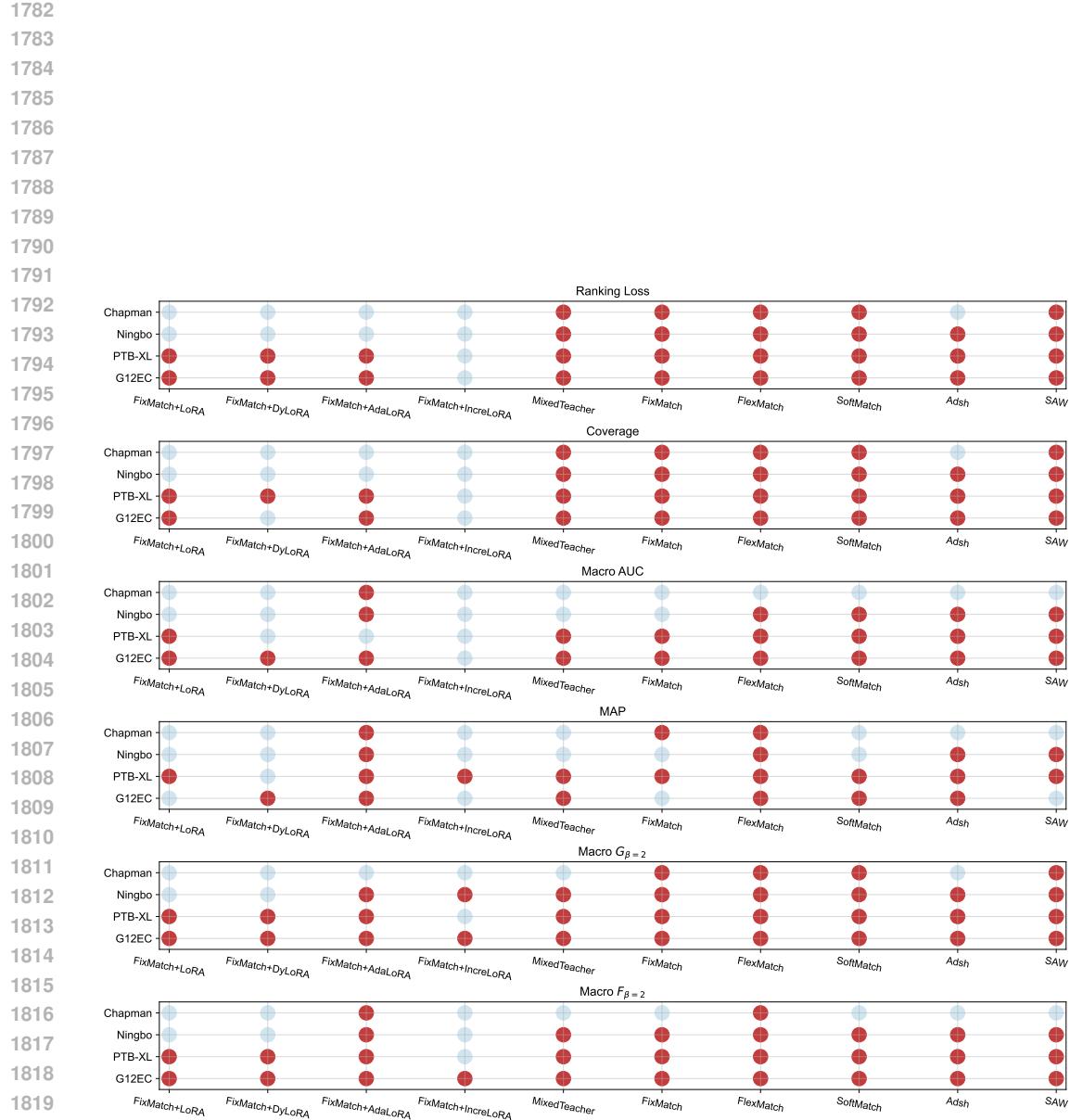
Methods	Params ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset								
FixMatch	9.505 M	187 ms	0.107±0.006	4.292±0.163	0.829±0.004	0.468±0.009	0.280±0.010	0.510±0.016
+ LoRA _{r=16}	0.795 M	204 ms	0.098±0.003	4.003±0.114	0.841±0.009	0.460±0.017	0.279±0.022	0.518±0.031
+ DyLoRA _{r=16}	0.795 M	204 ms	0.098±0.004	3.981±0.084	0.841±0.009	0.456±0.010	0.282±0.017	0.515±0.022
+ AdaLoRA _{r=16}	0.796 M	237 ms	0.096±0.003	3.986±0.110	0.844±0.007	0.461±0.008	0.284±0.015	0.520±0.015
+ IncreLoRA _{r=16}	0.824 M	430 ms	0.088±0.003	3.770±0.056	0.850±0.005	0.460±0.008	0.289±0.011	0.532±0.013
+ LoRA _{r=4}	0.222 M	202 ms	0.092±0.004	3.859±0.124	0.850±0.007	0.467±0.004	0.289±0.014	0.529±0.024
+ DyLoRA _{r=4}	0.222 M	203 ms	0.095±0.002	3.915±0.106	0.843±0.005	0.460±0.009	0.278±0.017	0.518±0.016
+ AdaLoRA _{r=4}	0.222 M	236 ms	0.093±0.003	3.871±0.079	0.849±0.005	0.463±0.008	0.288±0.011	0.528±0.016
+ IncreLoRA _{r=4}	0.246 M	292 ms	0.090±0.001	3.817±0.043	0.847±0.005	0.454±0.006	0.281±0.015	0.521±0.022
CE-SSL_{r=16}	0.510 M	98 ms	0.092±0.002	3.867±0.088	0.855±0.005	0.476±0.006	0.307±0.016	0.551±0.017
CE-SSL_{r=4}	0.183 M	98 ms	0.089±0.003	3.804±0.095	0.853±0.004	0.467±0.006	0.304±0.013	0.553±0.020
PTB-XL Dataset								
FixMatch	9.505 M	208 ms	0.038±0.001	2.905±0.061	0.882±0.004	0.510±0.006	0.322±0.007	0.541±0.007
+ LoRA _{r=16}	0.795 M	225 ms	0.033±0.001	2.733±0.034	0.892±0.002	0.520±0.006	0.331±0.005	0.557±0.004
+ DyLoRA _{r=16}	0.795 M	226 ms	0.033±0.001	2.716±0.057	0.894±0.003	0.524±0.003	0.321±0.010	0.553±0.010
+ AdaLoRA _{r=16}	0.796 M	262 ms	0.032±0.001	2.687±0.025	0.896±0.003	0.508±0.009	0.326±0.012	0.552±0.015
+ IncreLoRA _{r=16}	0.825 M	469 ms	0.031±0.001	2.620±0.020	0.903±0.002	0.520±0.004	0.342±0.008	0.573±0.008
+ LoRA _{r=4}	0.222 M	225 ms	0.032±0.001	2.673±0.035	0.898±0.004	0.522±0.006	0.329±0.012	0.554±0.009
+ DyLoRA _{r=4}	0.222 M	225 ms	0.032±0.001	2.668±0.036	0.896±0.003	0.521±0.005	0.328±0.008	0.554±0.008
+ AdaLoRA _{r=4}	0.223 M	263 ms	0.032±0.000	2.696±0.010	0.896±0.002	0.510±0.003	0.323±0.008	0.550±0.012
+ IncreLoRA _{r=4}	0.246 M	322 ms	0.031±0.001	2.630±0.034	0.899±0.004	0.518±0.006	0.338±0.009	0.570±0.010
CE-SSL_{r=16}	0.582 M	110 ms	0.031±0.000	2.641±0.020	0.901±0.003	0.530±0.005	0.346±0.006	0.578±0.006
CE-SSL_{r=4}	0.159 M	109 ms	0.030±0.001	2.626±0.026	0.899±0.004	0.526±0.005	0.346±0.005	0.580±0.006
