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ABSTRACT

Human daily behavior unfolds as complex sequences shaped by intentions, prefer-
ences, and context. Effectively modeling these behaviors is crucial for intelligent
systems such as personal assistants and recommendation engines. While recent
advances in deep learning and behavior pre-training have improved behavior pre-
diction, key challenges remain—particularly in handling long-tail behaviors, en-
hancing interpretability, and supporting multiple tasks within a unified framework.
Large language models (LLMs) offer a promising direction due to their semantic
richness, strong interpretability, and generative capabilities. However, the struc-
tural and modal differences between behavioral data and natural language limit
the direct applicability of LLMs. To address this gap, we propose Behavior Un-
derstanding Alignment (BUA), a novel framework that integrates LLMs into hu-
man behavior modeling through a structured curriculum learning process. BUA
employs sequence embeddings from pretrained behavior models as alignment an-
chors and guides the LLM through a three-stage curriculum, while a multi-round
dialogue setting introduces prediction and generation capabilities. Experiments
on two real-world datasets demonstrate that BUA significantly outperforms ex-
isting methods in both tasks, highlighting its effectiveness and flexibility in ap-
plying LLMs to complex human behavior modeling. The code is available at
https://anonymous.4open.science/r/dasjijio-21B2/

1 INTRODUCTION

Human daily life unfolds as a sequence of behaviors—ranging from habitual routines to sponta-
neous actions—each reflecting underlying intentions, preferences, and contextual factors. Accu-
rately modeling and understanding these human daily behaviors is fundamental to a wide range
of intelligent systems, including personalized assistants, recommender engines, and context-aware
services (Chung & Lee, 2018; Tulshan & Dhage, 2019; Savcisens et al., 2023). Traditional ap-
proaches (Zhu et al., 2017; Chen et al., 2018; Yuan et al., 2023), particularly those based on deep
learning, have primarily focused on behavior prediction: learning to predict the next event based on
historical sequences (Kang & McAuley, 2018; Sun et al., 2019). Recently, with the increasing avail-
ability of large-scale behavioral datasets and inspired by the success of pre-training paradigms in
natural language processing (NLP) (Radford et al., 2019; Dubey et al., 2024), behavior pre-training
has emerged as a promising technique. These methods (Gong et al., 2024; Savcisens et al., 2024;
Zhai et al., 2024) exploit vast human daily behavioral corpora to capture intricate temporal depen-
dencies and latent patterns, leading to significant improvements in predictive accuracy.

Despite these advances, existing human daily behavior modeling approaches suffer from several
fundamental limitations. First, they struggle to model long-tail behaviors—actions that occur
infrequently or are newly emerging—due to inherent data sparsity issues (Hu et al., 2025; Kim et al.,
2024). Second, their “black-box” nature offers limited insight into the decision-making process,
creating a gap between the model’s predictions and human-interpretable reasoning (Lei et al.,
2024). Third, most models are designed for a single task, focusing on either prediction or generation,
and lack the flexibility to handle both within a unified framework.
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Recent developments in Large Language Models (LLMs) offer a powerful new direction for ad-
dressing these challenges. LLMs provide several distinct advantages: (1) Their rich semantic rep-
resentations, learned from vast textual corpora, can enhance the modeling of long-tail behaviors by
providing crucial contextual understanding (Liu et al., 2024; Sheng et al., 2024). (2) Trained on
extensive human-generated text, LLMs can process and articulate behavioral patterns in a textual
format that aligns more closely with human cognition, thereby enhancing model interpretability.
(3) Their inherent generative capabilities support multitask learning through natural language, en-
abling both behavior prediction and generation within a single, unified model. Overall, integrating
LLMs presents a clear opportunity to overcome the core limitations of traditional behavior modeling.

However, a critical modality gap exists: human behavioral data, typically represented as sequences
of IDs or embeddings, is structurally and semantically different from the natural language data
LLMs are trained on. Consequently, LLMs cannot directly interpret the feature representations or
outputs of conventional behavior modeling pipelines. To bridge this gap, we propose the Behavior
Understanding Alignment (BUA) framework. BUA is a novel approach that unlocks the potential
of LLMs for both behavior prediction and generation by first teaching the LLM to understand human
behavior sequences through a structured alignment process.

