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ABSTRACT

Modeling the bidirectional mapping between visual stimuli and neural activity is
critical for both neuroscience and brain—computer interfaces (BCls). Although sig-
nificant progress has been made in independently addressing visual encoding and
decoding, unified latent representations for the bidirectional mapping remain
lacking. Here, we propose BrainAE, an autoencoder-based framework designed
for both visual encoding and decoding. Contrastive alignment with image models
drives the latent features toward a shared representation space of visual stimuli
and neural responses. Once trained, the model supports stimulus-to-brain en-
coding, brain-to-stimulus decoding, and whole-brain signal reconstruction. We
extensively evaluate the model on electrophysiology, including human electroen-
cephalography (EEG) and magnetoencephalography (MEG), as well as macaque
multi-unit spiking activity (MUA), spanning non-invasive and invasive recordings,
macro- and micro-scales, and species. Results demonstrate competitive encoding
and decoding performance, revealing spatial, temporal, and semantic patterns con-
sistent with established neuroscience findings. BrainAE provides a methodological
foundation for probing brain function and developing BCIs.

1 INTRODUCTION

Human visual systems process visual stimuli into neural representations, enabling perception and
decision-making |DiCarlo & Cox|(2007). Resolving and replicating how our brain represents visual
information remains a central challenge in understanding the mechanisms of visual systems |Wang
et al.| (2025)); Kay et al.| (2008)); Kamitani & Tong| (2005). Two primary tasks involved in visual
modeling aim to bridge the mapping between visual stimuli and brain responses: visual encoding,
which predicts neural activity elicited by stimuli, and visual decoding, which identifies or generates
stimuli from neural activity Naselaris et al.|(2011);|Gao et al.| (2021}).

Visual encoding has seen progress accompanied by interpretable mechanisms|O’Shea et al.| (2025)).
Studies established the primary visual cortex (V1) encoded basic features like edges and orienta-
tions [Li et al.| (2025)), while higher-order regions process complex patterns, object concept, and
spatial location DiCarlo et al.| (2012)); Kar et al.| (2019). The development of encoding models
has also evolved from linear models to advanced nonlinear models, incorporating deep learning
techniques |Yamins & DiCarlo|(2016); Tang et al.| (2023). By aligning with Convolutional Neural Net-
works (CNNs), researchers have explored the hierarchical structure encoding from low- to high-level
representations |Gu et al.[(2022). Recurrent neural networks (RNNs) have also been applied to model
dynamic stimuli such as videos and natural scenes, capturing temporal and contextual dependencies in
neural activity (Horikawa & Kamitani, |2017; Lahner et al.,[2024). Recent data-driven models trained
on large-scale datasets have begun to show competitive performance with strong generalization [Du
et al.|(2025)). The consistent features between brain and artificial models emphasize the effectiveness
of aligning neural and computational representations Shen et al.[(2025)); [Franke et al.[(2025).

Visual decoding has also been significantly propelled by brain recordings and machine learning. We
can now identify low-level features such as brightness, contrast, and motion |Liu et al.|(2021);[Shi et al.
(2024); Song et al.| (2024), as well as higher-level semantics Schneider et al.| (2023)). It provides great
temporal and spatial resolution for fast and accurate visual decoding using intracranial signals like
local field potentials (LFP) |Liu et al.[(2009) and multi-unit spiking activity (MUA), and non-invasive
signals such as magnetoencephalography (MEG) |Cichy et al.[|(2014); Benchetrit et al.|(2023)) and
low-cost electroencephalography (EEG), which demonstrated potential to expand the applicability
of daily brain-computer interfaces (BClIs)Liu et al.| (2024). Early machine learning approaches,
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including Bayesian models and support vector machines, were instrumental in decoding [Wu et al.
(2016). More recently, data-driven methods leveraging large-scale data such as THINGS-EEG Gitford
et al.| (2022)), THINGS-MEG |Hebart et al.| (2023)), and the Natural Scenes Dataset (NSD) |Allen
et al.| (2022); |Chen et al.| (2023)); [Takagi & Nishimoto| (2023) have demonstrated remarkable success.
Deep learning architectures, including CNNs, Transformers|Azabou et al.|(2023)), particularly self-
supervised learning models [Schneider et al.| (2023)), have been employed to extract brain features
aligning with visual features provided by artificial models Song et al.|(2023a)); Li et al.[(2024)).

Despite rapid advances, encoding and decoding are usually developed in isolation, although both
rely on shared neural mechanisms. Aligning brain and artificial representations may offer a
promising approach to bridge bidirectional mapping, providing both stronger performance and
neuroscience insights. Here, we propose Brain Autoencoder (BrainAE) to unify visual encoding
and decoding with shared representation space. The model has an encoder to extract neural activity
features and a decoder to reconstruct activity from the latent. In parallel, we leverage pre-trained
image models to provide visual features and use contrastive alignment to drive the two kinds of
features closer. The unified latent space enables the model to predict neural activity from visual stimuli
(encoding), classify and generate visual stimuli based on brain activity (decoding), and reconstruct
neural activity from masked recordings (reconstruction). We validate BrainAE using datasets
with high time resolution and diverse spatial scales, including non-invasive EEG and MEG and
invasive MUA. The results show that BrainAE effectively simulates brain activity while preserving
characteristic neural patterns. It achieves strong decoding performance and discovers critical
spatial and temporal regions involved in visual processing. Moreover, the framework reveals
consistency between encoding and decoding on spatial and temporal dimensions.

Our main contributions are summarized as follows:

* Introducing an autoencoder framework that aligns brain and artificial representations within
a bidirectional space, enabling brain function simulation (encoding), brain information
extraction (decoding), and whole-brain activity prediction (reconstruction).

* Achieving strong performance and neuroscientific plausibility, along with high encoding
correlation, preserving original brain dynamics, and superior decoding accuracy and stimulus
generation, discovering meaningful spatial, temporal and semantic patterns.

* Demonstrating broad generalization with EEG, MEG, and MUA, covering diverse recordings
(non-invasive and invasive), scales (macro and micro), and species (human and macaque).

