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ABSTRACT

Among the sequential modeling issues, the ability to model the long-term depen-
dency remains a significant issue yet to be overcome. Although, recurrent net-
works extract this information via a recurrent connection, the training step also
considers the temporal connection, which reduces the efficiency. However, a tem-
poral connection network (TCN) exploits the benefit of parallelization of con-
volution and consequently models the sequential information via causal-dilated
connection of layers. Moreover, Transformer has exhibited great ability to capture
long-term dependency. Thus, in this study, based on the TCN model, the atten-
tion blocks in Transformer were introduced to form a model called TransTCN.
TransTCN models the sequential information considering attention modules. The
model was evaluated across a wide range of the tasks in time series, which are
commonly used to the benchmark of TCN and recurrent networks. To the best
of our knowledge, TransTCN is the first framework to combine the attention in
transformer with TCN to achieve a SOTA performance. The experimental results
showed that the perplexity of the word-level prediction on PennTreebank reached
only 1.33 while TCN achieved 87.90, which is 66 times of the original TCN. In
addition, nearly all loss and perplexity/bpc was improved on other datasets that are
commonly used in TCN, except for several datasets wherein our approach main-
tained performance similar to the original TCN. Furthermore, the training process
of TransTCN converges faster than that of TCN.

1 INTRODUCTION

The modeling of long-term dependency information in time sequence series tasks has always been
a research focus area, because the memory of a long-term relationship can better predict the next
step of the time series. Sequential modeling problems have been a extensively studied and have
utilized technology, such as language modeling(Peters et al., 2018), neural machine translation(Cho
et al., 2014), and polyphonic music generation(Boulanger-Lewandowski et al., 2012). The sequen-
tial modeling problems must be overcome to model the long-term dependency. Traditionally, un-
supervised and semi-supervised pre-training methods(Dai & Le, 2015)(Radford et al., 2018) have
been employed to extract the dependency in the series. However, a neural network is used to extract
the long-term dependency in sequential series such as BERT(Devlin et al., 2018), which is a giant
network having several parameters, and the long-term dependency information can be memorized
owing to the capability of the model. There exist neural models with fewer parameters than BERT
such as RNN(Goodfellow et al., 2016) and LSTM(Greff et al., 2016a), but the training process is
slow and the ability to capture the long-term dependency is limited as well.

Transformer exhibits a good ability in dealing with problems within sequential series, owing to
its attention mechanism with the strong capacity to memory long-term dependency(Vaswani et al.,
2017). The BERT model uses the Transformer to build a language model and achieves the SOTA
performance of natural language processing(Devlin et al., 2018). However, training this model re-
quires considerable computing resources and a multitude of datasets. Moreover, the training process
converges slowly, thereby limiting its application under practical conditions for forwarding tasks.
However, the attention block mechanism is a source of inspiration, as it can be used to capture long-
term dependency information in other models, and thereby improve the prediction performance of
time series models.
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For sequential problems, the cyclic autoregressive structure of RNN can be used to model and ex-
press the structure well(Goodfellow et al., 2016). However, extraction of long-range dependence
information as well training remain challenging (Pascanu et al., 2013). Moreover, there is a prob-
lem with the internal design of RNN. The network only reads and parses one word (or character)
of the input text at one time, requiring the deep neural network to wait for the previous word to be
processed before the next word is processed. This implies that RNN is unable to perform massive
parallel processing like CNN, particularly when performing bidirectional text processing. Further-
more, this implies that RNN requires high computational power because all intermediate results must
be saved before the entire task is completed. In contrast, applying the convolution to the modeling
of sequential problems to build Temporal Convolutional Network (TCN) (Bai et al., 2018) achieves
results equivalent to or exceeding that of RNN models. The advantage of CNN is exploited wherein
the calculation is independent of the information of the previous time, and thus, they can be parallel.