Ningbo Dataset								
FixMatch	9.506 M	217 ms	0.035±0.003	3.025±0.121	0.922±0.009	0.493±0.023	0.321±0.014	0.545±0.020
+ LoRA _{r=16}	0.796 M	234 ms	0.032±0.001	2.864±0.045	0.926±0.002	0.497±0.018	0.326±0.007	0.561±0.008
+ DyLoRA _{r=16}	0.796 M	235 ms	0.032±0.002	2.874±0.083	0.927±0.003	0.498±0.017	0.321±0.011	0.553±0.016
+ AdaLoRA _{r=16}	0.797 M	272 ms	0.032±0.002	2.851±0.054	0.925±0.003	0.487±0.021	0.317±0.017	0.546±0.028
+ IncreLoRA _{r=16}	0.827 M	491 ms	0.030±0.001	2.772±0.045	0.929±0.003	0.499±0.023	0.328±0.011	0.564±0.016
+ LoRA _{r=4}	0.223 M	234 ms	0.031±0.001	2.842±0.046	0.926±0.003	0.489±0.026	0.319±0.013	0.551±0.019
+ DyLoRA _{r=4}	0.223 M	234 ms	0.031±0.001	2.841±0.034	0.924±0.003	0.489±0.020	0.323±0.016	0.556±0.026
+ AdaLoRA _{r=4}	0.224 M	272 ms	0.033±0.001	2.896±0.037	0.923±0.004	0.480±0.018	0.312±0.006	0.543±0.017
+ IncreLoRA _{r=4}	0.247 M	332 ms	0.030±0.001	2.794±0.046	0.927±0.002	0.490±0.025	0.314±0.014	0.551±0.022
CE-SSL_{r=16}	0.550 M	115 ms	0.030±0.001	2.805±0.063	0.928±0.002	0.505±0.019	0.334±0.011	0.569±0.014
CE-SSL_{r=4}	0.168 M	114 ms	0.030±0.001	2.776±0.028	0.929±0.001	0.500±0.017	0.327±0.010	0.567±0.011
Chapman Dataset								
FixMatch	9.504 M	186 ms	0.046±0.004	2.626±0.096	0.897±0.006	0.520±0.009	0.339±0.012	0.518±0.025
+ LoRA _{r=16}	0.795 M	201 ms	0.041±0.002	2.493±0.058	0.899±0.005	0.521±0.014	0.338±0.011	0.515±0.015
+ DyLoRA _{r=16}	0.795 M	202 ms	0.042±0.004	2.512±0.091	0.899±0.003	0.524±0.011	0.336±0.009	0.511±0.015
+ AdaLoRA _{r=16}	0.795 M	234 ms	0.042±0.001	2.520±0.039	0.883±0.011	0.503±0.020	0.338±0.018	0.498±0.019
+ IncreLoRA _{r=16}	0.822 M	426 ms	0.041±0.003	2.484±0.072	0.884±0.017	0.495±0.022	0.334±0.019	0.504±0.029
+ LoRA _{r=4}	0.222 M	201 ms	0.038±0.001	2.427±0.039	0.902±0.006	0.522±0.010	0.338±0.011	0.523±0.012
+ DyLoRA _{r=4}	0.222 M	200 ms	0.039±0.002	2.445±0.057	0.898±0.010	0.518±0.013	0.331±0.008	0.506±0.016
+ AdaLoRA _{r=4}	0.222 M	233 ms	0.039±0.002	2.457±0.044	0.891±0.010	0.512±0.014	0.345±0.014	0.521±0.018
+ IncreLoRA _{r=4}	0.246 M	288 ms	0.039±0.001	2.446±0.039	0.888±0.008	0.502±0.015	0.339±0.014	0.505±0.022
CE-SSL_{r=16}	0.581 M	97 ms	0.040±0.002	2.483±0.055	0.896±0.006	0.536±0.004	0.355±0.005	0.530±0.008
CE-SSL_{r=4}	0.180 M	97 ms	0.038±0.002	2.418±0.049	0.898±0.005	0.526±0.006	0.352±0.009	0.530±0.012