2 RELATED WORKS

Aligning neural activity with artificial models has become an attractive goal in computational
neuroscience. Goal-driven hierarchical CNNs were introduced to model neural responses in higher
visual areas by mapping stimuli to brain activity [Yamins & DiCarlo (2016). CORnet extended
the model to capture the object recognition mechanisms of the brain Kubilius et al.| (2019), and
further work emphasized the necessity of recurrent processing to model the ventral stream Kietzmann
et al.| (2019); |[Kar et al.| (2019). More complex architectures have since been explored, including
task-optimized CNNs with recurrent gating Nayebi et al.| (2022)) and non-standard architectures for
modeling the mouse vision /Conwell et al.|(2021). Other studies have highlighted a divergence between
artificial and biological vision, showing that task-optimized deep networks may not align well with
inferotemporal (IT) cortex representations Linsley et al.|(2023). Encoder—decoder models have also
been applied to visual coding with fMRI data Han et al.| (2019); |Qian et al.| (2024)). Together, these
works underscore the importance of high-quality representations in modeling neural populations.

Alignment has also proven effective for decoding brain activity. Latent diffusion models have
been used to reconstruct images from brain imaging [Takagi & Nishimoto| (2023)), while contrastive
learning with diffusion priors has enabled image retrieval and reconstruction |Scotti et al.| (2023).
Adversarially guided alignment has achieved high-fidelity video reconstruction (Chen et al.| (2023]).
Time-resolved EEG and MEG show good potential and feasibility of decoding visual representations
with alignment models, revealing key patterns of visual processing Song et al.| (2023a)); Benchetrit et al.
(2023)). Parallel advances in latent modeling have also enriched decoding: Latent Factor Analysis via
Dynamical Systems (LFADS) was developed for single-trial motor prediction Pandarinath et al.|(2018)
and later extended with AutoLFADS to improve generalization across brain areas and tasks|/Keshtkaran
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Figure 1: (a) BrainAE diagram. Both the brain activity and the perceived stimuli module contain an
encoder and a decoder, where contrastive and MSE loss shape the latent features. MSE loss is also
applied between the reconstructed activity and the raw activity. (b) The encoding task predicts brain
activity from image stimuli. (c) The decoding task identifies and generates the image stimuli from
brain activity. (d) The reconstruction task predicts the complete raw activity from masked activity.

et al.| (2022)), while tokenization and cross-attention have been introduced as a general decoding
framework for large-scale neural recordings |Azabou et al.[(2023).

While encoding and decoding research have yielded high-quality brain representations, these ap-
proaches remain commonly separate and unidirectional. BrainAE bridges this gap by integrating
encoding and decoding within a unified framework, especially leveraging alignment with large-scale
artificial models to enhance the latent representations for both visual stimuli and brain responses.

3 METHODS

3.1 OVERVIEW

The overall architecture is illustrated in Fig. [T} comprising two primary modules: the brain module
and the image module, both equipped with an encoder and a decoder. The brain encoder maps neural
activity to an embedding, while the image encoder transforms visual stimuli into corresponding
embeddings. These embeddings serve three purposes: i) visual encoding: image embeddings are
passed to the brain decoder to predict neural activity associated with specific visual stimuli. ii) visual
decoding: brain embeddings are used to identify or generate visual stimuli via either a template-
matching approach or a generative model-based image decoder. Besides, we evaluate the model’s
capability by reconstructing the raw brain activity from spatially or temporally masked recordings.

3.2 PROBLEM DEFINITION

The BrainAE framework consists of a brain encoder £, brain decoder Dp, image encoder £;, and
image decoder Dy, as depicted in Fig. a). The model takes as inputs perceived image stimuli X
and the corresponding brain activity signals X iB € REXT where C' denotes the number of channels,
and T represents the time samples. The £z and &7 transfer the X2 and X/ into embeddings,

2B € RF and 2/ € RY, where F is the embedding size. Then the 22 and 2} are reconstruct

towards the raw brain activity X2’ and stimuli X' by D and Dy, respectively.

We evaluated the framework with three tasks: Visual encoding, in Fig.[T(b), gets image embeddings
2T by the encoder £; and input to the decoder Dp for the encoded brain activity. Visual decoding,
in Fig. c), extracts brain embeddings z2 by the encoder £5. Then we perform identification,
including classification and retrieval, by matching the templates prepared with images belonging to
the test condition, before the inference stage. Templates for classification are constructed with several
images that never appeared as visual stimuli, while the templates for retrieval use specific visual
stimulus images. We implement visual generation leveraging generative models as the decoder Dj.

In addition to primary visual encoding and decoding, we set a new task by adding a mask in spatial
and temporal dimensions and reconstruct the raw brain activity with £g and D, as shown in Fig.[T(d).
This task assesses the framework’s ability to handle neural activity even with incomplete data.
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3.3 NETWORK ARCHITECTURE
3.3.1 BRAIN MODULE

The brain module sets up a concise temporal-spatial convolution (TSConv) encoder to extract features
from raw neural activity, which are band-pass filtered and standardized. The encoder begins with a 1D
convolutional layer that captures temporal features using k kernels of size (1, 1) and stride of (1, 1).
An average pooling layer with a kernel of (1,m5) and a stride of (1, s) is introduced to alleviate
overfitting. Next, spatial features are captured with another 1D convolutional layer using k kernels of
size (ch, 1) and stride of (1, 1), where ch usually equals C. Convolutional layers are followed by
batch normalization and exponential linear unit (ELU) activation for stability and nonlinearity Clevert
et al.[(2016). Finally, a linear layer transforms the extracted features into a latent space compatible
with the image module, ensuring alignment between the two branches of the framework. The brain
decoder mirrors the encoder, replacing convolutional and pooling layers with transposed convolution
and up-sampling layers to reconstruct brain activity. Details in Appendix