However, TCN is still affected by the convolution kernel function when dealing with sequential
problems, and the receptive field is limited, which makes the capturing of long-range dependent
information a challenge. Therefore, as a solution, we considered integrating the attention mechanism
in the Transformer into TCN, such that TCN can better capture long-range dependency information
and accurately encode and utilize the sequential information by position encoding.

To the best of our knowledge, this study is the first framework to combine the attention in transformer
with TCN to achieve a SOTA performance. The experimental results on the typical test dataset of
TCN indicated that our method is better than traditional TCN in terms of reduced training speed
of loss function and the final convergence value. The TCN achieved a perplexity greater than 87.9
for the word-level prediction on PennTreebank, and the Transformer-based model Transformer-XL
reaches perplexity of 54.52(Dai et al., 2019). However, the TransTCN achieved 66 times of per-
plexity better than that of the original TCN. In addition, nearly all loss and perplexity/bpc was also
improved on other common datasets, except for several datasets wherein our approach maintained a
performance similar to the original TCN.

2 RELATED WORK

Recurrent networks capture the information in the time dimension but are weak for long-term mem-
ory and are notoriously difficult to train (Pascanu et al., 2013). Consequently, LSTM was proposed
to extract the long-term dependency for a sequence, and was enhanced in length dependence. How-
ever, capturing longer dependencies was a challenge, and it had several parameters(Greff et al.,
2016a). In contrast, TCN achieved the same performance as LSTM with fewer parameters and less
training cost(Bai et al., 2018). TCN is an empirical evaluation of generic convolutional and recur-
rent architectures to process the sequence tasks, containing dilations and residual connections of
causal convolutions(Bai et al., 2018). Further, MS-TCN is a multi-stage architecture based on TCN
for similar tasks such as the temporal action segmentation task(Farha & Gall, 2019). Each stage of
MS-TCN considers an initial prediction from the previous stage, and the first stage is a frame-wise
feature of the task. Thus, the probability output of the first stage is the input of the second stage, and
MS-TCN is suitable for temporal action segmentation tasks. Furthermore, Transformer can maintain
long-term dependencies and possesses the ability to tap the impact of different locations(Vaswani
et al., 2017).

In addition, Transformer can deal with long-range dependencies, thus, it exhibits better performance
for sequence problems. However, it requires a multitude of parameters. Moreover, the ability to
capture long-range dependence requires a multitude of datasets for training, and the training time is
longer. In addition to the sequential issues, Transformer can also deal with problems in the computer
vision field, which was first introduced by (Dosovitskiy et al., 2020). Moreover, the object detection
and 3D object detection can be solved using a Transformer (Carion et al., 2020)(Pan et al., 2021).

Further, the Transformer has a wide range of applications, and it is necessary to reduce attention
module calculation further. Several studies have focused on improving the training and forwarding
speed of the Transformer and reducing the corresponding parameters without compromising much
on performance. Performers were employed to decompose the matrices of keys and queries into
a lower-dimensional space to reduce the complexity of both space and time (Choromanski et al.,
2020). Furthermore, a linear kernel attention mechanism was proposed in (Schlag et al., 2021),
which utilizes the memory to store the dot product of keys and queries to reduce number of operation
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iterations. In addition, DeLighT uses the extension of the attention dimension and reduces the steps
to replace the multi-head with a single head(Mehta et al., 2020).

As is widely known, training a deep and large network is difficult. One approach to solving this
problem is to modify the structure, while another is to adjust the reasonable width and depth of
the existing structure. ResNet is a useful structure for deep networks that enables fast convergence
to ideal problem solution (He et al., 2016). Moreover, a high-order ResNet can further extend the
performance of vanilla ResNet(Luo et al., 2021a) and can fundamentally solve this problem to find a
way to deduce reasonable width, depth, and network structure in theory(Wu et al., 2019). The width
of a deep neural network causes the network parameters to appear closer to Gaussian distribution,
while the increasing depth can facilitate the network in constructing more complex kernel function
mapping(Roberts et al., 2021). Therefore, along with depth the width needs to be carefully selected
and tuned as a wider network might be more effective(Xue et al., 2021).

