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Abstract

The increasing complexity of machine learning
(ML) and artificial intelligence (AI) models has
created a pressing need for tools that help scien-
tists, engineers, and policymakers interpret and
refine model decisions and predictions. Influence
functions, originating from robust statistics, have
emerged as a popular approach for this purpose.

However, the heuristic foundations of influence
functions rely on low-dimensional assumptions
where the number of parameters p is much smaller
than the number of observations n. In con-
trast, modern Al models often operate in high-
dimensional regimes with large p, challenging
these assumptions.

In this paper, we examine the accuracy of influ-
ence functions in high-dimensional settings. Our
theoretical and empirical analyses reveal that in-
fluence functions cannot reliably fulfill their in-
tended purpose. We then introduce an alternative
approximation, called Newfluence, that maintains
similar computational efficiency while offering
significantly improved accuracy.

Newfluence is expected to provide more accurate
insights than many existing methods for interpret-
ing complex Al models and diagnosing their is-
sues. Moreover, the high-dimensional framework
we develop in this paper can also be applied to
analyze other popular techniques, such as Shapley
values.
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1. Introduction
1.1. Background and literature review

The growing complexity and black-box nature of machine
learning (ML) and artificial intelligence (AIl) models have
made their assessment and interpretation critical challenges,
especially when it comes to informed decision-making.
Attribution-based techniques, such as influence functions
(IF) Koh & Liang (2017); Han et al. (2020); Pruthi et al.
(2020); Yeh et al. (2019); Hammoudeh & Lowd (2024); Park
et al. (2023) and Shapley values (Ghorbani & Zou, 2019;
Jia et al., 2019; Sundararajan & Najmi, 2020; Rozember-
czki et al., 2022; Kwon & Zou, 2022; Wang et al., 2024a),
have emerged as widely used tools for understanding model
behavior.

One of the most widely used attribution-based techniques
relies on the IF, a concept originally developed in the field
of robust statistics (Hampel, 1974). IFs quantify the effect
of small perturbations to individual data points on the pre-
dictions of an ML or AI model. IFs have demonstrated
promising results in a variety of downstream tasks, includ-
ing interpreting model predictions (Ilyas et al., 2022; Grosse
et al., 2023; Kwon et al., 2024), improving model alignment
(Zhang et al., 2025; Min et al., 2025), and analyzing training
dynamics (Guu et al., 2023; Wang et al., 2024b).

To understand some of the challenges faced by IFs, consider
the dataset D = {z1, 2o, ..., 2y} being used for learning
the parameters 3 € R? of an Al model. Also assume that
for estimating 3 we use the empirical risk minimization:

~

B = argming L,,(8) := Zé(,@,zj),
j=1

where ¢(3, z) denotes the loss function. Using ,@ we can
make predictions about a new data sample z, and the accu-
racy of our prediction is measured as ¢ (B, zo). Hence, we
measure the influence of the datapoint z; on the prediction
of our model using:

I (2, 20) = E(B/wZO) — 0B, 20), ()

where B/i = argming L, /;(B) = Z;;iﬁ(,@,zj). We
call this quantity the true influence of z;.
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Calculating Z™™¢(z,, z() requires retraining the model for
calculating B /i~ Since this is computationally demanding
Koh & Liang (2017) proposed the following approximations.
First, using the first-order Taylor approximation, we have

T (25, 20) =~ Vgl(B,20)" (B); — B) )

The second step of approximation is used to calculate (3 /i~

o~

() efficiently. Defining:
Ble) = _U(B.2z;) — et(8,2)
j=1

Note that 3(1) = B si- Since n is a large number, we have:

~ ~ d3

B,-B~- % 3)
e=0

dB(e)

can be calculated using the Hes-
e=0

sian of the empirical risk, i.e. G = Y| V34(8,2;):

The derivative o

dla _ -1 2 ..
-, =G Vl(B3,2;). “4)

Combining (2) and (4), Koh & Liang (2017) proposed the
following approximation for Z™¢(z;, z():

I (25, 20) = Val(B,20) G 'Vsl(B,2). (5)

Inspired by the analysis offered in Hampel (1974) for low
dimensional settings, i.e. the setting, where the number of
parameters p is much smaller than the number of observa-
tions n (p < n), it is widely believed that the approxima-
tions we mentioned in (2) and (3) are accurate. However,
many modern Al and ML models have many parameters,
that challenges the assumption p < n. Throughout the
paper, we call the models in which p is not much smaller
than n, high-dimensional models. Inspired by such models
we would like to answer the following question:

Q;: Are the two approximations that led to (5) accurate
under the high-dimensional settings?