3.3.2 STIMULI MODULE

Popular image encoders were employed to process perceived stimuli. Encoders pre-trained on large-
scale image datasets give us a larger sample space, thus helping generalization. Several models,
including Vision Transformer (ViT) [Dosovitskiy et al.| (2021), Contrastive Language-Image Pre-
training (CLIP) Radford et al.|(2021)), and EVA-CLIP|Sun et al.| (2023) are involved for demonstration
in this work. After the frozen image encoder, we add a linear layer to project features into the shared
space. For the classification task, we construct templates with several images belonging to the test
condition but not appearing as the visual stimuli, while we directly use the test stimuli as templates
for the retrieval task. We test image generation with an image decoder based on prior and pre-trained
diffusion models, referring to |Li et al.|(2024); |Scotti et al.| (2023). Details in Appendix

3.4 OBIECTIVE FUNCTIONS

3.4.1 CONTRASTIVE LOSS

The training algorithm is given in Appendix [E] To align visual stimuli and brain activity in the shared
space, we employ contrastive learning based on the InfoNCE loss|van den Oord et al.| (2019) as:

el (28 ,20)/7
Leon = Zlog TSGR M

where N represents batch size, zP and z; denotes the features of i-th brain activity and stimulus
image, f() denotes cosine similarity, and 7 is a temperature parameter to control the distribution.

3.4.2 MSELoOSS
We also introduce MSE loss to constrain the embeddings of visual stimuli and brain activity as below:

N
1
Liea= D (2 —2])? @
i=1

Besides, we leverage MSE loss to constrain the brain activity reconstructed with brain embeddings:

ﬁreconB = =~ Z(XZB - XiBIB)2 (3)

i=1

as well as the constraint between brain activity encoded from image embeddings:
1 B’'I\2
reconI N Z - X i ) (4)

where X P ‘B X B "I denote the brain activity obtained from brain embeddings and visual embed-
dings, using the same brain decoder. Therefore, we set the total reconstruction 108s Lccon:

Lr‘econ = ET@COHB + ﬁrecon[ (5)
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4 RESULTS

4.1 DATASETS AND PREPROCESSING

The THINGS-EEG?2 dataset includes 10 participants engaged in a rapid serial visual presentation
(RSVP) task using images from the THINGS image set |Gitford et al.| (2022); Hebart et al.| (2019).
The training phase comprises 1,654 concepts, each represented by 10 images, repeated 4 times. The
testing phase includes 200 concepts, each represented by 1 image, repeated 80 times. Stimuli were
presented for 100 ms with a 100-ms blank screen, yielding a stimulus onset asynchrony (SOA) of
200 ms. EEG data were epoched from 0 to 1000 ms post-stimulus, filtered to 0.1-100 Hz, and
baseline-corrected using the 200-ms pre-stimulus mean. After down-sampling to 250 Hz, data from
all 63 electrodes underwent multivariate noise normalization |Guggenmos et al.| (2018)). Repetitions
were averaged per image to enhance the signal-to-noise ratio.

The THINGS-MEG dataset includes 4 participants exposed to stimuli with a jittered SOA of 1500 +
200 ms, consisting of 500-ms image presentations followed by a blank screen [Hebart et al.| (2023)).
The training set covers 1,854 concepts with 12 images per concept, while the testing set includes
200 concepts with 1 image per concept (12 repetitions). Zero-shot setting is ensured by excluding
test concepts from training. MEG signals were epoched from 0 to 1000 ms post-stimulus, filtered to
0.1-100 Hz, baseline-corrected, and down-sampled to 200 Hz across 271 channels.

The THINGS ventral stream spiking dataset (TVSD) contains MUA recorded from V1, V4, and IT
regions of two macaques viewing natural images [Papale et al.|(2025)). The training set includes 1,854
concepts with 12 images each, while the test set contains 100 concepts with 1 image per concept
(30 repetitions). The test concepts are excluded from the training. Spike data were epoched with
0-200 ms post-stimulus, baseline-corrected with the -100 ms pre-stimulus, down-sampled to 1000 Hz
across all 1024 channels, and averaged by repetitions. Details in Appendix[F

4.2 EXPERIMENT DETAILS

Our method was implemented using PyTorch in Python 3.10 and executed on a GeForce 4090 GPU.
Model training required nearly 7 minutes, with inference for each trial taking less than 1 millisecond.
For each run, 740 trials were randomly selected from the training data as the validation set. The
best-performing models were saved based on the minimum validation loss during training, which
ran for 50 epochs to ensure convergence. We perform testing once after training, using several
unseen images from the THINGS image set as templates for classification. The intermediate stimulus
features were obtained before the training stage with pre-trained and frozen image models.

The hyperparameters were set as follows: k =40, mq =26, ma =5, s =5, and 7 = 0.07 (compared in
Appendix ). The model training used the Adam optimizer with a batch size of 800, learning rate of
0.001, 51 =0.5, and 52 = 0.999, based on previous studies and preliminary experiments. Wilcoxon
Signed-Rank test was employed to evaluate significance levels with p-values. Note that statistical
analysis was not performed on MEG and Spike datasets due to the limited number of subjects.

4.3 ENCODING
4.3.1 OVERALL QUALITY

The encoding task is to predict brain activity by perceiving visual stimuli. We achieved good
performance in various metrics as Table[T]and subject results in Appendix [G] All datasets of different
recordings with varying numbers of channels were involved in the evaluation. Besides, we chose
visual areas, with occipital, temporal, and parietal channels, in EEG and MEG data for testing, where
inferior temporal (IT) channels were used in MUA data. Pearson’s correlation (r) was employed as
the primary metric, accompanied by the mean squared error (MSE) for encoding quality.

The alignment brought significant improvement under the commonly linear and nonlinear brain
decoder |Gifford et al.| (2022); [Yamins & DiCarlo| (2016). For EEG data, alignment significantly
improved the linear model with 0.042 (p < 0.01) and 0.038 (p < 0.01) increments of Pearson’s r in all
channels and visual channels, separately. The nonlinear model showed higher potential with the help
of alignment. The MEG and the MUA datasets show similar trends in using alignment. From another
view, the encoding performance on visual channels was significantly higher than on all channels (p <
0.01), implying that the model prioritizes task-related features associated with visual perception.
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Figure 2: Encoded brain activity and raw activity comparison of one subject in time, space, and
frequency visualization. (a) The time signals with averaged channels in occipital, temporal, and
parietal areas, separately. (b) The spatial distribution of power spectral density (PSD) across five
rhythms. (c) The correlation between electrode channels. (d) The phase lag across electrode channels.