2.1 DILATED CAUSAL CONVOLUTION IN TCN

TCN is designed based on the principle that there must be no leakage from the future to the past. The
primary architecture within the TCN is the dilated causal convolution. In addition, TCN contains a
residual connection between the input and output layers.

There exist several operators in dilated causal convolution: padding, causal convolution, and dilated
convolution. First, a group of padding is added at the front of the input embedding sequence. Second,
a subsequence with the length of the kernel size forms the hidden state via causal convolution. These
hidden states serve as a sequence, and thereafter, a dilated convolution samples this sequence to turn
into the subsequent hidden sequence.

2.2 MULTI HEAD ATTENTION IN TRANSFORMER

The Transformer exhibits powerful capabilities in both natural language processing(Devlin et al.,
2018) and computer vision(Khan et al., 2021), which improves the performance of related tasks. In
contrast to the classic seq2seq module with only one attention(Sutskever et al., 2014), The Trans-
former contains more than one attention, referred to as multi-head attention.

The inputs of an attention module are K,Q, V , which are the key, query, and value, respectively.
Subsequently, three linear operators transform them into KWK , QWQ, V WV , which is a single-
head attention. For multi-head attention, there exist a group of the single-head attentions with re-
spective parameters. The attention of the i-th head is denoted as

Attentioni(Q,K, V ) = Softmax

(
QWQ

i · (KWK
i )T

√
dk

)
· VWV

i ,

where dk is the embedding dimension as a scaling factor, making the model training stable. Thus,
for multi-head attention with h heads, the outputs is denoted as

MultiHeadAttention(Q,K, V ) = Concathi=1 {Attentioni(Q,K, V )} ,

Finally, the output attains the same size as inputs through a linear layer.

3 METHOD

The framework of the proposed TransTCN is shown in Figure 1. TransTCN is a serialization struc-
ture with four temporal blocks in total. The temporal inputs of timing t were embedded to a sparse
space of c dimensions, and then fed to the series-connected four blocks. First, for each dilated causal
convolution in vanilla TCN, a layer with two linear layers was added up to its output to extract the
similarity of the output of each layer. Therefore, a ResNet Structure of the output feature for each
dilated causal convolution is formed, which is a causal-dilated Resnet composed of two layers of
causal dilation convolutions. In addition, the linear layers are required to position encoding infor-
mation to utilize the location information of the time series. Second, the TransTCN had one new
branch called Global Attention Branch, which is the global attention with position encoding of the
feature extracted by a convolution layer.
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Figure 1: The framework of TransTCN. The input of TransTCN is a series of timing signals from
the input embedding layer or features from the prior block. The downstream task can be the next
time value of the prediction time series, such as prediction of word level or character level, or the
noting prediction of a music.

3.1 TEMPORAL BLOCK

The temporal block is the main structure of TransTCN and is used to extract the characteristics of
time series data. Each temporal block maps the timing input sequence of a certain dimension to
a higher dimension such that the timing characteristics are reflected in a higher dimension. For
example, a time series denoted as {x1, x2, x3, . . . , xn} is embedded to an embedding space of c
dimensions. Therefore, the input of the first temporal block is of size (c, n), indicating that the
input has n data points, and each data point is a point in c-dimensional embedding space. However,
the input size parameter of the i-th temporal block was set to cii, and the output size was set to
coi. Consequently, as the signal passed through each temporal block, the signal dimension changed
from cii to coi. Further, the output size of the temporal block equaled the output size of the next
block. Thus, the dimension of the data passing through the temporal blocks can be denoted as
Xc×n → Xco1×n → Xco2×n → Xco3×n → Xco4×n ≜ Xout. Subsequently, the task head accepts
Xout as its input to predict the next value, as Xout extracted by four sequential temporal blocks carries
all the extracted features of time series.