1674
 1675 Table 17: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-
 1676 lines on the medium backbone. The average performance on all CVDs within each dataset is shown
 1677 across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods	Params ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset								
FixMatch	50.493 M	499 ms	0.096±0.006	4.027±0.109	0.850±0.009	0.499±0.014	0.299±0.016	0.529±0.016
+ LoRA _{r=16}	2.135 M	545 ms	0.093±0.003	3.943±0.094	0.854±0.005	0.494±0.006	0.300±0.016	0.534±0.024
+ DyLoRA _{r=16}	2.135 M	542 ms	0.092±0.003	3.913±0.117	0.851±0.007	0.494±0.012	0.296±0.015	0.533±0.021
+ AdaLoRA _{r=16}	2.136 M	585 ms	0.096±0.004	4.013±0.095	0.847±0.008	0.478±0.014	0.296±0.009	0.533±0.008
+ IncreLoRA _{r=16}	2.164 M	977 ms	0.085±0.003	3.683±0.100	0.859±0.007	0.482±0.005	0.299±0.011	0.553±0.014
+ LoRA _{r=4}	0.597 M	543 ms	0.092±0.003	3.895±0.075	0.850±0.007	0.485±0.006	0.292±0.021	0.522±0.021
+ DyLoRA _{r=4}	0.597 M	542 ms	0.093±0.006	3.910±0.159	0.851±0.006	0.483±0.008	0.292±0.017	0.532±0.021
+ AdaLoRA _{r=4}	0.598 M	584 ms	0.093±0.005	3.933±0.135	0.850±0.005	0.486±0.005	0.295±0.008	0.533±0.012
+ IncreLoRA _{r=4}	0.621 M	749 ms	0.084±0.003	3.660±0.114	0.861±0.007	0.486±0.008	0.301±0.007	0.552±0.013
CE-SSL_{r=16}	1.568 M	243 ms	0.086±0.004	3.740±0.134	0.862±0.006	0.507±0.007	0.317±0.022	0.561±0.024
CE-SSL_{r=4}	0.458 M	241 ms	0.085±0.002	3.741±0.068	0.862±0.007	0.503±0.006	0.316±0.013	0.560±0.015
PTB-XL Dataset								
FixMatch	50.494 M	553 ms	0.034±0.002	2.767±0.053	0.898±0.003	0.536±0.006	0.340±0.006	0.556±0.010
+ LoRA _{r=16}	2.135 M	603 ms	0.030±0.001	2.632±0.050	0.906±0.005	0.532±0.005	0.352±0.008	0.571±0.012
+ DyLoRA _{r=16}	2.135 M	603 ms	0.031±0.001	2.683±0.060	0.903±0.006	0.533±0.008	0.344±0.017	0.567±0.017
+ AdaLoRA _{r=16}	2.137 M	652 ms	0.031±0.001	2.636±0.022	0.905±0.004	0.529±0.006	0.350±0.006	0.571±0.005
+ IncreLoRA _{r=16}	2.005 M	1090 ms	0.029±0.001	2.567±0.029	0.908±0.004	0.540±0.007	0.364±0.007	0.586±0.013
+ LoRA _{r=4}	0.598 M	602 ms	0.030±0.001	2.609±0.056	0.908±0.005	0.530±0.006	0.345±0.008	0.571±0.013
+ DyLoRA _{r=4}	0.598 M	600 ms	0.030±0.001	2.607±0.038	0.907±0.003	0.530±0.005	0.342±0.022	0.564±0.016
+ AdaLoRA _{r=4}	0.598 M	650 ms	0.030±0.001	2.610±0.024	0.907±0.003	0.534±0.005	0.354±0.003	0.578±0.006
+ IncreLoRA _{r=4}	0.623 M	830 ms	0.028±0.000	2.548±0.009	0.912±0.002	0.542±0.005	0.362±0.013	0.586±0.012
CE-SSL_{r=16}	1.485 M	271 ms	0.027±0.001	2.539±0.033	0.913±0.003	0.550±0.004	0.369±0.005	0.588±0.003
CE-SSL_{r=4}	0.505 M	270 ms	0.027±0.001	2.529±0.019	0.914±0.003	0.547±0.003	0.372±0.006	0.599±0.010
Ningbo Dataset								
FixMatch	50.496 M	572 ms	0.031±0.002	2.869±0.081	0.931±0.003	0.531±0.021	0.349±0.014	0.575±0.015
+ LoRA _{r=16}	2.137 M	625 ms	0.028±0.001	2.759±0.044	0.927±0.003	0.518±0.017	0.345±0.008	0.580±0.012
+ DyLoRA _{r=16}	2.137 M	625 ms	0.028±0.002	2.735±0.061	0.928±0.004	0.502±0.022	0.331±0.009	0.564±0.014
+ AdaLoRA _{r=16}	2.139 M	674 ms	0.030±0.001	2.799±0.084	0.927±0.002	0.507±0.020	0.330±0.010	0.565±0.018
+ IncreLoRA _{r=16}	2.145 M	1124 ms	0.027±0.001	2.679±0.044	0.932±0.002	0.521±0.014	0.337±0.008	0.569±0.015
+ LoRA _{r=4}	0.600 M	624 ms	0.028±0.001	2.722±0.058	0.929±0.002	0.516±0.014	0.338±0.015	0.565±0.016
+ DyLoRA _{r=4}	0.600 M	621 ms	0.028±0.001	2.717±0.039	0.929±0.002	0.510±0.018	0.335±0.011	0.569±0.017
+ AdaLoRA _{r=4}	0.600 M	672 ms	0.030±0.003	2.790±0.083	0.927±0.004	0.505±0.019	0.325±0.006	0.558±0.017
+ IncreLoRA _{r=4}	0.622 M	858 ms	0.027±0.001	2.667±0.018	0.931±0.001	0.519±0.013	0.338±0.010	0.569±0.018
CE-SSL_{r=16}	1.705 M	282 ms	0.027±0.001	2.701±0.051	0.933±0.003	0.531±0.018	0.356±0.013	0.588±0.021
CE-SSL_{r=4}	0.507 M	282 ms	0.026±0.001	2.661±0.058	0.934±0.004	0.525±0.018	0.352±0.013	0.587±0.020
Chapman Dataset								
FixMatch	50.492 M	495 ms	0.038±0.004	2.439±0.092	0.905±0.010	0.538±0.011	0.357±0.009	0.522±0.020
+ LoRA _{r=16}	2.134 M	540 ms	0.038±0.002	2.424±0.053	0.899±0.009	0.532±0.021	0.345±0.009	0.514±0.024
+ DyLoRA _{r=16}	2.134 M	540 ms	0.037±0.004	2.401±0.095	0.903±0.008	0.531±0.013	0.345±0.013	0.518±0.027
+ AdaLoRA _{r=16}	2.135 M	583 ms	0.037±0.002	2.394±0.066	0.894±0.009	0.511±0.020	0.343±0.004	0.493±0.013
+ IncreLoRA _{r=16}	2.159 M	962 ms	0.035±0.001	2.337±0.034	0.889±0.010	0.515±0.013	0.342±0.011	0.496±0.017
+ LoRA _{r=4}	0.596 M	539 ms	0.036±0.002	2.372±0.051	0.901±0.005	0.535±0.007	0.357±0.010	0.521±0.022
+ DyLoRA _{r=4}	0.596 M	537 ms	0.036±0.002	2.371±0.034	0.903±0.005	0.528±0.015	0.350±0.011	0.515±0.020
+ AdaLoRA _{r=4}	0.597 M	580 ms	0.036±0.002	2.362±0.029	0.901±0.008	0.521±0.018	0.344±0.006	0.508±0.006
+ IncreLoRA _{r=4}	0.618 M	746 ms	0.035±0.002	2.348±0.046	0.888±0.010	0.510±0.016	0.344±0.008	0.502±0.020
CE-SSL_{r=16}	1.601 M	241 ms	0.035±0.002	2.362±0.049	0.909±0.007	0.553±0.013	0.367±0.008	0.540±0.019
CE-SSL_{r=4}	0.402 M	240 ms	0.034±0.001	2.334±0.033	0.908±0.008	0.538±0.014	0.361±0.009	0.531±0.019

