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ABSTRACT

The label scarcity problem is the main challenge that hinders the wide applica-
tion of deep learning systems in automatic cardiovascular diseases (CVDs) detec-
tion using electrocardiography (ECG). Tuning pre-trained models alleviates this
problem by transferring knowledge learned from large datasets to downstream
small datasets. However, bottlenecks in computational efficiency and detection
performance limit its clinical applications. It is difficult to improve the detection
performance without significantly sacrificing the computational efficiency dur-
ing model training. Here, we propose a computation-efficient semi-supervised
learning paradigm (CE-SSL) for robust and computation-efficient CVDs detec-
tion using ECG. It enables a robust adaptation of pre-trained models on down-
stream datasets with limited supervision and high computational efficiency. First,
a random-deactivation technique is developed to achieve robust and fast low-rank
adaptation of pre-trained weights. Subsequently, we propose a one-shot rank al-
location module to determine the optimal ranks for the update matrices of the
pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is
introduced to enhance model performance by leveraging labeled and unlabeled
data with high computational efficiency. Extensive experiments on four down-
stream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art
methods in multi-label CVDs detection but also consumes fewer GPU footprints,
training time, and parameter storage space. As such, this paradigm provides an
effective solution for achieving high computational efficiency and robust detec-
tion performance in the clinical applications of pre-trained models under limited
supervision.

1 INTRODUCTION

Cardiovascular diseases have become the deadliest ’killer’ of human health in recent years (Kelly
et al., 2010). As a non-invasive and low-cost tool, ECG provides a visual representation of the
electrical activity of the heart and is widely used in the detection of various CVDs (Kiyasseh et al.,
2021a; Lai et al., 2023). Benefiting from recent progress in computing hardware, ECG-based deep
learning systems have achieved notable success in automatic CVDs detection (Hannun et al., 2019;
Ribeiro et al., 2020; Al-Zaiti et al., 2023; Lu et al., 2024b). However, previous deep learning models
required sufficient labeled samples to achieve satisfactory performance when trained on new applica-
tion scenarios with unseen CVDs (Berthelot et al., 2019; Sohn et al., 2020). Unfortunately, collecting
well-labeled ECG recordings requires physicians’ expertise and their laborious manual annotation,
and therefore is expensive and time-consuming in clinical practice (Zhang et al., 2022; Zhou et al.,
2023). Recent advancements in pre-trained models have enhanced the performance of deep learning
models on the downstream datasets without large-scale labeled data (Vaswani et al., 2017; Radford
et al., 2019; He et al., 2022). A commonly used pipeline consists of pre-training over-parameterized
backbone models on large-scale datasets and then fine-tuning them on small downstream datasets in
a supervised manner. However, two bottlenecks still greatly limit the clinical application of CVDs
detection systems based on pre-trained models under limited supervision.

(1) The bottleneck in CVDs detection performance. Fine-tuning of pre-trained models is cur-
rently conducted in a purely supervised manner. When the labeled data is very scarce in the down-
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stream datasets, model performance may drop due to over-fitting (Wang et al., 2021). Fortunately, a
large amount of unlabeled data in the medical domain is relatively easy to collect. Semi-supervised
learning (SSL) is able to extract sufficient information from the unlabeled data and outperform the
supervised models trained with the same amount of labeled data (Zhou et al., 2018; Sohn et al.,
2020; Li et al., 2021; Zhang et al., 2021; Peiris et al., 2023). For example, self-tuning integrates
the exploration of unlabeled data and the knowledge transfer of pre-trained models into a united
framework, which significantly outperforms supervised fine-tuning on five downstream tasks (Wang
et al., 2021). Despite their robust performance, existing SSL methods are mainly built on pseudo-
label techniques and the weak-strong consistency training on unlabeled samples (Berthelot et al.,
2019; 2020; Sohn et al., 2020; Zhang et al., 2021; Chen et al., 2023a), which greatly increases the
GPU memory footprint and computation time during model training. This drawback results in a
bottleneck of computational efficiency during the performance enhancement of pre-trained models
using semi-supervised learning.

(2) The bottleneck in computational efficiency for parameter optimization. Nowadays, many
studies have introduced large-scale foundation models to achieve better CVDs detection perfor-
mance using ECG (Vaid et al., 2023; Han & Ding, 2024; Mathew et al., 2024; McKeen et al., 2024;
Pham et al., 2024; Jin et al., 2025), greatly increasing the computation costs of modifying them for
downstream applications. SSL methods and fine-tuning both update all the model parameters. De-
spite their effectiveness, both methods have a main drawback that they require saving the gradients
of all the model parameters and even the momentum parameters, resulting in large GPU memory
footprints when tuning large pre-trained models (Hu et al., 2022). Additionally, each tuned model
can be regarded as a full copy of the original models, therefore leading to high storage consumption
when simultaneously tuned on multiple datasets (Zhang et al., 2023b). To address this, parameter-
efficient fine-tuning (PEFT) methods have been introduced to reduce the trainable parameters dur-
ing model training and thus decrease the computational costs during model training (Houlsby et al.,
2019; Zaken et al., 2021; Chen et al., 2023b). For example, Low-rank adaptation (LoRA) achieves
this goal by updating the pre-trained weights with low-rank decomposition matrices. AdaLoRA
and IncreLoRA overcome the performance bottleneck of LoRA by allocating different ranks to dif-
ferent pre-trained weights based on their importance (Zhang et al., 2023b;a). However, the above
improvement is achieved at the cost of increased training time for iterative importance estimation.

Therefore, a dilemma is encountered: model performance improvement often comes at the expense
of a large sacrifice of computational efficiency during model training. Specifically, semi-supervised
learning enhances CVDs detection performance under limited supervision but at significantly in-
creased computational costs. Conversely, methods that prioritize computational efficiency may
compromise model performance (Ding et al., 2023). Consequently, achieving a superior detection
performance with high computation efficiency poses a great challenge to the clinical application of
pre-trained models in ECG-based CVDs detection. To the best of our knowledge, no prior study has
designed and evaluated a framework to escape the dilemma.

Here, we propose a united paradigm capable of addressing the above two bottlenecks simultane-
ously. It is a computation-efficient semi-supervised learning paradigm (CE-SSL) for adapting pre-
trained models on downstream datasets with high computational efficiency under limited supervi-
sion. Our method enables robust and low-cost detection of CVDs in clinical practice using ECG
recordings. As shown in Figure 1, first, a base backbone is pre-trained on a large-scale 12-lead
ECG dataset in a supervised manner. We also provide medium and large backbones for perfor-
mance enhancement by increasing the backbone’s depth and width. Second, a random-deactivation
low-rank adaptation (RD-LoRA) method formulates a low-cost and robust pipeline for updating the
pre-trained backbone on downstream datasets. Specifically, it stochastically activates or deactivates
low-rank adaptation in each trainable layer of the backbone with a probability p. To reduce GPU
memory footprints, the pre-trained weights in each layer are always frozen. Theoretical analysis
indicates that the random deactivation operation integrates various sub-networks generated during
model training, thus overcoming the performance bottleneck in tuning pre-trained models. Addi-
tionally, deactivating low-rank adaptation in some layers reduces computation costs and speeds up
the training process, especially when the backbone model size is large. Third, a one-shot rank al-
location module determines the optimal ranks for the low-rank matrices in each layer. In contrast
to AdaLoRA (Zhang et al., 2023b) and IncreLoRA (Zhang et al., 2023a), the proposed method
can determine the optimal ranks using only one gradient backward iteration, improving the adapta-
tion performance at low computational costs. Additionally, a lightweight semi-supervised learning
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Figure 1: Overview of CE-SSL.a Backbones are pre-trained on a public 12-lead ECG dataset using
the supervised multi-label binary cross-entropy loss. b. On the downstream datasets, the pre-trained
weights in the backbones are updated by the random-deactivation low-rank adaptation. All the
low-rank matrices are activated and merged into the pre-trained weights in the testing stage, which
generates an ensemble network combining all the sub-networks produced by the random deactiva-
tion operation. c. The ranks of the low-rank matrices are determined by the proposed one-shot rank
allocation method using only one gradient backward on the labeled samples. d. This lightweight
semi-supervised pipeline improves the model performance in a computationally efficient way.

module is utilized to leverage the abundant information within unlabeled data. This module uses
unlabeled data to stabilize the statistics estimation process in batch normalization layers, enhancing
their generalization performance on unseen data distributions. Compared to the pseudo-labeling and
the weak-strong consistency training methods (Sohn et al., 2020; Chen et al., 2023a), the module
can alleviate the label scarcity problem with significantly higher computational efficiency.

Finally, extensive experiments on four downstream datasets demonstrate the superior CVDs detec-
tion performance of the proposed CE-SSL against various state-of-the-art models under very limited
supervision. Most importantly, our method only requires 66.5% training time, 70.7% GPU memory
footprint, and 1.8%-5.8% trainable parameters of the state-of-the-art SSL methods. Furthermore,
its computational costs can be minimized to adapt to resource-limited environments without a sig-
nificant accuracy loss. In conclusion, our proposed computation-efficient semi-supervised learning
paradigm provides an effective solution to overcome the two bottlenecks that limit the clinical appli-
cations of pre-trained models in ECG-based CVDs detection. We summarize the major contributions
as follows:

• A random deactivation low-rank adaptation method is proposed to update the backbones
with high computational efficiency and robust performance.

• A one-shot rank allocation module is present to determine the optimal rank distribution
during low-rank adaptation at minimal costs.

• A lightweight semi-supervised method is utilized to leverage large-scale unlabeled ECG
data without greatly sacrificing computational efficiency.

• A computation-efficient semi-supervised framework for low-cost and accurate CVDs de-
tection is proposed, which is the first one to escape the dilemma between model perfor-
mance and computational efficiency.
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2 METHODOLOGY

2.1 RANDOM-DEACTIVATION LOW-RANK ADAPTATION

Recent studies have demonstrated that low-rank adaptation (LoRA) can drastically decrease com-
putation and storage costs in large-scale neural network fine-tuning while achieving promising per-
formance on downstream tasks (Hu et al., 2022; Zhang et al., 2023b; Ding et al., 2023). The LoRA
method models the incremental update of the pre-trained weights by the matrix multiplication of
two low-rank matrices. For a hidden layer output h = WX , the LoRA forward process is defined
as,

h = (W0 +△W )X = (W0 +BA)X, (1)
where W0,△W ∈ Rd1×d2 , B ∈ Rd1×r and A ∈ Rr×d2 , and the rank r ≪ min(d1, d2). The LoRA
freezes the pre-trained weight W0 during model training and only optimizes the low-rank matrices
A and B, which greatly reduces the number of trainable parameters during model training (Hu
et al., 2022). However, the incremental updates of low-rank matrices are inadequate for achieving
optimal performance on downstream datasets (Zi et al., 2023; Zhang et al., 2023a). To bridge the
performance gap efficiently, we propose a novel random-deactivation low-rank adaptation (RD-
LoRA) method, which randomly activates or deactivates the low-rank matrices in each trainable
layer with a given probability p. To be specific, the forward process of the proposed RD-LoRA can
be defined as,

h = (W0 + δBA)X, δ =

{
1, z ≥ p

0, z < p
, (2)

where δ ∼ Ber(δ, 1 − p) can be regarded as a binary gate controlled by a random variable z
following a uniform distribution U(0, 1), where Ber indicates the Bernoulli distribution. p is set to
0.2 in our experiments by default. In the training stage, the multi-label binary cross-entropy loss is
employed for parameter optimization. In the testing stage, for input data Xtest and the pre-trained
weight W0, the expectation of htest given by RD-LoRA over δ can be calculated as,

Eδ∼Ber(δ,1−p) [htest] = Eδ∼Ber(δ,1−p) [(W0 + δBA)Xtest] . (3)

Considering that the low-rank matrices {A,B} are fixed during the testing stage and δ is the only
one random variable, thus,

Eδ∼Ber(δ,1−p) [htest] = (W0 + Eδ∼Ber(δ,1−p) [δ]BA)Xtest = (W0 + (1− p)BA)Xtest. (4)

Eδ∼Ber(δ,1−p) [h] ≈ (W0 + Eδ∼Ber(δ,1−p) [δ]BA)X = (W0 + (1− p)BA)X. (5)
Note that Eq.5 can only approximated the expectation of h during the training stage, because B
and A become variables and are not fully independent of δ. This approximation is commonly used
and works empirically (Huang et al., 2016; Srivastava et al., 2014). Similar to LoRA, the low-rank
matrices are merged into the pre-trained weight W0 in the testing stage to avoid extra inference costs,
and the random-drop operation is deactivated. According to Eq.4, to ensure the expected output will
be the same as the output with RD-LoRA, the merged matrix should be computed as,

W = W0 + (1− p)BA. (6)

After merging the low-rank matrices into the pre-trained weights of different layers, the final network
can be viewed as an ensemble of all possible sub-networks during model training. In Appendix C.1,
we provide a brief explanation to discuss how the random-deactivation module improves the model’s
generalization performance on unseen data during the test stage. Additionally, deactivating some
low-rank matrices avoids the computation of update matrices in some layers, increasing training
speed in the low-rank adaptation of large-scale models. The impact of p on model performance and
training speed is discussed in Appendix D.7.

2.2 EFFICIENT ONE-SHOT RANK ALLOCATION

Another limitation of LoRA is that it prespecifies the same rank for all low-rank incremental ma-
trices, neglecting that their importance in model training varies across layers. In response to this
limitation, AdaLoRA (Zhang et al., 2023a) and IncreLoRA (Zhang et al., 2023b) proposed to dy-
namically adjust the ranks of different incremental matrices during model training based on their
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importance, which improved the low-rank adaptation performance. However, these dynamic meth-
ods require continuous calculation of the importance of all low-rank matrices in each iteration, sig-
nificantly increasing the computation time. Additionally, their rank allocation processes are based
on the singular value decomposition (SVD) theory and thus require an extra regularization loss to
force the orthogonality of the low-rank matrices. This property introduces extra hyperparameters
and computation costs. Here, we propose an efficient one-shot rank allocation method to overcome
the computational inefficiency of the existing dynamic methods. Based on the first-order Taylor
expansion, the importance of a weight matrix can be computed by the error induced by removing it
from the network (Molchanov et al., 2019),

I(W i) =
1

Ne

Ne∑
j=1

(L(Y,M(X))− LW i(j)=0(Y,M(X)))2 ≈
∥∥∥∥∂L(Y,M(X))

∂W i
⊙W i

∥∥∥∥2
2

, (7)

where W i(j) is the j-th element in the weight matrix W i, Ne is the number of elements in W i and
⊙ is the Hadamard product. However, the gradient matrix ∂L(Y,M(X))

∂W i can not be obtained because
W i is frozen during the low-rank training process. Here, we approximate it using its incremental
update △W i, which can be computed by low-rank matrices Ai and Bi using Eq.1.

∂L(Y,M(X))

∂W i
∝ −1

η
△W i =

1

η
(Bi

tA
i
t −Bi

t+1A
i
t+1)

= Bi
t

∂L(Y,M(X))

∂Ai
t

+
∂L(Y,M(X))

∂Bi
t

Ai
n − η

∂L(Y,M(X))

∂Bi
t

∂L(Y,M(X))

∂Ai
t

,

(8)

where Ai
t and Bi

t are the low-rank matrices at training round t, constant η is the learning rate and W0

is the pre-trained weight. Although Eq.8 enables importance score estimation during model training,
iterative matrix multiplication induces a heavy computation burden. Hence, we propose to simplify
the estimation function Eq.8 and compute the importance score in a ’one-shot’ manner. Specifically,
we only use the first gradient-backpropagation process to achieve the entire rank allocation process
and fix the ranks of different low-rank matrices during the remaining training iterations. In the first
backpropagation process, the low-rank matrices {Ai}ni=1 are initialized from a normal distribution
N(0, σ2) and {Bi}ni=1 are initialized to zero. Consequently, the gradient of {Ai}ni=1 at the 0-th
(first) iteration is zero according to Eq.1. Based on the above initialization conditions, Eq.8 at the
0-th iteration can be rewritten as,

∂L(Y,M(X))

∂W i
0

∝ −1

η
△W i

0 =
∂L(Y,M(X))

∂Bi
0

Ai
0,

∂L(Y,M(X))

∂Ai
0

= 0, Bi
0 = 0, (9)

where {W i
0}ni=1 are the pre-trained weight matrices in the backbone model M(X). Then, the im-

portance score of the pre-trained weight W i
0 can be approximated as,

I(W i
0) ≈ Î(W i

0) =

∥∥∥∥(∂L(Y,M(X))

∂Bi
0

Ai
0

)
⊙W i

0

∥∥∥∥2
2

. (10)

Eq.10 is computed using the labeled samples from the downstream dataset, which estimates the
importance of W i

0 during fine-tuning. Then, we sort the importance Î(W i
0) of all pre-trained matri-

ces in descending order and allocate different ranks for their low-rank matrices. Here, we assume
the ranks of the incremental matrices corresponding to the important weights should be higher than
those of the incremental matrices associated with the unimportant weights. The allocated rank ri of
the incremental matrices of the pre-trained weight W i

0 is defined as,

ri =

{
r, Î(W i

0) in the top-k of {Î(W i
0)}ni=1

1
2r, otherwise

, k = nc, (11)

where r is an initial rank, and c is a hyper-parameter that controls the number of important weight
matrices. The impacts of r and c on model performance are discussed in Appendix D.8 and D.10,
respectively. Note that the allocated ranks {ri}ni=1 are fixed during the remaining iterations, and the
low-rank matrices ({Bi}ni=1, {Ai}ni=1) are reset based on their allocated ranks. Eq.10 is only com-
puted at the 0-th iteration, which avoids numerous matrix multiplications. In addition, the proposed
rank allocation process does not require constraints on the orthogonality of low-rank matrices. In
summary, the above advantages allow the proposed method to have a faster training speed compared
to AdaLoRA (Zhang et al., 2023a) and IncreLoRA (Zhang et al., 2023b).
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2.3 LIGHTWEIGHT SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) is an efficient tool for model performance enhancement when large-
scale unlabeled data is available (Chapelle et al., 2006; Berthelot et al., 2019). Recently, many stud-
ies utilized label guessing and consistency regularization to further improve the model performance
in SSL tasks, such as FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021) and SoftMatch
(Chen et al., 2023a). However, the above two techniques require the output predictions of the weak
and strong-augmented unlabeled samples, which induces extra computation costs. Consequently,
traditional SSL methods usually exhibit much higher memory costs and longer training time than
naive supervised models. Here, we utilize a lightweight but effective SSL method without extensive
consistency training and pseudo-label guessing. Motivated by Koçyigit et al. (2020), we can update
the batch normalization (BN) layers in a semi-supervised manner using both labeled and unlabeled
data. Subsequently, the unlabeled data is released, and only the labeled data is forwarded to the self-
attention and classification blocks for loss computation. Different from Koçyigit et al. (2020), we
integrate normalization and parameter optimization into one forward-backward step to avoid extra
computational costs. For labeled inputs {xi

b}
NB
i=1 and unlabeled inputs {xi

u}
NU
i=1, the mean value µ

and the variance σ of the semi-supervised BN layers in the convolution blocks can be updated as,

µ =
γ

NB

NB∑
i=1

xi
b +

1− γ

NU

NU∑
i=1

xi
u, σ =

γ

NB

NB∑
i=1

(xi
b − µ)2 +

1− γ

NU

NU∑
i=1

(xi
u − µ)2, (12)

where NB and NU are the numbers of labeled and unlabeled samples in the current mini-batch, and
γ = NB

NB+NU
. Note that NB equals NU in this study, thus γ = 0.5. The impact of NB : NU on

model performance is discussed in Appendix D.11. With only limited labeled data xb, the estimated
mean µB = 1

NB

∑NB

i=1 x
i
b and variance σB = 1

NB

∑NB

i=1(x
i
b−µB)

2 in traditional BN are prone to be
influenced by the over-fitting problem according to the law of large numbers. On the contrary, semi-
supervised BN can alleviate the problem by utilizing large-scale unlabeled data xu for parameter
estimation, which improves the model performance on unseen distributions. Since the BN layers do
not exist in the self-attention and classification blocks, we only forward the labeled features to them
to reduce memory cost and training time. Compared with the SOTA methods in semi-supervised
learning, the proposed CE-SSL discards the label guessing and the consistency regularization mod-
ules. However, the results demonstrate that it achieves comparable CVDS detection performance to
the SOTA methods on four downstream ECG datasets, while achieving less memory consumption
and faster training speed. Finally, we present the pseudo-code of CE-SSL in Appendix Algorithm 1.