3.2 CAUSAL-DILATED RESIDUAL CONNECTION BRANCH

The feature extracted from each causal-dilated convolution was passed through a residual connection
with two linear layers to extract the similarity and dependency. However, the causal and dilation op-
erators employed were original TCN layers without any change. The first causal-dilated convolution
expands the number of channels for the input feature, denoted as Xcii×n for the i-th temporal block.
Therefore, the output of the first causal-dilated convolution can be denoted as Xccdo1,i×n, where
ccdoi > cii. In contrast, the second causal-dilated convolution maintains a constant feature channel,
and the output feature is denoted as Xccdo2,i×n. Furthermore, the output of the first causal-dilated
convolution Xccdo1,i×n was fed to a two-linear-layer residual connection. This residual connection
consisted of two linear layers with a softmax activation and a normalization layer between them
to approximate a function f

(1)
bi-linear. Moreover, the outputs of the two causal-dilated convolutions

was processed by f
(j)
bi-linear, (j = 1, 2). However, the first residual connection forms a second-order

scheme Luo et al. (2021b), with the output adding to the output of the next block. Therefore, the
output of this branch is

Xcausal dilated = f
(1)
bi-linear

(
Xccdo1,i×n

)
+ f

(2)
bi-linear

(
Xccdo2,i×n

)
+Xccdo2,i×n,
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where the size of Xcausal dilated is (ccdo2,i, n). Moreover, the residual connection also considers the
position encoding because the positional information in vanilla TCN is not fully utilized by causal-
dilated convolution.

For causal-dilated convolution, multiple signals in adjacent times of one kernel are fused into a sig-
nal of the next layer. Following the dilation operation, the adjacent signals are fused to the next layer.
This process does not consider the timing characteristics of the input sequence. Therefore, position
encoding can be used to encode position information, further encode the sequence of timing signals,
and subsequently extract sequence features from the perspective of signal sequence prediction. For
a causal-dilated convolution with kernel size of k, the subsequence of input {xs+1, xs+2, . . . , xs+k}
are treated equally as the input of the next layer, and the order is not distinguished. Thus, subse-
quence of {xs+1, xs+2, . . . , xs+k} and {xs+k, xs+1, . . . , xs+2} exhibit no difference. Thus, when
introducing position encoding into the input feature, each signal at different positions is treated dif-
ferently, such that the value of the subsequent time can be effectively predicted according to the time
series.

3.3 GLOBAL ATTENTION BRANCH

The causal-dilated convolution in TCN extracts week dependency of time series because the causal-
dilated convolution only focuses on the local sequence in one kernel. Finally, the partially extracted
information is discarded by the TCN. As TCN can only analyze the preamble sequence, it only
focuses on semantics in local. However, although the global attention branch considers the global
semantic similarity information, the location information is added by it to emphasize the meaning
of input entities in different locations.

The global attention branch first uses a one-dimensional convolution layer to extract features from
time series, and the output is denoted as Xconv1d with size of (ccdo2,i, n). Subsequently, a position
encoding for each feature is added to the output of convolution, which encodes the global position
of the time series to utilize it, as the position in a time series is the key information required for
predicting the next step of time series. Moreover, the same value in different positions contributes
to the future prediction in varying manners.

In the next step, the feature with its position encoding is sent to a multi-head attention layer to
extract the global dependency of the time series. In addition, the subsequences at key positions
require greater attention, as they impact the prediction of the future values. The output of the global
attention is denoted as Xglobal attention with size of (ccdo2,i, n). Further, a residual connection was used
to improve the training convergence and training speed of global attention, and the output is denoted
as Xglobal residual = Xglobal attention +Xconv1d with size of (ccdo2,i, n).

Moreover, employing the one-dimensional convolution after the global attention block was not pos-
sible according to the experiment in section A.0.2. If the convolution were to be used after the global
block, the positional embedding information would also be weighted by the convolution function.
Consequently, the positional information would be disrupted, deviating from the operation of global
information using location information to weigh the importance of values at different locations. In
addition, the phenomenon can be observed in the subsequent ablation experiment, which was used
to compare the prediction effect after the exchange of the two modules.