Table 18: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-lines on the large backbone. The average performance on all CVDs within each dataset is shown across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods	Params ↓	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset								
FixMatch	113.489 M	966 ms	0.100±0.005	4.147±0.113	0.843±0.007	0.493±0.008	0.293±0.011	0.518±0.015
+ LoRA _{r=16}	3.201 M	1023 ms	0.094±0.003	3.983±0.134	0.849±0.004	0.492±0.006	0.294±0.010	0.530±0.020
+ DyLoRA _{r=16}	3.201 M	1024 ms	0.091±0.003	3.911±0.070	0.849±0.005	0.492±0.008	0.297±0.017	0.534±0.022
+ AdaLoRA _{r=16}	3.203 M	1025 ms	0.093±0.003	3.972±0.119	0.842±0.003	0.482±0.008	0.296±0.008	0.532±0.010
+ IncreLoRA _{r=16}	3.245 M	1575 ms	0.084±0.002	3.708±0.075	0.851±0.003	0.493±0.008	0.309±0.013	0.543±0.021
+ LoRA _{r=4}	0.896 M	1021 ms	0.092±0.005	3.895±0.130	0.851±0.005	0.493±0.007	0.296±0.010	0.530±0.012
+ DyLoRA _{r=4}	0.896 M	1021 ms	0.090±0.004	3.864±0.133	0.849±0.006	0.495±0.008	0.301±0.010	0.535±0.008
+ AdaLoRA _{r=4}	0.896 M	1021 ms	0.089±0.002	3.852±0.069	0.847±0.004	0.487±0.003	0.297±0.018	0.527±0.024
+ IncreLoRA _{r=4}	0.921 M	1348 ms	0.082±0.003	3.666±0.086	0.856±0.006	0.497±0.007	0.308±0.010	0.542±0.016
CE-SSL_{r=16}	2.658 M	453 ms	0.085±0.005	3.778±0.140	0.857±0.004	0.509±0.007	0.322±0.009	0.565±0.010
CE-SSL_{r=4}	0.761 M	453 ms	0.084±0.003	3.742±0.117	0.859±0.004	0.506±0.007	0.323±0.004	0.561±0.002
PTB-XL Dataset								
FixMatch	113.490 M	1072 ms	0.035±0.003	2.805±0.102	0.894±0.004	0.521±0.006	0.342±0.007	0.560±0.012
+ LoRA _{r=16}	3.202 M	1135 ms	0.030±0.001	2.635±0.023	0.903±0.002	0.522±0.006	0.332±0.010	0.550±0.014
+ DyLoRA _{r=16}	3.202 M	1135 ms	0.031±0.001	2.674±0.030	0.906±0.002	0.528±0.002	0.346±0.010	0.566±0.008
+ AdaLoRA _{r=16}	3.203 M	1138 ms	0.033±0.000	2.716±0.019	0.894±0.003	0.517±0.006	0.345±0.008	0.558±0.006
+ IncreLoRA _{r=16}	3.167 M	1758 ms	0.031±0.001	2.660±0.030	0.898±0.004	0.519±0.004	0.348±0.012	0.566±0.012
+ LoRA _{r=4}	0.897 M	1133 ms	0.030±0.001	2.621±0.026	0.904±0.003	0.523±0.006	0.342±0.012	0.564±0.014
+ DyLoRA _{r=4}	0.897 M	1133 ms	0.030±0.001	2.632±0.030	0.903±0.004	0.525±0.004	0.339±0.011	0.570±0.010
+ AdaLoRA _{r=4}	0.897 M	1134 ms	0.032±0.001	2.699±0.052	0.897±0.004	0.516±0.004	0.339±0.007	0.567±0.007
+ IncreLoRA _{r=4}	0.920 M	1493 ms	0.030±0.000	2.631±0.016	0.901±0.002	0.524±0.005	0.351±0.005	0.573±0.010
CE-SSL_{r=16}	2.235 M	508 ms	0.030±0.002	2.618±0.061	0.909±0.004	0.537±0.004	0.358±0.005	0.587±0.008
CE-SSL_{r=4}	0.712 M	506 ms	0.029±0.001	2.602±0.028	0.908±0.003	0.535±0.004	0.356±0.006	0.582±0.008
Ningbo Dataset								
FixMatch	113.493 M	1111 ms	0.033±0.002	2.962±0.070	0.926±0.004	0.513±0.024	0.337±0.018	0.563±0.027
+ LoRA _{r=16}	3.205 M	1177 ms	0.030±0.002	2.845±0.073	0.925±0.003	0.508±0.023	0.336±0.009	0.566±0.017
+ DyLoRA _{r=16}	3.205 M	1176 ms	0.030±0.002	2.834±0.093	0.927±0.003	0.504±0.024	0.326±0.013	0.553±0.019
+ AdaLoRA _{r=16}	3.206 M	1180 ms	0.031±0.001	2.855±0.074	0.920±0.002	0.491±0.017	0.315±0.011	0.545±0.018
+ IncreLoRA _{r=16}	3.247 M	1766 ms	0.028±0.001	2.750±0.030	0.926±0.004	0.502±0.024	0.330±0.009	0.562±0.017
+ LoRA _{r=4}	0.900 M	1173 ms	0.029±0.001	2.802±0.053	0.925±0.002	0.510±0.023	0.332±0.010	0.563±0.018
+ DyLoRA _{r=4}	0.900 M	1174 ms	0.030±0.001	2.803±0.035	0.926±0.003	0.505±0.028	0.330±0.010	0.564±0.020
+ AdaLoRA _{r=4}	0.900 M	1175 ms	0.031±0.003	2.846±0.128	0.922±0.002	0.495±0.023	0.326±0.012	0.555±0.023
+ IncreLoRA _{r=4}	0.923 M	1545 ms	0.028±0.001	2.736±0.028	0.927±0.003	0.499±0.016	0.329±0.011	0.561±0.017
CE-SSL_{r=16}	2.234 M	530 ms	0.029±0.001	2.779±0.027	0.931±0.002	0.523±0.027	0.344±0.010	0.578±0.013
CE-SSL_{r=4}	0.740 M	528 ms	0.028±0.001	2.741±0.039	0.930±0.002	0.513±0.018	0.346±0.007	0.584±0.009
Chapman Dataset								
FixMatch	113.487 M	960 ms	0.042±0.002	2.545±0.048	0.900±0.008	0.534±0.014	0.350±0.013	0.518±0.026
+ LoRA _{r=16}	3.200 M	1016 ms	0.040±0.003	2.501±0.079	0.896±0.004	0.541±0.005	0.343±0.015	0.509±0.024
+ DyLoRA _{r=16}	3.200 M	1016 ms	0.040±0.004	2.484±0.080	0.897±0.006	0.537±0.009	0.352±0.006	0.524±0.021
+ AdaLoRA _{r=16}	3.201 M	1018 ms	0.037±0.002	2.416±0.039	0.894±0.003	0.531±0.011	0.343±0.011	0.509±0.021
+ IncreLoRA _{r=16}	3.231 M	1541 ms	0.033±0.002	2.309±0.037	0.895±0.008	0.539±0.014	0.355±0.010	0.517±0.017
+ LoRA _{r=4}	0.894 M	1016 ms	0.038±0.001	2.452±0.039	0.901±0.006	0.542±0.008	0.338±0.015	0.512±0.028
+ DyLoRA _{r=4}	0.894 M	1015 ms	0.037±0.003	2.415±0.068	0.899±0.005	0.533±0.015	0.341±0.013	0.505±0.021
+ AdaLoRA _{r=4}	0.895 M	1015 ms	0.036±0.001	2.412±0.039	0.898±0.005	0.543±0.007	0.341±0.007	0.517±0.019
+ IncreLoRA _{r=4}	0.920 M	1340 ms	0.033±0.001	2.316±0.028	0.897±0.007	0.539±0.025	0.360±0.017	0.528±0.019
CE-SSL_{r=16}	2.205 M	451 ms	0.037±0.001	2.417±0.035	0.904±0.004	0.556±0.006	0.371±0.010	0.552±0.018
CE-SSL_{r=4}	0.716 M	451 ms	0.036±0.001	2.404±0.041	0.902±0.006	0.550±0.008	0.365±0.006	0.548±0.010