3 EXPERIMENTS AND DATASETS

As shown in Appendix C.2, the base, medium, and large backbones are pre-trained on a public and
large-scale dataset collected by Ribeiro et al. (2019; 2020), which have 9.505 million, 50.494 mil-
lion, and 113.490 million parameters, respectively. Subsequently, we use four downstream datasets
for model fine-tuning and evaluation: the Georgia 12-lead ECG Challenge (G12EC) database (Alday
et al., 2020), the Chapman-Shaoxing database (Zheng et al., 2020b), the Ningbo database (Zheng
et al., 2020a), and the Physikalisch-Technische Bundesanstalt (PTB-XL) database (Wagner et al.,
2020). Specifically, the G12EC database contains 10344 ECG recordings from 10,344 people, and
the PTB-XL database comprises 21837 recordings from 18885 patients. The Chapman database con-
tains 10,646 recordings from 10646 patients, and the Ningbo database encompasses 40258 record-
ings from 40258 patients. Only 34,905 recordings in the Ningbo database are publicly available
(Alday et al., 2020). The recordings from the four downstream databases are around 10 seconds,
and the sampling rate is 500 Hz. Additionally, each database contains over 17 different CVDs, and
multiple CVDs can be identified from one ECG segment simultaneously.

The pre-trained backbones are fine-tuned on the four downstream datasets using different methods
under limited supervision. Taking the G12EC database as an example, the ECG recordings are split
into a training set and a held-out test set in a ratio of 0.9: 0.1. Then, the training set is divided into
a labeled training set and an unlabeled training set in a ratio of 0.05: 0.95. How the ratio of training
labeled data impacts model performance is discussed in Appendix D.12. A validation set is randomly
sampled from the labeled training set and accounts for 20% of it, which is used for selecting the best-
performing model during training. For model comparisons, we reproduce several baseline models in
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Table 1: Performance comparisons of CE-SSL and semi-supervised baselines on the base backbone.
The average performance and the standard deviation of different metrics are shown across six seeds.

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset

Methods Macro Gβ=2 Macro Fβ=2 Macro Gβ=2 Macro Fβ=2 Macro Gβ=2 Macro Fβ=2 Macro Gβ=2 Macro Fβ=2

MixedTeacher 0.275±0.016 0.507±0.025 0.316±0.007 0.542±0.014 0.324±0.018 0.549±0.028 0.327±0.019 0.510±0.024
FixMatch 0.280±0.010 0.510±0.016 0.322±0.007 0.541±0.007 0.321±0.014 0.545±0.020 0.339±0.012 0.518±0.025
FlexMatch 0.274±0.019 0.497±0.035 0.316±0.008 0.536±0.007 0.318±0.012 0.544±0.019 0.325±0.010 0.495±0.019
SoftMatch 0.276±0.017 0.504±0.021 0.317±0.009 0.540±0.011 0.321±0.014 0.552±0.020 0.335±0.011 0.511±0.021
Adsh 0.268±0.009 0.489±0.013 0.322±0.008 0.543±0.015 0.318±0.010 0.545±0.012 0.335±0.013 0.517±0.020
SAW 0.269±0.018 0.494±0.024 0.323±0.019 0.548±0.017 0.314±0.010 0.536±0.016 0.333±0.012 0.510±0.020
CE-SSLr=16 0.307±0.016 0.551±0.017 0.346±0.006 0.578±0.006 0.334±0.011 0.569±0.014 0.355±0.005 0.530±0.008
CE-SSLr=4 0.304±0.013 0.553±0.020 0.346±0.005 0.580±0.006 0.327±0.010 0.567±0.011 0.352±0.009 0.530±0.012

semi-supervised learning: FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021), SoftMatch
(Chen et al., 2023a), MixedTeacher (Zhang et al., 2022), Adsh (Guo & Li, 2022), SAW (Lai et al.,
2022). Additionally, we integrate the state-of-the-art parameter-efficient methods (LoRA (Hu et al.,
2022), DyLoRA (Valipour et al., 2023), AdaLoRA (Zhang et al., 2023b), IncreLoRA (Zhang et al.,
2023a)) with FixMatch for comparisons.

4 RESULTS AND DISCUSSION

4.1 ANALYSIS OF THE CVDS DETECTION RESULTS

We comprehensively evaluate the model performance of various methods using multiple metrics and
training costs. Since multiple CVDs can be detected from one recording simultaneously, we used
metrics on multi-label classification, such as macro Gβ=2 score, and macro Fβ=2 score. In Ap-
pendix D, we also include ranking loss, coverage, mean average precision (MAP), and macro AUC
for comprehensive comparisons. Additionally, we report the training costs of different methods,
including the peak GPU memory footprint during model training (Mem), the number of trainable
parameters (Params), and the average training time for each optimization iteration (Time/iter). The
higher the number of trainable parameters, the higher the parameter storage consumption. Note that
the number of trainable parameters of CE-SSL can be adjusted by the initial rank r. Lower ranks
indicate fewer trainable parameters. The AdamW optimizer (Loshchilov & Hutter, 2017) is used
under a learning rate of 1e-3. By default, the batch sizes for labeled and unlabeled data are both
64 for all the compared methods. All the experiments are conducted in a single NVIDIA A6000
graphics processing unit using the Pytorch library.

Table 1 and Table 2 show that CE-SSL achieves superior detection performance on four down-
stream datasets with the lowest computational costs compared with the SOTA methods. In Table
13, we present a detailed model comparison using more metrics. In the G12EC dataset, CE-SSL
with r = 16 achieves a macro Fβ=2 of 0.551±0.017, which is 4.1% larger than the second-best
model’s (FixMatch) performance. In Appendix D.1, we present the detection performance of dif-
ferent models on each CVD. The results demonstrate that CE-SSL ranks the best in some CVDs,
such as atrial fibrillation and first-degree AV block. It also achieves comparable performance to the
compared methods in the remaining CVDs. Regarding computational costs, it requires 33.5% less
training time than MixedTeacher, occupies 29.3% less GPU memory than Adsh, and has only 5.8%
of the trainable parameters found in them. When the initial rank r decreases to 4, CE-SSL shows a
slight performance drop in four datasets, but the number of trainable parameters further decreases
to 1.8% of the baseline models. This observation indicates the stability and robustness of the CE-
SSL under extremely low parameter budgets. As shown in Appendix D.2, we demonstrate that the
superiority of CE-SSL persists on the medium and the large backbones. Additionally, its robustness
under resource-limited environments is also illustrated in Appendix D.4.

We further compare the proposed CE-SSL with the parameter-efficient methods, which are inte-
grated with FixMatch for parameter-efficient semi-supervised learning. For example, FixMatch with
AdaLoRA is denoted as ’FixMatch+AdaLoRA’. Similar to CE-SSL, their budgets for the number
of trainable parameters are controlled by the initial rank r. At the same time, the lightweight semi-
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Table 2: Computational efficiency of CE-SSL and semi-supervised baselines on the base backbone.

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset

Methods Params Mem Time/iter Params Mem Time/iter Params Mem Time/iter Params Mem Time/iter

MixedTeacher 9.505 M 3.941 GB 147 ms 9.505 M 3.941 GB 164 ms 9.506 M 3.941 GB 173 ms 9.504 M 3.941 GB 148 ms
FixMatch 9.505 M 5.784 GB 187 ms 9.505 M 5.784 GB 208 ms 9.506 M 5.784 GB 217 ms 9.504 M 5.784 GB 186 ms
FlexMatch 9.505 M 5.784 GB 187 ms 9.505 M 5.784 GB 209 ms 9.506 M 5.784 GB 217 ms 9.504 M 5.784 GB 185 ms
SoftMatch 9.505 M 5.784 GB 187 ms 9.505 M 5.784 GB 209 ms 9.506 M 5.784 GB 217 ms 9.504 M 5.784 GB 187 ms
Adsh 9.505 M 3.887 GB 207 ms 9.505 M 3.887 GB 316 ms 9.506 M 3.887 GB 423 ms 9.504 M 3.887 GB 207 ms
SAW 9.505 M 5.784 GB 188 ms 9.505 M 5.784 GB 208 ms 9.506 M 5.784 GB 215 ms 9.504 M 5.784 GB 185 ms
CE-SSLr=16 0.510 M 2.747 GB 98 ms 0.582 M 2.748 GB 110 ms 0.550 M 2.748 GB 115 ms 0.581 M 2.748 GB 97 ms
CE-SSLr=4 0.183 M 2.743 GB 98 ms 0.159 M 2.744 GB 109 ms 0.168 M 2.744 GB 114 ms 0.180 M 2.743 GB 97 ms
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Figure 2: Comparison between CE-SSL and parameter-efficient semi-supervised methods on the
base backbone. Circles with various colors denote different models, and their size represents the
number of trainable parameters. The training time for each optimization iteration (Time/iter) of
different methods is also reported. The gray dotted lines represent the performance of the FixMatch
baseline without parameter-efficient training (approximately 9.505M trainable parameters). The first
row of the figure presents the performance of different models with sufficient parameter budgets
(r = 16), while the second row reports their performance under limited parameter budgets (r = 4).

supervised learning module within CE-SSL is replaced with FixMatch for comparison, denoted as
’CE-SSL with FixMatch’. As illustrated in Figure 2, we report their macro-Fβ=2 scores, macro-
Gβ=2 scores, and Time/iter on four datasets at sufficient (r = 16) and limited (r = 4) budget levels.
The macro-Fβ=2 and macro-Gβ=2 scores of the FixMatch without parameter-efficient training are
denoted as gray dotted lines. The experiment results indicate that CE-SSL consistently outperforms
the other methods on four datasets at different budget levels. Under a sufficient parameter budget
(r = 16), CE-SSL achieves a macro-Gβ=2 score of 0.307±0.016 on the G12EC dataset, which is
2.8% higher than the FixMatch with LoRA. When the parameter budget is limited (r = 4), CE-SSL
still outperforms it by 1.5%. In Table 16, we present detailed comparison results on more eval-
uation metrics, which provide supplementary evidence on the efficiency of the proposed CE-SSL
in CVDs detection. Paired t-tests are conducted to evaluate the significance levels of the perfor-
mance difference between CE-SSL and the aforementioned SOTA methods (Figure 7). Based on the
calculated two-sided p-value, it can be observed that CE-SSL outperforms the baselines at a 0.05
significance level in most datasets and evaluation metrics, which indicates a significant superiority
for the proposed CE-SSL framework.

At the same time, with one-shot rank allocation, the proposed RD-LoRA is generally better than
other low-rank adaptation methods when integrated with FixMatch. Under a sufficient parameter
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Table 3: Ablation study using the base backbone.’RA: One-Shot Rank Allocation’, ’RD: Random
Deactivation’, ’SSBN: Semi-Supervised BN’, ’FixM: FixMatch’.

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset

Methods Params Time/iter Macro Fβ=2 Params Time/iter Macro Fβ=2 Params Time/iter Macro Fβ=2 Params Time/iter Macro Fβ=2

LoRA 0.795M 78ms 0.520±0.011 0.795M 87ms 0.537±0.008 0.796M 92ms 0.546±0.019 0.795M 77ms 0.499±0.014

+RA 0.510M 81ms 0.522±0.030 0.582M 91ms 0.554±0.008 0.550M 96ms 0.549±0.007 0.581M 81ms 0.521±0.013
+RD 0.795M 76ms 0.530±0.024 0.795M 83ms 0.558±0.010 0.796M 88ms 0.566±0.018 0.795M 74ms 0.515±0.013
+SSBN 0.795M 99ms 0.530±0.013 0.795M 111ms 0.558±0.012 0.796M 116ms 0.557±0.021 0.795M 100ms 0.512±0.011
+SSBN+RA 0.510M 104ms 0.536±0.021 0.582M 115ms 0.554±0.011 0.550M 121ms 0.553±0.017 0.581M 102ms 0.514±0.015
+SSBN+RD 0.795M 97ms 0.537±0.019 0.795M 108ms 0.560±0.014 0.796M 114ms 0.563±0.014 0.795M 96ms 0.514±0.018
+RA+RD 0.510M 78ms 0.536±0.029 0.582M 87ms 0.565±0.007 0.550M 92ms 0.559±0.018 0.581M 77ms 0.527±0.026
+RA+RD+FixM 0.576M 197ms 0.551±0.016 0.522M 219ms 0.574±0.006 0.606M 227ms 0.574±0.008 0.582M 196ms 0.538±0.014

CE-SSL 0.510M 98ms 0.551±0.017 0.582M 110ms 0.578±0.006 0.550M 115ms 0.569±0.014 0.581M 97ms 0.530±0.008

budget (r = 16), ’CE-SSL with FixMatch’ achieves an average macro-Gβ=2 score of 0.334 and av-
erage macro-Fβ=2 score of 0.559 across four datasets, outperforming ’FixMatch + LoRA’ by 1.6%
and 2.2%. Under a tight parameter budget (r = 4), ’CE-SSL with FixMatch’ achieves an average
macro-Gβ=2 score of 0.325 and average macro-Fβ=2 score of 0.546 across four datasets, outper-
forming ’FixMatch + DyLoRA’ by 1.3% and 1.8%. Additionally, it achieves the highest training
speed and the best performance with the least trainable parameters compared to other parameter-
efficient semi-supervised learning frameworks. In summary, the experiments demonstrate the ro-
bustness and computational efficiency of the CE-SSL in cardiovascular disease detection under lim-
ited supervision. In other words, CE-SSL can enhance the detection performance of ECG-based
CVDs detection models without introducing heavy computation burdens.

4.2 ABLATION STUDY

As shown in Table 3, we conducted an ablation study to evaluate the contribution of the modules
in CE-SSL. Specifically, we add the one-shot rank allocation (RA), random deactivation (RD), and
semi-supervised BN (SSBN) to LoRA and record the corresponding model performance. Note that
the initial rank r is set to 16 for LoRA. (1) The random-deactivation low-rank adaptation im-
proves model performance and computational efficiency. In the G12EC dataset, removing it from
CE-SSL decreases the macro Fβ=2 from 0.551±0.017 (CE-SSL) to 0.536±0.021 (+SSBN+RA). Its
effectiveness can also be supported by directly adding it to LoRA, where macro Fβ=2 increases from
0.537±0.008 (LoRA) to 0.558±0.010 (+RD) in the PTB-XL dataset. Additionally, the Time/iter is
slightly reduced compared with LoRA when the deactivation probability p is set to 0.2. As shown
in Appendix D.7, the Time/iter can be significantly reduced by increasing p. As illustrated in Ap-
pendix D.5, the improvements in training speed become more significant on larger backbones. (2)
The one-shot rank allocation improves fine-tuning performance. In the PTB-XL dataset, re-
moving it from CE-SSL decreases the macro Fβ=2 from 0.578±0.006 (CE-SSL) to 0.560±0.014
(+SSBN+RD). It can be observed that it does not introduce heavy computational burdens (Time/iter
only increases by 1-2ms) while further reducing the number of trainable parameters, demonstrating
its high computational efficiency. Its effectiveness can also be supported by directly adding it to full
fine-tuning, where macro Fβ=2 increases from 0.499±0.014 (LoRA) to 0.521±0.013 (+RA) in the
Chapman dataset. (3) The proposed lightweight semi-supervised learning benefits model per-
formance without greatly increasing the training time. It utilizes the unlabeled data to stabilize
the statistics within the BN layers in the convolution blocks, preventing them from over-fitting to
small amounts of labeled data. Removing it from CE-SSL decreases its detection performance on
all the datasets. Compared to RA+RD+FixMatch, such as FixMatch, the extra computational costs
caused by SSBN are significantly lower, while their detection performance is comparable.

4.3 EXTERNAL VALIDATION

In this section, an external validation is conducted using the medium backbone, where four down-
stream datasets (G12EC, Chapman, PTB-XL, Ningbo) are used for fine-tuning, and one held-out
dataset provided by (Lai et al., 2023) is used for evaluation. Additional results for the base and
large backbones are presented in Appendix D.6. We integrate the proposed one-shot rank allocation
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Figure 3: External validation results. ’RA: One-Shot Rank Allocation’, ’RD: Random Deactivation’
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Figure 4: Effect of the pretrained backbones on the model generalization performance.