3.4 CONCATENATE OF ALL BRANCHES

Until now, both the causal-dilated residual connection and global attention branches have been in-
troduced to vanilla TCN, and a TransTCN was obtained. The output of these two branches are of
the same size (ccdo2,i, n). Thus, the output of the temporal block can be considered as their sum,
denoted as

Xtemporal block = Xcausal dilated +Xglobal residual,

where the size of Xtemporal block is (ccdo2,i, n). This output contains both the time series value infor-
mation and the positional information, and also the importance of different positions in time series.
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Table 1: Tasks and datasets
Sequence Modeling Task Dataset

Adding Problem
Conditional random generation
(Hochreiter & Schmidhuber, 1997)
(Zhang et al., 2016)

Word-level language modeling
PennTreebank(Marcus et al., 1993),
Wikitext-103(Merity et al., 2016) ,
LAMBADA(Paperno et al., 2016)

Character-level language modeling PennTreebank, text8(Mikolov et al., 2012)

Polyphonic music prediction

JSB Chorales(Allan & Williams, 2005),
Nottingham(Greff et al., 2016b),
Piano(Bernd, 1998),
Muse(Stanford, 1984)

Digit classification MNIST(LeCun et al., 1998)
Copy memory Conditional random generation (Jing et al., 2017)

4 EXPERIMENTS

The experiments were all the classical tasks and the datasets used in vanilla TCN were employed to
deal with timing problems. TransTCN and vanilla TCN were compared in terms of prediction ac-
curacy and the convergence state of training. The intention was to conduct a baseline for TransTCN
and further discuss the improvement of TCN with two branches under different structures.

4.1 TASKS AND DATASETS

The tasks and datasets are shown in Table 1. According to the vanilla TCN performance comparison
baseline, a total of six tasks were performed to evaluate the performance of TransTCN.

4.2 SETUPS

The experiments included one comparison to the state-of-the-art TCN and three ablation experiments
in the same setting for each dataset. The modules used in the ablation experiments are shown in
Figure 2. All the experiments were trained and evaluated on 32 cards of NVIDIA A100-SXM4-
40GB GPUs(Nvidia, 2020).

In contrast to the vanilla TCN, there were two additional branches in the temporal block of
TransTCN: a causal-dilated residual connection branch and a global attention branch. Thus, the
experiments focused on the addition of these two branches.

The first experiment involved comparing the results with the original TCN model comprising only
one of the two branches, that is, the TCN with the causal-dilated residual connection branches(cdrc-
TCN) as in Figure 2(b), and the TCN with global attention branches(gab-TCN) as in Figure 2(c).
These two experiments illustrated the importance of the two branches and verified the analysis and
design ideas in the previous sections.

In the global attention branch, the order of the convolution and attention layers affects the perfor-
mance of the model. Thus, the second experiment was to compare the results of the order, that is,
a convolution layer before the attention layer(TransTCN) as in Figure 2(d), and a convolution layer
after the attention layer(attnconv-TCN) as in Figure 2(e).

In addition, for the case of a convolution layer before the attention layer, the convolution parameters
could be shared with those of convolution residual connection in original TCN, leading to the third
comparative experiment; that is, the shared parameters convolution(spc-TCN) as in Figure 2(f).

For the various tasks, the requirement of parameters in TransTCN was different, and the comparison
with TCN is shown in Table 2. The number of parameters varied from tasks for the same mod-
ule because the number of input channels were different in various tasks. Therefore, the temporal
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(a) TCN (b) cdrc-TCN (c) gab-TCN

(d) TransTCN (e) attnconv-TCN (f) spc-TCN

Figure 2: The models and setups of the three ablation experiments. (a) The vanilla TCN without
the two branches proposed in this paper. (b) The right branch in the dark area is the causal-dilated
residual connection branch. (c) The left branch in the dark area is the global attention branch.
(d) Both the causal-dilated residual connection and the global attention branch are present in the
model. (e) The convolution layer is behind the attention module in the global attention branch.
(f) The convolution layers in TransTCN are combined as one layer to share the parameter.
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Table 2: The number of parameters for different tasks and modules.

