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Abstract

Neural Network Pruning has been established as driving force in the exploration of1

memory and energy efficient solutions with high throughput both during training2

and at test time. In this paper, we introduce a novel criterion for model com-3

pression, named “Expressiveness". Unlike existing pruning methods that rely4

on the inherent “Importance" of neurons’ and filters’ weights, “Expressiveness"5

emphasizes a neuron’s or group of neurons ability to redistribute informational6

resources effectively, based on the overlap of activations. This characteristic is7

strongly correlated to a network’s initialization state, establishing criterion auton-8

omy from the learning state (stateless) and thus setting a new fundamental basis9

for the expansion of compression strategies in regards to the “When to Prune"10

question. We show that expressiveness is effectively approximated with arbitrary11

data or limited dataset’s representative samples, making ground for the exploration12

of Data-Agnostic strategies. Our work also facilitates a “hybrid" formulation of13

expressiveness and importance-based pruning strategies, illustrating their com-14

plementary benefits and delivering up to 10× extra gains w.r.t. weight-based15

approaches in parameter compression ratios, with an average of 1% in performance16

degradation. We also show that employing expressiveness (independently) for17

pruning leads to an improvement over top-performing and foundational methods in18

terms of compression efficiency. Finally, on YOLOv8, we achieve a 46.1% MACs19

reduction by removing 55.4% of the parameters, with an increase of 3% in the20

mean Absolute Precision (mAP50−95) for object detection on COCO dataset.21

1 Introduction22

To address the computational constraints of existing models, Model Compression [7] has emerged as23

a prominent solution in exploring models that achieve comparable performance, but with reduced24

computational complexity [52]. Within this scope, Floating Point Operations (FLOPs) are used to25

estimate a model’s computational complexity, by measuring the arithmetic operations required for a26

forward pass, while parameters (params) are associated with a model’s size in terms of memory space27

[48] and their reduction can be a precursor towards more energy efficient solutions [5]. Although28

FLOPs and params often correlate, their relationship isn’t strictly linear. For instance, VGG16 [43]29

has 17× more parameters than ResNet-56 [17] but only 3× more FLOPs, largely due to VGG16’s30

extensive use of fully connected layers. At first sight, this can be attributed to the differences in31

network topologies. From a deeper perspective, the intricacies of various operations at handling32

computational workloads, such as residual structures [17, 55], depthwise separable convolutions [19],33

inverted residual modules [18], channel shuffle operations [59] and shift operations [53], coupled34

with their interplay, may significantly affect the relationship between FLOPs and params in a neural35

network. In a nutshell, besides the use of more computationally efficient operations as above-36
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mentioned, Model Compression aims to maintain model performance while optimizing the two37

aforementioned metrics via tensor decomposition, data quantization, and network sparsification [7].38

In this paper we emphasize on the sparsification strategy of pruning [49], which we use as a basis39

framework to introduce “Expressiveness" as a new criterion for compressing neural networks.40

Existing pruning methods focus on removing redundant network elements – be they weights, neurons,41

or structures of neurons – in ways that minimally affect the overall performance of a network, based42

on the criterion of “Importance", e.g. [38, 58, 20, 30]. Importance-based methods address questions43

like “How much does the removal of a network’s element cost in terms of performance degradation?"44

and “How much information does a network element contain?" in various ways. More specifically,45

they are motivated by the information inherent in network elements, such as the magnitude of weights46

[15, 28], similarity of weights or weight matrices [29, 60] ; and their sensitivity to the network’s loss47

function, such as the magnitude of gradients [38] and more [49, 3]. Such dependencies on weights’48

distributions constitute the aforementioned pruning methods to be “data-aware" since they intrinsically49

rely on the input data and the information state of the model, making the importance estimation50

of the network’s elements challenging and often costly due to factors like i) the stochasticity from51

training with minibatches, ii) the presence of plateau areas in the optimization space, and iii) the52

complexity introduced by nonlinearities [38]. Liu et al. [36] have also discussed limitations in the53

perception of importance within trained models, i.e. the authors criticize the ability of network’s54

elements importance to generalize to pruned derivatives, while also questioning the necessity of55

training large-scale models prior pruning.56

Inspired by the concepts of “Information Plasticity" [2] and the “Lottery Ticket Hypothesis" (LTH)57

[12], we aim to address the limitations of previous importance-based methods through elaborating58

the “Expressiveness" criterion in model compression. In contrast to “Importance", we focus on59

understanding the capability of network elements to redistribute informational resources to subsequent60

network elements. We define “Expressiveness" as - “A neuron’s or group’s of neurons potential61

(when a network is not fully trained) or ability (when it is trained) to extract features that maximally62

separate different samples". As derived by [2], the early training phase of a model is crucial in63

shaping its expressiveness, with the formation of critical paths —strong connections that determine64

the “workload distribution"— being particularly significant during these initial stages. It’s essential to65

note that the network’s initialization state influences the formation of those paths, which interestingly66

enables "Expressiveness" to be a fit criterion for compression during all time instances of a networks’67

convergence [12], setting a baseline for answering the question of "When to prune?" [42]. Our68

proposed pruning metric centers on measuring the overlap of activations between datapoints of the69

feature space. In that way, expressiveness is based on effectively evaluating the inherent ability of the70

network’s neurons to differentiate sub-spaces within the feature space. We experimentally show that71

utilizing either small sets of arbitrary data points from the feature space or stratified sampling [34]72

from each class yields consistent estimations of expressiveness. Finally, we propose and implement a73

new “hybrid" pruning optimization strategy that cooperatively searches, exploits and characterizes74

the complementary benefits between “Importance" and “Expressiveness" for model compression.75

In summary, this work offers the following four-fold contribution: (i) we propose Expressiveness,76

a novel criterion based on the overlap of activations for model compression; (ii) we provide an77

in-depth theoretical analysis of both the fundamental principles and the technical intricacies of the78

proposed criterion; (iii) we validate the hypothesis that Expressiveness can be approximated with79

little to none input data, opening the road for data-agnostic pruning strategies; and (iv) through80

extensive experimentation we offer a thorough comparison w.r.t to both foundational and state-of-81

the-art methods demonstrating the efficiency and effectiveness of the proposed technique in model82

compression, while also examining the feasibility and effectiveness of a “hybrid" expressiveness-83

importance pruning strategy.84

Specifically, we validate “Expressiveness" on the CIFAR-10 [24] and ImageNet [40] datasets using85

a variety of models with different design characteristics [44, 17, 45, 21, 19]. We demonstrate the86

superiority of our novel criterion over existing solutions, including many top performing structural87

pruning methods [31, 61, 58, 32, 23, 46, 11], and show significant params reduction while maintaining88

comparable performance. We experimentally explore and analyze the complementary nature of89

expressiveness and importance, showing that summary numeric evaluation provides up to 10×90

additional parameter compression ratio gains, with an average of 1% loss decrease w.r.t group ℓ1-91

norm [28]. Finally, we experiment on the current state-of-the-art computer vision model (YOLOv892

[9, 22]), showcasing notable compression rates of 53.9% together with performance gains of 3% on93
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the COCO dataset [33], and highlighting the ability of more expressive neurons to better recover lost94

information from the pruning operation.95

2 Related Work96

Weight (Non-Structural) Importance. Han et al. [15, 14] and Guo et al. [13] approached the97

importance of weights based on their magnitude, removing connections below given thresholds.98

However, earlier works [25, 16] emphasized on the Hessian of the loss and have questioned whether99

magnitude is a reliable indicator of weight’s importance, as small weights can be necessary for100

low error. In this direction, several studies [4, 47, 41, 8] have proposed strategies of iterative101

magnitude pruning, in the form of “adaptive weight importance", where weights are ranked based on102

their sensitivity to the loss. From a different perspective, Yang et al. [56] address the limitations of103

individual weight’s saliency that fail to account for their collective influence and provide a formulation104

of weight’s importance based on the error minimization of the output feature maps. Expanding on this105

concept, Xu et al. [54] propose a layer-adaptive pruning scheme that encapsulates the intra-relation106

of weights between layers, focusing on minimizing the output distortion of the network. Amongst107

other factors and limitations (as also discussed in 1), weight importance is very expensive to measure,108

mainly because of the increased complexity induced by the mutual influences of the weights among109

interconnected neurons. This, coupled with the requirement for specialized hardware to manage the110

irregular sparsity patterns resulting from weight pruning [57], has shifted research focus towards111

structural pruning [28], where neurons or entire filters are removed.112

Neuron and Filter (Structural) Importance. Many where driven by the success of Iterative113

Shrinkage and Thresholding Algorithms (ISTA) [6] in non-structural sparse pruning and proposed114

filter-level adaptations [28, 29, 32, 26], based on the relaxation (ℓ1 and ℓ2) of ℓ0 norm minimization.115