Qo If the answer to Q; is negative, can the formula pre-
sented in (5) be improved to yield an accurate approximation
for T (z;, z¢)?

A few empirical papers have reported the inaccuracies in
the conclusions of the IF; Koh & Liang (2017) and Bae
et al. (2022) empirically showed that IFs are often inaccu-
rate in estimating leave-one-out scores, particularly when
applied to deep neural network models. Basu et al. (2020)
studied how IFs change across different model parameteri-
zations and regularization techniques, showing they can be
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Figure 1. Comparison of Newfluence and 7% (z;,z0). We use
logistic ridge regression with n = 500, p = 1000, and A = 0.01.
The other details of the simulation are presented in Section 3 The
figure shows results for all the influence of all the n = 500 training
points on the prediction loss of m = 100 unseen new test points
generated from the true logistic model. Left: Newfluence vs. true
influence. Right: 7' (z;,20) vs. true influence. The Newfluence-
based method offers a significantly better approximation.

erroneous in some circumstances. Schioppa et al. (2023)
examined the five major sources of inaccuracy and high-
lighted the potential pitfalls of the Taylor expansion that is
commonly used in IFs.

Our goal is to develop a theoretical framework for analyzing
the accuracy of IFs. We argue that the high dimensionality of
modern Al and ML models undermines the approximations
on which IFs are based. To support this claim, we adopt a
high-dimensional asymptotic regime where n, p — oo with
n/p — =, for some fixed v (Donoho et al., 2011; Zheng
et al., 2017; Donoho & Montanari, 2016; El Karoui et al.,
2013; Sur et al., 2019; Li & Wei, 2021). That is, both n and
p are large, but their ratio remains bounded. Our theoretical
results show that the answer to Q; is negative, i.e. IFs can
be inaccurate in high-dimensional settings. In response,
we propose an alternative approximation of ZT"¢(z;, zy),
called Newfluence, that retains the computational simplicity
of classical IFs but remain accurate under high-dimensional
conditions. Empirical results further support our theoretical
findings. Figure 1 compares the performance of Newfluence
with that of Z' (z;, z).

1.2. Notations

Vectors and matrices are represented with boldfaced lower
and upper case letters respectively, e.g. a € R", X € R"*P,
For matrix X, oyin(X), 0max(X) , tr(X) denote its mini-
mum and maximum singular values and trace respectively.
We denote any polynomials of log(n) by PolyLog(n).

We use classic notations for deterministic and stochastic
limit symbols such as o(-), O(-), op(-) and Op(-). In addi-
tion, we use the notation X = ©p(1) if X = Op(1) but
notop(1), and X = Op(a,) if and onlf if X/a,, = Op(1).
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2. Theoretical results
2.1. Newfluence for High dimensional R-ERM

In this section, we formalize our ideas using the generalized
linear model and propose our new measure of influence,
called Newfluence. Consider the generalized linear model:
z; = (yi,x;), where y; € R is the response and x; €
RP is the feature. We further assume that a given dataset
D,, := {(yi,x;)}}_; consists of n i.i.d. observations from
a generalized linear model, i.e. (y,x) ~ p(x)q(y|x"B"),
and 3" represents the parameters that the ML system needs
to learn.

We use the following regularized empirical risk minimiza-
tion (R-ERM) for estimate 3*:

o~

B :=argminL, (8) = Zé(yj,ij,@) +Ar(B), (6)

BeR? =
where with a slight abuse of notation, we have redefined
the loss function ¢(y, u) as a function of y and u = x;rﬁ.
Examples of the loss include square loss %(y — u)?, or
negative log-likelihood —logq(y|x' B3 = wu). Further-
more, 7 : RP — R is the regularizer, e.g. LASSO:
r(B) = |8, ridge: r(B) = |8 g and A > O is
the strength of regularization. In the rest of the pa-
per, we use simplified notations: for j € {0,1,...,n},
6(8) == Uypx] B, £5(8) = Fitlys )]y g and

6(8) = 25t(y;,u)

J
the setting of this section, we obtain:

o Rewriting (1) and (5) under

I (24, 20) = Lo(B;) — Lo(B),

T (21, 70) := lo(B)x) G~ (B)x:l:(B).
In response to Qi in Section 1.1, we study the error
|Z (24, 20) — Z7"(z;, z0)| under the asymptotic setting
n,p — oo, while n/p — 7o, where 7 is a fixed (but arbi-
trary) number. Note that the assumption n/p — 7y aims to
cover high-dimensional problems. For instance, but choos-
ing v < 1, we it will even cover the situation where the
number of features are less than the number of observations.