Sequence Modeling Task TCN x-TCN TransTCNcdrc gab attnconv spc

Adding Problem (T = 600) 70K 172K 147K 143K 208K 208K
Copy Memory (T = 1000) 16K 35K 19K 18K 39K 39K
Word-level PennTreebank 13M 18M 25M 25M 25M 25M
Character-level PennTreebank 3M 3M 5M 5M 5M 5M
Character-level text8 5M 3M 5M 5M 5M 5M
Permuted MNIST 70K 128K 103K 100K 154K 154K
JSB Chorales 300K 1217K 1507K 1448K 1660K 1660K
Nottingham 1M 1.2M 1.5M 1.4M 1.6M 1.6M
Muse 1M 1.2M 1.5M 1.4M 1.6M 1.6M
Piano 1M 1.2M 1.5M 1.4M 1.6M 1.6M

Table 3: The testing performance of TransTCN compared with TCN.

Sequence Modeling Task Evaluation TCN TransTCN Improvement(×n)

Adding Problem loss 5.8e − 5 1.2e − 5 4.83
Copy Memory loss 3.5e − 5 1.1e − 6 31.82

Word-level PennTreebank
{

loss
perplexity

4.48 0.29 15.45
87.90 1.33 66.09

Character-level PennTreebank
{

loss
bpc

0.918 0.017 54.00
1.324 0.024 55.17

Character-level text8
{

loss
bpc

1.099 0.044 24.98
1.585 0.063 25.16

Permuted MNIST
{

loss
accuracy(%)

0.0851 0.0816 1.04
97.62 97.69 1.001

JSB Chorales loss 8.10 8.42 0.96
Nottingham loss 3.07 0.32 9.59
Muse loss 6.99 0.46 15.20
Piano loss 7.61 7.95 0.96

blocks require varying number of parameters. For most of the tasks, the number of parameters in
TransTCN was approximately twice as many as that in TCN, except for the adding problem and the
JSB Chorales tasks, where the number of parameters in TransTCN was still within the acceptable
range.

4.3 COMPARISON WITH STATE OF THE ART

For the original TCN, the number of parameters required in the model was less than RNN(Pascanu
et al., 2013) and LSTM(Greff et al., 2016a), which is the main advantage of TCN. Fewer parameters
for TCN facilitate easy training and the quick convergence of the training steps. However, for
TransTCN, although the number of parameters required is greater, the training convergence process
is faster than TCN, and simultaneously the final performance is better.

As presented in the Table 3, for most tasks except for Permuted MNIST, JSB Chorales and Piano,
the TransTCN exhibited better training performance than that of the original TCN. Further, the
performance of TransTCN and TCN is almost the same for the Permuted MNIST, JSB Chorales, and
Piano tasks. Therefore, it is evident that the proposed method can achieve the same performance as
the original TCN, and can even achieve much better performance on most of the tasks. Moreover,
the training step of TransTCN converges faster than that of TCN as shown in Figure 3. The loss
value in the training process was found to decrease rapidly after several starting epochs. For the
final convergence value in training steps of TransTCN on the following datasets, Word/Character-
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level PennTreebank as in Figure 3(c)/(d), text8 as in Figure 3(e), Nottingham as in Figure 3(h), and
Muse as in Figure 3(i), the training loss was observed to converge to a significantly smaller value
than that of TCN. Furthermore, these experiments exhibit a significant performance improvement
on the respective datasets, as shown in the last column in Table 3.
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Figure 3: The convergence process of training TransTCN and TCN on different datasets.