1822 Figure 7: Paired t-test results for model performance on the base backbone. Specifically, we use
1823 the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models
1824 on four datasets and six evaluation metrics. Each circle represents a paired t-test result between
1825 CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided
1826 p -value) of the test results after false discovery rate (FDR) correction for multiple testing. The red
1827 circle indicates that the corresponding two-sided p -value is less than 0.05.
1828
1829
1830
1831
1832
1833
1834
1835

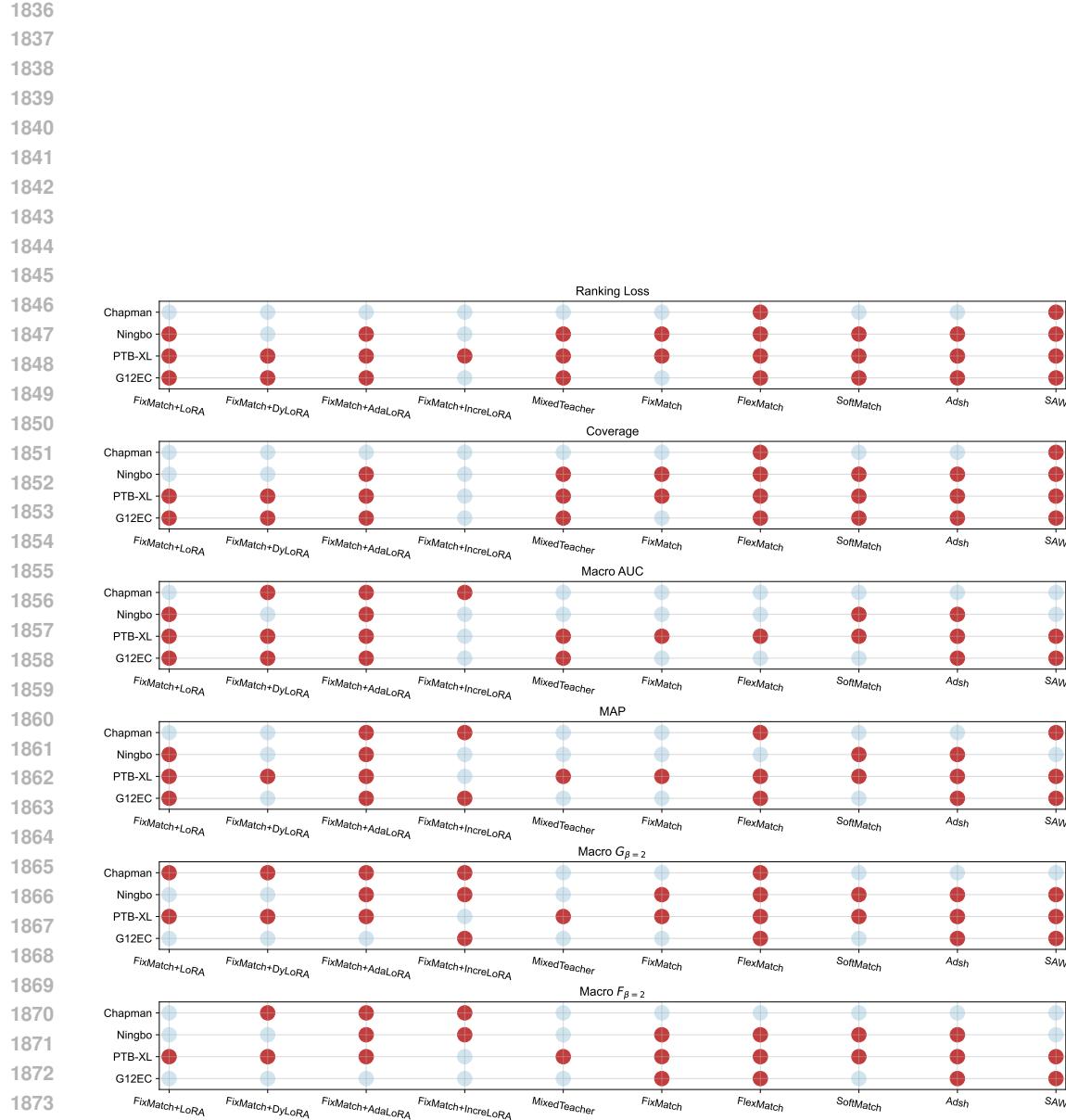


Figure 8: Paired t-test results for model performance on the medium backbone. Specifically, we use the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models on four datasets and six evaluation metrics. Each circle represents a paired t-test result between CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided p -value) of the test results after false discovery rate (FDR) correction for multiple testing. The red circle indicates that the corresponding two-sided p -value is less than 0.05.

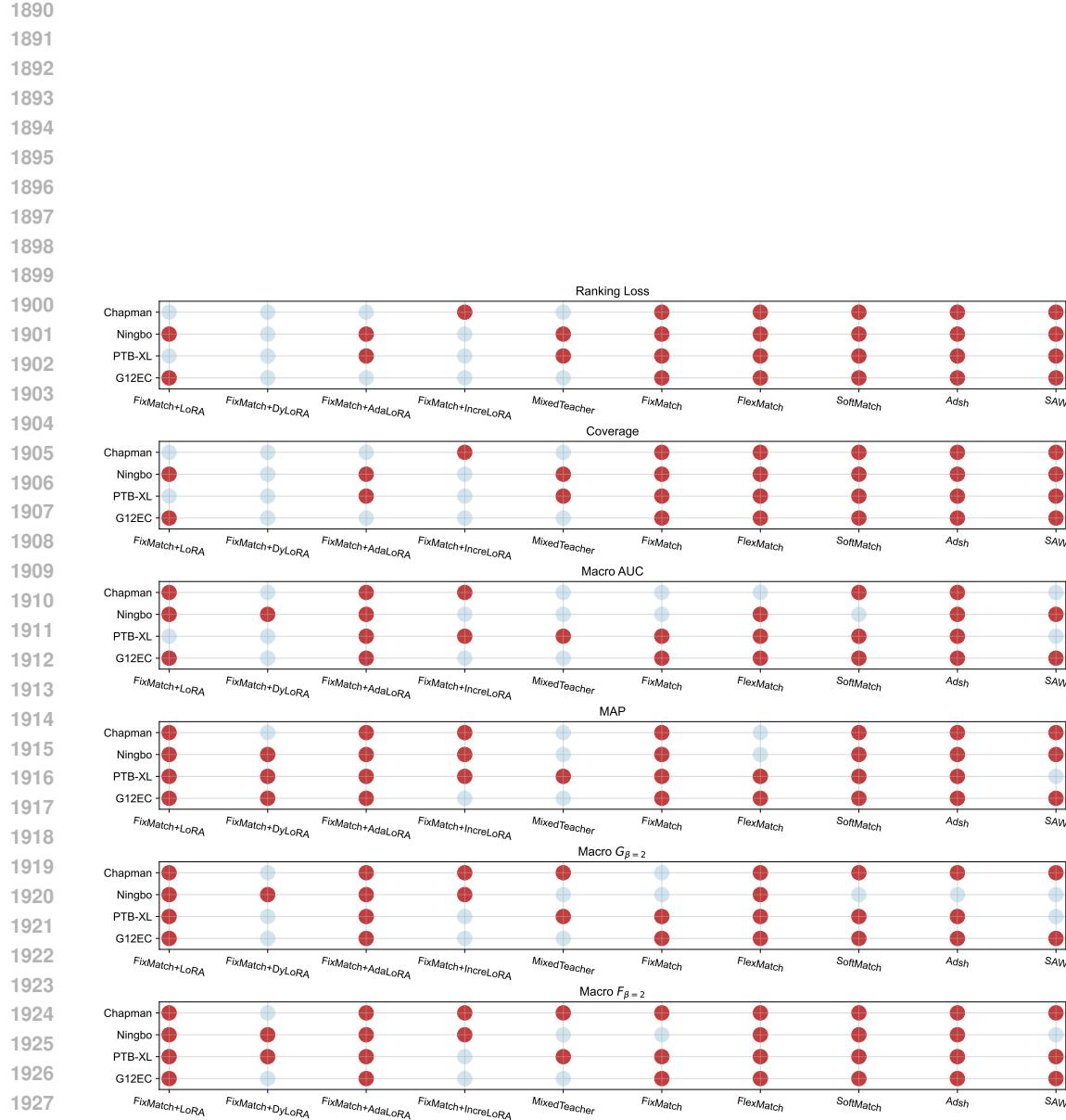


Figure 9: Paired t-test results for model performance on the large backbone. Specifically, we use the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models on four datasets and six evaluation metrics. Each circle represents a paired t-test result between CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided p -value) of the test results after false discovery rate (FDR) correction for multiple testing. The red circle indicates that the corresponding two-sided p -value is less than 0.05.