However, the loss of universality of such magnitude-based methods remains a limitation in the116

approximation of importance even in the structural scope. Yu et al. [58] further elaborate on the117

idea of error propagation ignorance, where the analysis is limited to the statistical properties of a118

single [28, 29] or two consecutive layers [37]. The authors suggest that the importance of neurons119

is better approximated from the minimization of the reconstruction error in the final response layer120

from which it is propagated to previous layers. In contrast to this view, Zhuang et al. [61] emphasize121

on the discriminative power of a filter as a more effective measure of importance and highlight that122

this aspect is not effectively assessed by the minimization of the reconstruction error. In a manner123

that reflects the progression of weight importance, Molchanov et al. [38] define “adaptive filter124

importance" as the squared change in loss and apply first and second-order Taylor expansions to125

accelerate importance’s computations. Predominantly, the data-awareness imposed by most pruning126

strategies is added to their already high-complexity – i.e. mostly non-convex, NP-Hard problems127

that require combinatorial searches. This renders the estimation of importance both computationally128

expensive and labor-intensive, similarly to non-structural approaches. Notably, Lin et al. [30] propose129

a less data-dependent solution based on the observation that the average rank of multiple feature maps130

generated by a single filter remains constant. HRank [30], alongside several other feature-guided131

filter pruning approaches, are valuable indicators towards data independence. Such works form a132

principle that pruning elements are better evaluated in the activation phase, where the importance of133

information and the richness of characteristics for both input data and filters are better reflected. In134

this work, we expand on this belief and we through extensive experimental analysis, we demonstrate135

that neither the information state nor the input data is required for the discriminative characterization136

of an element.137

3 Neural Expressiveness138

3.1 Weights and Activations: Importance vs Expressiveness139

Neurons are the main constituent element of a neural network. Given a neural network N , we140

denote neurons by a
(l)
i , where l∈L is indicative of the neuron’s layer in a network with L =141

{l0, ..., ll, ..., l|L|} layers and i of its position in the given layer l = {a0, ..., ai, ..., a|l|}. Another142

important element are the learning parameters of the network. Otherwise the weights represent the143

strength of connections between neurons in adjacent layers and are denoted by w
(l)
ij , where i and j144

index the neurons in the current and previous layers. In that manner, neuron’s can be perceived as145
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switches that allow or block information from propagating through-out a network. The activation146

(or not) of a neuron a
(l)
i depends on the output value of its activation function σ(·), where there are147

many popular options for the definition of σ, e.g., sigmoid, tanh, and ReLU functions. Specifically, a148

neuron’s output is defined as follows,149

a
(l)
i = σ

(∑
j

w
(l)
ij a

(l−1)
j + b

(l)
i

)
(1)

where b
(l)
i denotes the bias term. From eq. 1, we observe that a neuron’s activation is affected by150

the activation of the previous layers, hence affecting in the same way the consecutive layers. This151

interdependence between activations a(l), for a given layer l defines a recurrent form that can be152

generalized as follows,153

a(l) = σ
(
W (l)f

(
a(l−2), . . . , a(1)

)
+ b(l)

)
. (2)

On the other hand, weights are a more static representation of information as they modulate how154

much influence one neuron’s activation has on another’s, compared to activations that control the155

flow of information in a network. This differentiation has motivated us to define two axes of study in156

the categorisation of pruning criteria, one based on the weights (“importance") and one based on the157

activation phase (“expressiveness").158

Generalization of concepts in a structural level. The aforementioned principles extend to the159

structural representations of weights and activations, the most common being Convolutional Neural160

Networks (CNNs). For a CNN model with a set of K convolutional layers, where Cl is the l − th161

convolutional layer. We denote filters (weight maps) and feature maps (activation maps) as F l
k and162

Cl
k respectively, where k the is index within a layer. Given filter with dimensions m × n, eq. 1 is163

adapted as follows,164

C
(l)
k (x, y) = σ

(
m∑
i=1

n∑
j=1

F
(l,k)
ij a

(l−1)
x+i−1,y+j−1 + b

(l)
k

)
(3)

where (i, j) and (x, y) are the coordinates of weights and output activations within the filter and the165

output activation map respectively. Similarly, a convolution layer l can be analyticaly expressed as166

follows,167

C(l) =

σ
(⊕K(1)

k=1 F (1,k) ∗X +B(1)
)

if l = 1

σ
(⊕K(l)

k=1 F (l,k) ∗ C(l−1) +B(l)
)

if l > 1
(4)

with X being the input to the first layer of the network, and where symbol ∗ denotes convolution168

operation and
⊕

denotes the concatenation operation. Within this context1, eq. 2 is generalized as169

follows,170

C(l) = σ

K(l)⊕
k=1

F (l,k) ∗ f
(
C(l−2), . . . , C(1)

)
+B(l)

 . (5)

Conceptualization of information propagation. Consider a task with X = {xi}|D|i=1 denoting171

dataset samples, where |D| is the size of the dataset. Given the information state (weight state) of172

a CNN model with K convolutional layers at a given time ti, X is mapped through the network as173

f(X,Wti), where Wti = {F 1
ti , . . . , F

l
ti , . . . , F

|K|
ti } and F l

ti = {F (l,1)
ti , . . . , F

(l,k)
ti , . . . , F

(l,K(l))
ti },174

with K(l) being the amount of weight maps (filters) in a given layer l. This process can be further175

analyzed as follows,176

f(X,Wti) = F|K|(F|K|−1(. . .F1(X;F1
ti);F

2
ti); . . . ;F

|K|
ti

), (6)

where Fl represents the mapping operation of convolutional layer l.177

Based on eq. 2 and eq. 5, the equivalent of the previous based on the activations of the layers can be178

expressed as,179

f(X,Wti) = C(|K|)
(
. . .
(
C(2)

(
C(1) (X,F1

ti

)
,F2

ti

)
. . .
)
,F

|K|
ti

)
. (7)

1We do not include pooling and batch normalization layers in the formulations; however, the equations can
be expanded to incorporate them as intermediate steps based on each architecture.
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Here, C(l) represents the activation map of the l-th layer, where C(l) = Fl(C
(l−1);Fl

ti) aligns180

with the structure defined in eq. 4. In this formulation, C(1) is the activation map of the first layer,181

computed using the input X and the first layer’s filters F1
ti . Subsequent layers’ activation maps182

C(l) are derived from the previous layer’s output C(l−1) and their respective filters Fl
ti . Assuming a183

classification task, the final layer C(|K|) is considered the classification layer, effectively summarizing184

the hierarchical feature extraction and transformation process across all convolutional layers.185

3.2 Mathematical Foundation of Neural Expressiveness.186

We observe that the training parameters of the model, in this case Wti
2, are responsible187

for transforming the original input feature space X into a sequence of intermediate feature188

spaces{C(1), . . . , C(|K|−1)}, progressing towards the final prediction formulated by the prediction189

layer C(|K|).190

Based on this intrinsic characteristic of neural networks and inspired by the goal of optimizing191

feature discrimination, akin to the entropy reduction strategy in decision trees [51], we assess network192

elements ability, in this scenario filters, to extract features, i.e., activation patterns, that maximally193

separate different input samples xi. In other words, we score the expressiveness of the filters within194

Wti , based on the discriminative quality of the intermediate feature spaces they generate, where the195

feature space generated by a filter F l
k, is denoted as Cl

k.196

Neural Expressiveness foundational concept. When assessing the expressiveness of an element197

within Wti based on its generated feature spaces, e.g., NEXP (F l
ti ;C

l), we cooperatively evaluate198

all of its preceding elements, as derived from eq. 5. This can be formulated as,199

NEXP (F l
ti ;C

l) = NEXP (F l
ti ; (C

(l−1), C(l−2), . . . , C(1))), (8)

which can be further extended to incorporate the inter-dependencies between the examined element200

and its predecessors, in accordance with eq. 7, as detailed below:201

NEXP
(
F l
ti ;
(
C(l−1), C(l−2), . . . , C(1)

))
=

NEXP
(
F l
ti ;
(
(C(l−2),Fl−1

ti ), (C(l−3),Fl−2
ti ), . . . , (X,F1

ti)
))

. (9)

The aforementioned eqs. 8 and 9 provide the foundational concepts for utilizing the evaluation of202

the activation phase, in an endeavor to encourage the development of more universal solutions by203

addressing the limitations of universality inherent in the assessment of the weight state alone (as also204

discussed in sections 1 and 2).205

Formulation of Neural Expressiveness (NEXP) Score. Diving deeper into the Neural Expressive-206

ness (NEXP) scoring process, we follow eq. 9 previously and assume a mini-batch X
′
= {x′

i}Ni=1,207

with N being the number of samples in it. Mapping the batch through the network, based208

on eqs. 6 and 7, generates a set of sequences of feature spaces (activation maps), denoted as209

S = {s1, . . . , si, . . . , sN}, where si = {x′

i, . . . , C
l
i , . . . , C

|K|
i } is the sequence of the activation210

patterns generated from sample x
′

i ∈ X
′

and |si| = |K|+ 1 is its cardinality, including the feature211

space of sample x
′

i. To evaluate a specific filter k in layer l, denoted as F l
k, we utilize the retrieved212

activation patterns from that filter, denoted as {sli,k}Ni=1, where sli,k = Cl
i,k is the activation pattern213

retrieved from filter k in layer l.214

To score the Neural Expressiveness of F l
k, we first construct a N × N matrix that expresses all215

possible combinations of the activation patterns derived from the different input samples. This table216

can be visualised as follows,217 
sl(1,1),k sl(1,2),k · · · sl(1,N),k

sl(2,1),k sl(2,2),k · · · sl(2,N),k

...
...