Table 1: Encoding results with BrainAE (predict activity based on visual stimuli).

Linear Dec Nonlinear Dec Linear Dec+Align  Nonlinear Dec+Align
DATASET CHANNEL MSE | Pearson’srt MSE | Pearson’sr{ MSE | Pearson’sr1 MSE | Pearson’sr 1
All (ch=63) 0.037 0.480£0.069 0.048 0.285+0.092 0.031 0.5224+0.067 0.027 0.583+£0.071

EEG (N=10) Gicual (ch=34) 0033 0.590£0.066 0.042 044840086 0.028 0.628-0.056 0024 0.680+0.052

All (ch=271) 0.706 0.446+0.075 0.713 0.390£0.071 0.629 0.482+0.070 0.624 0.493+0.073
Visual (ch=152) 0.754 0.508+0.008 0.773 0.453+0.087 0.678 0.539+0.078 0.669 0.551+0.081
All (ch=1024) 0.141 0.796+0.033 0.189 0.722+0.035 0.199 0.837+0.018 0.292 0.852+0.001
IT (ch=2561320) 0.079 0.689+0.084 0.143 0.731£0.015 0.080 0.868+0.038 0.066 0.898+0.039

i) High correlations have been achieved across different recordings, where alignment shows significant improvement.
ii) For encoding comparison, there are linear and nonlinear brain decoders in Tab]em and various image encoders in Table@

MEG (N=4)

MUA (N=2)

4.3.2 TIME, SPACE, AND FREQUENCY

We directly plot encoded brain activity with EEG data to roughly show the encoding quality from
temporal, spatial, and frequency aspects. In Fig. [2(a), we show the raw brain activity in blue and the
encoded activity in dashed red by averaging the channels of the occipital, temporal, and parietal areas.
Visual event-related information across multiple channels has been predicted with similar amplitude
and latency over time. Further, we plot the spectral power distribution with spatial topographies
in different frequency rhythms, as shown in Fig. 2[b). The raw and encoded brain activity shows
obvious similarities in the spatial patterns, especially with the data of theta, alpha, and beta bands.

Because spatial correlation and connectivity are important factors in analyzing time-resolved brain
activity, we show the correlation and phase lag between channels in Fig. 2Jc) and (d). The raw and
encoded signals are still consistent in both matrices with a high Pearson’s r, indicating accurate
preservation of spatial and temporal patterns in the encoded signals.

4.4 DECODING
4.4.1 OVERALL PERFORMANCE

The decoding task is to identify or generate visual stimuli based on brain activity. We show the
performance by comparing with state-of-the-art methods in Table 2] and subject-level results in
Appendix |H| There are 200-way zero-shot tasks for the EEG and MEG datasets, and 100-way for the
MUA dataset, where we used top-1 and top-5 accuracy as the metrics. We set classification using
the templates constructed with unseen images belonging to test conditions, and retrieval with the
stimulus images. Our model achieves good results on both classification and retrieval across EEG

and MEG datasets, outperforming other great works, such as BraVL [Du et al.| (2023), NICE [Song|
et al.|(2023a), ATM Li et al.| (2024), and MB2C (2024)). The latest MUA data also achieves

significantly above-chance results with prominent acquisition resolution. These results underscore
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Figure 3: Decoding comparison in temporal, spatial, and semantic aspects. (a) Decoding accuracy
changes when different time points of test brain activity are masked. (b) Decoding accuracy changes
when different areas of test brain activity are masked. (c) Representational similarity analysis of the
brain features to show the semantic information within object categories. (d) The stimuli generated
by the features obtained with the trained model. (e) The channel-wise correlation between encoding
and decoding results. (f) The time-wise correlation between encoding and decoding results.

Table 2: Decoding results (obtain visual information from activity).

Classification Retrieval
DATASET MODEL  Top-1acct Top-5acct Top-1acct Top-571
BraVL 5.8+1.3 17.543.1 - -
NICE 138433 395465 18.8+4.9 48.0+6.2
EEG (200-way) ATM 6.2%1.5 154433  28.6+6.4 58.549.0

MB2C - - 285455 60.4+6.6
BrainAE 18.24+3.2  46.7+4.3  30.6+4.0 63.0+4.8
NICE 10.1£3.5 284469  12.8434 36.0£8.1
MEG (200-way) ATM 54438 159+102 184484 44.1%+142

BrainAE 14.3+4.5  35.149.7 21.448.7 48.3+134
MUA (100-way) BrainAE 26.9+1.9  62.0+3.6 43.5+6.1 77.0+4.2

BrainAE’s effectiveness in decoding tasks, highlighting its generalizability across modalities and its
capability to bridge brain activity with visual information.

4.4.2 TEMPORAL, SPATIAL, AND SEMANTIC ANALYSIS

We analyze the decoding performance with EEG data from different perspectives to illustrate that
our feature space is relevant to visual processing in Fig.[3] Here, we first train the overall model and
mask different time points of test data in three ways, increasing, decreasing, and point-wise masking
along the time, to show the significant response period in Fig.[3(a). From the point-wise results, we
can see that losing data between 100-300 ms has a more significant impact on top-1 accuracy (p <
0.05), consistent with existing visual processing findings [Liu et al.|(2009); |Xu et al.| (2023)).

We also show the spatial pattern by masking the channels of different areas in Fig.[3(b). The channels
in the occipital (p < 0.01), temporal (p < 0.05), and parietal (p < 0.01) areas, along the ventral and

dorsal pathways (2020)), show a significant impact on the top-1 accuracy across subjects.