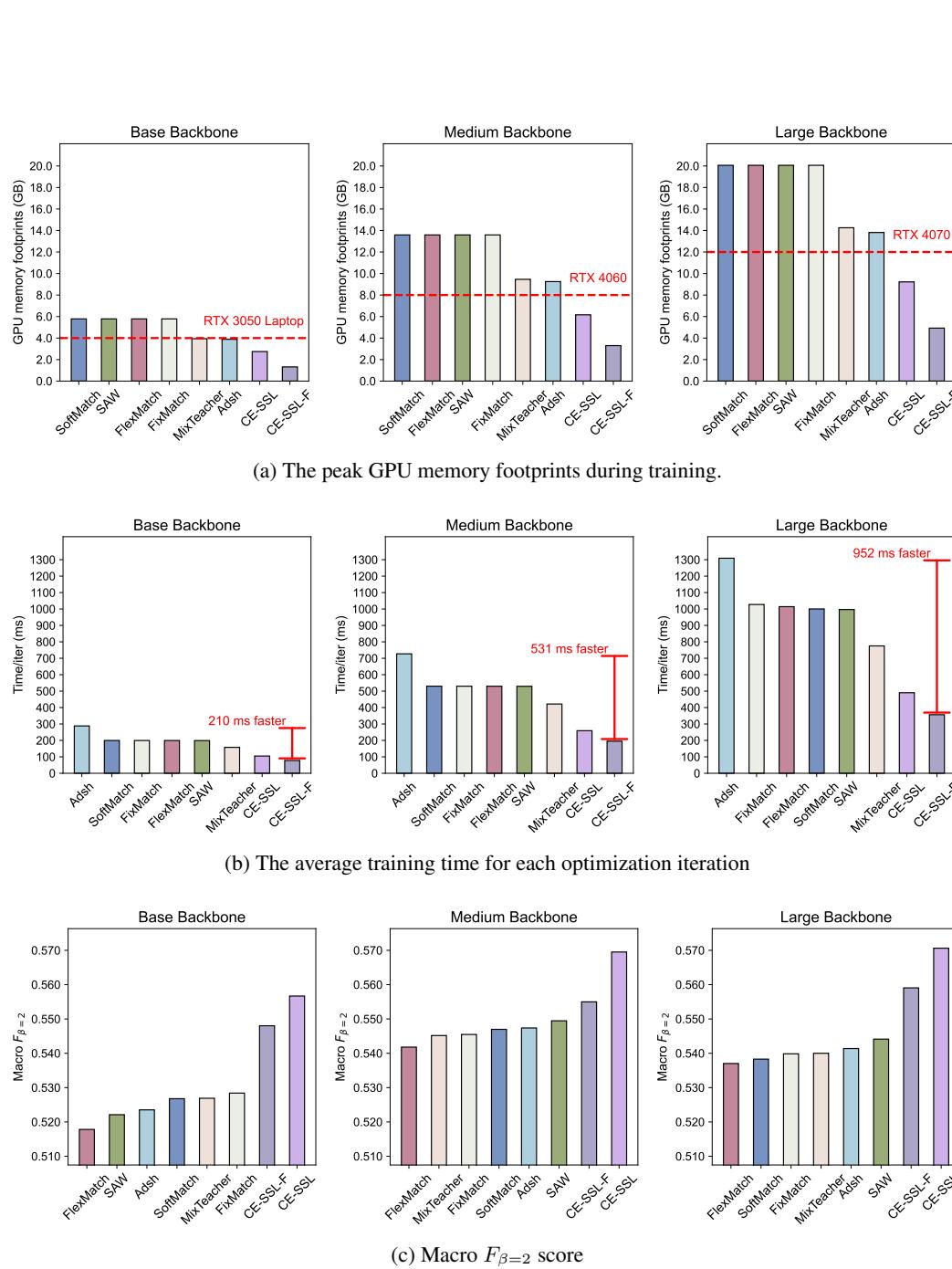


Figure 10: Evaluation of the average detection performance and computational efficiency of various semi-supervised methods across four downstream datasets. Specifically, the macro $F_{\beta=2}$ scores are used to evaluate their CVDs detection performance. Additionally, the average training time per iteration and the maximum GPU memory usage are presented to evaluate computational efficiency. Methods exceeding the GPU memory thresholds, indicated by the red dashed lines, are not deployable on the corresponding NVIDIA GPU cards.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Table 19: Ablation study of the proposed CE-SSL on the base backbone. 'w/o random deactivation' represents the CE-SSL without the random deactivation technique, and the deactivation probability p is set to zero. 'w/o rank allocation' represents the CE-SSL without the one-shot rank allocation, and all pre-trained weights are updated with the initial rank r . 'w/o semi-supervised BN' denotes the CE-SSL without the semi-supervised batch normalization for lightweight semi-supervised learning.

Methods	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset							
w/o random deactivation	104ms	0.095±0.004	3.954±0.163	0.848±0.007	0.470±0.007	0.294±0.015	0.536±0.021
w/o rank allocation	97ms	0.092±0.002	3.848±0.049	0.849±0.007	0.467±0.009	0.294±0.016	0.537±0.019
w/o semi-supervised BN	78ms	0.092±0.002	3.895±0.104	0.854±0.004	0.475±0.011	0.297±0.021	0.536±0.029
CE-SSL	98ms	0.092±0.002	3.867±0.088	0.855±0.005	0.476±0.006	0.307±0.016	0.551±0.017
PTB-XL Dataset							
w/o random deactivation	115ms	0.034±0.002	2.741±0.062	0.890±0.005	0.516±0.009	0.328±0.012	0.554±0.011
w/o rank allocation	108ms	0.032±0.001	2.692±0.046	0.895±0.003	0.530±0.005	0.332±0.011	0.560±0.014
w/o semi-supervised BN	87ms	0.031±0.002	2.670±0.064	0.899±0.004	0.532±0.006	0.332±0.010	0.565±0.007
CE-SSL	110ms	0.031±0.000	2.641±0.020	0.901±0.003	0.530±0.005	0.346±0.006	0.578±0.006
Ningbo Dataset							
w/o random deactivation	121ms	0.032±0.003	2.887±0.085	0.925±0.005	0.497±0.015	0.321±0.013	0.553±0.017
w/o rank allocation	114ms	0.030±0.001	2.801±0.023	0.928±0.002	0.497±0.021	0.325±0.010	0.563±0.014
w/o semi-supervised BN	92ms	0.031±0.001	2.821±0.058	0.929±0.003	0.499±0.017	0.325±0.012	0.559±0.018
CE-SSL	115ms	0.030±0.001	2.805±0.063	0.928±0.002	0.505±0.019	0.334±0.011	0.569±0.014
Chapman Dataset							
w/o random deactivation	102ms	0.041±0.003	2.505±0.080	0.895±0.010	0.526±0.005	0.335±0.012	0.514±0.015
w/o rank allocation	96ms	0.041±0.001	2.503±0.040	0.892±0.008	0.527±0.012	0.346±0.007	0.514±0.018
w/o semi-supervised BN	77ms	0.040±0.002	2.468±0.050	0.896±0.010	0.533±0.010	0.350±0.020	0.527±0.026
CE-SSL	97ms	0.040±0.002	2.483±0.055	0.896±0.006	0.536±0.004	0.355±0.005	0.530±0.008

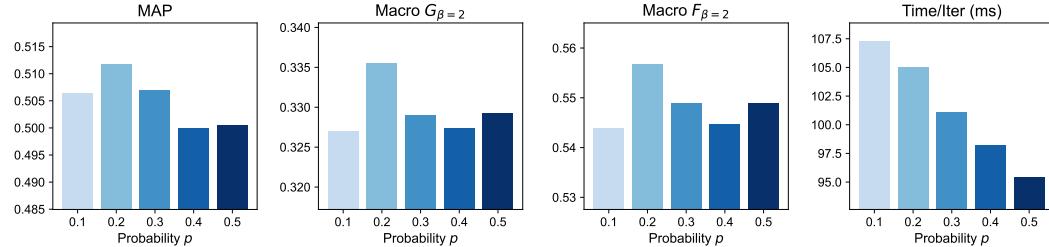


Figure 11: Effect of the deactivation probability. The averaged performance and training time of the CE-SSL across four datasets and six random seeds under different deactivation probabilities p are presented.

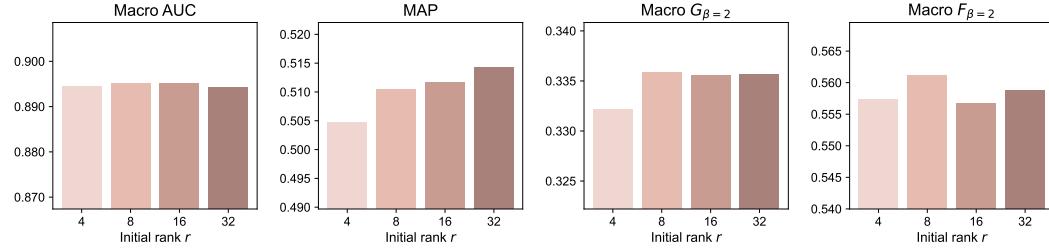
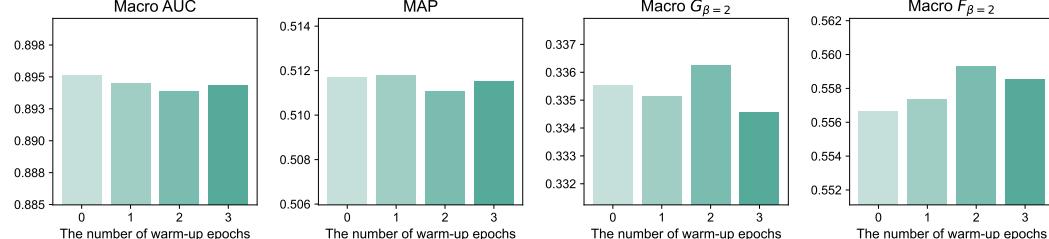


Figure 12: Effect of the rank initialization. Averaged performance of the CE-SSL across four datasets and six random seeds under different initial ranks r .