. . .
...

sl(N,1),k sl(N,2),k · · · sl(N,N),k

 . (10)

2Bias terms are excluded for simplicity.
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Figure 1: Expressiveness statistics of feature maps from different convolutional layers and
architectures on CIFAR-10.

where sl(i,j),k denotes the dissimilarity of activations patterns between the i-th and the j-th sample218

of the batch. In other words, the matrix in eq. 10 represents all the possible combinations of NEXP219

calculations, where each element sl(i,j),k derives from f(sli,k, s
l
j,k), with f being any dissimilarity220

function. Without loss of generality, for the rest of the study, we use the Hamming distance as the221

operator implementing dissimilarity function. Activations are first binarized (values greater than 0222

become 1, and the rest become 0), i.e. enabling to evaluate the degree of overlap between the binary223

activation patterns using f .224

We note that the matrix’s diagonal, where i equals j, along with the elements below the diagonal,225

where i is greater than j, do not contribute additional value to quantifying the discriminative ability226

of an element. The diagonal elements represent comparisons of the same sample’s activation patterns,227

rendering them redundant. Meanwhile, the lower triangular elements are considered duplicates228

since sl(i,j),k is equal to sl(j,i),k, thereby not adding any new information. Drawing from these two229

observations, we define the Neural Expressiveness score (NEXP) as follows,230

NEXP (F l
k) =

1
N(N−1)

2

N∑
i=1

N∑
j=i+1

f(sli,k, s
l
j,k) (11)

The more similar the activation patterns derived from an element are, the less expressive it is231

declared to be. In eq. 11, we also normalize the score w.r.t the total amount of combinations232

(N(N−1)
2 ), thereby deriving the average expressiveness score. This average score is then utilized to233

characterize the discriminative capability/capacity of the examined network element. In this study,234

we used the mean operation, however, we note that alternate statistical measures, e.g., minimum,235

maximum, median, etc., could feasibly be applied in the computation of the overall score.236

3.3 Dependency to Input Data237

NEXP evaluates the inherent property of network elements to maximally distinguish between input238

samples. We extend this line of thought and assess its sensitivity to input data X and mini-batch239

size N , in order to delineate the dependence between NEXP and the input data. To achieve that,240

we perform a sensitivity analysis of NEXP to the mini-batch data X , using two input sampling241

strategies to assemble a batch with 60 samples, namely random sampling (denoted as ‘random’) and242

class-representative sampling via k-means (denoted as ‘k-means’). We define the true NEXP score243

(denoted as ‘non-approx’) for each filter as the value obtained by comparing all activation patterns244

across the entire training dataset (more info in A.1). Fig. 1 presents a detailed comparative illustration245

of the results that highlight the similarities in NEXP estimations across various trained networks,246

including VGGNet [44], ResNet [17], MobileNet [19] and DenseNet [21] on CIFAR-10 dataset.247

Columns represent the aforementioned sampling strategies, while colors indicate expressiveness248

levels, with higher values signifying greater expressiveness. In each sub-figure, the x-axis indicates249
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Algorithm 1 NEXP Pruning Algorithm

Define: NEXPmap = {{NEXP (F l
k)}

|Cl|
k=1}

|K|
l=1

Require: A mini-batch X , a neural networkN (Wti
), a theoretical

speed-up target, denoted τ , and the allowed amount of pruning
steps, denoted stepsmax.

Ensure: FLOPs(N)
FLOPs(Npruned)

≥ τ

1: Initialize NEXPmap ← f(X;Wti
)

2: Initialize τcurrent as 1
3: Initialize stepscurrent as 1
4: InitializeNpruned asN
5: while (τcurrent < τ ) and (stepscurrent ≤ stepsmax) do
6: Fto_prune = bottomκ(NEXPmap)
7: Npruned(Wpruned) = prune(Npruned, Fto_prune)

8: NEXPmap ← f(X;Wpruned)

9: τcurrent =
FLOPs(N)

FLOPs(Npruned)

10: stepscurrent + +

11: end while
12: returnNpruned(Wpruned)

Figure 2: Pruning YOLOv8m trained on
COCO for Object Detection. Comparative re-
sults between neural expressiveness (NEXP) and
layer-adaptive magnitude-based pruning method
(LAMP) [26]. More comparisons in the supple-
mentary material.

convolutional layer indices, and the y-axis shows feature map indices per layer, standardized through250

pixel-wise interpolation to align with the layer having the most feature maps. Fig. 1 confirms that251

NEXP can be effectively estimated using random and limited data samples. Detailed results of this252

analysis, are presented in Appendix A. The comparative analysis reveals that a mini-batch of 60253

samples (0.4% of D in this case) effectively approximates the NEXP scores calculated from the entire254

dataset, yielding consistent similarity scores above 99% across most similarity metrics (Table. 3).255

3.4 Pruning Process256

Alg. 1 describes the proposed NEXP-based pruning process, and it has been implemented as extension257

in the DepGraph pruning framework [11]. A target theoretical speed-up is specified, referred to258

as the Compression FLOPs Ratio (↓) and denoted by τ . This ratio is calculated using the formula259
original FLOPs

compressed FLOPs . To achieve this target ratio, the network may undergo pruning in one or several steps,260

dictated by the intricacies of the pruning criterion and adjusted according to the quantity of elements261

removed at each step. For example, NEXP benefits from additional steps, since a filter’s score is262

reliant on its preceding elements (Section 3.2), and a more gradual update on the scores allows for263

improved pruning precision. A more in-depth analysis of Alg. 1 along with more details on the264

implementation options are presented in Appendix B.265

4 Experimental Evaluation266

Details on the experimental settings can be found in Appendix C, including the (a) Datasets and267

Models (C.1), (b) Adversaries (C.2), (c) Evaluation Metrics (C.3) and (d) Configurations (C.4).268

4.1 Comparison w.r.t. State-of-Art Model Compression Strategies269

Image Classification on CIFAR-10 and Imagenet-1k. We compare against a plethora of foun-270

dational and top-performing approaches, ranging from filter magnitude-based [28, 32, 29] and loss271

sensitivity-based [58] methods to feature-guided strategies [23, 30] and search algorithms [35, 31].272

Outcomes and Discussion. Our findings for various target FLOPs pruning ratios are presented in273

Tab. 1 (and Tab.6-9 in Appendix D.2) for CIFAR-10, and in Tab. 2 for ImageNet. It is essential to274

acknowledge the subjectivity in reported performance metrics (accuracy), influenced by the fine-275

tuning process post-pruning, e.g. the authors in DCP [61] fine-tune for 400 epochs, in contrast to ours276

100. We observe that our approach yields consistent improvements in params reduction compared to277

other methods for given FLOPs ratios, which notably scale significantly for regimes of higher target278

FLOPs compression ratios τ . For example, on ResNet-56 we show +0.92× average params reduction279

gains in the 2×-2.20× FLOPs reduction regime, with -0.38%, +0.05% and -0.37% percentage280

difference in loss respectively to ABC [31], SCP [23] and HRank [30], while on ResNet-110 we281
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Table 1: Analytical Comparison of Importance-based solutions and Expressiveness on CIFAR-10
using ResNet architectures [17] - ResNet-56 (left) and ResNet-110 (right).

top-1 acc Compression Ratio ↓
Method Base (%) ∆ (%) #Params #FLOPs

L1 [28] 93.06 +0.02 1.16× 1.37×
NEXP (Ours) 93.36 +0.05 1.69× 1.53×
GAL-0.6 [32] 93.26 +0.12 1.13× 1.60×
NISP-56 [58] - -0.03 1.74× 1.77×
DCP-Adapt [61] 93.80 +0.01 3.37× 1.89×
HRank [30] 93.26 -0.09 1.74× 2.01×
SCP [23] 93.69 -0.46 1.94× 2.06×
NEXP (Ours) 93.36 -0.41 2.87× 2.11×
ABC [31] 93.26 -0.03 2.18× 2.18×
NEXP (Ours) 93.36 -1.58 4.3× 2.50×
GAL-0.8 [32] 93.26 -1.68 2.93× 2.51×
HRank [30] 93.26 -2.54 3.15× 3.86×
NEXP (Ours) 93.36 -5.12 21.5× 5.00×

top-1 acc Compression Ratio ↓
Method Base (%) ∆ (%) #Params #FLOPs

L1 [28] 93.55 +0.02 1.02× 1.19×
NEXP (Ours) 93.79 +0.66 1.10× 1.20×
GAL-0.1 [32] 93.50 +0.09 1.04× 1.23×
HRank [30] 93.50 +0.73 1.65× 1.70×
NISP-110 [58] - -0.18 1.76× 1.78×
NEXP (Ours) 93.79 +0.18 1.78× 1.80×
GAL-0.5 [32] 93.50 -0.76 1.81× 1.94×
HRank [30] 93.50 -0.14 2.46× 2.39×
NEXP (Ours) 93.79 +0.10 2.72× 2.42×
ABC [31] 93.50 +0.08 3.09× 2.87×
NEXP (Ours) 93.79 -0.37 3.81× 3.01×
HRank [30] 93.50 -0.85 3.25× 3.19×
NEXP (Ours) 93.79 -0.59 4.38× 3.27×

show +1.21× average params reduction gains in the 2.87×-3.27× FLOPs reduction regime, with282