The classical expectation was for the IF approxima-
tion Z'(z;,2¢) to closely match the true influence
T1rue(z,, 24), making the difference negligible. However,
our theoretical results in the next section show that, contrary
to this expectation,

IIF(ziaz()) = (17Hii)ITrue(Zi,Z0)+Op (W)
n

where H;; = (xiTG’lxi)&(,B'). As will be clarified later, it
follows from the definition of G and our high-dimensional
framework that H;; = Op(1) and 0 < H;; < 1.

)

This implies that the commonly used Z'F formula under-
estimates the true influence by a datapoint-dependent fac-
tor (1 — H;;). Since 1 — H;; varies with the datapoint z;,
it is conceivable that for points with large true influence
TTrue(z,;, 24), the value of 1 — H;; may be small—causing
T'(z;, z0) to be markedly lower and incorrectly suggesting
that z; is non-influential in the prediction.This underestima-
tion phenomenon is also illustrated in Figure 1.

This motivates Q5 in Section 1.1: can we find a more ac-
curate alternative? In response, we propose a modified
influence function framework that addresses this limitation
while retaining computational efficiency. First, note that the
above calculation suggests the corrected estimator:

A

_ IIF
1—-H;

which is in fact consistent for Z'™°. However, both T'F and
7' require computing the gradient Vg/(3, z) for each
new test point zg. We avoid this in our proposal called
Newfluence, which is given by

N

RS (3). o

=i 3
Evaluating the loss function at any 3 and z( should have
similar computational demand as evaluating the gradient,
so this method generally does not increase computational
complexity. As we shall show in the next section, this
estimator is consistent for the true influence Z 1.

This alternative approach retains the interpretability advan-
tages of IFs while eliminating unnecessary approximations
and improving computational accuracy. This formula is
inspired by the recent work on the literature of risk estima-
tion in high-dimensional settings (Rahnama Rad & Maleki,
2020; Rahnama Rad et al., 2020; Auddy et al., 2024; Wang
et al., 2018). We present the derivation of the formula in
Appendix A.

2.2. Our main theoretical contributions: Smooth case

In this section, we formally state our main theoretical re-
sults. Before stating our results, we first review some of the
assumptions we have made in our analysis. All these as-
sumptions are mild, and have been shown to be satisfied by
a large number of models (Rahnama Rad & Maleki, 2020;
Auddy et al., 2024; El Karoui et al., 2013; Sur et al., 2019).

Assumption Al. The regularizer is separable:

p

r(B) = re(Br).

k=1

Assumption A2. Both the loss function £ : R x R — R
and the regularizer r : RP — R are twice differentiable.
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Assumption A3. Both ¢ and r are proper convex, and r is
v-strongly convex in 3 for some constant v > 0.

Assumption A4. 3C, s > 0 such that
max{((y, ), |(y, 2)|,| € (y,2)[} < C(L+ [y|* + |2]°)

and that V?r(B) = diag[i'x (Be)|kep) s Crr(n)-
Lipschitz (in Frobenius norm) in 3 for some C,.(n) =
O(PolyLog(n)).

We also adopt the following assumptions on the data gener-
ation mechanism:

Assumption B1. The feature vectors x; EYe (0,%). Fur-
thermore, Apmax () < CTX, for some constant C'x > 0.

Assumption B2. P(jy;| > C,(n)) < ¢ for some
Cy(n) = O(PolyLog(n)) and ¥ = o(n=1).

Theorem 2.1. Under assumptions Al,... A4, and B1,B2, we
have

1. |ZNew — TTrue| = op(LPolyLog(n))
True| __ 1
3. I = (1 — Hi;))IT™° + op(LPolyLog(n)).

We present the proof in Appendix B. We now present a few
remarks on the above theorem.

Remark 2.2. For many common choices of loss func-
tions and regularization parameters, {;(3) = ©p(1), and
max; i (BJ) = Op(1). Then it follows from the definition
of H;; and our assumptions that H;; = Op(1/(1 + X)).
Thus the classical estimator T incurs considerable bias in
such situations, when X is not very large. This is reflected in

our simulation experiments in the next section.