2052
2053
2054
2055 Table 20: Ablation study of the proposed CE-SSL on the medium backbone. 'w/o random deac-
2056 tivation' represents the CE-SSL without the random deactivation technique, and the deactivation
2057 probability p is set to zero. 'w/o rank allocation' represents the CE-SSL without the one-shot rank
2058 allocation, and all pre-trained weights are updated with the initial rank r . 'w/o semi-supervised
2059 BN' denotes the CE-SSL without the semi-supervised batch normalization for lightweight semi-
2060 supervised learning.

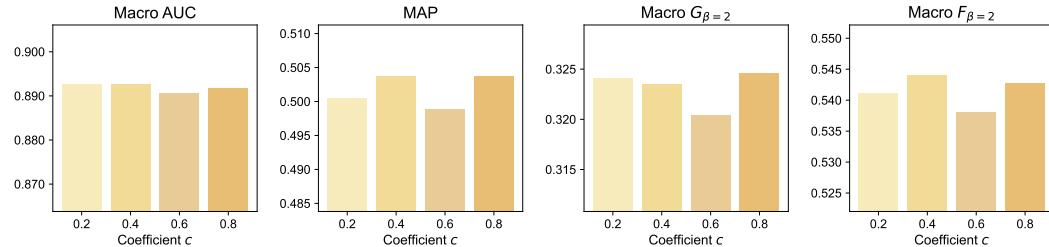
Methods	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset							
w/o random deactivation	259ms	0.091±0.004	3.887±0.138	0.855±0.005	0.497±0.010	0.304±0.015	0.540±0.022
w/o rank allocation	241ms	0.087±0.003	3.795±0.110	0.861±0.005	0.506±0.004	0.306±0.017	0.551±0.022
w/o semi-supervised BN	189ms	0.085±0.005	3.750±0.159	0.864±0.007	0.506±0.008	0.308±0.021	0.548±0.024
CE-SSL	243ms	0.086±0.004	3.740±0.134	0.862±0.006	0.507±0.007	0.317±0.022	0.561±0.024
PTB-XL Dataset							
w/o random deactivation	289ms	0.030±0.002	2.630±0.064	0.905±0.003	0.534±0.006	0.351±0.006	0.577±0.013
w/o rank allocation	269ms	0.028±0.001	2.563±0.028	0.912±0.005	0.540±0.006	0.351±0.012	0.575±0.016
w/o semi-supervised BN	213ms	0.028±0.001	2.563±0.035	0.911±0.003	0.547±0.005	0.358±0.010	0.582±0.016
CE-SSL	271ms	0.027±0.001	2.539±0.033	0.913±0.003	0.550±0.004	0.369±0.005	0.588±0.003
Ningbo Dataset							
w/o random deactivation	301ms	0.028±0.001	2.744±0.046	0.930±0.003	0.516±0.021	0.336±0.017	0.558±0.029
w/o rank allocation	281ms	0.028±0.001	2.736±0.055	0.932±0.003	0.518±0.022	0.343±0.017	0.574±0.023
w/o semi-supervised BN	224ms	0.027±0.000	2.671±0.028	0.934±0.002	0.525±0.020	0.346±0.018	0.576±0.024
CE-SSL	282ms	0.027±0.001	2.701±0.051	0.933±0.003	0.531±0.018	0.356±0.013	0.588±0.021
Chapman Dataset							
w/o random deactivation	256ms	0.036±0.002	2.388±0.043	0.911±0.006	0.549±0.016	0.353±0.009	0.530±0.013
w/o rank allocation	240ms	0.037±0.002	2.397±0.055	0.906±0.007	0.537±0.010	0.349±0.014	0.515±0.022
w/o semi-supervised BN	188ms	0.035±0.001	2.349±0.019	0.912±0.006	0.555±0.016	0.356±0.007	0.525±0.018
CE-SSL	241ms	0.035±0.002	2.362±0.049	0.909±0.007	0.553±0.013	0.367±0.008	0.540±0.019



2100
2101 Figure 13: Effect of warmup epochs for rank allocation. Averaged performance of the CE-SSL
2102 across four datasets and six random seeds under different numbers of warmup epochs for rank allo-
2103 cation.

2106
 2107
 2108
 2109 Table 21: Ablation study of the proposed CE-SSL on the large backbone. 'w/o random deactivation'
 2110 represents the CE-SSL without the random deactivation technique, and the deactivation probability
 2111 p is set to zero. 'w/o rank allocation' represents the CE-SSL without the one-shot rank allocation,
 2112 and all pre-trained weights are updated with the initial rank r . 'w/o semi-supervised BN' denotes the
 2113 CE-SSL without the semi-supervised batch normalization for lightweight semi-supervised learning.
 2114

Methods	Time/iter ↓	Ranking Loss ↓	Coverage ↓	Macro AUC ↑	MAP ↑	Macro $G_{\beta=2}$ ↑	Macro $F_{\beta=2}$ ↑
G12EC Dataset							
w/o random deactivation	483ms	0.092±0.005	3.948±0.164	0.850±0.005	0.498±0.006	0.309±0.008	0.547±0.013
w/o rank allocation	450ms	0.088±0.003	3.830±0.100	0.855±0.002	0.499±0.005	0.312±0.009	0.551±0.016
w/o semi-supervised BN	332ms	0.088±0.005	3.839±0.129	0.855±0.005	0.506±0.008	0.314±0.014	0.552±0.018
CE-SSL	453ms	0.085±0.005	3.778±0.140	0.857±0.004	0.509±0.007	0.322±0.009	0.565±0.010
PTB-XL Dataset							
w/o random deactivation	542ms	0.030±0.001	2.612±0.026	0.907±0.004	0.531±0.004	0.349±0.008	0.572±0.012
w/o rank allocation	501ms	0.030±0.001	2.642±0.038	0.909±0.005	0.534±0.003	0.340±0.016	0.562±0.019
w/o semi-supervised BN	373ms	0.030±0.001	2.630±0.046	0.910±0.003	0.540±0.006	0.360±0.010	0.592±0.008
CE-SSL	508ms	0.030±0.002	2.618±0.061	0.909±0.004	0.537±0.004	0.358±0.005	0.587±0.008
Ningbo Dataset							
w/o random deactivation	563ms	0.031±0.002	2.860±0.094	0.927±0.004	0.513±0.026	0.333±0.013	0.567±0.022
w/o rank allocation	523ms	0.029±0.001	2.757±0.043	0.930±0.001	0.514±0.026	0.335±0.013	0.568±0.022
w/o semi-supervised BN	392ms	0.028±0.001	2.759±0.039	0.931±0.002	0.519±0.024	0.343±0.013	0.576±0.021
CE-SSL	529ms	0.029±0.001	2.779±0.027	0.931±0.002	0.523±0.027	0.344±0.010	0.578±0.013
Chapman Dataset							
w/o random deactivation	480ms	0.038±0.001	2.438±0.041	0.905±0.004	0.549±0.006	0.348±0.013	0.529±0.021
w/o rank allocation	447ms	0.038±0.002	2.448±0.060	0.904±0.008	0.551±0.006	0.352±0.009	0.520±0.016
w/o semi-supervised BN	329ms	0.037±0.002	2.411±0.051	0.903±0.006	0.554±0.009	0.366±0.005	0.546±0.011
CE-SSL	450ms	0.037±0.001	2.417±0.035	0.904±0.004	0.556±0.006	0.371±0.010	0.552±0.018



2153 Figure 14: Effect of the ratio of important weight matrices. We adjust the ratio of the important
 2154 weight matrices to the total number of weight matrices and report the averaged performance across
 2155 four datasets and six random seeds. Important weights are adapted with rank r while the remaining
 2156 weights are adapted with rank $\frac{1}{2}r$.
 2157