-0.67% and +0.26% percentage difference in loss respectively to ABC [31] and HRank [30]. Similar283

observations are evident across all tables, where in certain regimes we also show notable performance284

gains, up to +1.5%, especially for VGGNet, which is more prone to params reductions due to its285

plain structure.286

Object Detection with YOLOv8. We evaluate expressiveness against four importance based287

methods, i.e layer-adaptive magnitude-based pruning (LAMP) [26], network slimming (SLIM) [35],288

Wang’s et al. proposed method (DepGraph) [11] and random pruning that serves as a generic pruning289

baseline [3]. The experiments were conducted on the YOLOv8m model version [22], utilizing the290

DepGraph pruning framework [11] with an iterative pruning schedule of 16 steps, where after each291

pruning step the model was fine-tuned for 10 epochs using the coco128 dataset.292

Outcomes and Discussion. We report the comparative pruning progress of expressiveness versus293

the baseline methods, i.e. the remaining percentage of the original model in terms of MACs and294

params after each pruning step, named MACs Size Percentage (MSP) and Parameters Size Percentage295

(PSP) respectively, and highlight the mAP val
50−95 both after pruning (pruned mAP) and fine-tuning296

(recovered mAP). We observe that expressiveness outperforms the rest of the reported methods across297

the whole pruning spectrum, as shown in Fig. 2 (more in Appendix D.2), preserving the initial298

performance of the model for percentage sizes that reach up to 40% (2.5 ↓) of that of the original299

model, with less than 0.5% of recovered performance degradation. Our method even achieves a 3%300

increase in recovered mAP for 46.1% MSP (2.17 ↓), in comparison to the baselines that showcase301

weak recovery capabilities after the 60% (1.67 ↓) mark in both MSP and PSP. This can be attributed302

to the intrinsic property of expressiveness to maintain network elements that are more robust to303

information redistribution, in contrast to “important" labeled structures by other methods. In our304

experimental scenario, that characteristic is further amplified by the iterative pruning format and the305

higher amount of fine-tuning epochs at each step, in comparison to conventional pruning schedules306

that fine-tune for 1 epoch after each iteration or perform a unified fine-tuning session after the last307

pruning iteration. Interestingly, our criterion also demonstrates significant resistance to performance308

loss after pruning, achieving 18% increased average performance in terms of pruned mAP compared309

to the importance-based methods. We have empirically observed that expressiveness benefits from310

increased cardinality in pruning granularity settings, e.g amount of intermediate steps to achieve a311

given compression ratio. This stems from expressiveness interactive nature of all elements, as also312

explained in Sec. 3, where smaller pruning steps combined with iterative fine-tuning, enhance pruning313

precision and allow for “smoother" redistribution of information in a network, thus contributing to314

the increased resistance to performance deficits after each pruning step.315

4.2 Assessing Hybrid Compression space316

In this section, we assess the potential efficiency of “hybrid" pruning strategies exploiting the317

cooperation between importance and expressiveness. We explore the solution space of “hybrid"318

compression, using a linear combination of importance and neural expressiveness criteria. We guide319

exploration through the scoring function: Wimp · IMP +Wnexp · NEXP and conduct experiments with320
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Table 2: Analytical Comparison of Importance-based solu-
tions and Expressiveness on ImageNet-1k using ResNet-50
[17].

Method Base (%) ∆ Acc (%) Compression Ratio
top-1 top-5 top-1 top-5 #Params ↓ #FLOPs ↓

NISP-50-B [58] - - -0.89 - 1.78× 1.79×
NEXP (Ours) 76.13 92.86 -1.35 -0.93 2.00× 2.02×
ThiNet [37] 72.88 91.14 -1.87 -1.12 2.06× 2.25×
DCP [61] 76.01 92.93 -1.06 -0.56 2.06× 2.25×
ABC [31] 76.01 92.96 -2.49 -1.45 2.27× 2.30×
NEXP (Ours) 76.13 92.86 -6.77 -3.43 4.05× 3.04×
GAL-1-joint [32] 76.15 92.87 -6.84 -3.75 2.50× 3.68×
Hrank [30] 76.15 92.87 -7.15 -3.29 3.08× 4.17×

Figure 3: Linear exploration of the
combinatorial space between impor-
tance and expressiveness.

various weight combinations, subject to the constraint Wimp + Wnexp = 1. Given that exhaustive321

search is impractical, we introduce the hyper-parameter α ∈ {0.0, 0.2, . . . , 0.8, 1.0} to restrict the322

set of permissible combinations, and modify the constraint to (1− α) ·Wimp + α ·Wnexp = 1. We323

use group L1-norm [28] as the importance criterion (IMP) and assess all permissible combinations324

across a linear scale, denoted as τ , representing the target FLOPs compression ratios that we utilized325

for pruning, on ResNet-56 for CIFAR-10. The outcomes are visualized in Figure 3, which maps our326

predetermined τ values on the x-axis against the various parameter compression ratios achieved by327

each combination. Regarding performance, we report the averaged percentage differences in top-1328

accuracy between the baseline importance method (L1) and each hybrid format: -0.21% for hb-0.2,329

-0.96% for hb-0.4, -1.55% for hb-0.6, -1.07% for hb-0.8, and -2.18% for NEXP.330

Observations. A consistent pattern is observed across the values of α, where larger values yield331

higher params compression ratios. Notably, hybrid derivatives allow us to explore sub-spaces with332

higher parameter compression ratios by sacrificing slight performance accuracy. We also observe333

that the solution vectors corresponding to IMP and EXP act as extremal points in the solution space334

of hybrid combinations, thus suggesting a degree of partial orthogonality between the two criteria.335

Furthermore, the findings reveal a polynomial relationship between parameter compression ratios and336

FLOPs reduction, with compression ratios increasing polynomially to linear increments in FLOPs337

reduction, and thus enabling more efficient explorations.338

4.3 Evaluating Neural Expressiveness at Initialization339

The nature of NEXP allows to be applied in a weight agnostic manner, i.e. on untrained networks.340

An extended version of the section’s 3.3 analysis, which also includes untrained models (Appendix341

A), reveals that NEXPmap’s obtained at initialization and after network convergence share some342

expressiveness pattern similarities, particularly in the initial layers. Our numeric evaluation shows a343

notable correlation between the initialization and converged states for DenseNet-40 and VGG-19,344

with cosine similarities of 84.10% and 86.82%, respectively. It also indicates greater consistency in345

neural expressiveness measurements for the first layers of all networks, which could be considered346

important for the formation of critical paths [2]. Motivated by these observations, we also assess the347

efficacy of expressiveness as criterion for Pruning at Initialization against various SOTA approaches348

[27, 50, 46] (Appendix D.1). Our method consistently outperforms (in terms of top-1 acc) all other349

algorithms, particularly in regimes of lower compression, up to 102(↓) with an average increase of350

1.21% over SynFlow, while maintaining competitiveness at higher compression levels, above 102(↓)351

with an average percentage difference of 4.82%, 3.72% and -2.74%, compared to [50], [27] and [46].352

In summary, under the assumption that the selection of hyperparameters remains congruent with353

the initialization [12], consistent map measurements between initial and final states can effectively354

evaluate NEXP’s ability to identify winning tickets. However, a robust evaluation should also consider355

the initial state quality and the training process, while addressing the "When to prune" question [42].356

5 Conclusions357

In this work, we have introduced “Neural Expressiveness" as a new criterion for model compression.358

In our NEXP steps, we will explore optimal solutions for the “When" and “How" to prune questions.359
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A Duality of Independence: Data (X) and Information State (Wti)524

Fig. 4 presents a detailed comparative illustration that highlights the similarities in NEXP estimations525

across various networks, including VGGNet [44], ResNet [17], MobileNet [19] and DenseNet [21]526

on CIFAR-10 dataset. Specifically, for each network architecture, we showcase expressiveness527

distributions in both untrained (PaI) and trained (PaT) states. In each sub-figure, the x-axis indicates528

convolutional layer indices, and the y-axis shows feature map indices per layer, standardized through529

pixel-wise interpolation to align with the layer having the most feature maps. Columns represent530

various sampling strategies, while colors indicate expressiveness levels, with higher values signifying531

greater expressiveness. In other words, the figure illustrates a two-fold sensitivity analysis of NEXP532

to (i) the mini-batch data (X , as outlined in Alg. 1), using two input sampling strategies to assemble533

a batch with 60 samples, namely random sampling (denoted as ‘random’) and class-representative534

sampling via k-means (denoted as ‘k-means’), and (ii) the information state (Wti), specifically535

comparing expressiveness at initialization (PaI) against expressiveness after training (PaT), when536

weights have converged.537

A.1 True NEXP value (non-approx).538

We define the true NEXP score for each filter as the value obtained by comparing all activation539

patterns across the entire training dataset D. In that way, the ability of each element to extract540

maximal features is evaluated for every data-point in the input feature space of a task at hand. In541

this study however, due to GPU memory constraints (limited to 12GB of GDDR6 SDRAM), we542

employed 25% of the total training set, ensuring class distribution is preserved, to determine these543

exact NEXP scores, denoted as non-approx.544

A.2 Data Agnostic.545

To evaluate NEXP’s sensitivity to input data, we conduct a similarity analysis for each row in546