Remark 2.3. Comparing T and T'F, we find that the
approximation error in I'Y is Hy; - T, which, for moder-
ate regularization strength ), is of the same order as the true
influence itself. As a result, a highly influential data point
may appear non-influential due to approximation errors in-
volved in obtaining |I'Y|, potentially leading to misleading
conclusions—an issue also noted in prior empirical studies
(Basu et al., 2020; Bae et al., 2022).

Remark 2.4. In contrast to T'Y, the error |IN®V — ZTrue|
is much smaller than |ZT7|, indicating that TNV provides
a reliable approximation of TT™° when n and p are large.

3. Numerical Experiments

We evaluate the accuracy of Newfluence and classical in-
fluence function in /5-regularized logistic regression. We
generate synthetic binary classification datasets with fea-
ture dimensions p € {500, 1000,2000} and set the sam-
ple size to maintain a fixed ratio n/p = 0.5. The true

model coefficients 3* ~ N (0,1,) are drawn from a stan-
dard normal distribution, and input features are sampled as
x ~ N(0,1I,/n). Labels y € {0,1}" are generated accord-
ing to a Bernoulli model with success probabilities given by
o(x"3"), where o denotes the sigmoid function. The code
used to produce the numerical results is available online'.

We fit a logistic ridge model using Newton’s method, with
regularization parameter A € {0.01,10}. For each model,
we compute the true influence function Z7™ for m = 100
unseen test examples. These true influence values are com-
pared against two first-order approximations: (i) Newflu-
ence, and (ii) the classical influence function, Z'F. For each
test point, we evaluate the rank correlation between true
and approximated influence across training points using
Kendall’s 7.

The value of 7 lies in the interval [—1, 1], with 7 = 1 indicat-
ing perfect agreement between rankings, 7 = —1 indicating
perfect disagreement (reversed order), and 7 = 0 indicating
no correlation in pairwise orderings.

Results are summarized in Tables 1 and 2. When \ = 0.01,
corresponding to an effective degrees of freedom ratio
df/p ~ 0.344 (where df:= >_"" | H;;), Newfluence esti-
mates exhibit nearly perfect rank agreement with the true
influence ranking (7 =~ 1.00), while classical IFs are notably
less accurate (7 ~ 0.88). In contrast, when A\ = 10, the
regularization is strong and the effective degrees of freedom
is substantially smaller (df/p = 0.023), placing the model
in a low-dimensional regime. In this setting, both Newflu-
ence and the classical influence estimates achieve perfect
agreement with the true influence ranking.

These results illustrate that classical IFs can be accurate in
the low-dimensional regime—i.e., when df/p < 1—but
fail to match the fidelity of Newfluence in high-dimensional
settings where the model complexity (as measured by df/p)
is non-negligible.

4. Concluding Remarks

Interpreting today’s black-box systems—ranging from foun-
dation models to the latent “world models” that power
model-based reinforcement learning—requires attribution
tools whose guarantees scale with model dimensionality.
In this work we have shown that the classical influence-
function approximation of (Koh & Liang, 2017) incurs
a systematic, datapoint-specific bias in high dimensions:
it underestimates the true leave-one-out effect by a factor
1 — H;;. To remedy this, we proposed NEWFLUENCE, a
single-Newton-step correction that preserves the computa-
tional economy of influence functions while eliminating

1https ://anonymous.4open.science/r/
corrected-influence-functions—-2F7E/
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Table 1. Kendall’s 7 (std in parentheses) for Newfluence and clas-
sical influence-based estimates across different training set sizes
computed over m = 100 unseen test data points for logistic ridge
when A = 0.01, leading to df/p = 0.344.

n p 7 (Newfluence) 7 (IF)
250 500 0.99 (0.00) 0.88 (0.01)
500 1000 1.00 (0.00) 0.88 (0.01)

1000 2000 1.00 (0.00) 0.88 (0.00)

Table 2. Kendall’s 7 (std in parentheses) for Newfluence and clas-
sical influence-based estimates across different training set sizes
computed over m = 100 unseen test data points for logistic ridge
when A = 10.00, leading to df/p = 0.023.

n p 7 (Newfluence) 7 (IF)
250 500 1.00 (0.00) 1.00 (0.00)
500 1000 1.00 (0.00) 1.00 (0.00)

1000 2000 1.00 (0.00)  1.00 (0.00)

their high-dimensional bias. Our theory establishes con-
sistency under the proportional asymptotics p =< n, and
experiments with high-dimensional logistic ridge regression
confirm near-perfect rank agreement between NEWFLU-
ENCE and ground truth, whereas the classical estimator
degrades markedly.