Semantic information is one of the most important gains when visual perception. Representational
similarity analysis (RSA) was leveraged to compare the brain features extracted by our model in
Fig.[Blc). We could observe distinct intra-category aggregation, after grouping the fine-grained test
concepts into four larger categories: animal, food, vehicle, and tool.

4.4.3 IMAGE GENERATION
To evaluate the visual decoding capability, we implemented an image generation pipeline using brain

activity. Following[Li et al.| (2024)); Benchetrit et al.| (2023)), we trained a diffusion prior to process the
brain embeddings, then used pre-trained SDXL [Podell et al.| (2023) and IP-Adapter |Ye et al.| (2023)
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Table 3: Metrics of image generation.
Model PixCorr 1 SSIM 1 AlexNet(2) T AlexNet(5) T Inception T CLIP 1 EfficientNet | SwAV |

MB2C 0.188 0.333 - - - -
EEG (sub-08) ATM 0.160 0.345 0.776 0.866 0.734 0.786 0.582

BrainAE  0.211 0.432 0.768 0.869 0.753 0.816 0.865 0.541
B.D. 0.081 0.341 0.788 0.879 0.710 0.799 - 0.560
MEG (sub-02) ATM 0.104 0.340 0.613 0.672 0.619 0.603 - 0.651
BrainAE  0.181 0.386 0.767 0.883 0.745 0.814 0.878 0.553
MUA (average) BrainAE  0.221 0.424 0.856 0.931 0.799 0.839 0.834 0.539

Table 4: Ablation study for objective functions.

ENCODING DECODING
All channels Visual channels Classification Retrieval
objective MSE | Pearson’s r 1 MSE | Pearson’s r T ‘ Top-11  Top-51 Top-11T  Top-51
W/ Lo 0.163+£0.067 0.000+£0.006 0.177+0.078 -0.005+0.008 | 18.1+£3.9 47.1+4.5 30.9£6.0 63.5+5.2
W/ Lyecon 0.027£0.005 0.469+0.105 0.027+0.005 0.575+0.117 | 0.6£0.3 3.3+£0.6 0.7+£0.3  3.1+0.5
W/0 Lo, 0.033+£0.007 0.537+0.073 0.0284+0.005 0.655+0.057 | 1.5+0.5 6.8+t1.1 1.3+£0.7 9.242.3

W/0 Lieq 0.028+0.004 0.498+0.089 0.0294+0.003 0.641+0.060 | 17.8+2.6 46.44+2.9 30.0+4.5 63.2+5.3
W/O Lyecon_ g 0.043£0.008 0.481+£0.094 0.034+0.004 0.621+0.084 | 18.0+£3.6 45.6+3.9 30.1+3.5 64.0+5.4
W/O Lyecon_1 0.0724£0.008  0.392+0.065 0.067+0.007  0.469+0.064 | 18.0+£3.0 46.1+6.2 30.0+5.5 61.8+7.7

overall 0.027+0.005 0.583+0.071 0.02410.003  0.680-:0.052 ‘ 18.2+3.2 46.7+4.3 30.6+4.0 63.0+4.8

for image generation. Example raw and generated images of the test set are shown in Fig. [3(d). We
can see that the low-level structural information and the high-level semantic information have been
recovered to a large margin. The evaluation metrics are given in Table[3] including PixCorr, SSIM,
AlexNet, Inception, CLIP score, and SwAV. BrainAE shows competitive results with other works,
such as ATM [Li et al.| (2024), MB2C |Wei et al. (2024)), and B.D. Benchetrit et al.| (2023)).

4.5 MODEL ANALYSIS
4.5.1 ENCODING AND DECODING CONSISTENCY

To demonstrate the effectiveness of the unified model and the consistency of bidirectional mapping,
we first compare the correlation between decoding accuracy changes when masking different channels
and the channel-level encoding Pearson’s r. As shown in Fig. [3[e), the two tasks have high correlation
with r=0.71. Similarly, the time-wise test, calculating between decoding accuracy changes when
masking different time samples and the time-level encoding Pearson’s 1, also shows correlated results.

4.5.2 ABLATION STUDY

We perform an ablation study to show the impact of objective functions in Table[d] The Pearson’s r
of all channels and top-1 classification accuracy are treated as the primary indicators of encoding
and decoding, separately. The L;¢con and L., assume a dominant role for encoding and decoding,
because the correlation and accuracy achieve chance level when only using L.y, Or Lyecon. The
Pearson’s r value has a decrement of 0.191, 0.102, and 0.085 when training the model without L..ccon 1
(p <0.01), Lyeconn (p <0.01), and Ly, (p < 0.01), respectively, while these objectives have no
significant impact on the decoding performance (p > 0.05). On the other hand, L.,,, significantly
helps improve the top-1 accuracy by 16.7 (p < 0.01), and the Pearson’s r by 0.046 (p < 0.01).

4.5.3 BACKBONE

We introduced well-designed feature extractors in BrainAE framework to evaluate the adaptability,
including ShallowNet, DeepNet [Schirrmeister et al.| (2017), EEGNet |Lawhern et al.| (2018)), and
Conformer Song et al.| (2023b) as the brain encoder, and pre-trained ViT-B/16 Dosovitskiy et al.
(2021)), CLIP-L/14, and CLIP-H/14 Radford et al.|(2021)) as the image encoder. Despite replacing
TSConv and EVA-CLIP |Sun et al|(2023), competitive results are achieved in encoding and decoding.