Fig. 4. For each information state (PaI and PaT), we compare the expressiveness map (NEXPmap)547

derived from each sampling strategy against the true NEXP values (non-approx), corresponding to548

each respective state. For a comprehensive comparison, we utilize various similarity metrics, such549

as Euclidean Distance, Cosine Similarity, Pearsonr Similarity, and the Structural Similarity Index550

Measure (ssim_index). Detailed results of this analysis, specific to each state, are presented in Tables551

3 (PaT) and 4 (PaI). The comparative analysis reveals that a mini-batch of 60 samples, with a balanced552

representation from each class, effectively approximates the NEXP scores calculated from the entire553

dataset, yielding consistent similarity scores above 99% across all similarity metrics for both PaI554

and PaT. Interestingly, random sampling consistently outperforms the k-means selection strategy,555

which involves selecting 6 representative samples per CIFAR-10 class. This is especially notable in556

PaT, with random sampling showing up to a 7.51% higher Pearson correlation, 5% improvement in557

ssim_index, and 1.14 reduction in Euclidean distance compared to k-means. This further reinforces558

the statement that comparing activation patterns reflects the intrinsic ability of neural networks to559

distinguish various input spaces, thus effectively extending the NEXP criterion to random input data560

and laying the foundation for investigating Data-Agnostic strategies.561

A.3 Weight Agnostic562

Fig. 4 reveals that NEXPmap’s obtained at initialization and after network convergence share some563

expressiveness pattern similarities, particularly in the initial layers. Detailed comparisons of these564

similarities across all layers, and specifically for the first five, are presented in Table 5, contrasting565

the initial maps with the true NEXPmap post-training. The summary of our numeric evaluation566

confirms a notable correlation between the initialization and converged states for DenseNet-40 and567

VGG-19, showing up to 84.10% and 86.82% in cosine similarity respectively. It also indicates568

greater consistency in neural expressiveness measurements for the first layers of all networks, which569

could be considered important for the formation of critical paths. In this context, the formation570

of the final state depends on hyperparameter choices, like weight decay and learning rate, and the571

stochastic nature of training, that could potentially alter the model’s progression from its initial state,572

as also highlighted by Frankle et al. [12]. In that manner, under the assumption that the selection573

of hyperparameters remains congruent with the initialization, “Expressiveness" can be considered a574

fit criterion for Pruning at Initialization (PaI). In summary, the consistency of map measurements575
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between initial and final states may serve as a solid metric for evaluating NEXP’s ability to identify576

winning tickets. Nevertheless, a more robust process of its evaluation should also take into account577

the quality of the initial state as well as the subsequent training process.578

Figure 4: Expressiveness statistics of feature maps from different convolutional layers and
architectures on CIFAR-10 (Extended). For each architecture we demonstrate the expressiveness
distribution for both an untrained instance of the model (PaI), as well as a converged one (PaT). The
x-axis represents the indices of convolutional layers and y-axis that of the feature maps in each layer.
To maintain consistency across the y-axis, we have interpolated each layer’s feature maps (pixel-wise)
to match the layer with the most feature maps. Columns denote different sampling strategies and
different colors denote different expressiveness values (the higher the value, the more expressive the
feature map). To approximate the expressiveness score of each element, denoted as “non-approx",
we used 25% of all dataset’s samples (not 100% due to memory limitations) maintaining the label’s
distribution. As can be seen, the rank of each feature map (column of the sub-figure) is almost
unchanged (the same color), regardless of the image batches. Hence, even a small number of images
can effectively estimate the average rank of each feature map in different architectures.
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Table 3: Sensitivity analysis of the input’s sampling strategies after training (PaT) using various
similarity metrics.

Model Sampling Euclidean Cosine Pearsonr ssim_index
Strategy Distance Similarity Similarity

ResNet-56 [17] random 0.2349 0.9998 - 0.9979
k-means 1.3729 0.9949 - 0.9479

MobileNet-v2 [19] random 0.2903 0.9994 0.9810 0.9988
k-means 1.1197 0.9960 0.9059 0.9794

DenseNet-40 [21] random 0.2751 0.9997 0.9818 0.9970
k-means 1.1669 0.9959 0.9527 0.9614

VGG-19 [44] random 0.5150 0.9989 0.9814 0.9894
k-means 0.8438 0.9964 0.9556 0.9728

Table 4: Sensitivity analysis of the input’s sampling strategies at Initialization (PaI) using various
similarity metrics.

Model Sampling Euclidean Cosine Pearsonr ssim_index
Strategy Distance Similarity Similarity

ResNet-56 [17] random 0.1333 0.9996 0.9979 0.9984
k-means 0.3948 0.9984 0.9868 0.9859

MobileNet-v2 [19] random 0.0340 0.9565 - 0.9994
k-means 0.2441 0.9454 - 0.9776

DenseNet-40 [21] random 0.2297 0.9997 0.9927 0.9977
k-means 0.2972 0.9994 0.9941 0.9955

VGG-19 [44] random 0.2688 0.9988 0.9652 0.9950
k-means 0.4882 0.9975 0.9724 0.9856

Table 5: Sensitivity analysis of NEXPmap’s retrieved at initialization compared with the true
NEXPmap following model convergence.

Model Metric random k-means non-approx (PaI)
All first-5 All first-5 All first-5

ResNet-56 [17]
Euclidean Distance 9.0326 5.2005 8.8029 5.1177 8.9986 5.1850
Cosine Similarity 0.7584 0.8765 0.7677 0.8784 0.7592 0.8751
ssim_index 0.0194 0.3794 0.0243 0.3990 0.0206 0.3810

MobileNet-v2 [19]
Euclidean Distance 10.5470 7.4966 10.6056 8.0843 10.5492 7.5134
Cosine Similarity 0.4645 0.6478 0.4910 0.5862 0.6702 0.6461
ssim_index -0.0018 0.1187 -0.0011 0.0942 -0.0020 0.1142

DenseNet-40 [21]
Euclidean Distance 6.1326 4.6957 6.0594 4.7157 6.1043 4.7364
Cosine Similarity 0.8357 0.8769 0.8410 0.8762 0.8378 0.8761
ssim_index 0.0169 0.4552 0.0101 0.4493 0.0150 0.4464

VGG-19 [44]
Euclidean Distance 6.3171 4.9532 6.1194 4.8525 6.3083 4.9810
Cosine Similarity 0.8610 0.8979 0.8682 0.9030 0.8624 0.8972
ssim_index 0.0808 0.3798 0.0812 0.3844 0.0808 0.3712
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B Pruning Process: An in-depth analysis579

B.1 Global vs local -scope pruning.580

NEXP is used in the pruning process to evaluate and rank different network elements, guiding their581

subsequent removal based on their scores. In our study, we focused on the removal of filters, i.e.,582

Filter Pruning, where we pruned convolutional structures by removing the least expressive filters.583

This can be approached in two ways: (i) on a local (layer-by-layer) basis, where filters are assessed584

and removed according to their expressiveness relative to other filters within the same layer, e.g.,585

eliminating the least µ expressive filters from each layer. (ii) On a global (network-wide) basis, where586

all filters across layers are normalized in terms of their scores, allowing for the removal of the least587

κ expressive filters from the entire network. We experimentally observed that “Global Pruning"588

yields consistent results and outperforms “Local Pruning" when using the NEXP pruning criterion.589

Therefore, all the experiments reported in this paper were conducted using the “Global Pruning"590

approach.591

B.2 One-shot vs Iterative pruning.592

Furthermore, another design parameter to consider in the pruning process is its coordination with593

fine-tuning. In this context, two widely adopted strategies are: (a) “One-Shot" pruning, where pruning594

is completed entirely before any fine-tuning occurs, and (b) “Iterative" pruning, which involves595

alternating between pruning and fine-tuning via an iterative sequence. The first one (a) can be596

considered a more lightweight approach and allows for a more robust evaluation of the pruning metric597

at hand, when compared to the later one (b). This is because it has no extra dependency on the training598

data and its efficiency does not depend on the iterative re-calibration of the information state through599

the fine-tuning process. In this study, most experiments where conducted using “One-Shot" pruning,600

while we also explored the integration of NEXP in an “Iterative" pruning process with YOLOv8601

(more details on 4.1), where we noted a reduction in performance declines and an improvement in602

the performance recovery after each pruning step, leading to better overall results.603

B.3 Detailed description of all algorithmic steps.604

More in detail regarding Algorithm 1, we define the data structure NEXPmap, i.e., a dictionary605

in our implementation, to store the NEXP scores for every filter in the neural network after each606

iteration. Given a neural network N with its current weight state Wti , we initially set up all variables607

required for the pruning loop (Lines 1-4). The network is then gradually pruned until one of the608

following conditions is met: the target ratio is achieved or the allowed number of pruning steps609

is exceeded (Line 5). During each pruning iteration, the κ least expressive filters from the current610

pruned state of the network are initially selected (Line 6). These filters are then removed, followed611

by an update to NEXPmap for the subsequent iteration (Lines 7-8). To obtain the NEXP scores,612

a forward pass f(X;Wpruned) is conducted using a user-provided mini-batch as input. Finally, the613

conditions variables are updated in preparation for the next pruning iteration (Lines 9-10).614