Although our theoretical analysis presently targets gen-
eralized linear models with strongly convex, twice-
differentiable objectives, the Newton-step correction is
model-agnostic. We therefore view NEWFLUENCE as a
first step toward principled influence estimation in the non-
convex, non-smooth, and sequential settings that character-
ize modern Al models.

We hope that recognizing and correcting the high-
dimensional bias documented here will encourage the com-
munity to reassess existing interpretability tools and to de-
sign influence-aware debugging, data-valuation, and align-
ment pipelines that scale with the complexity of contempo-
rary Al systems.
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A. Derivation of the Newfluence for smooth problems

. . . ~N . . .
Here we provide the detailed derivation of 3 /:W ™" The key is to use one step of Newton method to get an approximation

of ,@ /i» and using Woodbury formula to reduce computational complexity of the leave-one-out Hessian.

Recall that the Newton method, or Newton-Raphson method, is an iterative algorithm to find the root of a function.

Definition A.1 (Newton-Raphson Method). Given a function f : RP — RP with a unique root x* € RP, the Newton-Raphson
Method finds x* iteratively, starting from an initial point x©):

x(®) .— x(t=1) _ Gfl(x(tfl))f(x(tfl))’
where G(x) is the Jacobian of f, which is assumed to exist and invertible.

Note that when the objective function L,, /i(,B) is smooth, B /i 1s the root of its gradient:

0= VLn )/ IB/Z Z€ /@/z xj + )\VT(,B/Z)
J#i

If we replace f in Definition A.1, then its Jacobian is just the Hessian of L,, /;:

G/i(B) =Y x;x] [;(B) + AV*r(B). ®)
J#i

Moreover, since L,, /; = L, — £; and VLn(B) = 0, we have
VL i(B) = VLn(B) = VE(B) = —t:(B)x.

Inspired by the corresponding literature (e.g. (Rahnama Rad & Maleki, 2020; Rahnama Rad et al., 2020; Auddy et al.,

ewton

2024)), we initiate the Newton iteration at the full model parameter ,8 and apply a single update, and call the result ﬂ /i

By = B—G(B)VLn i(B)
fB+umGﬁ@k@ ©)

Furthermore, we use Lemma C.1 to simplify the calculation of G /; without repeatedly taking inverse for each i. For now
we write G, G /; and drop their dependence on 3:
Gl = (G- V6(B)"
= (G —xx/B,(B) !
G x/x;,G~ 1&(3)
1-x; G 1x;0;(B)

( Woodbury Formula) =G~ +

Inserting this back into (9):

B = B+ L(B)G (B
-~ P~ _ G_leXiG_lgi(,@)
=B+4(B8) |G} : == | X;
B+ ti(B) + | x G % (D) X
~ 1
BHLBG i (10)

where H; is the (4,4) element of

H = XG 'XT diag[¢;(8)],,
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~ Newton

and diag [EZ(B)]?:l is the diagonal matrix with diagonal elements being {&(,B’),z =1,2,...,n}. Replacing B /i by B /i
in the definition of the true influence ZT™"° yields our definition of ZN°V:

~ Newton

N = 4B )~ Lo(B)

=4 (ﬁ +L(B)G /i (B)xi T —1H~> — L (B)

A.1. A Heuristic Lower Bound on H;;
We show that H;; is bounded below by a constant with non-vanishing probability in the case of linear regression, i.e., an
ERM with squared loss.
Hii = XZG_I(B)xi
> |I%i[Pomin(G™H(B))
> [[xil|* (omax(G(8))) ™!
By standard concentration results for x? distribution (Lemma C.2), we know that P(||x;[|? > 1) > 1 — e~ 167, Also, we
have
Tmax (G(B)) = [XTX + 2V (B)]
< X7+ AV (B)])-

By Lemma C.4, ||X|| = Op(1). We claim without proof that, for most commonly used regularizers we have | V2r(8)| =
Op(1). For example, for the ridge penalty 7(3) = ||3||> we have ||V?r(3)|| = 2. Therefore H;; > C w.p — 1.