(RA) and random-deactivation low-rank adaptation modules (RD) as a powerful supervised baseline
(RA+RD). Subsequently, we combine the baseline with various semi-supervised methods, includ-
ing FixMatch, FlexMatch, SoftMatch, Adsh, SAW, MixedTeacher, as well as the proposed semi-
supervised BN (CE-SSL). In addition, LoRA and full fine-tuning (FT) are also used for benchmark-
ing. We calculate the average detection performance across six random seeds. More implementation
details are provided in Appendix D.6. The experiment results provide two critical insights. First, the
CVDs detection system powered by CE-SSL can generalize well to unseen data collected by differ-
ent devices and medical centers. As shown in Figure 3, CE-SSL achieves a macro AUC of 0.886
on the external dataset and demonstrates better cross-distribution robustness than LoRA (0.866) and
FT (0.868). Second, the semi-supervised BN enhances the model’s generalization performance on
unseen data without introducing heavy computational burdens. Specifically, CE-SSL outperforms
the powerful supervised baseline (RA+RD) by 3.67% on macro Fβ=2 score. It achieves comparable
performance to the baseline with SOTA semi-supervised methods and demonstrates significantly
lower computational costs (Table 7).

Pretrained backbones are critical factors that determine the generalization performance of the fine-
tuned models. We fine-tune different pretrained backbones using full fine-tuning (FT) on four
downstream datasets and evaluate them on the external dataset. We include five backbones for
benchmarking, including the backbones (base, medium, large) provided in our study and two exter-
nal backbones: ECG-FM (McKeen et al., 2024) and ECGFounder (Li et al., 2025). As shown in
Figure 4, ECGFounder and our medium backbone demonstrate the best and the second-best gener-
alization performance on the external dataset. More importantly, we can observe that CE-SSL can
consistently improve their performance, which indicates its effectiveness across various backbones.

5 CONCLUSION

Bottlenecks in model performance and computational efficiency have become great challenges in
the clinical application of CVDs detection systems based on pre-trained models, especially when
the supervised information is scarce in the downstream ECG datasets. In this paper, we propose
a computationally efficient semi-supervised learning paradigm (CE-SSL) for adapting pre-trained
models on downstream datasets with limited supervision and high computational efficiency. Exper-
iment results on four downstream ECG datasets and three backbone settings indicate that CE-SSL
achieves superior CVDs detection performance and computational efficiency compared to state-of-
the-art methods. In conclusion, our study offers a fast and robust semi-supervised learning paradigm
for ECG-based CVDs detection under limited supervision. It provides a feasible solution for effi-
ciently adapting pre-trained models to downstream ECG datasets. We hope this learning paradigm
will pave the way for the application of automatic CVDs detection systems and broaden their appli-
cability to various ECG-based tasks.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we give a derivation of the ensemble optimization properties of the RD-
LoRA in Appendix C.1. All datasets used in our experiments are publicly available and clearly
specified in Section 3. The evaluation metrics used in our experiments are defined in Appendix
C.4. We provide the algorithm of the proposed CE-SSL in Algorithm 1 and the anonymous source
codes in a supplementary .zip file. The pretrained backbones with various sizes will be released after
publication.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are only used as tools for spell checking and grammar suggestions. The authors
take full responsibility for the contents within the paper.

B APPENDIX: RELATED WORK

B.1 AI-ENABLED CVDS PREDICTION USING ECG

Benefiting from the development of deep learning, AI-enabled systems have shed light on automatic
ECG screening and cardiovascular disease diagnosis (Pourbabaee et al., 2018; Hannun et al., 2019;
Ribeiro et al., 2020; Strodthoff et al., 2020; Kiyasseh et al., 2021b; Huang et al., 2022; Vaid et al.,
2023; Han & Ding, 2024; Mathew et al., 2024). Tracing the development of the systems, it can be
observed that the prediction models they used are continuously scaling up. In the first stage, small-
scale models demonstrated promising diagnosis performance in ECG analysis and CVDs detection.
For example, Pourbabaee et al. (2018) designed a deep convolutional neural network to extract fea-
tures from ECG signals and utilize standard classifiers for screening paroxysmal atrial fibrillation.
Hannun et al. (2019) proposed an end-to-end deep convolutional neural network to achieve auto-
matic single-lead ECG screening. The results demonstrated that the network achieved similar diag-
nosis performance compared with common cardiologists. In the second stage, pre-trained models
with a prohibitive number of parameters were introduced, which demonstrated better transferability
than previous networks. This advantage reduces their requirement for supervision information on
downstream datasets. For instance, Vaid et al. (2023) pre-trained a large-scale vision transformer
(HeartBEiT) on a huge ECG dataset and fine-tuned it on downstream datasets. The experiment re-
sults demonstrated the superiority of HeartBEiT in CVDs detection compared with traditional CNN
architectures. In the current stage, many studies have proposed various kinds of foundation mod-
els for more advanced ECG screening and cardiac healthcare, inspired by their success in natural
language processing (Han & Ding, 2024; Mathew et al., 2024). However, pre-trained models might
experience a performance drop on downstream datasets when the labeled samples are very scarce
there. Additionally, the computational costs of adapting them to various tasks significantly increase
as their sizes scale up.

B.2 SEMI-SUPERVISED LEARNING FOR PERFORMANCE ENHANCEMENT UNDER LIMITED
SUPERVISION.

Semi-supervised learning offers an effective solution to address the label scarcity problem by lever-
aging unlabeled samples (Wang et al., 2021; Berthelot et al., 2019; Sohn et al., 2020; Zhang et al.,
2021; Chen et al., 2023a). For example, Sohn et al. (2020) combined consistency regularization
and pseudo-labeling to formulate a powerful algorithm (FixMatch). Extensive experiments demon-
strate the superiority of FixMatch against the supervised baselines under the label scarcity condition.
Subsequently, Zhang et al. (2021) proposed curriculum pseudo labeling (CPL) to flexibly adjust the
thresholds for pseudo label selection, aiming at utilizing unlabeled data based on the model’s train-
ing progress. Using a truncated Gaussian function, Chen et al. (2023a) designed a soft threshold
to weight unlabeled samples according to their prediction confidence, which achieved a balance
between pseudo-label quality and quantity. Compared with FixMatch, FlexMatch, and SoftMatch
demonstrate better performance in various datasets. However, Wang et al. (2021) pointed out that
the performance of semi-supervised models will be influenced by inaccurate pseudo labels, espe-
cially in a large label space. Hence, they proposed a self-tuning technique to explore the potential
of the transfer of pre-trained models and a pseudo-label group contrast mechanism to increase the
model’s tolerance to inaccurate labels. Experiments on five tasks demonstrated the superiority of the
proposed framework against previous semi-supervised and supervised methods. In summary, mas-
sive unlabeled data and powerful pre-trained models led to the success of semi-supervised methods.
However, high computation burdens are the side effects of leveraging them, greatly limiting their
applications in resource-limited settings.
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B.3 PARAMETER-EFFICIENT METHODS FOR HIGHER COMPUTATIONAL EFFICIENCY.

Parameter-efficient training has demonstrated great potential in decreasing the computational costs
of fine-tuning pre-trained models (Zaken et al., 2021; Hu et al., 2022; Valipour et al., 2023; Zhang
et al., 2023b). For example, Zaken et al. (2021) proposed BitFit to fine-tune the bias terms of the
pre-trained models and freeze the other parameters, greatly reducing the computational costs. How-
ever, BitFit sacrifices the performance of the fine-tuned models because most of their parameters
are not well adapted to downstream tasks. Hu et al. (2022) designed a low-rank adaptation method
(LoRA) to inject trainable low-rank matrices into the transformer architecture, decreasing the perfor-
mance gap between parameter-efficient methods and full fine-tuning. However, Zhang et al. (2023b)
pointed out that LoRA ignored the varying importance of different pre-trained weights and allo-
cated the same rank for all the trainable matrices, which led to suboptimal fine-tuning performance.
Consequently, they designed AdaLoRA to address this problem, which dynamically allocates dif-
ferent ranks to the low-rank matrices according to their importance during fine-tuning. During this
process, the trainable parameters of the matrices with low importance are pruned. Different from
AdaLoRA, IncreLoRA adaptively adds trainable parameters to the low-rank matrices with high im-
portance (Zhang et al., 2023a). As a non-pruning method, its performance is not limited by the
preset parameter budget. Although IncreLoRA and AdaLoRA surpass LoRA in some scenarios,
they result in high computation costs for weight importance estimation. Consequently, advancing
fine-tuning performance without sacrificing computational efficiency remains challenging when de-
signing parameter-efficient methods.
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C APPENDIX: METHODOLOGY DETAILS

C.1 ENSEMBLE OPTIMIZATION PROPERTIES OF THE RD-LORA

In this section, we briefly analyze the ensemble properties of the proposed RD-LoRA. Here, we
simply consider a network M with n fully-connected layers, defined as M(X) =

∏n
i=1 W

i
0X ,

where X is the input data and W i
0 ∈ Rcout×cin is the pre-trained weight matrix at the i-th layer.

During model training, a convex loss function L(Y,M(X)) is employed for parameter optimization.
When the RD-LoRA is activated, the expectation of the loss function Eδ∼Ber(δ,1−p) [L(Y,M(X))]
at the iteration t can be given as,

Et
δ∼B(δ,1−p) [L(Y,M(X))] = (1− p)nL(Y,

n∏
i=1

(W i
0 +Bi

tA
i
t)X)

+

n∑
j=1

p(1− p)n−1L(Y,
n∏

i=1,i̸=j

(W i
0 +Bi

tA
i
t)W

j
0 )X


+ · · ·+ pnL(Y,

n∏
i=1

W i
0X),

(13)

where the low-rank matrices {Ai
t}ni=1 and {Bi

t}ni=1 are trainable while the pre-trained weights
{W i

0}ni=1 are frozen. Eq.13 can be regarded as a weighted mean of the losses of 2n sub-networks,
which are minimized during model training. The number of activated low-rank matrices np of
the sub-networks is lower than the entire network n. Consequently, the training costs of the sub-
networks are lower than those of the entire network. In the testing stage, all the low-rank matrices are
merged into the pre-trained weights, which generates an ensemble model combining all the possible
sub-networks. After that, the low-rank matrices {A,B} are fixed and only δ is a random variable.
Hence, given the testing data Xtest and the ground truth Ytest, the testing loss can be estimated as

L(Ytest,Eδ∼Ber(δ,1−p) [M(Xtest)]) = L(Ytest,

n∏
i=1

(W i
0 + (1− p)BiAi)Xtest). (14)

In this paper, the multi-label binary cross-entropy loss with sigmoid activation σ(M(X)) =
[σ(M(X))1, σ(M(X))2, · · ·σ(M(X))C ] is convex according to the second-order condition of con-
vexity, where C is the number of categories. Specifically, the Hessian matrix of L(Y, σ(M(X))) is
diagonal and the c-th element of the main diagonal can be given as,

∂2L(Y, σ(M(X)))

∂M(X)2c
= σ(M(X))c(1− σ(M(X))c) ≥ 0, (15)

where Y = [y1, y2, · · · yC ], yc ∈ {0, 1} and σ(M(X)) = (1+e−M(X))−1. According to Eq 15, the
Hessian matrix of L(Y, σ(M(X))) is positive semidefinite, demonstrating the convexity of the loss
function. Based on Jensen’s inequality, the loss of any ensemble average is smaller than the average
loss of the ensemble components,

L(Ytest,Eδ∼Ber(δ,1−p) [M(Xtest)]) ≤ Eδ∼Ber(δ,1−p) [L(Ytest,M(Xtest))] . (16)

In the training stage, the proposed RD-LoRA optimizes the parameters of multiple sub-networks
and generates an ensemble network in the testing stage, improving the model performance on the
testing data.

C.2 BACKBONE MODEL PRE-TRAINING

The base backbone model is pre-trained on a public 12-lead ECG dataset (CODE-15% (Ribeiro
et al., 2019; 2020)), where 345779 ECG recordings from 233770 patients are provided. The medium
and large backbones are pre-trained on a restricted dataset with 2,322,513 ECG recordings from
1,558,772 patients (CODE-full (Ribeiro et al., 2019; Lu et al., 2024a)). The specific settings of the
backbone models with different sizes are shown in Table 4. Note that multiple abnormalities could be
identified from one ECG recording simultaneously, which indicates that a multi-label classification
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Algorithm 1 CE-SSL algorithm

Require:
- Labeled dataset DB = {Xb, Yb} and unlabeled dataset DU = {Xu};
- Pre-trained model M0 = {W i

0}ni=1; Initial rank r; The ratio of important weights c; The
random-deactivation probability p; Batch sizes of the labeled samples (NB = 64) and the unla-
beled samples (NU = 64).

Ensure: Adapted model M with the updated parameters {W i = W i
0 + (1− p)AiBi}ni=1;

1: One-shot rank allocation
2: Compute the importance of each pre-trained weight using the Eq.10 and the labeled dataset DB ;
3: Based on the initial rank r and the ratio c, allocate the final rank ri of the incremental matrices

(Ai,Bi) of the pre-trained weight W i
0 using Eq.11.

4: for 1 to iteration do
5: sample labeled data {xb, yb} from DB ;
6: sample unlabeled data {xu} from DU ;
7: apply data augmentation to xb and xu;
8: Lightweight semi-supervised learning
9: Based on Eq.12, update the semi-supervised batch-normalization layers in the convolution

blocks using the labeled data xb and the unlabeled data xu.
10: release the unlabeled data xu in the GPU memory
11: Random-deactivation low-rank adaptation
12: initialize h0 = xb

13: for i = 1, 2, ...n do
14: sample δi from the Bernoulli distribution B(δ, 1− p)
15: hi = (W i

0 + δiB
iAi)hi−1

16: end for
17: Based on the model output hn and the ground-truth yb, compute the supervised multi-label

binary cross-entropy loss using Eq.17. Apply an early-stop strategy to avoid overfitting.
18: end for
19: Merge the incremental matrices into the pre-trained weights, as {W i = W i

0+(1−p)BiAi}ni=1;

model should be implemented for ECG-based CVDs detection. As shown in Figure 1, the backbone
model M(X) consists of three parts: (1) Convolution blocks, (2) Self-attention blocks, and (3)
Classification blocks. Specifically, the convolution blocks comprise multiple convolution layers
(Conv) and batch normalization layers. The Leaky-Relu function is used as the activation function
and skip-connection is implemented (Nejedly et al., 2021). In addition, a simple but efficient self-
attention pipeline is employed in the self-attention blocks (Radford et al., 2019) and two successive
fully-connected layers with sigmoid activation are used for label prediction in the classification
block. A multi-label binary cross-entropy function is employed for model training, defined as,

L(Y,M(X)) = − 1

BC

B∑
i=1

C∑
c=1

(1− yi,c) log(1− pi,c) + yi,c log pi,c, (17)

where X = {xi}Bi=1, xi ∈ R12×L are the ECG recordings in the current mini-batch, L is the signal
length and Y = {yi}Bi=1 is the corresponding ground truths. pi,c is the model prediction on class c
and C is the number of categories. During model training, a held-out validation set is used for early-
stop model validation. The best-performing model on the validation set is used for downstream tasks
on small-scale datasets.

C.3 SIGNAL PRE-PROCESSING AND DATA AUGMENTATION

Artifact removal and data augmentation are two factors that play important roles in model perfor-
mance. Firstly, we introduce the signal pre-processing pipeline employed in the proposed frame-
work. The ECG recordings from the CODE-15% and CODE-full databases are first resampled to a
400Hz sampling rate following the configuration of the dataset provider (Ribeiro et al., 2020). The
sampling rate of the recordings from the four downstream databases remains unchanged. Firstly, the
length of all recordings is normalized into 6144 samples by zero-padding. Subsequently, a band-
pass filter (1-47Hz) is applied to remove the power-line interference and baseline drift. Then, the
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Table 4: Backbone model specifications. Nconv indicates the number of convolution blocks, Natt

indicates the number of self-attention blocks, and Ncls indicates the number of classification blocks.
C is the number of convolution channels. Hidden size is the hidden layer dimension of the self-
attention blocks. Head Num is the number of heads in multi-head self-attention. Params is the total
number of parameters in the backbone.

Backbone Size Nconv Natt Ncls C Hidden size Head Num Params

Base 3 8 1 256 256 16 9.505M
Medium 3 12 1 512 512 16 50.494M
Large 3 12 1 768 768 16 113.490M

Table 5: Description of the cardiovascular diseases analyzed in our study. The abbreviations (Abb)
and the total number of instances (Nums) of a certain class are denoted as ’Abb (Nums)’.

Original annotation Abb (Nums) Original annotation Abb (Nums)

G12EC Dataset

atrial fibrillation AF (570) 1st degree av block IAVB (769)
incomplete right bundle branch block IRBBB (407) left axis deviation LAD (940)
left bundle branch block LBBB (231) low qrs voltages LQRSV (374)
nonspecific intraventricular conduction disorder NSIVCB (203) sinus rhythm NSR (1752)
premature atrial contraction PAC (639) prolonged qt interval LQT (1391)
qwave abnormal QAb (464) right bundle branch block RBBB (542)
sinus arrhythmia SA (455) sinus bradycardia SB (1677)
sinus tachycardia STach (1261) t wave abnormal TAb (2306)
t wave inversion TInv (812) ventricular premature beats VPB (357)

PTB-XL Dataset

atrial fibrillation AF (1514) complete right bundle branch block CRBBB (542)
1st degree av block IAVB (797) incomplete right bundle branch block IRBBB (1118)
left axis deviation LAD (5146) left anterior fascicular block LAnFB (1626)
left bundle branch block LBBB (536) nonspecific intraventricular conduction disorder NSIVCB (789)
sinus rhythm NSR (18092) premature atrial contraction PAC (398)
pacing rhythm PR (296) prolonged pr interval LPR (340)
qwave abnormal QAb (548) right axis deviation RAD (343)
sinus arrhythmia SA (772) sinus bradycardia SB (637)
sinus tachycardia STach (826) t wave abnormal TAb (2345)
t wave inversion TInv (294)

Ningbo Dataset

atrial flutter AFL (7615) bundle branch block BBB (385)
complete left bundle branch block CLBBB (213) complete right bundle branch block CRBBB (1096)
1st degree av block IAVB (893) incomplete right bundle branch block IRBBB (246)
left axis deviation LAD (1163) left anterior fascicular block LAnFB (380)
low qrs voltages LQRSV (794) nonspecific intraventricular conduction disorder NSIVCB (536)
sinus rhythm NSR (6299) premature atrial contraction PAC (1054)
pacing rhythm PR (1182) poor R wave Progression PRWP (638)
premature ventricular contractions PVC (1091) prolonged qt interval LQT (337)
qwave abnormal QAb (828) right axis deviation RAD (638)
sinus arrhythmia SA (2550) sinus bradycardia SB (12670)
sinus tachycardia STach (5687) t wave abnormal TAb (5167)
t wave inversion TInv (2720)

Chapman Dataset

atrial fibrillation AF (1780) atrial flutter AFL (445)
1st degree av block IAVB (247) left axis deviation LAD (382)
left bundle branch block LBBB (205) low qrs voltages LQRSV (249)
nonspecific intraventricular conduction disorder NSIVCB (235) sinus rhythm NSR (1826)
premature atrial contraction PAC (258) qwave abnormal QAb (235)
right axis deviation RAD (215) right bundle branch block RBBB (454)
sinus bradycardia SB (3889) sinus tachycardia STach (1568)
t wave abnormal TAb (1876) ventricular premature beats VPB (294)

pre-processed signals are normalized using z-score normalization. Secondly, CutMix (Yun et al.,
2019) is employed for labeled data augmentation. Since the sample generation process of CutMix
requires true labels that are absent in the unlabeled data, we employed the ECGAugment (Zhou
et al., 2023) for unlabeled data augmentation, which generates new samples by randomly selecting a
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transformation to perturb the pre-processed signals. Note that only the weak-augmentation module
in the ECGAugment is employed.