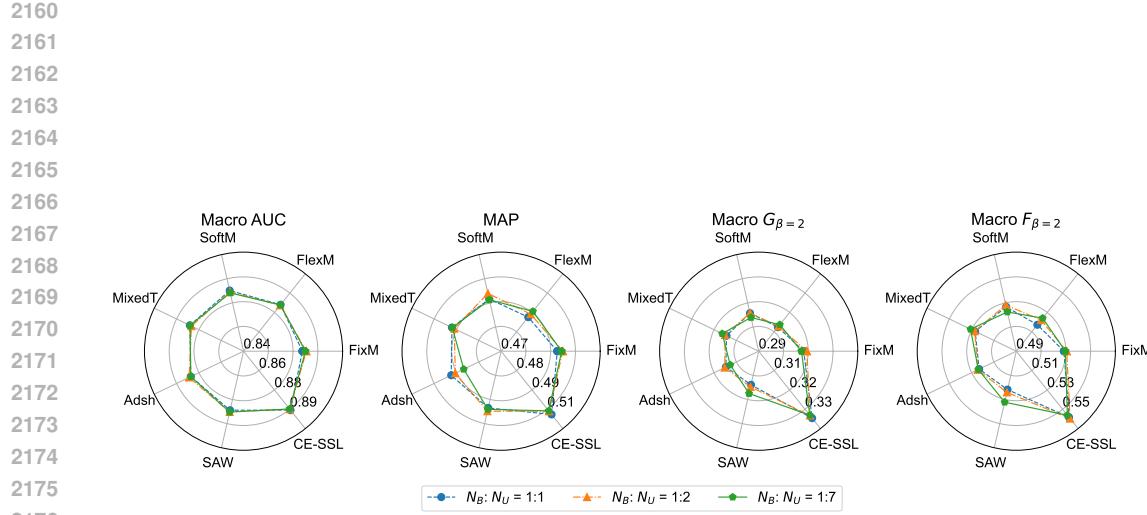


Figure 15: Effect of the batch size of unlabeled data. $N_B : N_U$ denotes the ratio between the batch size of labeled data and unlabeled data during model training. The averaged performance of different semi-supervised methods across four datasets and six random seeds is presented. For simplicity, 'MixedT,' 'SoftM,' 'FixM,' and 'FlexM' denote the MixedTeacher, SoftMatch, FixMatch, and FlexMatch methods, respectively.

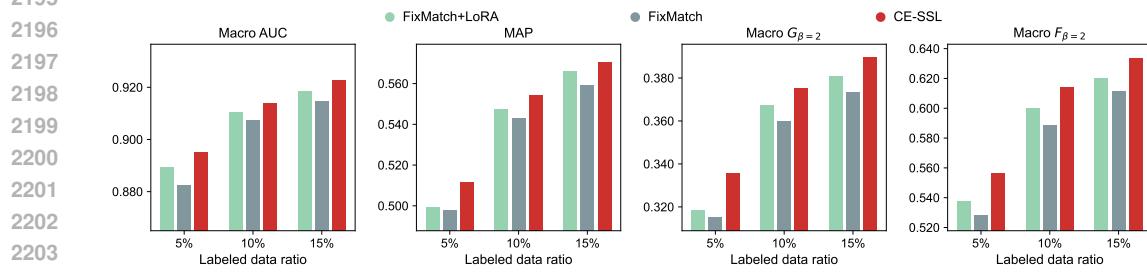


Figure 16: Effect of the ratio of labeled samples for model training. We adjust the ratio of the labeled samples in the dataset from 0.05 to 0.15 and report the averaged performance of different models across four datasets and six random seeds.

Figure 17: Performance comparisons between CE-SSL and the baseline models under various labeled ratios using the base backbone.

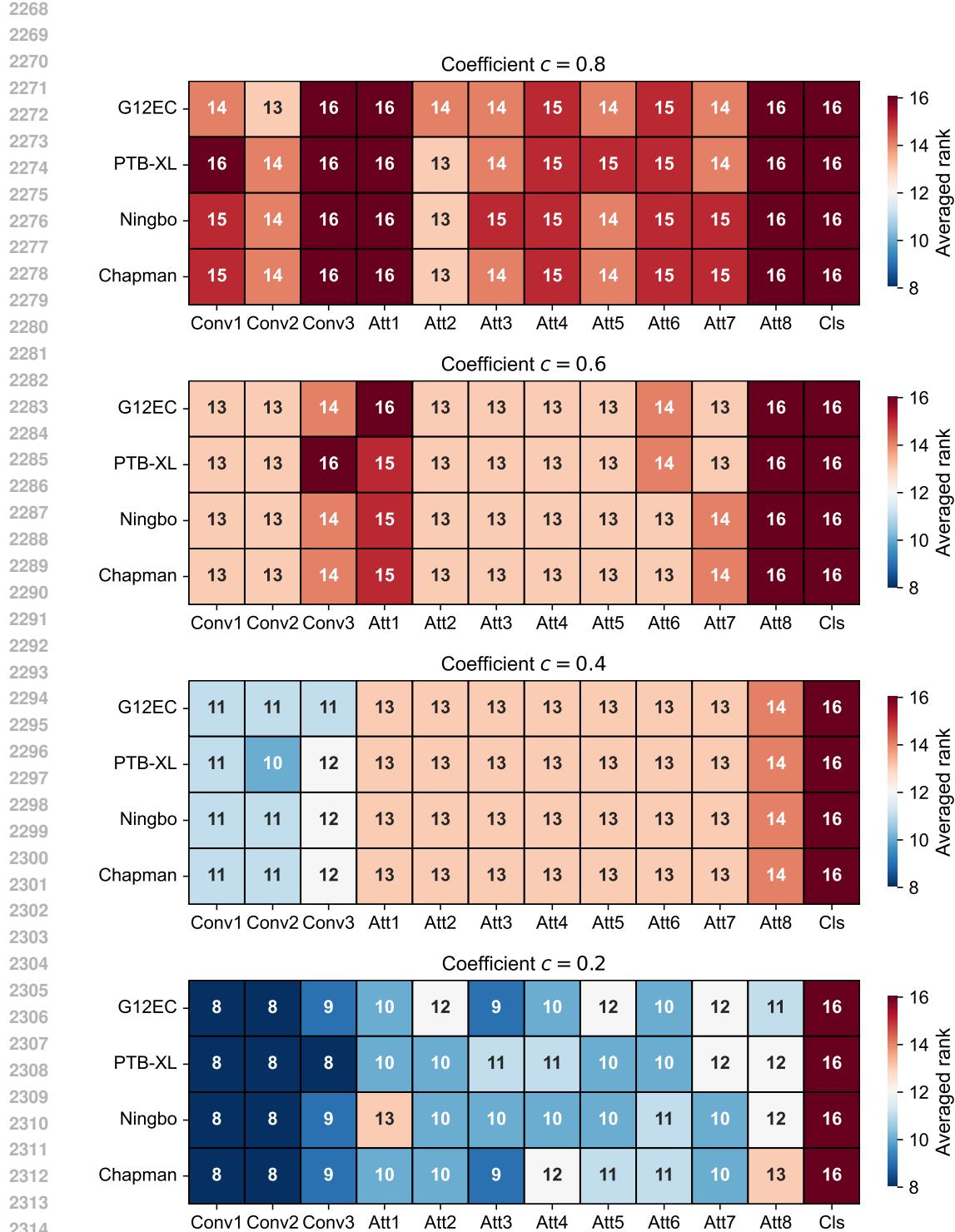


Figure 18: The rank distributions generated by the proposed one-shot rank allocation method on four datasets using the base backbone. Specifically, we visualize the allocated rank of each block in the backbone network, which is the average rank of the incremental matrices within the block. For simplicity, we present the abbreviations of different blocks.('Conv1': the 1-st convolution block; 'Att1': the 1-st self-attention block ; 'Cls': classification block.