Our framework leverages sequence embeddings from a pretrained behavior model as alignment an-
chors and guides the LLM through a structured three-stage curriculum. This curriculum is designed
to progressively bridge the modality gap, beginning with basic sequence comprehension and advanc-
ing to more complex predictive and generative reasoning. Furthermore, we introduce a multi-round
dialogue setting that establishes a coherent reasoning chain. This process compels the LLM to
first generate an explicit textual summary of its understanding of a given behavior sequence. This
summary then acts as a contextual foundation, or a cognitive “scaffold”, from which the model
subsequently performs prediction and generation tasks, significantly enhancing the performance of
both.

The contributions of this work are summarized as follows:

• We are the first to propose training an LLM to explicitly understand human daily behavior
sequences—by aligning behavioral and language modalities—as a foundational step for
improving downstream prediction and generation tasks.

• We introduce the Behavioral Understanding Alignment (BUA) framework, which uniquely
combines a three-stage curriculum learning pipeline with a multi-round dialogue mecha-
nism to synergistically enhance the model’s capabilities in understanding, predicting, and
generating human behaviors.

• Experimental results on two real-world datasets demonstrate that BUA achieves state-of-
the-art performance in both prediction and generation tasks. Comprehensive ablation stud-
ies further validate the critical role of our structured curriculum and dialogue-based reason-
ing process in achieving these results.

2 RELATED

2.1 BEHAVIOR MODELING

Modeling daily human behavior hinges on capturing core patterns in user behavior sequences,
typically through two tasks: behavior prediction and behavior generation. Early behavior pre-
diction models, such as TRNN (Zhu et al., 2017), utilized time-difference-aware embeddings to
enhance temporal modeling. As datasets expanded, transformer-based pretraining methods like Be-
haveGPT (Gong et al., 2025) and Life2Vec (Savcisens et al., 2024) became prevalent, significantly
improving predictive accuracy. However, these methods often struggle with long-tail behaviors due
to limited sample diversity. For behavior generation, early rule-based and agent-based models (Kim
et al., 2019; Pfoser & Wenk) relied on hand-crafted logic, limiting their ability to capture real-world
complexity. SAND (Yuan et al., 2023) advanced this by using neural stochastic differential equa-
tions, enabling more realistic dynamics without fixed rules, though its static generation parameters
limit adaptability. More recently, D2A (Wang et al., 2024) trained an LLM as a cognitively inspired
agent guided by a dynamic value system, enhancing behavioral diversity and flexibility. However, it
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Figure 1: The framework of Behavior Understanding Alignment (BUA). (a) the modality conversion
process using sequence embedding. (b) the structured curriculum learning process: seq-fea, user-
fea, and refined-fea represent features learned in Stage 1 (Sequence-Level), Stage 2 (User-Level),
and Stage 3 (Self-Reflection). The ✓ and × marks indicate the correctness of the learned features.
(c) Understanding-enhanced prediction and generation via multi-round dialogue.

underutilizes the LLM’s potential for sequence generation based on a deep, multimodal understand-
ing of behavioral context.

2.2 ALIGNMENT IN RECOMMENDATION

Our behavior prediction task is defined as predicting the next behavior based on the user’s most
recent L behavioral events, which is similar to sequential recommendation. The two differ in fo-
cus: behavior prediction emphasizes recurring daily behaviors, whereas sequential recommendation
often targets novel items. To the best of our knowledge, no prior work has focused on explicitly
aligning LLMs with the underlying semantic representations of entire behavior sequences, so we
draw upon related research in sequential recommendation. Existing work that incorporates large
language models (LLMs) into sequential recommendation can be broadly categorized into two di-
rections: (1) LLMs as standalone recommendation systems (Tan et al., 2024; Kim et al., 2024; Liao
et al., 2024; Zhang et al., 2025), and (2) LLMs as enhancers of traditional systems (Ren et al., 2024;
Liu et al., 2024; Hu et al., 2025; Wang et al., 2024).