4.6 SIGNAL RECONSTRUCTION

It would be significant to explore neural mechanisms if complete brain activity could be predicted or
reconstructed from partial recordings, in cases where complete recordings are not possible or under
noise interference. Here, we set up an evaluation by masking the raw signals from random, spatial,
temporal, and forecast ways, shown in Fig. a), where the three EEG channels on the occipital area
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Table 5: Brain and image encoder comparison

ENCODING DECODING
All channels Visual channels Classification Retrieval
encoder methods MSE | Pearson’s r 1 MSE | Pearson’sr 7| Top-11 Top-51 Top-11 Top-51
DeepNet 0.023+£0.004 0.596+0.071 0.021+0.003 0.697+0.052 | 12.14+2.8 37.5+4.6 21.2+3.9 51.54£52
BRAIN ShallowNet 0.029+0.005 0.576+0.066 0.025+0.004 0.677+0.050 | 15.14+3.8 42.4+6.2 25.7+4.8 58.3+5.8
EEGNet 0.023:£0.003 0.601£0.067 0.020-£0.003 0.702+0.047 | 16.44+2.9 41.5+£3.3 27.4+3.7 58.3+5.3
Conformer 0.025+0.004 0.589+0.065 0.022+£0.003 0.690+0.050 | 17.2+3.8 44.1+£5.9 26.7+4.2 58.74+6.1
ViT-B/16 0.089+0.022 0.320+£0.070 0.060+0.017 0.461+0.091|11.4+1.8 26.8+£3.9 16.1+3.0 41.3+4.4
IMAGE CLIP-L/14 0.024+0.004 0.572+0.072 0.023+£0.003 0.667+0.064 | 14.04+2.2 41.1+£5.5 19.3+4.2 50.4+6.8
CLIP-H/14 0.049+0.013 0.4074+0.077 0.035£0.009 0.566+0.087 | 16.8+£2.7 39.8+4.2 28.3+4.8 60.8+4.8
TSConv+EVA-CLIP 0.027+0.005 0.583+0.071 0.024+0.003 0.680+0.052 | 18.2+£3.2 46.7+4.3 30.6+4.0 63.0+4.8
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Figure 4: Brain activity reconstruction with four types of masked recordings. (a) The examples of
three channels with random, spatial, temporal, and forecast masks at a ratio of 50%. (b) The encoding
(in red) and decoding (in blue) performance under different masking types and levels.

of one trial are plotted. In implementation, the masked signals are processed by the brain encoder and
then reconstructed by the brain decoder. The reconstructed signals align closely with the raw signals
across all masking strategies, preserving amplitude and temporal patterns even under severe data loss.

We also complement the reconstruction quality reflected by Pearson’s correlation and decoding top-1
accuracy with different mask levels in Fig. @(b). When we increase the ratio, the signal is still
maintained at a higher quality, but the information for image decoding gradually decreases.

5 DISCUSSION AND CONCLUSION

We present BrainAE, a framework that unifies visual encoding and decoding through a shared latent
space aligned with visual features. By integrating both directions, BrainAE not only achieves strong
predictive performance but also provides a computational tool for probing neural representations.
Across EEG, MEG, and MUA datasets, the model achieves high correlations in encoding while
preserving temporal, spatial, and frequency characteristics of neural activity. For decoding, BrainAE
outperforms methods in image identification and achieves competitive performance in image genera-
tion. Beyond task metrics, our analyses demonstrate that BrainAE captures meaningful temporal,
spatial, and semantic patterns, and exhibits consistency across encoding and decoding tasks. Its
ability to reconstruct masked neural recordings further highlights the framework’s robustness.

Despite its promising result, BrainAE has limitations that warrant further investigation. For instance,
visual perception was chosen for evaluation, but other behaviors, such as motor and speech, need
more extensive testing. Secondly, we chose electrophysiological recordings for comparison, due to
the fast dynamics of visual processing. The generalization to other modalities, such as fMRI and
fNIRS, remains unexplored. Future work may also explore BrainAE’s applicability in BCI systems.
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A ETHICS STATEMENT

This work uses previously published and publicly available human EEG/MEG datasets and macaque
MUA datasets. All data were collected with informed consent (for human participants) or under
approved animal care protocols, as stated by the original dataset providers. No new human or animal
experiments were conducted in this study. Our framework is intended for advancing computational
neuroscience and applications, not for clinical or invasive deployment. On the other hand, while
BrainAE offers promising applications, decoding neural activity also raises potential concerns for
privacy and misuse. Careful consideration of ethical safeguards, data consent, and responsible
deployment is essential to ensure beneficial use.

B REPRODUCIBILITY STATEMENT

We have reported the details of our framework design and objective functions in Section 3| the model
architecture in Appendix [D.] and the algorithm in Appendix [El We have also released the dataset
details and preprocessing in Section ] and Appendix [F] The code will be made publicly available.

C THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) to assist with polishing the writing and improving readability.
No part of the scientific content, analysis, or results was generated or influenced by LLMs. We thank
the community for their development of many excellent LLMs to boost scientific communication.
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D MODEL DETAILS

D.1 BRAIN ENCODER AND DECODER

Here, we first introduce the detailed architectures of the BrainAE framework, especially the brain
encoder and brain decoder in implementation. As Table[6]mentioned, the brain encoder used temporal
and spatial convolutional layers for spatial and temporal feature extraction.

We designed the brain decoder as in Table[7} mirroring the brain encoder with transposed convolution
and an up-sampling layer. In the current version, the hyperparameters were set as follows: k =40, m;
=26, my =5, and s = 5. This paper aims to verify the potential of the shared representations obtained
by such an alignment-driven framework. We believe any further enhancement of the encoder and
decoder architecture would help improve the overall performance.

Table 6: Architecture of the Brain Encoder.

Layer In Out Kernel Stride Dimension

Temporal Conv 1 k (I,my) (1, 1) (b,k,C, T —my +1)

Avg Pooling ko k (I,me) (1,s) (bkC(T—mi—mo+1)/s+1)
Spatial Conv kk (ch,1) (1,1) (b,k,1,(T—my—mao+1)/s+1)
Flatten&Linear [k* (T —m1 —ma+1)/s+ 1)— dim of shared features]

Table 7: Architecture of the Brain Decoder.