B.4 Acceleration of NEXP computations.615

In Algorithm 1, Line 8 accounts for the bulk of the computational complexity. Specifically, the616

calculation of NEXPmap can be divided into two sub-processes: (i) performing a forward pass to617

retrieve all activation patterns, and (ii) estimating the NEXP score for each element in the map.618

However, performing a forward pass can be considered negligible compared to computing the NEXP619

score for each filter. This is because the later involves multiple comparisons between the activation620

patterns of all samples in the mini-batch X for every filter. Two effective ways to reduce this621

computational demand are: first, all operations involved in computing the NEXP score are compatible622

with widely-used BLAS libraries, facilitating hardware acceleration; second, the frequency of score623

updates can be strategically decreased under certain conditions, e.g., every n pruning iterations.624
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C Experimental Settings625

C.1 Datasets and Models.626

This paper explores Computer Vision tasks through extensive experiments on various datasets, such627

as CIFAR-10 [24] and ImageNet [40] for image classification, and COCO [33] for object detection.628

To demonstrate the robustness of our approach, we experiment on several popular architectures and a629

wide span of architectural elements, including VGGNet with a plain structure [44], ResNet with a630

residual structure [17], GoogLeNet with inception modules [45], MobileNet with depthwise separable631

convolutions [19], DenseNet with dense blocks [21] and YOLOv8 with a variety of different modules,632

e.g. C2f and SPPF [22].633

C.2 Adversaries.634

We assess the efficacy of expressiveness as criterion for Pruning both after Training (PaT) and at635

Initialization (PaI), using arbitrary (random) data-points. For PaT (4.1), we compare against a plethora636

of foundational and state-of-the-art approaches, ranging from filter magnitude-based [28, 32, 29]637

and loss sensitivity-based [58] methods to feature-guided strategies [23, 30] and search algorithms638

[35, 31]. Regarding PaI (4.3 and D.1), our comparison is two-fold, as we evaluate expressiveness639

using (i) single-shot and (ii) iterative pruning. More specifically, the adversaries for PaI include640

pruning with random scoring, two state-of-the-art single-shot pruning strategies, namely SNIP [27]641

and GraSP [50], as well as one state-of-the-art iterative pruning strategy, named SynFlow [46].642

C.3 Evaluation Metrics.643

To effectively quantify the efficiency of reported solutions, we adopt a 3-dimensional evaluation644

space, consisting of i) two widely-used metrics i.e. FLOPs and params, that define the 2-dimensional645

compression solution efficiency, alongside with ii) an NN model accuracy to assess the predictions646

of pruned derivatives [3]. Within the compression space, we define, (a) Compression Ratio(↓) =647
original size

compressed size and (b) Compressed Size Percentage (%) = compressed size
original size · 100. To assess task-specific648

capabilities, we report the top-1 accuracy of pruned models for image classification on CIFAR-10649

[24], both top-1 and top-5 accuracies for ImageNet [40], and the mean Average Precision (mAP) over650

IoU (Intersection over Union) thresholds ranging from 0.5 to 0.95, denoted as mAP val
50−95, for object651

detection on the COCO dataset [33].652

C.4 Configurations.653

We implement the proposed “expressiveness" pruning criterion on PyTorch, version 2.0.1+cu117, by654

extending the DepGraph pruning framework [11] to maintain models compatibility and to ensure655

structural coupling during the removal of network elements e.g., simultaneously removing any inter-656

dependent network elements such as kernel pairs of convolutional and batch-normalization batched657

layers. All experiments are conducted on a NVIDIA GeForce RTX 3060 GPU with 12GB of GDDR6658

SDRAM. For all experiments we use a batch of 64 random data-points to estimate expressiveness,659

except those that are reported for CIFAR-10 and ImageNet on 4.1, where we used K-Means to select660

60 samples (6 from each class). Additionally, the baseline models on CIFAR-10 were trained for 200661

epochs by using 128 batch size and Stochastic Gradient Descent algorithm (SGD) with an initial662

learning rate of 0.1 that is divided by 10 after 60 and 120 epochs respectively. For ImageNet models663

and YOLOv8, we utilize the available pre-trained weights on PyTorch vision library and ultralytics664

[22]. We fine-tune the pruned networks for 100 epochs on CIFAR-10 and for 30 epochs on ImageNet665

to compensate for the performance loss, using a batch size of 128 and 32 respectively.666

D Supplementary Experimental Results667

D.1 Neural Expressiveness at Initialization: A comparative study668

Adversaries. We establish our comparative study in a two-fold manner, as we compare expressiveness669

against (i) single-shot and (ii) iterative pruning approaches. More specifically, the adversaries include670

pruning with random scoring, two state-of-the-art single-shot pruning strategies, namely SNIP [27]671

18



and GraSP [50], as well as one state-of-the-art iterative pruning strategy, named SynFlow [46]. For672

our approach, we implement one-shot pruning, utilizing a batch of 64 arbitrary data points for the673

estimation of expressiveness.674

Experimental Setup. We adopt the experimental framework of Tanaka et al. [46], who assess675

algorithm performance across an exponential scale (10r) of parameters compression ratios r ∈676

{0.00, 0.25, 0.50, 0.75, . . . }. Their proposed settings also enable for the evaluation of an algorithm’s677

resilience to "layer collapses", typically observed at higher compression levels. Results. We prune678

VGG-16 on CIFAR-10 and compare against the findings of [46]. We remain consistent with our679

adversaries and train the model for 160 epochs, using a batch size of 128 and an initial learning rate680

of 0.1, which is reduced by a factor of 10 after 60 and 120 epochs. The results are illustrated on681

Fig. 5.682

Figure 5: Pruning VGG-16 at Initialization on CIFAR-10. A comparative visualisation of SOTA
methods across an exponential scale of params compression ratios.

Observations. Our method consistently outperforms all other algorithms, particularly in regimes of683

lower compression, up to 102(↓) with an average increase of 1.21% over SynFlow, while maintaining684

competitiveness at higher compression levels, above 102(↓) with an average percentage difference of685

4.82%, 3.72% and -2.74%, compared to GraSP, SNIP and SynFlow respectively.686

D.2 Additional Experimental Results: Tables and Figures687

CIFAR-10. We present further experiments and comparisons with state-of-the-art methods,688

including HRANK [30], GAL [32], ABC [31] and DCP [61], specifically for GoogLeNet and689

MobileNet-v2 networks. For MobileNet-v2, our method attains an increased compression ratio of690

0.94× in parameters and 0.75× in FLOPs (↓), with a minimal decrease of only -0.09% in performance691

compared to DCP. In the GoogLeNet case, we demonstrate a notable enhancement in parameters692

compression within the 1.60× to 2.20× FLOPs compression range, surpassing GAL and HRANK693

with margins of 1.8× and 1.52× respectively, with an average improvement of 7.5% in performance694

degradation.695
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Table 6: Analytical Comparison of Importance-based solutions and Expressiveness on CIFAR-10
using VGGNet architectures [44].

top-1 acc Compression Ratio ↓
Model Method Base (%) ∆ (%) #Params #FLOPs

VGG-16

L1 [28] 93.25 +0.15 2.78× 1.52×
GAL-0.05 [32] 93.96 -0.19 4.46× 1.65×
GAL-0.1 [32] -0.54 5.61× 1.82×
HRank [30] 93.96 -0.53 5.97× 2.15×
HRank [30] 93.96 -1.62 5.67× 2.89×
SCP [23] 93.85 -0.06 15.38× 2.96×
NEXP (Ours) 93.87 -0.16 5.62× 3.03×
ABC [31] 93.02 +0.06 8.80× 3.80×
NEXP (Ours) 93.87 -0.35 13.13× 4.01×
HRank [30] 93.96 -2.73 8.41× 4.26×

VGG-19
DCP-Adapt [61] 93.99 +0.58 15.58× 2.86×
SCP [23] 93.84 -0.02 20.88× 3.86×
NEXP (Ours) 94.00 -0.53 22.73× 4.75×

Table 7: Analytical Comparison of Importance-based solutions and Expressiveness on CIFAR-10
using GoogLeNet [45].

top-1 acc Compression Ratio ↓
Model Method Base (%) ∆ (%) #Params #FLOPs

GoogLeNet

GAL-0.5 [32] 95.05 -0.49 1.97× 1.62×
NEXP (Ours) 94.97 -0.43 3.77× 2.12×
Hrank [30] 95.05 -0.52 2.25× 2.20×
ABC [31] 95.05 -0.21 2.51× 2.99×
NEXP (Ours) 94.97 -1.07 7.02× 3.01×
Hrank [30] 95.05 -0.98 3.31× 3.38×

Table 8: Analytical Comparison of Importance-based solutions and Expressiveness on CIFAR-10
using DenseNet-40 [21].

top-1 acc Compression Ratio ↓
Model Method Base (%) ∆ (%) #Params #FLOPs

DenseNet-40

GAL-0.5 [32] 95.05 -0.49 1.97× 1.62×
Hrank [30] 95.05 -0.52 2.25× 2.20×
NEXP (Ours) 94.64 -0.89 2.72× 2.25×
NEXP (Ours) 94.64 -0.84 3.12× 2.51×
ABC [31] 95.05 -0.21 2.51× 2.99×
Hrank [30] 95.05 -0.98 3.31× 3.38×