For the first category, these works treat recommendation as a text generation problem but often by-
pass a deeper alignment with the rich, latent representations of user behavior learned by specialized
encoders. Their item-embedding alignment-based approach thus fails to fully leverage collabora-
tive knowledge and complex sequential patterns. The latter line of work offers superior inference
efficiency compared to fully LLM-based systems. However, by using the LLM as a supplementary
component rather than the core reasoning engine, they inherit the limitations of traditional deep
learning models, including poor generalization to new items and tasks, and limited interpretability
due to their black-box nature (Lei et al., 2024). In contrast, our approach trains the LLM to first
understand behavior sequence embeddings, positioning it as the central agent for both prediction
and generation.

3 METHOD

3.1 PROBLEM FORMULATION

Let xi denote a basic behavioral event, represented as a four-tuple (di, ti, li, bi), where di is the Day
of week index, ti the Timestamp ID, li the Location ID, and bi the Behavior Type ID. The behavior
type captures high-level daily activities—such as exercising or gaming—rather than fine-grained
actions. We consider two related tasks under this representation:

Behavior Prediction and Generation. Given a user’s recent behavior sequence Xseq =
{x1, x2, . . . , xL1}, the model is tasked with either (1) predicting the next behavior b ∈ B, or (2)
generating a future sequence Yseq = {y1, y2, . . . , yL2}, where each yi is a four-tuple (di, ti, li, bi).

3
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3.2 OVERVIEW

The framework of our method Behavior Understanding Alignment (BUA) is shown in Figure 1.
We propose a three-stage structured curriculum to progressively enhance behavior understanding:
(1) Sequence-Level Understanding, (2) User-Level Feature Modeling, and (3) Self-Reflective Re-
finement, with sequence embedding as the alignment anchor. Additionally, in the second stage, we
incorporate a multi-round dialogue setup that integrates prediction and generation tasks.

3.3 SEQUENCE-EMBEDDING-BASED ALIGNMENT

Given a user behavior sequence Xseq, we first encode it using BehaveGPT (Gong et al., 2025), a
pretrained model on large-scale behavioral data, serving as the behavior encoder gϕ. The penultimate
hidden state is then projected into a unified representation space via a lightweight two-layer MLP,
producing the behavior sequence embedding Hseq:

Hseq = MLP(gϕ(Xseq)) (1)

This embedding is then concatenated with the encoded text instruction XIns and input into the LLM,
which generates a textual response y, as shown in Figure 1(a). All our fine-tuning tasks are opti-
mized using the following objective, which maximizes the likelihood of the target output given the
multimodal input:

L = − 1

N

N∑
i=1

logPθ (yt | y<t, XIns, Xseq) (2)

where N denotes the length of the response y.

3.4 CURRICULUMN FOR BEHAVIOR UNDERSTANDING ALIGNMENT

We propose a three-stage curriculum for user behavior understanding tasks, structured to progress
from simple to complex. The first stage targets sequence-level understanding, the second emphasizes
user-level feature modeling, and the third incorporates self-reflective refinement to further enhance
behavioral representations. The full task structure is detailed in Appendix B.

3.4.1 STAGE 1: SEQUENCE-LEVEL FEATURE UNDERSTANDING

In this initial stage, the model learns to interpret behavioral sequence embeddings from language
modalities, building a foundation for deeper behavioral understanding in later stages. Based on
empirical insights, we introduce three basic tasks:

• Historical Sequence Reconstruction: The model reconstructs the original behavioral se-
quence in natural language, capturing key temporal, spatial, and behavioral transitions.
This entry-level task establishes the groundwork for multimodal understanding.

• Current Scene Summary: The model summarizes the user’s recent context over the past
two hours (e.g., morning commute), requiring it to extract and generalize key patterns,
advancing its sequence-level understanding.

• Future Scene Inference: The model predicts the user’s likely context in the next two
hours (e.g., evening commute or pre-bedtime leisure), demonstrating its ability to analyze
sequence dynamics and temporal trends.