C.4 EVALUATION METRICS

In the model evaluation section, we evaluate the CVDs detection performance of different models
using six metrics: ranking loss, coverage, mean average precision (MAP), macro AUC, macro Gbeta,
and macro Fbeta. Here, we provide detailed descriptions of how to compute the metrics based on the
model predictions P = M(X), P ∈ RN×C and the multi-label ground truths Y ∈ RN×C . N is the
sample size and C is the number of categories. Each row yn =

[
y1n, y

2
n, · · · , yCn

]
, yCn ∈ {0, 1} in

Y indicates the multi-label ground-truth of sample n. Specifically, if y1n == 1, y2n == 1, y3n == 0,
sample n belongs to class 1 and class 2 simultaneously, but it does not belong to class 3. Each row
pn =

[
p1n, p

2
n, · · · , pCn

]
, pCn ∈ [0, 1] in P indicates the multi-label CVDs predictions of sample n.

(1) The Ranking Loss calculates the average count of label pairs that are reversely ordered (Zhang
& Zhou, 2013; Tsoumakas et al., 2010). For given predictions P and ground-truth Y , it is weighted
by the size of the label set and the number of labels not in the label set. The best performance is
achieved with a ranking loss of zero. The computation process of the ranking loss can be found in
Zhang & Zhou (2013).

(2) The coverage evaluates the steps needed to go through the ranked label list to cover all the
ground-truth labelsZhang & Zhou (2013); Tsoumakas et al. (2010). The smaller the coverage is, the
better the performance. The best value is the average number of positive labels in Y per sample.
The computation process of the coverage can also be found in Zhang & Zhou (2013).

(3) Macro AUC calculates the average Area Under Curve (AUC) across all the CVDs categories,
defined as

Macro AUC =
1

C

C∑
c=1

AUCc, (18)

where AUCc is AUC on CVD class c. The higher the Macro AUC is, the better the performance.
The best performance is achieved with a ranking loss of one.

(4) MAP indicates the mean average precision across all CVDs. The computation process of the
average precision on a given class can also be found in Zhang & Zhou (2013). The higher the MAP
is, the better the performance. The best performance is achieved with a ranking loss of one.

(5) Macro Fβ=2 calculates the average Fβ=2 score across all the CVDs categories, defined as

Macro Fβ=2 =
1

C

C∑
c=1

F c
β=2, (19)

Fβ =

(
1 + β2

)
TP

(1 + β2) TP + TP + β2FN
(20)

where F c
β=2 is Fβ=2 score on CVD class c. TP represents the number of true positive predictions,

while FN represents the number of false negative predictions. The β value is set to 2 for all the
corresponding experiments following the configurations provided in Strodthoff et al. (2020). The
higher the macro Fβ=2 is, the better the performance. The best performance is achieved with a
macro Fβ=2 of one.

(6) Macro Gβ=2 calculates the average Gβ=2 score across all the CVDs categories, defined as

Macro Gβ=2 =
1

C

C∑
c=1

Gc
β=2, (21)

Gβ =
TP

TP + FP + βFN
(22)

where Gc
β=2 is Gβ=2 score on CVD class c. FP represents the number of false positive predictions.

The β value is set to 2 for all the corresponding experiments following the configurations provided
in Strodthoff et al. (2020). The higher the macro Gβ=2 is, the better the performance. The best
performance is achieved with a macro Gβ=2 of one.
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D APPENDIX: EXTENDED EXPERIMENTS

D.1 DETAILED MODEL PERFORMANCE FOR EACH CVD

Here, we provide the detailed model performance for each CVD using the base backbone. The
CVDs analyzed in our study can be found in Table 5. Note that different datasets contain various
CVD classes, and there is a class imbalance issue with all datasets. Then, we report the Fβ=2 score
of each compared model on each CVD class. We also present the macro Fβ=2 score, which is
an average of the Fβ=2 score across all CVDs. In this section, state-of-the-art methods in semi-
supervised learning are used for comparisons, including FixMatch (Sohn et al., 2020), FlexMatch
(Zhang et al., 2021), SoftMatch (Chen et al., 2023a), MixedTeacher (Zhang et al., 2022), Adsh
(Guo & Li, 2022), SAW (Lai et al., 2022). The experiment results on four datasets are shown in
Table 9, Table 10, Table 11 and Table 12. Compared with other semi-supervised models, CE-SSL
demonstrates the best detection performance in some CVDs and achieves on-par performance in the
remaining CVDs.

D.2 PERFORMANCE COMPARISONS UNDER VARIOUS BACKBONE SIZES

In the previous sections, we have already proved the robustness and computation efficiency of the
proposed CE-SSL under a base backbone with 9.505 million parameters. Here, we compare its
performance with other baseline models under medium and large backbones, which share the same
architecture as the base backbone but have more parameters (Table 4). Specifically, the medium
backbone has 50.494 million parameters, and the large backbone has 113.490 million parameters.
They are pre-trained on the CODE-full dataset, a huge but restricted ECG dataset with 2,322,513
ECG recordings from 1,558,772 patients (Ribeiro et al., 2019; 2020). In Table 14 and 15, we report
the performance of CE-SSL and semi-supervised baselines on the medium and the large backbones,
respectively. The results demonstrate that CE-SSL achieves similar and even better CVDs detec-
tion performance than the semi-supervised baselines and exhibits the lowest computation costs. For
example, using the medium backbone, CE-SSL achieves a macro Fβ=2 of 0.599±0.010, which is
3.7% larger than the second-best model’s (SAW) performance in the PTB-XL dataset. Using the
large backbone, CE-SSL achieves a macro Fβ=2 of 0.565±0.010 in the G12EC dataset, outper-
forming SAW by 3.1%. Regarding the computational costs, the number of trainable parameters
of CE-SSL is 0.9% to 3.1% of the other baselines on the medium backbone and 0.6% to 2.1%
on the large backbone. In addition, CE-SSL demonstrates the lowest GPU memory consumption
and the highest training speed compared to the other semi-supervised baselines. For the memory
footprint, CE-SSL achieves an average GPU memory usage of 6.16 GB using the medium back-
bone and 9.22 GB using the large backbone, 3.09 GB and 4.59 GB less than the second-best model
(Adsh). Furthermore, CE-SSL achieves an average training time per iteration of 259.25 ms using
the medium backbone and 485.5 ms using the large backbone, 162.5 ms and 289.75 ms faster than
the second-best model (MixedTeacher). These phenomena demonstrate that as the number of model
parameters increases, the computational efficiency advantage of CE-SSL over other models be-
comes increasingly apparent. In Table 17 and Table 18, we present the performance of CE-SSL and
parameter-efficient semi-supervised methods on the medium and large backbones, respectively. It
can be observed that CE-SSL outperforms the other models in CVDs detection on both medium and
large backbones. Additionally, CE-SSL demonstrates the fastest training speed across four datasets
compared with other parameter-efficient methods. In Figure 8 and Figure 9, we provide the paired
t-test results of the model performance on the two backbones. The statistical results indicate that
CE-SSL outperforms the above baselines in ECG-based CVDs detection at a 0.05 significance level
in most conditions.

D.3 DETAILED RESULTS ON STATISTICAL ANALYSIS

In this section, we provide detailed statistical analysis results to evaluate the significance levels
of the performance difference between CE-SSL and the aforementioned baselines using different
backbones. Applying paired t-tests, we compare their performance on four datasets and present the
two-sided p-value in Figure 7, Figure 8 and Figure 9. For each dataset, the model performance
under six random seeds is used for the paired t-tests. Note that the initial ranks for LoRA, Dy-
LoRA, AdaLoRA, IncreLoRA, and CE-SSL are set to 16. Based on the calculated p-value, it can
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be observed that CE-SSL outperforms the baselines at a 0.05 significance level in most datasets and
evaluation metrics, which indicates a significant superiority for the proposed CE-SSL framework.

D.4 TOWARD HIGHER COMPUTATIONAL EFFICIENCY IN CLINICAL PRACTICES

Although deploying the CE-SSL paradigm with the base backbone on low-level devices (4-6 GB
GPU memory) is easy, implementing the paradigm with the medium and large backbones is still
challenging. To overcome this limitation, we adopt a simple but effective approach to boost the
computational efficiency of the CE-SSL. Specifically, we freeze the first two convolution blocks
in the backbones during the CE-SSL training process. The new paradigm is denoted as ’CE-SSL-
F’ in the following analysis. We present the CVDs detection performance and the computational
efficiency of CE-SSL-F, CE-SSL, and the SOTA methods in semi-supervised learning in Figure 10.
Note that the batch sizes for all the compared methods are set to 64. The initial rank for CE-SSL
and CE-SSL-F is set to 16 and 4, respectively.

First, freezing the convolution blocks greatly reduces the cached activation during the forward pass,
significantly decreasing the GPU memory footprints. As shown in Figure 10a, it can be observed
that the CE-SSL-F requires nearly 50% less GPU memory footprints compared to the CE-SSL,
generalizing its applications in low-level devices (NVIDIA RTX 3050 laptops and RTX 4060 GPU
cards). Specifically, CE-SSL-F is deployable on RTX 3050 laptops with both base and medium
backbones, and it is the only method that can be implemented on the RTX 4060 GPU cards with
a large backbone. In contrast, deploying the CE-SSL with a large backbone requires medium-level
devices (NVIDIA RTX 4070 GPU cards), while other semi-supervised methods require high-level
devices with GPU memory larger than 12 GB. Second, the parameters of the frozen blocks are not
updated during the backward pass, which increases the training speed of CE-SSL-F. The larger the
backbone is, the more parameters are frozen, and thus the more gradient backward time is saved. As
shown in Figure 10b, CE-SSL-F demonstrates the fastest training speed compared with other mod-
els, and its advantages become more significant along with the increase in backbone sizes. Third,
CE-SSL-F only sacrifices 1-2% CVDs detection performance compared with CE-SSL. More im-
portantly, it consistently outperforms the other semi-supervised methods across different backbones
(Figure 10c), demonstrating its effectiveness in CVDs detection. This phenomenon can be explained
by the strong transferability of the pre-trained convolution blocks located in the first few layers of
the backbone (Sharif Razavian et al., 2014; Tajbakhsh et al., 2016). Specifically, they mainly contain
domain-invariant knowledge for CVDs detection, and their parameters will not be changed signifi-
cantly during the fine-tuning process. Therefore, freezing them does not greatly decrease the model
performance. In summary, the experiment results illustrate that the computational efficiency of the
CE-SSL can be increased to adapt to low-level devices without losing its superior CVDs detection
performance compared to other semi-supervised methods. This advantage demonstrates CE-SSL’s
flexibility in different clinical application scenarios with various computational resources.

D.5 EXTENDED RESULTS ON ABLATION STUDY

In this section, we provide the ablation study of CE-SSL using medium and large backbones in
Table 20 and Table 21. Note that the initial rank r is 16 for all the compared models. (1)
It can be observed that removing the random-deactivation technique from CE-SSL increases the
Time/iter and decreases the CVDs detection performance on the four datasets. For example, with
the medium backbone, the Time/iter increases from 243ms to 259ms and the macro Fbeta decreases
from 0.561±0.024 to 0.540±0.022 on the G12EC database. With the large backbone, the Time/iter
increases from 451ms to 480ms and the macro Fbeta decreases from 0.552±0.018 to 0.529±0.021
on the Chapman database. (2) It is demonstrated that the one-shot rank allocation increases the
detection performance with high computation efficiency. For instance, with the medium back-
bone, the macro Fβ=2 increases from 0.515±0.022 to 0.540±0.019, and the MAP increases from
0.537±0.010 to 0.553±0.013 on the Chapman dataset. With the large backbone, the macro Fβ=2

increases from 0.562±0.019 to 0.587±0.008, and the macro Gβ=2 increases from 0.340±0.016
to 0.358±0.005 on the PTB-XL database. More importantly, the proposed method completes the
rank allocation process without introducing high computational costs (Time/iter only increases by
1-7ms). (3) Removing the lightweight semi-supervised learning module from CE-SSL decreases
the CVDs diagnostic performance on different backbone sizes. With the medium backbone, the
macro Fβ=2 score decreases from 0.588±0.021 to 0.576±0.024 and macro Gβ=2 decreases from
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Figure 5: External validation results (base backbone). ’RA: One-Shot Rank Allocation’, ’RD: Ran-
dom Deactivation’
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Figure 6: External validation results (large backbone). ’RA: One-Shot Rank Allocation’, ’RD:
Random Deactivation’

0.356±0.013 to 0.346±0.018 on the Ningbo dataset. With the large backbone, the macro Fβ=2

score decreases from 0.565±0.010 to 0.552±0.018 and macro Gβ=2 decreases from 0.322±0.009
to 0.314±0.014 on the G12EC dataset.

D.6 DETAILS ABOUT EXTERNAL VALIDATION

A main advantage of semi-supervised learning is increasing the model’s generalization performance
on unseen samples, especially when the labeled data is expensive to collect. Here, we conduct an
external validation on the model trained by various methods to highlight the contribution of intro-
ducing semi-supervised BN for improving the model’s generalization performance. Specifically, we
combine the G12EC, PTB-XL, Ningbo, and Chapman datasets as a joint dataset for model training.
It is divided into a labeled training set and an unlabeled training set in a ratio of 0.05: 0.95. An
internal validation set is randomly sampled from the labeled training set and accounts for 20% of it,
which is used for selecting the best-performing model during training. Then, an external validation
set provided by (Lai et al., 2023) is used to evaluate the model’s generalization performance on un-
seen samples, which contains 7000 wearable 12-lead ECG recordings. The CVDs that co-exist in
the external dataset and the joint dataset are used for evaluation, including NSR, QAb, TAb, IAVB,
BBB, CRBBB, IRBBB, CLBBB, SB, SA, PAC, AF, AFL, PVC, and PR. For all the compared meth-
ods, the batch sizes of labeled and unlabeled data for CE-SSL and all compared SOTA SSL methods
are set to 64 (NB : NU = 1 : 1). The deactivation probability for random deactivation low-rank
adaptation is set to p = 0.2 and the initial rank r for one-shot rank allocation is set to 16. All the
compared methods are equipped with a medium backbone for training. In terms of fine-tuning costs
before validation (Table 6), top semi-supervised methods (FixMatch, FlexMatch) increase the train-
ing time per iteration and GPU memory consumption by 2.27 times and 2.88 times, respectively.
In contrast, semi-supervised BN only increases the training time per iteration and GPU memory
consumption by 1.18 times and 1.41 times, demonstrating higher computation efficiency.

D.7 EFFECT OF THE DEACTIVATION PROBABILITY

For each pre-trained weight W i
0 in the CE-SSL, the proposed RD-LoRA deactivates its low-rank ma-

trices (Ai, Bi) in the current iteration at a probability of p, which produces multiple sub-networks
during model training. All the low-rank matrices are activated in the testing stage, generating an
ensemble network that combines all the sub-networks. Consequently, the probability p is an impor-
tant parameter that controls the training time and the final performance of the proposed CE-SSL.
In Figure 11, we adjust p from 0.1 to 0.5 and present the averaged model performance across four
datasets, including the training time for each iteration. Note that the labeled ratio is set to 5%, and
the initial ranks for all the low-rank matrices are set to 16. The results show that the CE-SSL with

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Fine-tuning efficiency of different methods before external validation (base backbone).

Method RA+RD +FixMatch +FlexMatch +SoftMatch +MixedTeacher +Adsh +SAW CE-SSL

Time/iter 110 ms 250 ms 250 ms 250 ms 200 ms 180 ms 240 ms 130 ms
Memory 1.95 GB 5.62 GB 5.62 GB 5.62 GB 3.82 GB 3.77 GB 5.62 GB 2.75 GB

Table 7: Fine-tuning efficiency of different methods before external validation (medium backbone).

Method RA+RD +FixMatch +FlexMatch +SoftMatch +MixedTeacher +Adsh +SAW CE-SSL

Time/iter 240 ms 640 ms 630 ms 630 ms 520 ms 440 ms 630 ms 310 ms
Memory 4.71 GB 12.96 GB 12.96 GB 12.96 GB 8.97 GB 8.76 GB 12.96 GB 6.16 GB

p = 0.2 demonstrates the best detection performance compared with the model with other settings.
In addition, it can be observed that the training time of the CE-SSL decreases as p increases. The
reason is that the larger the p is, the more low-rank matrices are deactivated during model training,
which speeds up the forward-backward propagation.

D.8 RANK INITIALIZATION IN THE ONE-SHOT RANK ALLOCATION

Rank initialization is an important component in low-rank adaptation, which controls the number of
trainable parameters during model training. In this section, we adjust the initial rank from 4 to 32
and present the averaged model performance on the four datasets in Figure 12. Note that the labeled
ratio is set to 5%. The results indicate that CE-SSL with high initial ranks (r = 16, 32) achieves
better performance than that with low initial ranks (r = 4, 8). This is because the model with higher
ranks has more trainable parameters and thus demonstrates a larger capacity during training.