5 CONCLUSION

In this study, a TransTCN model was proposed based on the TCN model combined with the attention
blocks in Transformer to capture long-term dependency information in time series. TransTCN,
exploits the advantage of TCN and the attention in Transformer, and achieved improved or similar
performance and training convergence speed to that of original TCN. Moreover, the TransTCN
achieved SOTA perplexity on most of the commonly used datasets without introducing excessive
model parameters. Further, the training process converged faster than TCN.

However, there are certain challenges yet to be overcome. The positional encoding is now simple as
the sequence modeling issues may be complex in the time dimension. In addition, the causal-dilated
branch used positional encoding twice, which repeatedly emphasized the importance of location in-
formation to prevent the model from weakening or even losing sequential information in the forward
transmission process. For future work, the positional encoding modules can be better designed ac-
cording to the location characteristics of time series problem. In addition, the performance on larger
datasets can be implemented to check the performance of TransTCN.
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Table 4: The performance of TransTCN compared with cdrc-TCN and gab-TCN.

Sequence Modeling Task Evaluation cdrc-TCN gab-TCN TransTCN

Adding Problem loss 2.8e − 5 4.4e − 2 1.2e − 5
Copy Memory loss 4.9e − 5 1.9e − 5 1.1e − 6

Word-level PennTreebank
{

loss
perplexity

0.29 6.46 0.29
1.34 639.18 1.33
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{

loss
bpc

0.018 0.023 0.017
0.026 0.033 0.024

Character-level text8
{

loss
bpc

0.040 2.859 0.044
0.058 4.125 0.063

Permuted MNIST
{

loss
accuracy(%)

0.0882 0.0842 0.0816
97.37 97.50 97.69

JSB Chorales loss 8.44 8.59 8.42
Nottingham loss 3.64 3.11 0.32
Muse loss − 8.04 0.46
Piano loss 8.39 8.18 7.95
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A APPENDIX: ABLATION EXPERIMENTS

After removing the two branches, namely, the global attention and the causal-dilated residual con-
nection branches, the ablation experiments examined the performance of the model and compared
it with the original model to illustrate the importance of branches from an experimental perspective.
For the global attention branch, the position of the convolution layer was also switched with the
attention layer to analyze the performance of the model further.

A.1 THE VALIDITY OF TWO BRANCHES

On removing the global attention branch of TransTCN, the cdrc-TCN was obtained, and similarly,
the gab-TCN was obtained on removing the other branch. The results are shown in Table 4. The
TransTCN performs best among the three modules except for the character-level prediction task
on dataset text8, although the performance gap is minimal. Thus, the performance improvement
achieved with the two branches working alone is poor as the global attention and causal-dilated
residual connection branches extract various features from the sequence.

The convergence states of the cdrc-TCN, gab-TCN and TransTCN for different datasets are shown
in Figure 4. According to the experimental results of the datasets Word-level PennTreebank as in
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Figure 4(c) and text8 as in Figure 4(e), the gab-TCN converges to a much larger value than that
of cdrc-TCN or TransTCN. In addition, the training step converges slowly on Character-level Pen-
nTreebank as in Figure 4(d). This indicates that a TransTCN with only global attention without
local causal attention cannot effectively extract long-term dependency. The causal-dilated convolu-
tion branch of TransTCN combined the information of every sequence with the positional encoding,
and the long-term dependency was also stored in the weights of the two linear layers of each residual
connection block. However, cdrc-TCN exhibited a significantly different behavior from TransTCN
on the datasets of JSB Chorales as in Figure 4(g), Nottingham as in Figure 4(h), and Muse as in
Figure 4(i). Thus, for the prediction on the datasets in the field of music, the global attention branch
in TransTCN extracted the global information such as the style of music, and the prediction that
incorporates this information would be more accurate.
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Figure 4: The convergence process of training TransTCN and TransTCN without two respective
branches on different datasets.