Table 9: Performance Outcomes for MobileNet-v2 on the CIFAR-10 Dataset.
Method Base (%) ∆ Acc (%) #Params ↓ #FLOPs ↓
DCP [61] 94.47 +0.22 1.31× 1.36×
NEXP (Ours) 94.32 +0.13 2.25× 2.11×
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YOLOv8. Figure 6 compares Neural Expressiveness (NEXP) with Layer-Adaptive Magnitude-696

Based Pruning (LAMP) [26], Network Slimming (SLIM) [35], Wang et al.’s DepGraph [11], and697

Random Pruning for Object Detection on the COCO dataset, as discussed in 4.1.698

Motivation. YOLOv8 [22] is the current state-of-the-art for Object Detection and Image Segmen-699

tation, and has already been widely adopted by many for a variety of real-time applications, e.g.700

Traffic Safety [1], Medical Imaging [39], Rip Currents Detection [10], and more. Such applications701

could majorly benefit from model compression optimizations, achieving higher throughput ratios that702

translate to increased resolution (FPS), and enabling deployment on hardware with strict resource703

constraints.704

Figure 6: Pruning YOLOv8m trained on COCO for Object Detection.
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NeurIPS Paper Checklist705

1. Claims706

Question: Do the main claims made in the abstract and introduction accurately reflect the707

paper’s contributions and scope?708

Answer: [Yes]709

Justification: The main contributions have been reflected and discussed across the whole710

paper.711

Guidelines:712

• The answer NA means that the abstract and introduction do not include the claims713

made in the paper.714

• The abstract and/or introduction should clearly state the claims made, including the715

contributions made in the paper and important assumptions and limitations. A No or716

NA answer to this question will not be perceived well by the reviewers.717

• The claims made should match theoretical and experimental results, and reflect how718

much the results can be expected to generalize to other settings.719

• It is fine to include aspirational goals as motivation as long as it is clear that these goals720

are not attained by the paper.721

2. Limitations722

Question: Does the paper discuss the limitations of the work performed by the authors?723

Answer: [Yes]724

Justification: While our work does not implicitly provide a Discussion section, we have725

incorporated any discussions on the limitations and the intricacies of the provided solution726

at its section separately.727

Guidelines:728

• The answer NA means that the paper has no limitation while the answer No means that729

the paper has limitations, but those are not discussed in the paper.730

• The authors are encouraged to create a separate "Limitations" section in their paper.731

• The paper should point out any strong assumptions and how robust the results are to732

violations of these assumptions (e.g., independence assumptions, noiseless settings,733

model well-specification, asymptotic approximations only holding locally). The authors734

should reflect on how these assumptions might be violated in practice and what the735

implications would be.736

• The authors should reflect on the scope of the claims made, e.g., if the approach was737

only tested on a few datasets or with a few runs. In general, empirical results often738

depend on implicit assumptions, which should be articulated.739

• The authors should reflect on the factors that influence the performance of the approach.740

For example, a facial recognition algorithm may perform poorly when image resolution741

is low or images are taken in low lighting. Or a speech-to-text system might not be742

used reliably to provide closed captions for online lectures because it fails to handle743

technical jargon.744

• The authors should discuss the computational efficiency of the proposed algorithms745

and how they scale with dataset size.746

• If applicable, the authors should discuss possible limitations of their approach to747

address problems of privacy and fairness.748

• While the authors might fear that complete honesty about limitations might be used by749

reviewers as grounds for rejection, a worse outcome might be that reviewers discover750

limitations that aren’t acknowledged in the paper. The authors should use their best751

judgment and recognize that individual actions in favor of transparency play an impor-752

tant role in developing norms that preserve the integrity of the community. Reviewers753

will be specifically instructed to not penalize honesty concerning limitations.754

3. Theory Assumptions and Proofs755

Question: For each theoretical result, does the paper provide the full set of assumptions and756

a complete (and correct) proof?757
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Answer: [Yes]758

Justification: To the best of our knowledge, all the provided set of assumptions presented in759

Section 3 are complete.760

Guidelines:761

• The answer NA means that the paper does not include theoretical results.762

• All the theorems, formulas, and proofs in the paper should be numbered and cross-763

referenced.764

• All assumptions should be clearly stated or referenced in the statement of any theorems.765

• The proofs can either appear in the main paper or the supplemental material, but if766

they appear in the supplemental material, the authors are encouraged to provide a short767

proof sketch to provide intuition.768

• Inversely, any informal proof provided in the core of the paper should be complemented769

by formal proofs provided in appendix or supplemental material.770

• Theorems and Lemmas that the proof relies upon should be properly referenced.771

4. Experimental Result Reproducibility772

Question: Does the paper fully disclose all the information needed to reproduce the main ex-773

perimental results of the paper to the extent that it affects the main claims and/or conclusions774

of the paper (regardless of whether the code and data are provided or not)?775

Answer: [Yes]776

Justification: The paper specifies in great detail all the information necessary to understand777

the results, while also any subjectivity imposed by the experimental settings in regards to778

our claims and conclusions has been discussed. Detailed analysis of both the mathematical,779

technical and experimental intricacies have been included in our work.780

Guidelines:781

• The answer NA means that the paper does not include experiments.782

• If the paper includes experiments, a No answer to this question will not be perceived783

well by the reviewers: Making the paper reproducible is important, regardless of784

whether the code and data are provided or not.785

• If the contribution is a dataset and/or model, the authors should describe the steps taken786

to make their results reproducible or verifiable.787

• Depending on the contribution, reproducibility can be accomplished in various ways.788

For example, if the contribution is a novel architecture, describing the architecture fully789

might suffice, or if the contribution is a specific model and empirical evaluation, it may790

be necessary to either make it possible for others to replicate the model with the same791

dataset, or provide access to the model. In general. releasing code and data is often792

one good way to accomplish this, but reproducibility can also be provided via detailed793

instructions for how to replicate the results, access to a hosted model (e.g., in the case794

of a large language model), releasing of a model checkpoint, or other means that are795

appropriate to the research performed.796

• While NeurIPS does not require releasing code, the conference does require all submis-797

sions to provide some reasonable avenue for reproducibility, which may depend on the798

nature of the contribution. For example799

(a) If the contribution is primarily a new algorithm, the paper should make it clear how800

to reproduce that algorithm.801

(b) If the contribution is primarily a new model architecture, the paper should describe802

the architecture clearly and fully.803

(c) If the contribution is a new model (e.g., a large language model), then there should804

either be a way to access this model for reproducing the results or a way to reproduce805

the model (e.g., with an open-source dataset or instructions for how to construct806

the dataset).807

(d) We recognize that reproducibility may be tricky in some cases, in which case808

authors are welcome to describe the particular way they provide for reproducibility.809

In the case of closed-source models, it may be that access to the model is limited in810

some way (e.g., to registered users), but it should be possible for other researchers811

to have some path to reproducing or verifying the results.812
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5. Open access to data and code813

Question: Does the paper provide open access to the data and code, with sufficient instruc-814

tions to faithfully reproduce the main experimental results, as described in supplemental815

material?816

Answer: [No]817

Justification: We plan to release the full code of the implementation and experiments upon818

acceptance.819

Guidelines:820

• The answer NA means that paper does not include experiments requiring code.821

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/822

public/guides/CodeSubmissionPolicy) for more details.823

• While we encourage the release of code and data, we understand that this might not be824

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not825

including code, unless this is central to the contribution (e.g., for a new open-source826

benchmark).827

• The instructions should contain the exact command and environment needed to run to828

reproduce the results. See the NeurIPS code and data submission guidelines (https:829

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.830

• The authors should provide instructions on data access and preparation, including how831

to access the raw data, preprocessed data, intermediate data, and generated data, etc.832

• The authors should provide scripts to reproduce all experimental results for the new833

proposed method and baselines. If only a subset of experiments are reproducible, they834

should state which ones are omitted from the script and why.835

• At submission time, to preserve anonymity, the authors should release anonymized836

versions (if applicable).837

• Providing as much information as possible in supplemental material (appended to the838

paper) is recommended, but including URLs to data and code is permitted.839

6. Experimental Setting/Details840

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-841

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the842

results?843

Answer: [Yes]844

Justification: The paper specifies all the training and test details necessary to understand845

the results. Each experiment is accompanied by a discussion of its experimental details846

and a reference to its experimental settings (Section 4). Additionally, an overview of the847

experiment settings can be found in Appendix C, and an in-depth analysis of the pruning848

procedure, including its implementation choices, is described in Appendix B.849

Guidelines:850

• The answer NA means that the paper does not include experiments.851

• The experimental setting should be presented in the core of the paper to a level of detail852

that is necessary to appreciate the results and make sense of them.853

• The full details can be provided either with the code, in appendix, or as supplemental854

material.855

7. Experiment Statistical Significance856

Question: Does the paper report error bars suitably and correctly defined or other appropriate857

information about the statistical significance of the experiments?858

Answer: [No]859

Justification: While we do not explicitly address the statistical significance of each experi-860

ment (in a quantitative manner), we do discuss in great detail any assumptions or statistical861

implications of our experiments (in a qualitative manner).862

Guidelines:863

• The answer NA means that the paper does not include experiments.864
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-865

dence intervals, or statistical significance tests, at least for the experiments that support866

the main claims of the paper.867

• The factors of variability that the error bars are capturing should be clearly stated (for868

example, train/test split, initialization, random drawing of some parameter, or overall869

run with given experimental conditions).870

• The method for calculating the error bars should be explained (closed form formula,871

call to a library function, bootstrap, etc.)872

• The assumptions made should be given (e.g., Normally distributed errors).873

• It should be clear whether the error bar is the standard deviation or the standard error874

of the mean.875

• It is OK to report 1-sigma error bars, but one should state it. The authors should876