D.9 EFFECT OF WARM-UP EPOCHS FOR RANK ALLOCATION

Once the initial rank is determined, the proposed one-shot rank allocation module will determine
the optimal ranks for the update matrices of the pre-trained weights using Eq.10. The allocation
process only utilizes the gradient information at the 0-th (first) iteration. It is worth discussing
whether determining the optimal ranks before fine-tuning would hinder the model’s performance
or not. Here, we first fine-tune the pre-trained model for T warm-up epochs using LoRA with the
initial rank r = 16. Then, we determine the optimal ranks using the fine-tuned parameters and
the one-shot rank allocation. As shown in Figure 13, we adjust T from 0 to 3 and compute the
averaged model performance on four downstream datasets. Note that the labeled ratio is set to 5%.
The results demonstrate that increasing the number of warmup epochs has a limited impact on the
performance of the proposed CE-SSL. It can be observed that the fluctuations of macro Fβ=2 score
and macro Gβ=2 score are within 0.4% when T increases from 0 to 3. It indicates that determining
the optimal ranks before fine-tuning would not hinder the model’s performance. Specifically, during
the pre-training and fine-tuning stages, the models’ training objectives are correlated. Hence, the pre-
trained models carry rigorous information for the downstream tasks. Additionally, the importance of
each low-rank matrix is calculated using the labeled samples from the downstream datasets, which
provide sufficient information for effective rank allocation without extra warm-up epochs.

D.10 EFFECT OF THE NUMBER OF IMPORTANT WEIGHT MATRICES

Based on the proposed one-shot rank allocation, CE-SSL allocates a rank r to the incremental ma-
trices with high importance and a rank r/2 to the matrices with low importance. The ratio of the
important matrices to the total number of pre-trained matrices is defined as the coefficient c. The
higher the coefficient is, the higher the ratio of the important matrices. In Figure 14, we adjust the
coefficient from 0.2 to 0.8 and report the averaged model performance across four datasets. Note
that the labeled ratio is set to 5%, and the initial ranks r for all the low-rank matrices are set to 16. It
can be observed that the performance of the proposed model is relatively insensitive to the changes
in the c. In Figure 18, we visualize the rank distribution generated by the proposed method under
various coefficients c. When the ratio of important matrices decreases from 0.8 to 0.2, the proposed
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Table 8: Fine-tuning efficiency of different methods before external validation (large backbone).

Method RA+RD +FixMatch +FlexMatch +SoftMatch +MixedTeacher +Adsh +SAW CE-SSL

Time/iter 430 ms 1200 ms 1200 ms 1200 ms 960 ms 820 ms 1200 ms 580 ms
Memory 7.1 GB 18.94 GB 18.96 GB 18.95 GB 13.37 GB 12.92 GB 18.95 GB 9.23 GB

method allocates more ranks to the self-attention and classification blocks than to the convolution
blocks. This phenomenon indicates that the deep modules exhibit higher importance than the shal-
low modules during model training, which aligns with the conclusions made by previous studies (Li
& Liang, 2021; Zhang et al., 2023b).

D.11 EFFECT OF THE BATCH SIZE OF UNLABELED DATA

In this section, we investigate the effect of the batch size of unlabeled data during semi-supervised
learning. By default, the batch sizes of labeled and unlabeled data for CE-SSL and all compared
SOTA SSL methods are set to 64 (NB : NU = 1 : 1) in our experiments, aiming at reducing the
GPU memory consumption during model training. According to previous studies (Sohn et al., 2020;
Chen et al., 2023a; Guo & Li, 2022), 1:2 and 1:7 are also two common ratios for implementing the
SOTA semi-supervised methods. To investigate their effects on model performance, we adjust the
ratio from 1:1 to 1:2 and 1:7 and present the performance of different SSL methods in Figure 15.
It can be observed that the CVDs detection performance of different semi-supervised methods is
insensitive to the ratio between the batch sizes of labeled and unlabeled data.

D.12 EFFECT OF THE RATIO OF LABELED SAMPLES

Here, we compare the proposed CE-SSL and baseline models under various ratios of labeled samples
in the datasets. Specifically, we adjust the ratio of the labeled samples in the dataset from 5% to 15%
and present the averaged performance of different models on the four datasets in Figure 16. The
experiment results demonstrate the superiority of the proposed CE-SSL compared with FixMatch
and FixMatch with LoRA under various ratios of the labeled data, especially when the ratio is low.
As the ratio decreases from 15% to 5%, the performance advantage of CE-SSL over other models
becomes more significant. When using 15% labeled data, CE-SSL achieves improvements of 1.3%
on the macro Fβ=2 compared to FixMatch with LoRA. In contrast, CE-SSL outperforms it by 1.9%
on the macro Fβ=2 using 5% labeled data. In Figure 17, we also compare CE-SSL with other
baseline models, where CE-SSL consistently outperforms them in CVDs detection under various
labeled ratios.
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Table 9: Detailed model performance for each CVD within the G12EC dataset using the base back-
bone. For each CVD, the averaged Fβ=2 and standard deviations are shown across six seeds. The
model with the best performance is denoted in bold.

Methods MixedTeacher FixMatch FlexMatch SoftMatch Adsh SAW CE-SSLr=4 CE-SSLr=32

AF 0.508±0.078 0.523±0.083 0.529±0.072 0.521±0.059 0.443±0.133 0.566±0.067 0.659±0.075 0.668±0.036

IAVB 0.729±0.030 0.670±0.066 0.597±0.129 0.679±0.044 0.589±0.194 0.654±0.077 0.747±0.022 0.719±0.081

IRBBB 0.467±0.067 0.435±0.071 0.425±0.058 0.410±0.092 0.381±0.126 0.436±0.090 0.536±0.022 0.533±0.040

LAD 0.659±0.065 0.627±0.094 0.642±0.031 0.604±0.084 0.601±0.077 0.608±0.070 0.633±0.045 0.636±0.043

LBBB 0.581±0.236 0.624±0.193 0.557±0.255 0.544±0.201 0.588±0.126 0.598±0.221 0.706±0.121 0.713±0.191

LQRSV 0.208±0.069 0.212±0.025 0.167±0.068 0.202±0.051 0.160±0.065 0.205±0.030 0.184±0.062 0.197±0.064

NSIVCB 0.119±0.090 0.058±0.044 0.080±0.070 0.077±0.075 0.030±0.035 0.051±0.059 0.260±0.030 0.208±0.026

NSR 0.759±0.020 0.754±0.024 0.764±0.029 0.771±0.018 0.755±0.009 0.738±0.031 0.748±0.020 0.766±0.014

PAC 0.313±0.027 0.310±0.031 0.299±0.025 0.324±0.046 0.329±0.035 0.292±0.056 0.388±0.043 0.376±0.033

LQT 0.548±0.055 0.578±0.013 0.579±0.022 0.559±0.037 0.524±0.070 0.516±0.066 0.576±0.034 0.570±0.037

QAb 0.315±0.029 0.322±0.031 0.298±0.088 0.305±0.033 0.306±0.040 0.260±0.042 0.319±0.020 0.305±0.052

RBBB 0.702±0.073 0.721±0.075 0.749±0.119 0.766±0.044 0.753±0.028 0.732±0.083 0.737±0.031 0.755±0.022

SA 0.214±0.032 0.205±0.025 0.172±0.043 0.179±0.086 0.220±0.017 0.189±0.050 0.266±0.034 0.268±0.024

SB 0.874±0.033 0.879±0.036 0.902±0.014 0.891±0.021 0.882±0.033 0.865±0.044 0.891±0.039 0.891±0.020

STach 0.891±0.018 0.894±0.025 0.882±0.035 0.885±0.025 0.898±0.014 0.893±0.023 0.911±0.011 0.896±0.020

TAb 0.731±0.010 0.722±0.020 0.719±0.028 0.737±0.012 0.722±0.017 0.720±0.024 0.713±0.018 0.707±0.023

TInv 0.288±0.062 0.310±0.045 0.306±0.063 0.318±0.038 0.283±0.044 0.297±0.057 0.352±0.032 0.339±0.012

VPB 0.222±0.138 0.334±0.055 0.280±0.111 0.304±0.079 0.343±0.061 0.277±0.048 0.326±0.041 0.369±0.024

Average 0.507±0.025 0.510±0.016 0.497±0.035 0.504±0.021 0.489±0.013 0.494±0.024 0.553±0.020 0.551±0.017

Table 10: Detailed model performance for each CVD within the PTB-XL dataset using the base
backbone. For each CVD, the averaged Fβ=2 and standard deviations are shown across six seeds.
The model with the best performance is denoted in bold.

Methods MixedTeacher FixMatch FlexMatch SoftMatch Adsh SAW CE-SSLr=4 CE-SSLr=32

AF 0.882±0.009 0.890±0.010 0.846±0.042 0.880±0.018 0.864±0.048 0.890±0.019 0.908±0.007 0.904±0.014

CRBBB 0.667±0.145 0.714±0.068 0.697±0.084 0.711±0.082 0.646±0.121 0.696±0.127 0.814±0.042 0.790±0.045

IAVB 0.604±0.038 0.616±0.026 0.577±0.037 0.635±0.030 0.635±0.050 0.646±0.039 0.682±0.030 0.679±0.019

IRBBB 0.557±0.061 0.535±0.043 0.515±0.040 0.512±0.049 0.551±0.021 0.541±0.025 0.594±0.032 0.561±0.062

LAD 0.769±0.016 0.764±0.020 0.758±0.017 0.772±0.017 0.777±0.009 0.754±0.005 0.774±0.007 0.779±0.004

LAnFB 0.788±0.019 0.800±0.007 0.789±0.015 0.780±0.018 0.776±0.024 0.747±0.035 0.771±0.018 0.784±0.010

LBBB 0.844±0.046 0.789±0.078 0.797±0.043 0.848±0.043 0.820±0.074 0.810±0.031 0.804±0.037 0.761±0.063

NSIVCB 0.176±0.044 0.221±0.028 0.244±0.037 0.155±0.087 0.190±0.061 0.225±0.055 0.219±0.054 0.208±0.068

NSR 0.968±0.013 0.972±0.005 0.968±0.006 0.972±0.003 0.973±0.002 0.968±0.004 0.970±0.009 0.965±0.013

PAC 0.156±0.037 0.107±0.078 0.120±0.050 0.183±0.028 0.148±0.054 0.219±0.071 0.272±0.039 0.262±0.026

PR 0.588±0.054 0.737±0.028 0.698±0.049 0.638±0.102 0.733±0.048 0.715±0.059 0.728±0.027 0.747±0.026

LPR 0.527±0.035 0.525±0.026 0.450±0.063 0.509±0.025 0.458±0.081 0.488±0.112 0.583±0.042 0.600±0.026

QAb 0.135±0.041 0.121±0.054 0.152±0.044 0.154±0.055 0.082±0.065 0.128±0.039 0.185±0.020 0.169±0.037

RAD 0.428±0.068 0.373±0.025 0.415±0.057 0.361±0.111 0.482±0.052 0.416±0.068 0.408±0.056 0.412±0.041

SA 0.172±0.052 0.144±0.041 0.150±0.076 0.164±0.027 0.165±0.046 0.175±0.047 0.245±0.029 0.281±0.042

SB 0.557±0.026 0.549±0.022 0.548±0.032 0.526±0.042 0.554±0.034 0.568±0.029 0.566±0.049 0.558±0.032

STach 0.817±0.051 0.809±0.055 0.818±0.049 0.770±0.031 0.787±0.082 0.729±0.054 0.853±0.024 0.860±0.016

TAb 0.518±0.050 0.497±0.019 0.515±0.028 0.549±0.026 0.519±0.020 0.516±0.011 0.549±0.035 0.561±0.013

TInv 0.141±0.051 0.123±0.014 0.124±0.046 0.132±0.027 0.159±0.035 0.182±0.039 0.100±0.052 0.093±0.044

Average 0.542±0.014 0.541±0.007 0.536±0.007 0.540±0.011 0.543±0.015 0.548±0.017 0.580±0.006 0.578±0.006
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Table 11: Detailed model performance for each CVD within the Ningbo dataset using the base
backbone. For each CVD, the averaged Fβ=2 and standard deviations are shown across six seeds.
The model with the best performance is denoted in bold.

Methods MixedTeacher FixMatch FlexMatch SoftMatch Adsh SAW CE-SSLr=4 CE-SSLr=32

AFL 0.959±0.008 0.962±0.007 0.957±0.007 0.966±0.002 0.959±0.006 0.963±0.005 0.963±0.005 0.965±0.005

BBB 0.266±0.160 0.291±0.145 0.295±0.111 0.280±0.120 0.287±0.105 0.317±0.093 0.391±0.040 0.397±0.054

CLBBB 0.713±0.143 0.749±0.045 0.707±0.135 0.708±0.102 0.725±0.051 0.745±0.050 0.719±0.065 0.721±0.080

CRBBB 0.760±0.027 0.766±0.017 0.722±0.118 0.706±0.067 0.761±0.020 0.712±0.085 0.777±0.029 0.764±0.036

IAVB 0.677±0.053 0.686±0.030 0.675±0.044 0.672±0.026 0.698±0.047 0.690±0.042 0.710±0.040 0.704±0.040

IRBBB 0.138±0.092 0.094±0.039 0.191±0.060 0.168±0.039 0.167±0.056 0.203±0.129 0.186±0.044 0.153±0.064

LAD 0.628±0.033 0.605±0.046 0.596±0.056 0.603±0.050 0.623±0.022 0.585±0.084 0.590±0.037 0.603±0.039

LAnFB 0.418±0.081 0.426±0.051 0.368±0.113 0.474±0.050 0.419±0.025 0.401±0.089 0.417±0.059 0.435±0.052

LQRSV 0.221±0.045 0.198±0.051 0.222±0.047 0.208±0.025 0.195±0.066 0.174±0.054 0.245±0.030 0.255±0.028

NSIVCB 0.432±0.056 0.388±0.087 0.447±0.030 0.413±0.057 0.436±0.052 0.397±0.146 0.468±0.076 0.476±0.061

NSR 0.857±0.009 0.859±0.013 0.853±0.009 0.851±0.020 0.842±0.017 0.841±0.019 0.828±0.013 0.852±0.011

PAC 0.413±0.040 0.401±0.038 0.408±0.037 0.428±0.043 0.389±0.050 0.346±0.061 0.512±0.018 0.501±0.030

PR 0.804±0.031 0.772±0.079 0.793±0.080 0.819±0.045 0.786±0.063 0.818±0.036 0.810±0.039 0.839±0.022

PRWP 0.281±0.105 0.289±0.059 0.214±0.096 0.253±0.119 0.227±0.094 0.232±0.064 0.251±0.086 0.260±0.072

PVC 0.613±0.055 0.637±0.037 0.640±0.040 0.652±0.050 0.596±0.043 0.582±0.083 0.638±0.048 0.643±0.025

LQT 0.151±0.045 0.197±0.049 0.136±0.083 0.188±0.063 0.134±0.068 0.175±0.045 0.123±0.071 0.161±0.030

QAb 0.385±0.041 0.352±0.046 0.350±0.035 0.328±0.050 0.303±0.084 0.333±0.041 0.362±0.042 0.359±0.063

RAD 0.362±0.030 0.319±0.120 0.335±0.033 0.389±0.051 0.365±0.019 0.360±0.064 0.366±0.063 0.351±0.059

SA 0.461±0.077 0.475±0.058 0.497±0.070 0.518±0.056 0.530±0.043 0.417±0.050 0.548±0.048 0.536±0.060

SB 0.971±0.004 0.975±0.003 0.975±0.002 0.974±0.003 0.970±0.005 0.968±0.004 0.974±0.002 0.974±0.003

STach 0.919±0.014 0.895±0.031 0.920±0.016 0.912±0.008 0.916±0.014 0.899±0.046 0.934±0.009 0.926±0.012

TAb 0.575±0.039 0.591±0.029 0.575±0.037 0.596±0.019 0.598±0.033 0.586±0.029 0.607±0.025 0.597±0.028

TInv 0.614±0.034 0.604±0.033 0.627±0.034 0.598±0.048 0.597±0.034 0.590±0.067 0.615±0.020 0.605±0.050

Average 0.549±0.028 0.545±0.020 0.544±0.019 0.552±0.020 0.545±0.012 0.536±0.016 0.567±0.011 0.569±0.014

Table 12: Detailed model performance for each CVD within the Chapman dataset using the base
backbone. For each CVD, the averaged Fβ=2 and standard deviations are shown across six seeds.
The model with the best performance is denoted in bold.