Layer In Out Kernel Stride Dimension
Linear&unFlatten dim of shared features— [k * ((T"—mq —mg +1)/s + 1)]
Transposed Temporal Conv 1 k (I,mq) (1,1) (b,k,C, T —mq +1)
Upsampling ko k (IL,m2) (1,5) (b,k,C,(T—m3—ma+1)/s+1)

Transposed Spatial Conv ko k  (ch,1) (1,1) (b,k,1,(T—m1—ma+1)/s+1)

D.2 IMAGE ENCODER AND DECODER

We applied several large pre-trained image models as the image encoder to get image embeddings,
such as: (i) ViT-B/16 Dosovitskiy et al.[(2021)) with 12 layers pre-trained on ImageNet-21k Ridnik
et al.| (2021) and finetuned on ImageNet 2012 [Deng et al.| (2009), (ii) CLIP-L/14 Radford et al.
(2021)) with 24 layers pre-trained on LAION-400M, (iii) CLIP-H/14 with 32 layers pre-trained on
LAION-2B |Schuhmann et al.| (2022), and (iv) EVA-CLIP with 64 layers pre-trained on LAION-2B.
In the implementation of the Image Encoder of BrainAE, we only add one linear layer trained to
transfer the image embeddings to a shared space with brain embeddings.

After training, we could directly use the model for classification and retrieval by template matching
with prepared templates. We also test the performance of image generation in two-stage ways,
following the Ramesh et al.| (2022)); Scotti et al.|(2023)); Benchetrit et al.|(2023)); L1 et al.[(2024). The
image generation process is formulated as follows:

P(X[®|zP) = P(X{® 2] |2P) = P(X{"|2] 2P P(=] |2F) (©)

K

where we trained a U-Net-based prior model P(z] I|zzB ) to transfer the model to transfer the
brain embeddings z7 to the CLIP-space embeddings z; ’, which is suitable for the image decoder
P(XIR|z] " zB), pre-trained stable diffusion model. The SDXL model Podell et al. (2023) and
IP-Adapter |Ye et al.| (2023) were used in the implementation. Note that we focus on validating

BrainAE’s latent representations, which can be equipped with other image-generation pipelines.
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E ALGORITHM

The algorithm flow of BrainAE training processing is shown in Algorithm|[T}

Algorithm 1 Training Process of the BrainAE Framework

1: Input: Training brain activity X2 ,;, and stimulus images X/,.;.; randomly divided validation
brain activity X2, and stimulus images X! ;.

2: Model: Brain encoder £g, brain decoder Dp, image encoder £r, and image decoder Dj.
3: Initialize model parameters and hyperparameters.
4: Initialize best _val loss = +o0.

5: for epoch = 0 to ep-1 do

6:  # Training phase

7:  for each batch in training data do

8: # Extract features

9: 27 = Ep(XP); i = &1(X])

10: # Reconstruct activity signals

11: XP7T=Dp(z]); XF'P = Dp(2F)

12: # Compute loss functions (eq. (1), (2), (5))
13: loss = 10SScon + 10SSfea + 10SSrecon

14: # Update parameters of £g, ji, and &;.

15:  end for

16:  # Validation phase
17:  Compute val_loss using g, Dg, &1, on X5, X1,
18:  if val_loss < best_wval loss then

19: Save the best checkpoint.
20: best_wval loss = val loss
21:  end if

22: end for

F DATASETS

We summarize the details of the three datasets used for comparative experiments in Table [8| It
gives the number of subjects, recording channels, training and testing set sizes, and stimulus onset
asynchrony (SOA), covering three types of brain recordings: EEG, MEG, and Spike data.

(i) THINGS-EEG2 |Gifford et al.| (2022)) consists of EEG recordings from 10 subjects with 63 channels.
The training set includes 1,654 concepts across 10 conditions, each repeated 4 times, while the test
set contains 200 concepts with a single condition and 80 repetitions. The SOA is 200 ms with a 100
ms stimulation window.

(i) THINGS-MEQG |Hebart et al.| (2023) involves MEG data from 4 subjects with 271 channels.
The training set includes 1,854 concepts (minus 200 for validation), each with 12 conditions and 1
repetition. The test set has 200 concepts with a single condition and 12 repetitions. The SOA varies
around 1,500 ms + 200 ms, with a 500 ms stimulation window.

(iii) TVSD [Papale et al.|(2025) includes Spike recordings from 2 subjects with 1,024 channels. The
training set consists of 1,854 concepts (minus 100 for validation), each with 12 conditions and 1
repetition. The test set contains 100 concepts, each with 1 condition and 30 repetitions. The SOA is
400 ms with a 200 ms stimulation window.

Table 8: Datasets for comparative experiments.

Type Subjects Channels Train* Test* SOA (stimulation)
THINGS-EEG2  EEG 10 63 165411014 20011180 200 (100) ms
THINGS-MEG  MEG 4 271 (1854-200) 11211 20011112 15004200 (500) ms
TVSD Spike 2 1024 (1854-100) 11211 10011130 400 (200) ms

) concepts (classes) | conditions (images) | repetitions (times).
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G ENCODING RESULTS

We reported the final results of each dataset after running the model 5 times with different random
seeds. The encoding performance of each human or macaque participant is provided in Table [9] [T0}
[IT] respectively. The performance is evaluated using MSE, where lower is better, and Pearson’s
correlation coefficient, where higher is better, across multiple subjects. BrainAE outperforms linear
models Gifford et al.| (2022) in three datasets, achieving lower MSE and higher correlation.

Table 9: Overall encoding performance on EEG dataset (N=10).

Method

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Ave

MSE|] rt MSE r MSE r MSE r MSE r MSE r MSE r MSE r MSE r MSE r MSE r

Linear (all ch)
Linear (visual ch)
BrainAE (all ch)

0.033 0.522 0.043 0.479 0.030 0.518 0.042 0.469 0.044 0.395 0.046 0.378 0.034 0.514 0.033 0.611 0.030 0.380 0.037 0.533 0.037 0.480
0.029 0.664 0.036 0.519 0.028 0.631 0.034 0.584 0.040 0.484 0.041 0.526 0.030 0.668 0.030 0.647 0.026 0.515 0.031 0.658 0.033 0.590
0.024 0.627 0.032 0.602 0.020 0.633 0.03 0.588 0.033 0.500 0.035 0.465 0.025 0.618 0.024 0.696 0.021 0.484 0.027 0.620 0.027 0.583

BrainAE (visual ch) 0.021 0.744 0.027 0.633 0.020 0.720 0.024 0.686 0.028 0.604 0.030 0.624 0.023 0.738 0.023 0.717 0.018 0.619 0.025 0.716 0.024 0.680

Table 10: Overall encoding performance on MEG dataset (N=4).