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis877

of Normality of errors is not verified.878

• For asymmetric distributions, the authors should be careful not to show in tables or879

figures symmetric error bars that would yield results that are out of range (e.g. negative880

error rates).881

• If error bars are reported in tables or plots, The authors should explain in the text how882

they were calculated and reference the corresponding figures or tables in the text.883

8. Experiments Compute Resources884

Question: For each experiment, does the paper provide sufficient information on the com-885

puter resources (type of compute workers, memory, time of execution) needed to reproduce886

the experiments?887

Answer: [Yes]888

Justification: While we do not provide the exact times of executions and memory require-889

ments for each experiment, we do provide an in-depth analysis of all the parameters and890

experimental specifications, along side with the overview of the configurations that were891

used for this work Appendix C and Section 4.892

Guidelines:893

• The answer NA means that the paper does not include experiments.894

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,895

or cloud provider, including relevant memory and storage.896

• The paper should provide the amount of compute required for each of the individual897

experimental runs as well as estimate the total compute.898

• The paper should disclose whether the full research project required more compute899

than the experiments reported in the paper (e.g., preliminary or failed experiments that900

didn’t make it into the paper).901

9. Code Of Ethics902

Question: Does the research conducted in the paper conform, in every respect, with the903

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?904

Answer: [Yes]905

Justification: We have thoroughly reviewed the research conducted in the paper and fully906

agree that it conforms to the NeurIPS Code of Ethics.907

Guidelines:908

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.909

• If the authors answer No, they should explain the special circumstances that require a910

deviation from the Code of Ethics.911

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-912

eration due to laws or regulations in their jurisdiction).913

10. Broader Impacts914

Question: Does the paper discuss both potential positive societal impacts and negative915

societal impacts of the work performed?916

25

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]917

Justification: While our work does not directly discuss societal impacts, we do reference the918

eco-friendly implications of efficient models in the Introduction section 1. Additionally, we919

highlight the potential indirect societal benefits that can arise from optimizing models, such920

as in the case of YOLOv8 D.2. .921

Guidelines:922

• The answer NA means that there is no societal impact of the work performed.923

• If the authors answer NA or No, they should explain why their work has no societal924

impact or why the paper does not address societal impact.925

• Examples of negative societal impacts include potential malicious or unintended uses926

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations927

(e.g., deployment of technologies that could make decisions that unfairly impact specific928

groups), privacy considerations, and security considerations.929

• The conference expects that many papers will be foundational research and not tied930

to particular applications, let alone deployments. However, if there is a direct path to931

any negative applications, the authors should point it out. For example, it is legitimate932

to point out that an improvement in the quality of generative models could be used to933

generate deepfakes for disinformation. On the other hand, it is not needed to point out934

that a generic algorithm for optimizing neural networks could enable people to train935

models that generate Deepfakes faster.936

• The authors should consider possible harms that could arise when the technology is937

being used as intended and functioning correctly, harms that could arise when the938

technology is being used as intended but gives incorrect results, and harms following939

from (intentional or unintentional) misuse of the technology.940

• If there are negative societal impacts, the authors could also discuss possible mitigation941

strategies (e.g., gated release of models, providing defenses in addition to attacks,942

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from943

feedback over time, improving the efficiency and accessibility of ML).944

11. Safeguards945

Question: Does the paper describe safeguards that have been put in place for responsible946

release of data or models that have a high risk for misuse (e.g., pretrained language models,947

image generators, or scraped datasets)?948

Answer: [NA]949

Justification: Our work emphasizes on efficiently compressing Neural Networks and does950

not target any specific use-case scenario, rather it addresses the greater challenge of Vision951

as whole.952

Guidelines:953

• The answer NA means that the paper poses no such risks.954

• Released models that have a high risk for misuse or dual-use should be released with955

necessary safeguards to allow for controlled use of the model, for example by requiring956

that users adhere to usage guidelines or restrictions to access the model or implementing957

safety filters.958

• Datasets that have been scraped from the Internet could pose safety risks. The authors959

should describe how they avoided releasing unsafe images.960

• We recognize that providing effective safeguards is challenging, and many papers do961

not require this, but we encourage authors to take this into account and make a best962

faith effort.963

12. Licenses for existing assets964

Question: Are the creators or original owners of assets (e.g., code, data, models), used in965

the paper, properly credited and are the license and terms of use explicitly mentioned and966

properly respected?967

Answer: [Yes]968

26



Justification: All the creators and original owners of the assets that were utilized for this969

work were properly credited through-out all parts of the paper, while also a detailed report970

of them can be found in Appendix C.971

Guidelines:972

• The answer NA means that the paper does not use existing assets.973

• The authors should cite the original paper that produced the code package or dataset.974

• The authors should state which version of the asset is used and, if possible, include a975

URL.976

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.977

• For scraped data from a particular source (e.g., website), the copyright and terms of978

service of that source should be provided.979

• If assets are released, the license, copyright information, and terms of use in the980

package should be provided. For popular datasets, paperswithcode.com/datasets981

has curated licenses for some datasets. Their licensing guide can help determine the982

license of a dataset.983

• For existing datasets that are re-packaged, both the original license and the license of984

the derived asset (if it has changed) should be provided.985

• If this information is not available online, the authors are encouraged to reach out to986

the asset’s creators.987

13. New Assets988

Question: Are new assets introduced in the paper well documented and is the documentation989

provided alongside the assets?990

Answer: [NA]991

Justification: The paper does not release new assets besides the conceptualization and both992

then technical and theoretical formulation of Neural Expressiveness. However, we plan to993

release the full code of the implementation and experiments upon acceptance.994

Guidelines:995

• The answer NA means that the paper does not release new assets.996

• Researchers should communicate the details of the dataset/code/model as part of their997

submissions via structured templates. This includes details about training, license,998

limitations, etc.999

• The paper should discuss whether and how consent was obtained from people whose1000

asset is used.1001

• At submission time, remember to anonymize your assets (if applicable). You can either1002

create an anonymized URL or include an anonymized zip file.1003

14. Crowdsourcing and Research with Human Subjects1004

Question: For crowdsourcing experiments and research with human subjects, does the paper1005

include the full text of instructions given to participants and screenshots, if applicable, as1006

well as details about compensation (if any)?1007

Answer: [NA]1008

Justification: Our paper does not involve crowdsourcing nor research with human subjects.1009

Guidelines:1010

• The answer NA means that the paper does not involve crowdsourcing nor research with1011

human subjects.1012

• Including this information in the supplemental material is fine, but if the main contribu-1013

tion of the paper involves human subjects, then as much detail as possible should be1014

included in the main paper.1015

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1016

or other labor should be paid at least the minimum wage in the country of the data1017

collector.1018

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1019

Subjects1020

27

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether1021

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1022

approvals (or an equivalent approval/review based on the requirements of your country or1023

institution) were obtained?1024

Answer: [NA]1025

Justification: Our paper does not involve crowdsourcing nor research with human subjects.1026

Guidelines:1027

• The answer NA means that the paper does not involve crowdsourcing nor research with1028

human subjects.1029

• Depending on the country in which research is conducted, IRB approval (or equivalent)1030

may be required for any human subjects research. If you obtained IRB approval, you1031

should clearly state this in the paper.1032

• We recognize that the procedures for this may vary significantly between institutions1033

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1034

guidelines for their institution.1035

• For initial submissions, do not include any information that would break anonymity (if1036

applicable), such as the institution conducting the review.1037

28


	Introduction
	Related Work
	Neural Expressiveness
	Weights and Activations: Importance vs Expressiveness
	Mathematical Foundation of Neural Expressiveness.
	Dependency to Input Data
	Pruning Process

	Experimental Evaluation
	Comparison w.r.t. State-of-Art Model Compression Strategies
	Assessing Hybrid Compression space
	Evaluating Neural Expressiveness at Initialization

	Conclusions
	Duality of Independence: Data (X) and Information State (Wti)
	True NEXP value (non-approx). 
	Data Agnostic. 
	Weight Agnostic

	Pruning Process: An in-depth analysis
	Global vs local -scope pruning. 
	One-shot vs Iterative pruning. 
	Detailed description of all algorithmic steps. 
	Acceleration of NEXP computations. 

	Experimental Settings
	Datasets and Models.
	Adversaries.
	Evaluation Metrics.
	Configurations.

	Supplementary Experimental Results
	Neural Expressiveness at Initialization: A comparative study
	Additional Experimental Results: Tables and Figures