Methods MixedTeacher FixMatch FlexMatch SoftMatch Adsh SAW CE-SSLr=4 CE-SSLr=32

AF 0.926±0.018 0.944±0.008 0.917±0.018 0.925±0.031 0.938±0.007 0.935±0.015 0.945±0.014 0.948±0.010

AFL 0.482±0.026 0.507±0.034 0.463±0.060 0.523±0.028 0.487±0.015 0.466±0.051 0.473±0.012 0.489±0.042

IAVB 0.356±0.111 0.357±0.175 0.308±0.170 0.418±0.173 0.412±0.131 0.390±0.156 0.524±0.151 0.383±0.185

LAD 0.390±0.173 0.397±0.128 0.455±0.029 0.406±0.098 0.410±0.176 0.478±0.057 0.438±0.059 0.445±0.054

LBBB 0.455±0.122 0.295±0.157 0.265±0.081 0.375±0.123 0.420±0.092 0.203±0.169 0.328±0.127 0.339±0.114

LQRSV 0.081±0.069 0.072±0.073 0.144±0.026 0.091±0.083 0.105±0.065 0.133±0.077 0.105±0.022 0.053±0.025

NSIVCB 0.337±0.129 0.329±0.063 0.272±0.087 0.310±0.044 0.313±0.072 0.399±0.064 0.207±0.071 0.370±0.047

NSR 0.869±0.046 0.944±0.004 0.930±0.042 0.893±0.046 0.920±0.030 0.937±0.009 0.930±0.026 0.946±0.015

PAC 0.111±0.092 0.140±0.050 0.106±0.062 0.147±0.051 0.135±0.078 0.111±0.056 0.211±0.020 0.209±0.075

QAb 0.150±0.114 0.114±0.125 0.067±0.080 0.065±0.098 0.137±0.103 0.096±0.109 0.052±0.083 0.064±0.101

RAD 0.288±0.097 0.375±0.051 0.276±0.090 0.240±0.100 0.287±0.092 0.285±0.114 0.342±0.060 0.305±0.051

RBBB 0.786±0.066 0.814±0.069 0.729±0.091 0.774±0.073 0.787±0.064 0.790±0.076 0.858±0.016 0.879±0.033

SB 0.961±0.028 0.974±0.016 0.970±0.017 0.970±0.014 0.963±0.026 0.980±0.009 0.969±0.012 0.978±0.007

STach 0.943±0.010 0.941±0.011 0.928±0.022 0.939±0.016 0.943±0.005 0.928±0.041 0.950±0.016 0.954±0.007

TAb 0.607±0.036 0.646±0.032 0.643±0.029 0.647±0.026 0.656±0.020 0.620±0.036 0.651±0.018 0.667±0.016

VPB 0.422±0.098 0.431±0.147 0.443±0.138 0.450±0.221 0.356±0.192 0.407±0.133 0.494±0.053 0.447±0.039

Average 0.510±0.024 0.518±0.025 0.495±0.019 0.511±0.021 0.517±0.020 0.510±0.020 0.530±0.012 0.530±0.008
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Table 13: Performance comparisons between CE-SSL and semi-supervised baselines on the base
backbone. The average performance on all CVDs within each dataset is shown across six seeds.
The standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Mem ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

MixedTeacher 9.505 M 3.941 GB 147 ms 0.107±0.009 4.224±0.236 0.835±0.010 0.464±0.003 0.275±0.016 0.507±0.025

FixMatch 9.505 M 5.784 GB 187 ms 0.107±0.006 4.292±0.163 0.829±0.004 0.468±0.009 0.280±0.010 0.510±0.016

FlexMatch 9.505 M 5.784 GB 187 ms 0.113±0.005 4.365±0.133 0.829±0.009 0.450±0.022 0.274±0.019 0.497±0.035

SoftMatch 9.505 M 5.784 GB 187 ms 0.110±0.006 4.313±0.128 0.834±0.004 0.457±0.010 0.276±0.017 0.504±0.021

Adsh 9.505 M 3.887 GB 207 ms 0.111±0.003 4.387±0.129 0.827±0.005 0.458±0.007 0.268±0.009 0.489±0.013

SAW 9.505 M 5.784 GB 188 ms 0.112±0.003 4.369±0.105 0.827±0.005 0.459±0.017 0.269±0.018 0.494±0.024

CE-SSLr=16 0.510 M 2.747 GB 98 ms 0.092±0.002 3.867±0.088 0.855±0.005 0.476±0.006 0.307±0.016 0.551±0.017

CE-SSLr=4 0.183 M 2.743 GB 98 ms 0.089±0.003 3.804±0.095 0.853±0.004 0.467±0.006 0.304±0.013 0.553±0.020

PTB-XL Dataset

MixedTeacher 9.505 M 3.941 GB 164 ms 0.037±0.003 2.841±0.095 0.884±0.008 0.509±0.008 0.316±0.007 0.542±0.014

FixMatch 9.505 M 5.784 GB 208 ms 0.038±0.001 2.905±0.061 0.882±0.004 0.510±0.006 0.322±0.007 0.541±0.007

FlexMatch 9.505 M 5.784 GB 209 ms 0.039±0.001 2.937±0.048 0.887±0.005 0.505±0.005 0.316±0.008 0.536±0.007

SoftMatch 9.505 M 5.784 GB 209 ms 0.039±0.003 2.919±0.097 0.885±0.006 0.508±0.007 0.317±0.009 0.540±0.011

Adsh 9.505 M 3.887 GB 316 ms 0.038±0.002 2.879±0.054 0.886±0.004 0.511±0.005 0.322±0.008 0.543±0.015

SAW 9.505 M 5.784 GB 208 ms 0.037±0.003 2.855±0.093 0.889±0.005 0.520±0.007 0.323±0.019 0.548±0.017

CE-SSLr=16 0.582 M 2.748 GB 110 ms 0.031±0.000 2.641±0.020 0.901±0.003 0.530±0.005 0.346±0.006 0.578±0.006

CE-SSLr=4 0.159 M 2.744 GB 109 ms 0.030±0.001 2.626±0.026 0.899±0.004 0.526±0.005 0.346±0.005 0.580±0.006

Ningbo Dataset

MixedTeacher 9.506 M 3.941 GB 173 ms 0.035±0.002 2.982±0.077 0.925±0.006 0.496±0.020 0.324±0.018 0.549±0.028

FixMatch 9.506 M 5.784 GB 217 ms 0.035±0.003 3.025±0.121 0.922±0.009 0.493±0.023 0.321±0.014 0.545±0.020

FlexMatch 9.506 M 5.784 GB 217 ms 0.037±0.002 3.078±0.090 0.921±0.007 0.489±0.024 0.318±0.012 0.544±0.019

SoftMatch 9.506 M 5.784 GB 217 ms 0.035±0.001 3.018±0.049 0.923±0.005 0.496±0.024 0.321±0.014 0.552±0.020

Adsh 9.506 M 3.887 GB 423 ms 0.035±0.002 3.007±0.090 0.921±0.004 0.492±0.023 0.318±0.010 0.545±0.012

SAW 9.506 M 5.784 GB 215 ms 0.037±0.001 3.064±0.036 0.924±0.004 0.492±0.024 0.314±0.010 0.536±0.016

CE-SSLr=16 0.550 M 2.748 GB 115 ms 0.030±0.001 2.805±0.063 0.928±0.002 0.505±0.019 0.334±0.011 0.569±0.014

CE-SSLr=4 0.168 M 2.744 GB 114 ms 0.030±0.001 2.776±0.028 0.929±0.001 0.500±0.017 0.327±0.010 0.567±0.011

Chapman Dataset

MixedTeacher 9.504 M 3.941 GB 148 ms 0.047±0.002 2.615±0.068 0.889±0.012 0.519±0.018 0.327±0.019 0.510±0.024

FixMatch 9.504 M 5.784 GB 186 ms 0.046±0.004 2.626±0.096 0.897±0.006 0.520±0.009 0.339±0.012 0.518±0.025

FlexMatch 9.504 M 5.784 GB 185 ms 0.047±0.004 2.659±0.103 0.895±0.006 0.518±0.008 0.325±0.010 0.495±0.019

SoftMatch 9.504 M 5.784 GB 187 ms 0.047±0.004 2.649±0.079 0.898±0.006 0.525±0.012 0.335±0.011 0.511±0.021

Adsh 9.504 M 3.887 GB 207 ms 0.046±0.004 2.621±0.117 0.896±0.005 0.528±0.008 0.335±0.013 0.517±0.020

SAW 9.504 M 5.784 GB 185 ms 0.049±0.003 2.699±0.072 0.897±0.007 0.524±0.009 0.333±0.012 0.510±0.020

CE-SSLr=16 0.581 M 2.748 GB 97 ms 0.040±0.002 2.483±0.055 0.896±0.006 0.536±0.004 0.355±0.005 0.530±0.008

CE-SSLr=4 0.180 M 2.743 GB 97 ms 0.038±0.002 2.418±0.049 0.898±0.005 0.526±0.006 0.352±0.009 0.530±0.012
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Table 14: Performance comparisons between CE-SSL and semi-supervised baselines on the medium
backbone. The average performance on all CVDs within each dataset is shown across six seeds. The
standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Mem ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

MixedTeacher 50.493 M 9.461 GB 396 ms 0.096±0.003 4.016±0.060 0.846±0.008 0.499±0.009 0.303±0.014 0.537±0.018

FixMatch 50.493 M 13.589 GB 499 ms 0.096±0.006 4.027±0.109 0.850±0.009 0.499±0.014 0.299±0.016 0.529±0.016

FlexMatch 50.493 M 13.589 GB 498 ms 0.104±0.003 4.216±0.070 0.848±0.008 0.499±0.009 0.294±0.019 0.521±0.020

SoftMatch 50.493 M 13.589 GB 498 ms 0.097±0.003 4.096±0.093 0.853±0.007 0.505±0.008 0.309±0.010 0.536±0.013

Adsh 50.493 M 9.251 GB 524 ms 0.098±0.003 4.107±0.090 0.845±0.008 0.493±0.011 0.298±0.014 0.531±0.020

SAW 50.493 M 13.589 GB 499 ms 0.100±0.003 4.129±0.083 0.847±0.004 0.490±0.007 0.293±0.014 0.526±0.012

CE-SSLr=16 1.568 M 6.158 GB 243 ms 0.086±0.004 3.740±0.134 0.862±0.006 0.507±0.007 0.317±0.022 0.561±0.024

CE-SSLr=4 0.458 M 6.146 GB 241 ms 0.085±0.002 3.741±0.068 0.862±0.007 0.503±0.006 0.316±0.013 0.560±0.015

PTB-XL Dataset

MixedTeacher 50.494 M 9.459 GB 440 ms 0.032±0.001 2.706±0.049 0.898±0.004 0.539±0.005 0.340±0.013 0.559±0.012

FixMatch 50.494 M 13.589 GB 553 ms 0.034±0.002 2.767±0.053 0.898±0.003 0.536±0.006 0.340±0.006 0.556±0.010

FlexMatch 50.494 M 13.589 GB 553 ms 0.034±0.001 2.747±0.047 0.901±0.004 0.529±0.004 0.348±0.013 0.559±0.008

SoftMatch 50.494 M 13.589 GB 553 ms 0.034±0.001 2.790±0.026 0.898±0.003 0.533±0.004 0.341±0.007 0.553±0.009

Adsh 50.494 M 9.251 GB 796 ms 0.033±0.002 2.757±0.079 0.901±0.003 0.537±0.007 0.339±0.008 0.557±0.014

SAW 50.494 M 13.589 GB 554 ms 0.034±0.001 2.778±0.050 0.899±0.001 0.531±0.010 0.344±0.011 0.562±0.009

CE-SSLr=16 1.485 M 6.161 GB 271 ms 0.027±0.001 2.539±0.033 0.913±0.003 0.550±0.004 0.369±0.005 0.588±0.003

CE-SSLr=4 0.505 M 6.150 GB 270 ms 0.027±0.001 2.529±0.019 0.914±0.003 0.547±0.003 0.372±0.006 0.599±0.010

Ningbo Dataset

MixedTeacher 50.496 M 9.459 GB 457 ms 0.031±0.002 2.856±0.078 0.926±0.009 0.525±0.023 0.342±0.016 0.571±0.023

FixMatch 50.496 M 13.589 GB 572 ms 0.031±0.002 2.869±0.081 0.931±0.003 0.531±0.021 0.349±0.014 0.575±0.015

FlexMatch 50.496 M 13.589 GB 573 ms 0.031±0.002 2.853±0.081 0.930±0.002 0.524±0.012 0.347±0.013 0.575±0.018

SoftMatch 50.496 M 13.589 GB 574 ms 0.031±0.002 2.877±0.094 0.927±0.002 0.525±0.019 0.344±0.014 0.573±0.017

Adsh 50.496 M 9.251 GB 1061 ms 0.031±0.002 2.868±0.061 0.927±0.004 0.523±0.013 0.342±0.012 0.571±0.017

SAW 50.496 M 13.589 GB 572 ms 0.032±0.002 2.911±0.105 0.930±0.003 0.525±0.017 0.342±0.013 0.578±0.016

CE-SSLr=16 1.705 M 6.172 GB 282 ms 0.027±0.001 2.701±0.051 0.933±0.003 0.531±0.018 0.356±0.013 0.588±0.021

CE-SSLr=4 0.507 M 6.160 GB 282 ms 0.026±0.001 2.661±0.058 0.934±0.004 0.525±0.018 0.352±0.013 0.587±0.020

Chapman Dataset

MixedTeacher 50.492 M 9.461 GB 394 ms 0.037±0.002 2.420±0.071 0.909±0.010 0.539±0.007 0.348±0.016 0.513±0.026

FixMatch 50.492 M 13.589 GB 495 ms 0.038±0.004 2.439±0.092 0.905±0.010 0.538±0.011 0.357±0.009 0.522±0.020

FlexMatch 50.492 M 13.589 GB 495 ms 0.041±0.003 2.519±0.077 0.901±0.004 0.531±0.011 0.345±0.016 0.512±0.030

SoftMatch 50.492 M 13.589 GB 495 ms 0.043±0.004 2.546±0.101 0.902±0.009 0.535±0.008 0.355±0.015 0.526±0.026

Adsh 50.492 M 9.251 GB 527 ms 0.039±0.004 2.440±0.073 0.909±0.006 0.546±0.007 0.356±0.007 0.530±0.013

SAW 50.492 M 13.589 GB 493 ms 0.043±0.003 2.549±0.073 0.901±0.006 0.531±0.008 0.357±0.013 0.532±0.027

CE-SSLr=16 1.601 M 6.159 GB 241 ms 0.035±0.002 2.362±0.049 0.909±0.007 0.553±0.013 0.367±0.008 0.540±0.019

CE-SSLr=4 0.402 M 6.145 GB 240 ms 0.034±0.001 2.334±0.033 0.908±0.008 0.538±0.014 0.361±0.009 0.531±0.019
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Table 15: Performance comparisons between CE-SSL and semi-supervised baselines on the large
backbone. The average performance on all CVDs within each dataset is shown across six seeds. The
standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Mem ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

MixedTeacher 113.489 M 14.257 GB 728 ms 0.111±0.022 4.365±0.447 0.835±0.026 0.489±0.018 0.285±0.017 0.517±0.029

FixMatch 113.489 M 20.061 GB 966 ms 0.100±0.005 4.147±0.113 0.843±0.007 0.493±0.008 0.293±0.011 0.518±0.015

FlexMatch 113.489 M 20.061 GB 966 ms 0.099±0.006 4.088±0.149 0.847±0.003 0.489±0.005 0.299±0.011 0.534±0.015

SoftMatch 113.489 M 20.061 GB 943 ms 0.100±0.007 4.138±0.194 0.847±0.004 0.498±0.005 0.297±0.004 0.532±0.013

Adsh 113.489 M 13.815 GB 951 ms 0.103±0.003 4.240±0.073 0.843±0.008 0.496±0.007 0.294±0.010 0.521±0.023

SAW 113.489 M 20.061 GB 939 ms 0.102±0.002 4.189±0.070 0.842±0.003 0.490±0.005 0.300±0.007 0.534±0.019

CE-SSLr=16 2.658 M 9.217 GB 472 ms 0.085±0.005 3.778±0.140 0.857±0.004 0.509±0.007 0.322±0.009 0.565±0.010

CE-SSLr=4 0.761 M 9.206 GB 453 ms 0.084±0.003 3.742±0.117 0.859±0.004 0.506±0.007 0.323±0.004 0.561±0.002

PTB-XL Dataset

MixedTeacher 113.490 M 14.257 GB 809 ms 0.035±0.001 2.831±0.032 0.895±0.006 0.522±0.004 0.334±0.006 0.556±0.008

FixMatch 113.490 M 20.061 GB 1072 ms 0.035±0.003 2.805±0.102 0.894±0.004 0.521±0.006 0.342±0.007 0.560±0.012

FlexMatch 113.490 M 20.061 GB 1071 ms 0.041±0.004 3.016±0.124 0.893±0.004 0.519±0.006 0.342±0.010 0.557±0.010

SoftMatch 113.490 M 20.061 GB 1047 ms 0.038±0.003 2.886±0.094 0.893±0.004 0.523±0.007 0.334±0.007 0.542±0.011

Adsh 113.490 M 13.815 GB 1432 ms 0.036±0.003 2.848±0.114 0.892±0.002 0.527±0.005 0.343±0.009 0.563±0.010

SAW 113.490 M 20.061 GB 1039 ms 0.035±0.002 2.825±0.068 0.899±0.006 0.532±0.006 0.347±0.007 0.560±0.010

CE-SSLr=16 2.235 M 9.220 GB 508 ms 0.030±0.002 2.618±0.061 0.909±0.004 0.537±0.004 0.358±0.005 0.587±0.008

CE-SSLr=4 0.712 M 9.211 GB 506 ms 0.029±0.001 2.602±0.028 0.908±0.003 0.535±0.004 0.356±0.006 0.582±0.008

Ningbo Dataset

MixedTeacher 113.493 M 14.257 GB 840 ms 0.033±0.002 2.934±0.079 0.929±0.003 0.518±0.021 0.341±0.018 0.572±0.026

FixMatch 113.493 M 20.061 GB 1111 ms 0.033±0.002 2.962±0.070 0.926±0.004 0.513±0.024 0.337±0.018 0.563±0.027

FlexMatch 113.493 M 20.061 GB 1083 ms 0.035±0.002 3.038±0.076 0.926±0.004 0.511±0.023 0.332±0.012 0.562±0.017

SoftMatch 113.493 M 20.061 GB 1080 ms 0.034±0.002 2.999±0.081 0.924±0.005 0.513±0.023 0.333±0.014 0.561±0.022

Adsh 113.493 M 13.815 GB 1896 ms 0.035±0.003 3.003±0.111 0.927±0.003 0.511±0.023 0.342±0.011 0.570±0.014

SAW 113.493 M 20.061 GB 1077 ms 0.035±0.002 3.009±0.083 0.925±0.005 0.509±0.025 0.337±0.014 0.565±0.025

CE-SSLr=16 2.234 M 9.235 GB 530 ms 0.029±0.001 2.779±0.027 0.931±0.002 0.523±0.027 0.344±0.010 0.578±0.013

CE-SSLr=4 0.740 M 9.223 GB 528 ms 0.028±0.001 2.741±0.039 0.930±0.002 0.513±0.018 0.346±0.007 0.584±0.009

Chapman Dataset

MixedTeacher 113.487 M 14.257 GB 724 ms 0.040±0.003 2.493±0.077 0.904±0.009 0.544±0.011 0.341±0.007 0.516±0.022

FixMatch 113.487 M 20.061 GB 960 ms 0.042±0.002 2.545±0.048 0.900±0.008 0.534±0.014 0.350±0.013 0.518±0.026

FlexMatch 113.487 M 20.061 GB 937 ms 0.045±0.003 2.620±0.079 0.895±0.014 0.523±0.024 0.333±0.018 0.495±0.025