A.2 PLACE GLOBAL ATTENTION BRANCH AHEAD OF CONVOLUTION

The other issue is to discuss the location of the convolution and the attention layers. We need to
determine whether the performance would improve or decrease, when the order of these two layers is
switched. The results of switching the convolution layer order are shown in Table 5. It was found that
when the convolution layer was placed behind the attention, the corresponding positional encoding
information was also processed through one-dimensional convolution to combine the feature in the
size of the kernel window so as to fuse the position encoding information, This destroyed the position
information introduced into the global attention. In contrast, placing the convolution layer before
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Table 5: The performance of TransTCN compared with attnconv-TCN.

Sequence Modeling Task Evaluation attnconv-TCN TransTCN

Adding Problem loss − 1.2e − 5
Copy Memory loss 1.6e − 6 1.1e − 6

Word-level PennTreebank
{

loss
perplexity

0.30 0.29
1.34 1.33

Character-level PennTreebank
{

loss
bpc

0.907 0.017
1.308 0.024

Character-level text8
{

loss
bpc

0.042 0.044
0.016 0.063

Permuted MNIST
{

loss
accuracy(%)

0.0866 0.0816
97.58 97.69

JSB Chorales loss 8.51 8.42
Nottingham loss 2.96 0.32
Muse loss 7.76 0.46
Piano loss 7.86 7.95

the attention ensured that the positional information is encoded after convolution, and consequently,
the positional information to the attention was be damaged.

The comparison for the decline rate of testing step between attnconv-TCN and TransTCN is shown
in Figure 5. The decline rate of the loss function is similar, but the final convergence value of attncon-
TCN is larger than that of TransTCN, particularly for the datasets of Character-level PennTreebank
as in Figure 5(d), Nottingham as in Figure5(h), and Muse as in Figure 5(i). Further, although
the parameters and the functions of the blocks in attncon-TCN and TransTCN are the same, the
order of the blocks is not. The convolutional layer disrupted the sequential information, thus, the
performance reduced and the convergence effect of loss function became worse.

A.3 SHARED PARAMETERS IN CONVOLUTION LAYERS

Finally, we determined that the reason for the performance loss in attnconv-TCN was the posi-
tional information embedding misleading the learning steps or the increase of network parameters
in convolution layers. Thus, combining the convolution layers of the global attention branch and the
original is one approach to reduce the parameters in the TransTCN. The results are shown in Table 6.
However, parameter reduction by merging convolution layers does not improve the performance of
the model because the two branches contain their respective convolution parameters and have dif-
ferent functions. The convolution layer in the global attention branch encodes the input feature of
the temporal block to extract global sequential information, while the convolution layer in original
TCN resized the input to implement a residual link to the output.

The convergence states of training spc-TCN is shown in Figure 6. The number of parameters in spc-
TCN is slightly lesser than that of TransTCN but there is a significant decrease in the performance.
This indicates that the parameters of the two convolution layers cannot be shared. The convolution
layer in the global attention branch extracted the sequential information in global, while the one in
raw TCN resized the input channel to that of the output channel. Moreover, there may be two groups
of parameters in the two branches with respective functions.
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Figure 5: The convergence process of training TransTCN and TransTCN with a global attention
branch of convolution after attention.
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Figure 6: The convergence process of training TransTCN and TransTCN with a global attention
branch of one convolution layer.
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Table 6: Performance of TransTCN compared with spc-TCN.

Sequence Modeling Task Evaluation spc-TCN TransTCN

Adding Problem loss 3.0e − 5 1.2e − 5
Copy Memory loss 2.1e − 4 1.1e − 6

Word-level PennTreebank
{

loss
perplexity

6.46 0.29
639.18 1.33

Character-level PennTreebank
{

loss
bpc

1.230 0.017
1.774 0.024

Character-level text8
{

loss
bpc

0.030 0.044
0.044 0.063

Permuted MNIST
{

loss
accuracy(%)

0.0808 0.0816
97.66 97.69

JSB Chorales loss 8.59 8.42
Nottingham loss 3.10 0.32
Muse loss 7.94 0.46
Piano loss 8.29 7.95
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