B. Proof of Theorem 2.1
B.1. Proof of Part 1
It follows from Lemma 3.3 of (Zou et al., 2025) (with m = ¢ = 1) that || 3 ; — ﬂffwmnn = op(J=PolyLog(n)). Thus
~ Newton -~
TN — e = (B/z ) —4o(B;)

~ Newton

= £(yo,Xg /3/1 )—f(yoaxgﬁ/i)

~ Newton ~ Newton

/ Vsl(yo, % ( 51/\Izewmn (5/1 B/i)))dt> (/3/1 B/i)

= ([ @B B B ) B - B

<O (1 Iol* + 1x] By + 1x3 Bl*) xd (B = B))
<40V/Ox (14 (Cy )" + (3B i1/ Cx Toaln) /o)) 18);™"" ~ Byallv/08(m) /p

o, (POM;:)%(”)) (11)

with high probability. Here the first inequality follows from Assumption A4. The second inequality holds with high
probability by Assumption B2 and by Lemma C.2, since x¢ ~ N (0, ) with A\,ax(2) < Cx /p, and xg is independent of

{(yi,x;) : 1 <i < n}, and hence of ,6/1, ﬁl/\lewm In the last step we use the fact that ||B/Z|| = Op(y/p), and finally the
above quoted bound on the error of the Newton step, i.e., ||,B' /i — ﬁl/\lzewmn =0 p(ﬁPolyLog(n)).

8
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B.2. Proof of Part 2

Next, note that by definition of ZNV, we have by a Taylor series expansion that

IMWIM@M®@GAMZ%<3+M@G*M>_M@_%@m@kyr&i

1 — Hj; 1—Hy 1—Hy
o 2
. gi(ﬁ)XS—GilXi .
= (1—Hz to(§)
— 0 (PolvLog(n) - (<] G'xi)? = Op (FHE)) (12)

Here & = {8 + (1—1%) B/Niewwn for some ¢ € [0, 1]. To get the second last equality we use Lemma C.4 to conclude that

|G~!x;|| = Op(1), Assumptions A4 and B2 to arrive at (1 — H;;)~* = Op(1), KO(B), €2(3)7 (&) = Op(PolyLog(n)).
To get the last equality we again use the conclusion that |G~ !x;|| = Op(1) , and finally that xo ~ N(0,X) with
Amax (%) = Cx /p, independent of {(y;,x;) : 1 < i < n}. Note also that n/p — 7.

From (11) and (12) we then have

ITrue EO(B)El(B)X(—)rG_lxz -0 PolyLog(n)
- iom, U )

(13)

By arguments identical to (12) we have (1 — H;;) ™' = Op(1), lo(B), 4;(B), ;(€) = Op(PolyLog(n)), and |G x| =
Op(1), and thus

EO(B)& (B)XJG*IXi _0 PolyLog(n)
1—Hy; i ( vn > '

This completes the proof of part 2. In fact, for many choices of loss functions, such as squared loss, logistic loss, or Poisson

negative log likelihood the above quantity is in fact © p (%‘f(")) . We omit a more detailed analysis here.

B.3. Proof of Part 3

Since we are in the setup of generalized linear models,

o~

Val(B.20) = x0lo(B), Vgl(B.2:) = xil:(B).
Thus, definition of Z'F and (13) together imply that

¥ PolyLog(n)
ITrue o _ .

= Up

from where the conclusion of Part 2 follows immediately since 0 < 1 — H;; < 1.

C. Auxiliary Lemmata
Lemma C.1 (Woodbury Inversion Formula). Suppose A € R™*™ is nonsingular, and M = A + UBYV, then
M'=A'!'-A'UB!'+VAIU)VA!

provided that all relevant inverse matrices exist.
Lemma C.2 (Lemma 6 of Jalali & Maleki (2016)). Let z ~ N(0,1,), then

P(ZTZ > p+pt) < e—g(t—log(l—&-t))

Lemma C.3 (Lemma 12 in (Rahnama Rad & Maleki, 2020)). X € RP*? s composed of independently distributed N (0, )
rows, with pmax = Omax(2), where X € RP*P. Then

P(IIX X[ > (v + 3y/P)*pmax) < 77

9
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Lemma C4. Suppose X, has iid rows x; ~ N(0,p~'L,), then

1. P(maxi<;<n [|%:]| > 2) < ne~P/2

2 P(IXTX| = (Vi +3)?) < e

Proof. 1. By Lemma C.2 and let z = n~!/2x; we have z ~ N(0,1,) so that

P(|lxill > 2) = P(x]" x; > 4)
<P(z'z > 4p)
< e~ 5B-log() < /2

The rest follows from a union bound over all 3.

2. It is a direct application of C.3 with pmax = p~ L.
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