SoftMatch 113.487 M 20.061 GB 931 ms 0.043±0.003 2.555±0.068 0.894±0.008 0.536±0.011 0.345±0.010 0.518±0.021

Adsh 113.487 M 13.815 GB 957 ms 0.046±0.003 2.649±0.075 0.893±0.009 0.533±0.010 0.341±0.010 0.511±0.014

SAW 113.487 M 20.061 GB 933 ms 0.044±0.004 2.599±0.093 0.900±0.007 0.533±0.011 0.344±0.015 0.518±0.029

CE-SSLr=16 2.205 M 9.223 GB 451 ms 0.037±0.001 2.417±0.035 0.904±0.004 0.556±0.006 0.371±0.010 0.552±0.018

CE-SSLr=4 0.716 M 9.206 GB 451 ms 0.036±0.001 2.404±0.041 0.902±0.006 0.550±0.008 0.365±0.006 0.548±0.010
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Table 16: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-
lines on the base backbone. The average performance on all CVDs within each dataset is shown
across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

FixMatch 9.505 M 187 ms 0.107±0.006 4.292±0.163 0.829±0.004 0.468±0.009 0.280±0.010 0.510±0.016

+ LoRAr=16 0.795 M 204 ms 0.098±0.003 4.003±0.114 0.841±0.009 0.460±0.017 0.279±0.022 0.518±0.031

+ DyLoRAr=16 0.795 M 204 ms 0.098±0.004 3.981±0.084 0.841±0.009 0.456±0.010 0.282±0.017 0.515±0.022

+ AdaLoRAr=16 0.796 M 237 ms 0.096±0.003 3.986±0.110 0.844±0.007 0.461±0.008 0.284±0.015 0.520±0.015

+ IncreLoRAr=16 0.824 M 430 ms 0.088±0.003 3.770±0.056 0.850±0.005 0.460±0.008 0.289±0.011 0.532±0.013

+ LoRAr=4 0.222 M 202 ms 0.092±0.004 3.859±0.124 0.850±0.007 0.467±0.004 0.289±0.014 0.529±0.024

+ DyLoRAr=4 0.222 M 203 ms 0.095±0.002 3.915±0.106 0.843±0.005 0.460±0.009 0.278±0.017 0.518±0.016

+ AdaLoRAr=4 0.222 M 236 ms 0.093±0.003 3.871±0.079 0.849±0.005 0.463±0.008 0.288±0.011 0.528±0.016

+ IncreLoRAr=4 0.246 M 292 ms 0.090±0.001 3.817±0.043 0.847±0.005 0.454±0.006 0.281±0.015 0.521±0.022

CE-SSLr=16 0.510 M 98 ms 0.092±0.002 3.867±0.088 0.855±0.005 0.476±0.006 0.307±0.016 0.551±0.017
CE-SSLr=4 0.183 M 98 ms 0.089±0.003 3.804±0.095 0.853±0.004 0.467±0.006 0.304±0.013 0.553±0.020

PTB-XL Dataset

FixMatch 9.505 M 208 ms 0.038±0.001 2.905±0.061 0.882±0.004 0.510±0.006 0.322±0.007 0.541±0.007

+ LoRAr=16 0.795 M 225 ms 0.033±0.001 2.733±0.034 0.892±0.002 0.520±0.006 0.331±0.005 0.557±0.004

+ DyLoRAr=16 0.795 M 226 ms 0.033±0.001 2.716±0.057 0.894±0.003 0.524±0.003 0.321±0.010 0.553±0.010

+ AdaLoRAr=16 0.796 M 262 ms 0.032±0.001 2.687±0.025 0.896±0.003 0.508±0.009 0.326±0.012 0.552±0.015

+ IncreLoRAr=16 0.825 M 469 ms 0.031±0.001 2.620±0.020 0.903±0.002 0.520±0.004 0.342±0.008 0.573±0.008

+ LoRAr=4 0.222 M 225 ms 0.032±0.001 2.673±0.035 0.898±0.004 0.522±0.006 0.329±0.012 0.554±0.009

+ DyLoRAr=4 0.222 M 225 ms 0.032±0.001 2.668±0.036 0.896±0.003 0.521±0.005 0.328±0.008 0.554±0.008

+ AdaLoRAr=4 0.223 M 263 ms 0.032±0.000 2.696±0.010 0.896±0.002 0.510±0.003 0.323±0.008 0.550±0.012

+ IncreLoRAr=4 0.246 M 322 ms 0.031±0.001 2.630±0.034 0.899±0.004 0.518±0.006 0.338±0.009 0.570±0.010

CE-SSLr=16 0.582 M 110 ms 0.031±0.000 2.641±0.020 0.901±0.003 0.530±0.005 0.346±0.006 0.578±0.006
CE-SSLr=4 0.159 M 109 ms 0.030±0.001 2.626±0.026 0.899±0.004 0.526±0.005 0.346±0.005 0.580±0.006

Ningbo Dataset

FixMatch 9.506 M 217 ms 0.035±0.003 3.025±0.121 0.922±0.009 0.493±0.023 0.321±0.014 0.545±0.020

+ LoRAr=16 0.796 M 234 ms 0.032±0.001 2.864±0.045 0.926±0.002 0.497±0.018 0.326±0.007 0.561±0.008

+ DyLoRAr=16 0.796 M 235 ms 0.032±0.002 2.874±0.083 0.927±0.003 0.498±0.017 0.321±0.011 0.553±0.016

+ AdaLoRAr=16 0.797 M 272 ms 0.032±0.002 2.851±0.054 0.925±0.003 0.487±0.021 0.317±0.017 0.546±0.028

+ IncreLoRAr=16 0.827 M 491 ms 0.030±0.001 2.772±0.045 0.929±0.003 0.499±0.023 0.328±0.011 0.564±0.016

+ LoRAr=4 0.223 M 234 ms 0.031±0.001 2.842±0.046 0.926±0.003 0.489±0.026 0.319±0.013 0.551±0.019

+ DyLoRAr=4 0.223 M 234 ms 0.031±0.001 2.841±0.034 0.924±0.003 0.489±0.020 0.323±0.016 0.556±0.026

+ AdaLoRAr=4 0.224 M 272 ms 0.033±0.001 2.896±0.037 0.923±0.004 0.480±0.018 0.312±0.006 0.543±0.017

+ IncreLoRAr=4 0.247 M 332 ms 0.030±0.001 2.794±0.046 0.927±0.002 0.490±0.025 0.314±0.014 0.551±0.022

CE-SSLr=16 0.550 M 115 ms 0.030±0.001 2.805±0.063 0.928±0.002 0.505±0.019 0.334±0.011 0.569±0.014
CE-SSLr=4 0.168 M 114 ms 0.030±0.001 2.776±0.028 0.929±0.001 0.500±0.017 0.327±0.010 0.567±0.011

Chapman Dataset

FixMatch 9.504 M 186 ms 0.046±0.004 2.626±0.096 0.897±0.006 0.520±0.009 0.339±0.012 0.518±0.025

+ LoRAr=16 0.795 M 201 ms 0.041±0.002 2.493±0.058 0.899±0.005 0.521±0.014 0.338±0.011 0.515±0.015

+ DyLoRAr=16 0.795 M 202 ms 0.042±0.004 2.512±0.091 0.899±0.003 0.524±0.011 0.336±0.009 0.511±0.015

+ AdaLoRAr=16 0.795 M 234 ms 0.042±0.001 2.520±0.039 0.883±0.011 0.503±0.020 0.338±0.018 0.498±0.019

+ IncreLoRAr=16 0.822 M 426 ms 0.041±0.003 2.484±0.072 0.884±0.017 0.495±0.022 0.334±0.019 0.504±0.029

+ LoRAr=4 0.222 M 201 ms 0.038±0.001 2.427±0.039 0.902±0.006 0.522±0.010 0.338±0.011 0.523±0.012

+ DyLoRAr=4 0.222 M 200 ms 0.039±0.002 2.445±0.057 0.898±0.010 0.518±0.013 0.331±0.008 0.506±0.016

+ AdaLoRAr=4 0.222 M 233 ms 0.039±0.002 2.457±0.044 0.891±0.010 0.512±0.014 0.345±0.014 0.521±0.018

+ IncreLoRAr=4 0.246 M 288 ms 0.039±0.001 2.446±0.039 0.888±0.008 0.502±0.015 0.339±0.014 0.505±0.022

CE-SSLr=16 0.581 M 97 ms 0.040±0.002 2.483±0.055 0.896±0.006 0.536±0.004 0.355±0.005 0.530±0.008
CE-SSLr=4 0.180 M 97 ms 0.038±0.002 2.418±0.049 0.898±0.005 0.526±0.006 0.352±0.009 0.530±0.012
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Table 17: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-
lines on the medium backbone. The average performance on all CVDs within each dataset is shown
across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

FixMatch 50.493 M 499 ms 0.096±0.006 4.027±0.109 0.850±0.009 0.499±0.014 0.299±0.016 0.529±0.016

+ LoRAr=16 2.135 M 545 ms 0.093±0.003 3.943±0.094 0.854±0.005 0.494±0.006 0.300±0.016 0.534±0.024

+ DyLoRAr=16 2.135 M 542 ms 0.092±0.003 3.913±0.117 0.851±0.007 0.494±0.012 0.296±0.015 0.533±0.021

+ AdaLoRAr=16 2.136 M 585 ms 0.096±0.004 4.013±0.095 0.847±0.008 0.478±0.014 0.296±0.009 0.533±0.008

+ IncreLoRAr=16 2.164 M 977 ms 0.085±0.003 3.683±0.100 0.859±0.007 0.482±0.005 0.299±0.011 0.553±0.014

+ LoRAr=4 0.597 M 543 ms 0.092±0.003 3.895±0.075 0.850±0.007 0.485±0.006 0.292±0.021 0.522±0.021

+ DyLoRAr=4 0.597 M 542 ms 0.093±0.006 3.910±0.159 0.851±0.006 0.483±0.008 0.292±0.017 0.532±0.021

+ AdaLoRAr=4 0.598 M 584 ms 0.093±0.005 3.933±0.135 0.850±0.005 0.486±0.005 0.295±0.008 0.533±0.012

+ IncreLoRAr=4 0.621 M 749 ms 0.084±0.003 3.660±0.114 0.861±0.007 0.486±0.008 0.301±0.007 0.552±0.013

CE-SSLr=16 1.568 M 243 ms 0.086±0.004 3.740±0.134 0.862±0.006 0.507±0.007 0.317±0.022 0.561±0.024
CE-SSLr=4 0.458 M 241 ms 0.085±0.002 3.741±0.068 0.862±0.007 0.503±0.006 0.316±0.013 0.560±0.015

PTB-XL Dataset

FixMatch 50.494 M 553 ms 0.034±0.002 2.767±0.053 0.898±0.003 0.536±0.006 0.340±0.006 0.556±0.010

+ LoRAr=16 2.135 M 603 ms 0.030±0.001 2.632±0.050 0.906±0.005 0.532±0.005 0.352±0.008 0.571±0.012

+ DyLoRAr=16 2.135 M 603 ms 0.031±0.001 2.683±0.060 0.903±0.006 0.533±0.008 0.344±0.017 0.567±0.017

+ AdaLoRAr=16 2.137 M 652 ms 0.031±0.001 2.636±0.022 0.905±0.004 0.529±0.006 0.350±0.006 0.571±0.005

+ IncreLoRAr=16 2.005 M 1090 ms 0.029±0.001 2.567±0.029 0.908±0.004 0.540±0.007 0.364±0.007 0.586±0.013

+ LoRAr=4 0.598 M 602 ms 0.030±0.001 2.609±0.056 0.908±0.005 0.530±0.006 0.345±0.008 0.571±0.013

+ DyLoRAr=4 0.598 M 600 ms 0.030±0.001 2.607±0.038 0.907±0.003 0.530±0.005 0.342±0.022 0.564±0.016

+ AdaLoRAr=4 0.598 M 650 ms 0.030±0.001 2.610±0.024 0.907±0.003 0.534±0.005 0.354±0.003 0.578±0.006

+ IncreLoRAr=4 0.623 M 830 ms 0.028±0.000 2.548±0.009 0.912±0.002 0.542±0.005 0.362±0.013 0.586±0.012

CE-SSLr=16 1.485 M 271 ms 0.027±0.001 2.539±0.033 0.913±0.003 0.550±0.004 0.369±0.005 0.588±0.003
CE-SSLr=4 0.505 M 270 ms 0.027±0.001 2.529±0.019 0.914±0.003 0.547±0.003 0.372±0.006 0.599±0.010

Ningbo Dataset

FixMatch 50.496 M 572 ms 0.031±0.002 2.869±0.081 0.931±0.003 0.531±0.021 0.349±0.014 0.575±0.015

+ LoRAr=16 2.137 M 625 ms 0.028±0.001 2.759±0.044 0.927±0.003 0.518±0.017 0.345±0.008 0.580±0.012

+ DyLoRAr=16 2.137 M 625 ms 0.028±0.002 2.735±0.061 0.928±0.004 0.502±0.022 0.331±0.009 0.564±0.014

+ AdaLoRAr=16 2.139 M 674 ms 0.030±0.001 2.799±0.084 0.927±0.002 0.507±0.020 0.330±0.010 0.565±0.018

+ IncreLoRAr=16 2.145 M 1124 ms 0.027±0.001 2.679±0.044 0.932±0.002 0.521±0.014 0.337±0.008 0.569±0.015

+ LoRAr=4 0.600 M 624 ms 0.028±0.001 2.722±0.058 0.929±0.002 0.516±0.014 0.338±0.015 0.565±0.016

+ DyLoRAr=4 0.600 M 621 ms 0.028±0.001 2.717±0.039 0.929±0.002 0.510±0.018 0.335±0.011 0.569±0.017

+ AdaLoRAr=4 0.600 M 672 ms 0.030±0.003 2.790±0.083 0.927±0.004 0.505±0.019 0.325±0.006 0.558±0.017

+ IncreLoRAr=4 0.622 M 858 ms 0.027±0.001 2.667±0.018 0.931±0.001 0.519±0.013 0.338±0.010 0.569±0.018

CE-SSLr=16 1.705 M 282 ms 0.027±0.001 2.701±0.051 0.933±0.003 0.531±0.018 0.356±0.013 0.588±0.021
CE-SSLr=4 0.507 M 282 ms 0.026±0.001 2.661±0.058 0.934±0.004 0.525±0.018 0.352±0.013 0.587±0.020

Chapman Dataset

FixMatch 50.492 M 495 ms 0.038±0.004 2.439±0.092 0.905±0.010 0.538±0.011 0.357±0.009 0.522±0.020

+ LoRAr=16 2.134 M 540 ms 0.038±0.002 2.424±0.053 0.899±0.009 0.532±0.021 0.345±0.009 0.514±0.024

+ DyLoRAr=16 2.134 M 540 ms 0.037±0.004 2.401±0.095 0.903±0.008 0.531±0.013 0.345±0.013 0.518±0.027

+ AdaLoRAr=16 2.135 M 583 ms 0.037±0.002 2.394±0.066 0.894±0.009 0.511±0.020 0.343±0.004 0.493±0.013

+ IncreLoRAr=16 2.159 M 962 ms 0.035±0.001 2.337±0.034 0.889±0.010 0.515±0.013 0.342±0.011 0.496±0.017

+ LoRAr=4 0.596 M 539 ms 0.036±0.002 2.372±0.051 0.901±0.005 0.535±0.007 0.357±0.010 0.521±0.022

+ DyLoRAr=4 0.596 M 537 ms 0.036±0.002 2.371±0.034 0.903±0.005 0.528±0.015 0.350±0.011 0.515±0.020

+ AdaLoRAr=4 0.597 M 580 ms 0.036±0.002 2.362±0.029 0.901±0.008 0.521±0.018 0.344±0.006 0.508±0.006

+ IncreLoRAr=4 0.618 M 746 ms 0.035±0.002 2.348±0.046 0.888±0.010 0.510±0.016 0.344±0.008 0.502±0.020

CE-SSLr=16 1.601 M 241 ms 0.035±0.002 2.362±0.049 0.909±0.007 0.553±0.013 0.367±0.008 0.540±0.019
CE-SSLr=4 0.402 M 240 ms 0.034±0.001 2.334±0.033 0.908±0.008 0.538±0.014 0.361±0.009 0.531±0.019
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Table 18: Performance comparisons between CE-SSL and parameter-efficient semi-supervised base-
lines on the large backbone. The average performance on all CVDs within each dataset is shown
across six seeds. The standard deviation is also reported for the evaluation metrics.