Sub 1 Sub 2 Sub 3 Sub 4 Ave
Method MSE| rf MSE r MSE r MSE r MSE r
Linear (all ch) 0.421 0.460 0.684 0.575 1.237 0.396 0.482 0.353 0.706 0.446

Linear (visual ch) 0.410 0.527 0.742 0.661 0.356 0.408 0.509 0.435 0.754 0.508
BrainAE (all ch) 0373 0.511 0.620 0.614 1.079 0.455 0.426 0.391 0.624 0.493
BrainAE (visual ch) 0.366 0.571 0.678 0.692 1.181 0.470 0.450 0.472 0.669 0.551

Table 11: Overall encoding performance on Spike dataset (N=2).

Sub 1 Sub 2 Ave
Method MSE|l rt MSE r MSE r
Linear (all ch) 0.140 0.755 0.143 0.836 0.141 0.796

Linear (visual ch) 0.070 0.586 0.087 0.792 0.079 0.689
BrainAE (all ch) 0.310 0.853 0.274 0.852 0.292 0.852
BrainAE (visual ch) 0.019 0.938 0.113 0.859 0.066 0.898
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H DECODING RESULTS

Similarly, the decoding performance of each participant is provided in Table[12} [T3] [T4] respectively.
The performance of classification and retrieval tasks is evaluated using top-1 and top-5 accuracy
across multiple subjects. The results from BraVL Du et al.|(2023)), NICE |Song et al.|(2023a), ATM Li
et al.| (2024), and MB2C |Wei et al.|(2024) are invovlved for comparison. Note that since the authors
of ATM did not provide results for individual subjects, the results in the below table were reproduced,
and its top-1 acc 28.5% and top-5 acc 60.4% were close to that mentioned in the original article,
where the top-1 acc was 28.6% and the top-5 acc was 58.5%. BrainAE achieves higher results than

other models across all datasets.

Table 12: Overall decoding performance on EEG dataset (N=10).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Ave
Method top-11 top-51 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
Classification
BraVL|Du et al[{2023) 6.1 179 49 149 56 174 50 151 40 134 60 182 65 204 88 237 43 140 70 197 58 175
NICE|Song et al.|(2023a) 12.3 36.6 104 339 13.1 39.0 164 470 80 269 141 40.6 152 42.1 200 499 133 37.1 149 419 138 39.5
BrainAE 18.6 442 157 40.7 182 475 22.6 51.5 11.9 39.0 185 482 193 484 232 534 151 451 184 486 182 46.7
Retrieval
ATM 205 58.0 18.0 475 250 60.0 27.5 58.0 155 42.0 27.5 63.5 240 53.0 410 720 215 510 365 695 257 575
MB2C 237 563 227 505 263 602 348 67.0 21.3 53.0 31.0 623 250 548 39.0 693 275 593 332 708 285 604
BrainAE 272 573 27.6 59.1 315 656 36.0 71.0 263 548 323 63.0 26.1 63.1 389 69.5 30.6 633 292 63.6 30.6 63.0

Table 13: Overall decoding performance on MEG dataset (N=4).

Sub 1 Sub 2 Sub 3 Sub 4 Ave
Method  top-11 top-57 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
Classification
NICE 6.9 205 153 371 123 350 58 21.1 10.1 284
BrainAE 100 254 202 459 17.1 436 9.8 253 143 351
Retrieval
NICE 9.6 278 185 478 142 416 9.0 266 128 36.0
ATM 1.5 320 290 655 240 485 9.0 305 184 441
BrainAE 129 350 331 657 264 57.1 132 355 214 483

Table 14: Overall decoding performance of BrainAE on Spike dataset (N=2).

Sub 1

Sub 2

Ave

Method top-11 top-51 top-1 top-5 top-1 top-5

Classification
Retrieval

288 656 250 584 269 62.0
496 812 374 728 435 770
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I PARAMETERS

We set the temperature parameter 7 to 0.07 following Radford et al.| (2021)). Below, we provide
additional comparisons in Table[I5] where the 0.01-level shows better performance. The temperature
has a greater impact on decoding than encoding. The r-value with 7 = 0.07 is slightly higher than
with 7 =0.7 and 7 = 0.007 (p > 0.05), while the accuracy with 7 = 0.07 is significantly higher than
those (p < 0.01).

Table 15: Comparison of temperature parameter with EEG dataset.

T Pearson’s r (all ch) top-1 acc (classification)
0.3 0.573+0.068 15.843.3
0.3 0.576+0.070 14.6£3.0
0.7 0.57840.071 15.0£3.3
0.03 0.59340.065 19.4£3.6
0.05 0.590+0.064 19.54+3.7
0.07 0.583+0.066 19.24+2.7
0.003  0.564+0.075 13.14+2.0
0.005  0.569+0.071 13.943.2
0.007  0.579+0.075 14.842.8

J COMPUTATIONAL COST

To evaluate the usability in real BCI scenarios, we report the coarse computational time to train the
model for each recording on one GeForse 4090 GPU, as shown in Table [T3]

Table 16: Computational time on one GPU.
1x GPU training time per subject test time each trial

EEG 7 min 4.7e-5s
MEG 19 min 9.5¢e-5s
MUA 28 min 5.7e-4s

K BROADER IMPACT

BrainAE unifies visual encoding and decoding within a bidirectional latent space, providing a new
computational tool for studying neural representations and the mechanisms of visual processing. By
bridging neuroscience and machine learning, it contributes to advancing both our understanding of
biological intelligence and the design of brain-inspired Al systems. Beyond research, the framework’s
robustness and efficiency make it promising for real-world applications such as brain—computer
interfaces, assistive technologies, and cognitive state monitoring.
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