Methods Params ↓ Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

FixMatch 113.489 M 966 ms 0.100±0.005 4.147±0.113 0.843±0.007 0.493±0.008 0.293±0.011 0.518±0.015

+ LoRAr=16 3.201 M 1023 ms 0.094±0.003 3.983±0.134 0.849±0.004 0.492±0.006 0.294±0.010 0.530±0.020

+ DyLoRAr=16 3.201 M 1024 ms 0.091±0.003 3.911±0.070 0.849±0.005 0.492±0.008 0.297±0.017 0.534±0.022

+ AdaLoRAr=16 3.203 M 1025 ms 0.093±0.003 3.972±0.119 0.842±0.003 0.482±0.008 0.296±0.008 0.532±0.010

+ IncreLoRAr=16 3.245 M 1575 ms 0.084±0.002 3.708±0.075 0.851±0.003 0.493±0.008 0.309±0.013 0.543±0.021

+ LoRAr=4 0.896 M 1021 ms 0.092±0.005 3.895±0.130 0.851±0.005 0.493±0.007 0.296±0.010 0.530±0.012

+ DyLoRAr=4 0.896 M 1021 ms 0.090±0.004 3.864±0.133 0.849±0.006 0.495±0.008 0.301±0.010 0.535±0.008

+ AdaLoRAr=4 0.896 M 1021 ms 0.089±0.002 3.852±0.069 0.847±0.004 0.487±0.003 0.297±0.018 0.527±0.024

+ IncreLoRAr=4 0.921 M 1348 ms 0.082±0.003 3.666±0.086 0.856±0.006 0.497±0.007 0.308±0.010 0.542±0.016

CE-SSLr=16 2.658 M 453 ms 0.085±0.005 3.778±0.140 0.857±0.004 0.509±0.007 0.322±0.009 0.565±0.010
CE-SSLr=4 0.761 M 453 ms 0.084±0.003 3.742±0.117 0.859±0.004 0.506±0.007 0.323±0.004 0.561±0.002

PTB-XL Dataset

FixMatch 113.490 M 1072 ms 0.035±0.003 2.805±0.102 0.894±0.004 0.521±0.006 0.342±0.007 0.560±0.012

+ LoRAr=16 3.202 M 1135 ms 0.030±0.001 2.635±0.023 0.903±0.002 0.522±0.006 0.332±0.010 0.550±0.014

+ DyLoRAr=16 3.202 M 1135 ms 0.031±0.001 2.674±0.030 0.906±0.002 0.528±0.002 0.346±0.010 0.566±0.008

+ AdaLoRAr=16 3.203 M 1138 ms 0.033±0.000 2.716±0.019 0.894±0.003 0.517±0.006 0.345±0.008 0.558±0.006

+ IncreLoRAr=16 3.167 M 1758 ms 0.031±0.001 2.660±0.030 0.898±0.004 0.519±0.004 0.348±0.012 0.566±0.012

+ LoRAr=4 0.897 M 1133 ms 0.030±0.001 2.621±0.026 0.904±0.003 0.523±0.006 0.342±0.012 0.564±0.014

+ DyLoRAr=4 0.897 M 1133 ms 0.030±0.001 2.632±0.030 0.903±0.004 0.525±0.004 0.339±0.011 0.570±0.010

+ AdaLoRAr=4 0.897 M 1134 ms 0.032±0.001 2.699±0.052 0.897±0.004 0.516±0.004 0.339±0.007 0.567±0.007

+ IncreLoRAr=4 0.920 M 1493 ms 0.030±0.000 2.631±0.016 0.901±0.002 0.524±0.005 0.351±0.005 0.573±0.010

CE-SSLr=16 2.235 M 508 ms 0.030±0.002 2.618±0.061 0.909±0.004 0.537±0.004 0.358±0.005 0.587±0.008
CE-SSLr=4 0.712 M 506 ms 0.029±0.001 2.602±0.028 0.908±0.003 0.535±0.004 0.356±0.006 0.582±0.008

Ningbo Dataset

FixMatch 113.493 M 1111 ms 0.033±0.002 2.962±0.070 0.926±0.004 0.513±0.024 0.337±0.018 0.563±0.027

+ LoRAr=16 3.205 M 1177 ms 0.030±0.002 2.845±0.073 0.925±0.003 0.508±0.023 0.336±0.009 0.566±0.017

+ DyLoRAr=16 3.205 M 1176 ms 0.030±0.002 2.834±0.093 0.927±0.003 0.504±0.024 0.326±0.013 0.553±0.019

+ AdaLoRAr=16 3.206 M 1180 ms 0.031±0.001 2.855±0.074 0.920±0.002 0.491±0.017 0.315±0.011 0.545±0.018

+ IncreLoRAr=16 3.247 M 1766 ms 0.028±0.001 2.750±0.030 0.926±0.004 0.502±0.024 0.330±0.009 0.562±0.017

+ LoRAr=4 0.900 M 1173 ms 0.029±0.001 2.802±0.053 0.925±0.002 0.510±0.023 0.332±0.010 0.563±0.018

+ DyLoRAr=4 0.900 M 1174 ms 0.030±0.001 2.803±0.035 0.926±0.003 0.505±0.028 0.330±0.010 0.564±0.020

+ AdaLoRAr=4 0.900 M 1175 ms 0.031±0.003 2.846±0.128 0.922±0.002 0.495±0.023 0.326±0.012 0.555±0.023

+ IncreLoRAr=4 0.923 M 1545 ms 0.028±0.001 2.736±0.028 0.927±0.003 0.499±0.016 0.329±0.011 0.561±0.017

CE-SSLr=16 2.234 M 530 ms 0.029±0.001 2.779±0.027 0.931±0.002 0.523±0.027 0.344±0.010 0.578±0.013
CE-SSLr=4 0.740 M 528 ms 0.028±0.001 2.741±0.039 0.930±0.002 0.513±0.018 0.346±0.007 0.584±0.009

Chapman Dataset

FixMatch 113.487 M 960 ms 0.042±0.002 2.545±0.048 0.900±0.008 0.534±0.014 0.350±0.013 0.518±0.026

+ LoRAr=16 3.200 M 1016 ms 0.040±0.003 2.501±0.079 0.896±0.004 0.541±0.005 0.343±0.015 0.509±0.024

+ DyLoRAr=16 3.200 M 1016 ms 0.040±0.004 2.484±0.080 0.897±0.006 0.537±0.009 0.352±0.006 0.524±0.021

+ AdaLoRAr=16 3.201 M 1018 ms 0.037±0.002 2.416±0.039 0.894±0.003 0.531±0.011 0.343±0.011 0.509±0.021

+ IncreLoRAr=16 3.231 M 1541 ms 0.033±0.002 2.309±0.037 0.895±0.008 0.539±0.014 0.355±0.010 0.517±0.017

+ LoRAr=4 0.894 M 1016 ms 0.038±0.001 2.452±0.039 0.901±0.006 0.542±0.008 0.338±0.015 0.512±0.028

+ DyLoRAr=4 0.894 M 1015 ms 0.037±0.003 2.415±0.068 0.899±0.005 0.533±0.015 0.341±0.013 0.505±0.021

+ AdaLoRAr=4 0.895 M 1015 ms 0.036±0.001 2.412±0.039 0.898±0.005 0.543±0.007 0.341±0.007 0.517±0.019

+ IncreLoRAr=4 0.920 M 1340 ms 0.033±0.001 2.316±0.028 0.897±0.007 0.539±0.025 0.360±0.017 0.528±0.019

CE-SSLr=16 2.205 M 451 ms 0.037±0.001 2.417±0.035 0.904±0.004 0.556±0.006 0.371±0.010 0.552±0.018
CE-SSLr=4 0.716 M 451 ms 0.036±0.001 2.404±0.041 0.902±0.006 0.550±0.008 0.365±0.006 0.548±0.010
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Figure 7: Paired t-test results for model performance on the base backbone. Specifically, we use
the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models
on four datasets and six evaluation metrics. Each circle represents a paired t-test result between
CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided
p-value) of the test results after false discovery rate (FDR) correction for multiple testing. The red
circle indicates that the corresponding two-sided p-value is less than 0.05.
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Figure 8: Paired t-test results for model performance on the medium backbone. Specifically, we use
the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models
on four datasets and six evaluation metrics. Each circle represents a paired t-test result between
CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided
p-value) of the test results after false discovery rate (FDR) correction for multiple testing. The red
circle indicates that the corresponding two-sided p-value is less than 0.05.
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Figure 9: Paired t-test results for model performance on the large backbone. Specifically, we use
the paired t-test to check if the proposed CE-SSL significantly outperforms other baseline models
on four datasets and six evaluation metrics. Each circle represents a paired t-test result between
CE-SSL and a baseline model. The colors of the circles denote the significance levels (two-sided
p-value) of the test results after false discovery rate (FDR) correction for multiple testing. The red
circle indicates that the corresponding two-sided p-value is less than 0.05.
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Figure 10: Evaluation of the average detection performance and computational efficiency of various
semi-supervised methods across four downstream datasets. Specifically, the macro Fβ=2 scores are
used to evaluate their CVDs detection performance. Additionally, the average training time per it-
eration and the maximum GPU memory usage are presented to evaluate computational efficiency.
Methods exceeding the GPU memory thresholds, indicated by the red dashed lines, are not deploy-
able on the corresponding NVIDIA GPU cards.
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Table 19: Ablation study of the proposed CE-SSL on the base backbone. ’w/o random deactivation’
represents the CE-SSL without the random deactivation technique, and the deactivation probability
p is set to zero. ’w/o rank allocation’ represents the CE-SSL without the one-shot rank allocation,
and all pre-trained weights are updated with the initial rank r. ’w/o semi-supervised BN’ denotes the
CE-SSL without the semi-supervised batch normalization for lightweight semi-supervised learning.

Methods Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

w/o random deactivation 104ms 0.095±0.004 3.954±0.163 0.848±0.007 0.470±0.007 0.294±0.015 0.536±0.021

w/o rank allocation 97ms 0.092±0.002 3.848±0.049 0.849±0.007 0.467±0.009 0.294±0.016 0.537±0.019

w/o semi-supervised BN 78ms 0.092±0.002 3.895±0.104 0.854±0.004 0.475±0.011 0.297±0.021 0.536±0.029

CE-SSL 98ms 0.092±0.002 3.867±0.088 0.855±0.005 0.476±0.006 0.307±0.016 0.551±0.017

PTB-XL Dataset

w/o random deactivation 115ms 0.034±0.002 2.741±0.062 0.890±0.005 0.516±0.009 0.328±0.012 0.554±0.011

w/o rank allocation 108ms 0.032±0.001 2.692±0.046 0.895±0.003 0.530±0.005 0.332±0.011 0.560±0.014

w/o semi-supervised BN 87ms 0.031±0.002 2.670±0.064 0.899±0.004 0.532±0.006 0.332±0.010 0.565±0.007

CE-SSL 110ms 0.031±0.000 2.641±0.020 0.901±0.003 0.530±0.005 0.346±0.006 0.578±0.006

Ningbo Dataset

w/o random deactivation 121ms 0.032±0.003 2.887±0.085 0.925±0.005 0.497±0.015 0.321±0.013 0.553±0.017

w/o rank allocation 114ms 0.030±0.001 2.801±0.023 0.928±0.002 0.497±0.021 0.325±0.010 0.563±0.014

w/o semi-supervised BN 92ms 0.031±0.001 2.821±0.058 0.929±0.003 0.499±0.017 0.325±0.012 0.559±0.018

CE-SSL 115ms 0.030±0.001 2.805±0.063 0.928±0.002 0.505±0.019 0.334±0.011 0.569±0.014

Chapman Dataset

w/o random deactivation 102ms 0.041±0.003 2.505±0.080 0.895±0.010 0.526±0.005 0.335±0.012 0.514±0.015

w/o rank allocation 96ms 0.041±0.001 2.503±0.040 0.892±0.008 0.527±0.012 0.346±0.007 0.514±0.018

w/o semi-supervised BN 77ms 0.040±0.002 2.468±0.050 0.896±0.010 0.533±0.010 0.350±0.020 0.527±0.026

CE-SSL 97ms 0.040±0.002 2.483±0.055 0.896±0.006 0.536±0.004 0.355±0.005 0.530±0.008
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Figure 11: Effect of the deactivation probability. The averaged performance and training time of the
CE-SSL across four datasets and six random seeds under different deactivation probabilities p are
presented.
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Figure 12: Effect of the rank initialization. Averaged performance of the CE-SSL across four
datasets and six random seeds under different initial ranks r.
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Table 20: Ablation study of the proposed CE-SSL on the medium backbone. ’w/o random deac-
tivation’ represents the CE-SSL without the random deactivation technique, and the deactivation
probability p is set to zero. ’w/o rank allocation’ represents the CE-SSL without the one-shot rank
allocation, and all pre-trained weights are updated with the initial rank r. ’w/o semi-supervised
BN’ denotes the CE-SSL without the semi-supervised batch normalization for lightweight semi-
supervised learning.

Methods Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

w/o random deactivation 259ms 0.091±0.004 3.887±0.138 0.855±0.005 0.497±0.010 0.304±0.015 0.540±0.022

w/o rank allocation 241ms 0.087±0.003 3.795±0.110 0.861±0.005 0.506±0.004 0.306±0.017 0.551±0.022

w/o semi-supervised BN 189ms 0.085±0.005 3.750±0.159 0.864±0.007 0.506±0.008 0.308±0.021 0.548±0.024

CE-SSL 243ms 0.086±0.004 3.740±0.134 0.862±0.006 0.507±0.007 0.317±0.022 0.561±0.024

PTB-XL Dataset

w/o random deactivation 289ms 0.030±0.002 2.630±0.064 0.905±0.003 0.534±0.006 0.351±0.006 0.577±0.013

w/o rank allocation 269ms 0.028±0.001 2.563±0.028 0.912±0.005 0.540±0.006 0.351±0.012 0.575±0.016

w/o semi-supervised BN 213ms 0.028±0.001 2.563±0.035 0.911±0.003 0.547±0.005 0.358±0.010 0.582±0.016

CE-SSL 271ms 0.027±0.001 2.539±0.033 0.913±0.003 0.550±0.004 0.369±0.005 0.588±0.003

Ningbo Dataset

w/o random deactivation 301ms 0.028±0.001 2.744±0.046 0.930±0.003 0.516±0.021 0.336±0.017 0.558±0.029

w/o rank allocation 281ms 0.028±0.001 2.736±0.055 0.932±0.003 0.518±0.022 0.343±0.017 0.574±0.023

w/o semi-supervised BN 224ms 0.027±0.000 2.671±0.028 0.934±0.002 0.525±0.020 0.346±0.018 0.576±0.024

CE-SSL 282ms 0.027±0.001 2.701±0.051 0.933±0.003 0.531±0.018 0.356±0.013 0.588±0.021

Chapman Dataset

w/o random deactivation 256ms 0.036±0.002 2.388±0.043 0.911±0.006 0.549±0.016 0.353±0.009 0.530±0.013

w/o rank allocation 240ms 0.037±0.002 2.397±0.055 0.906±0.007 0.537±0.010 0.349±0.014 0.515±0.022

w/o semi-supervised BN 188ms 0.035±0.001 2.349±0.019 0.912±0.006 0.555±0.016 0.356±0.007 0.525±0.018

CE-SSL 241ms 0.035±0.002 2.362±0.049 0.909±0.007 0.553±0.013 0.367±0.008 0.540±0.019
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Figure 13: Effect of warmup epochs for rank allocation. Averaged performance of the CE-SSL
across four datasets and six random seeds under different numbers of warmup epochs for rank allo-
cation.
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Table 21: Ablation study of the proposed CE-SSL on the large backbone. ’w/o random deactivation’
represents the CE-SSL without the random deactivation technique, and the deactivation probability
p is set to zero. ’w/o rank allocation’ represents the CE-SSL without the one-shot rank allocation,
and all pre-trained weights are updated with the initial rank r. ’w/o semi-supervised BN’ denotes the
CE-SSL without the semi-supervised batch normalization for lightweight semi-supervised learning.

Methods Time/iter ↓ Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

w/o random deactivation 483ms 0.092±0.005 3.948±0.164 0.850±0.005 0.498±0.006 0.309±0.008 0.547±0.013

w/o rank allocation 450ms 0.088±0.003 3.830±0.100 0.855±0.002 0.499±0.005 0.312±0.009 0.551±0.016

w/o semi-supervised BN 332ms 0.088±0.005 3.839±0.129 0.855±0.005 0.506±0.008 0.314±0.014 0.552±0.018

CE-SSL 453ms 0.085±0.005 3.778±0.140 0.857±0.004 0.509±0.007 0.322±0.009 0.565±0.010

PTB-XL Dataset

w/o random deactivation 542ms 0.030±0.001 2.612±0.026 0.907±0.004 0.531±0.004 0.349±0.008 0.572±0.012

w/o rank allocation 501ms 0.030±0.001 2.642±0.038 0.909±0.005 0.534±0.003 0.340±0.016 0.562±0.019

w/o semi-supervised BN 373ms 0.030±0.001 2.630±0.046 0.910±0.003 0.540±0.006 0.360±0.010 0.592±0.008

CE-SSL 508ms 0.030±0.002 2.618±0.061 0.909±0.004 0.537±0.004 0.358±0.005 0.587±0.008

Ningbo Dataset

w/o random deactivation 563ms 0.031±0.002 2.860±0.094 0.927±0.004 0.513±0.026 0.333±0.013 0.567±0.022

w/o rank allocation 523ms 0.029±0.001 2.757±0.043 0.930±0.001 0.514±0.026 0.335±0.013 0.568±0.022

w/o semi-supervised BN 392ms 0.028±0.001 2.759±0.039 0.931±0.002 0.519±0.024 0.343±0.013 0.576±0.021

CE-SSL 529ms 0.029±0.001 2.779±0.027 0.931±0.002 0.523±0.027 0.344±0.010 0.578±0.013

Chapman Dataset

w/o random deactivation 480ms 0.038±0.001 2.438±0.041 0.905±0.004 0.549±0.006 0.348±0.013 0.529±0.021

w/o rank allocation 447ms 0.038±0.002 2.448±0.060 0.904±0.008 0.551±0.006 0.352±0.009 0.520±0.016

w/o semi-supervised BN 329ms 0.037±0.002 2.411±0.051 0.903±0.006 0.554±0.009 0.366±0.005 0.546±0.011

CE-SSL 450ms 0.037±0.001 2.417±0.035 0.904±0.004 0.556±0.006 0.371±0.010 0.552±0.018
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Figure 14: Effect of the ratio of important weight matrices. We adjust the ratio of the important
weight matrices to the total number of weight matrices and report the averaged performance across
four datasets and six random seeds. Important weights are adapted with rank r while the remaining
weights are adapted with rank 1

2r.
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Figure 15: Effect of the batch size of unlabeled data. NB : NU denotes the ratio between the
batch size of labeled data and unlabeled data during model training. The averaged performance of
different semi-supervised methods across four datasets and six random seeds is presented. For sim-
plicity, ’MixedT,’ ’SoftM,’ ’FixM,’ and ’FlexM’ denote the MixedTeacher, SoftMatch, FixMatch,
and FlexMatch methods, respectively.
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Figure 16: Effect of the ratio of labeled samples for model training. We adjust the ratio of the labeled
samples in the dataset from 0.05 to 0.15 and report the averaged performance of different models
across four datasets and six random seeds.
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(c) Comparisons between CE-SSL and parameter-efficient semi-supervised baselines (labeled ratio = 0.10)
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(d) Comparisons between CE-SSL and parameter-efficient semi-supervised baselines (labeled ratio = 0.15)

Figure 17: Performance comparisons between CE-SSL and the baseline models under various la-
beled ratios using the base backbone.
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Figure 18: The rank distributions generated by the proposed one-shot rank allocation method on
four datasets using the base backbone. Specifically, we visualize the allocated rank of each block in
the backbone network, which is the average rank of the incremental matrices within the block. For
simplicity, we present the abbreviations of different blocks.(’Conv1’: the 1-st convolution block;
’Att1’: the 1-st self-attention block ; ’Cls’: classification block.
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