In practice, we also introduce simple user-level inference tasks at this stage, such as home/workplace
location identification and user hobby inference, which provide a natural transition to the more com-
plex user-level understanding required in Stage 2. Additionally, following common acceleration
training techniques for large multimodal language models, we freeze both the sequence encoder and
the LLM during this stage, allowing only the parameters of the projection layer (MLP) to remain
trainable. While this approach constrains model adaptability compared to full-parameter fine-tuning,
it represents a strategic trade-off that significantly enhances training efficiency without compromis-
ing the effectiveness of feature alignment.

4
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3.4.2 STAGE 2: USER-LEVEL FEATURE UNDERSTANDING

In this phase, the focus shifts to capturing deeper user-level features embedded within behavioral
sequences. It is not sufficient for the model to recognize surface-level changes in time, location,
or activity; instead, it must abstract the underlying user features that drive these patterns. Such
features are critical for understanding behavior trends and informing prediction and generation tasks.
Inspired by how humans infer user features from behavioral sequences, we design the following
tasks to guide user-level feature learning:

• User Key Behavior Identification: The model identifies semantically rich behaviors that
are frequent or mark transitions between daily phases (e.g., taking the subway after work
indicates a shift from work to evening leisure). These behaviors are critical for inferring
user intent development.

• User Behavior Pattern Discovery: The model detects recurring behavioral subsequences
and consistent temporal-spatial patterns (e.g., watching TikTok during commutes). These
patterns reveal deeper user preferences and routines.

• User Feature Summarization: The model abstracts high-level user features (e.g., This
user prefers light entertainment during their evening commute), which provides a higher-
level, more essential understanding of user behavior features.

These tasks are intentionally sequenced from simple to complex, forming a structured learning path.
To support effective user-level understanding, this progression is enforced during training: the model
performs User Key Behavior Identification first, followed by Behavior Pattern Discovery, and finally
User Feature Summarization. Additionally, during training at this stage, we freeze the sequence
model parameters while allowing the parameters of the projection layer and LLM to be adjustable.

3.4.3 STAGE 3: SELF-REFLECTIVE REFINEMENT

In this phase, we introduce Self-Reflective Refinement to enhance the model’s understanding of
user features. After the first two phases, the model’s performance on the User Feature Summa-
rization task remained suboptimal. We evaluated the generated summaries and manually inspected
low-scoring responses, finding that there are some recurring issues, such as unclear relationships
between behavioral features. However, as these issues did not stem from fundamental misunder-
standing, the model might have developed a comprehensive understanding of user features during
the Sequence-Level Understanding and User-Level Feature Extraction stages. Instead, the model
only requires more ”thinking” to generate reasonable and accurate user features. To address this, we
propose a self-reflective iteration strategy that empowers the model to identify and correct its own
shortcomings. Specifically, we summarize the recurring issues, and designed targeted correction
criteria, guiding the model to review and revise its earlier outputs based on clear feedback. The task
is defined as follows:

• Self-Reflective Refinement: The model reviews low-quality user feature summaries, iden-
tifies key issues, and refines them using its understanding of sequence embeddings, pro-
ducing more accurate and coherent summaries.

Based on the foundations established in the first two stages, this strategy leverages the model’s
reasoning capabilities for iterative improvement, resulting in more robust and accurate user fea-
ture representations. During this phase, we freeze the sequence encoder and projection layer while
keeping LLM parameters trainable.

3.5 UNDERSTANDING-ENHANCED PREDICTION AND GENERATION VIA MULTI-ROUND
DIALOGUE

To develop behavior prediction and generation capabilities, we introduce a multi-round dialogue
framework in the second stage of the behavior understanding pipeline. This approach enables the
model to simultaneously refine prediction and generation skills while deepening its understanding of
user behavior features. In this setup, the model starts with the Key Semantic Behavior Recognition
task in the first round, progressively completes all user-level behavior understanding tasks, and
concludes with the corresponding prediction or generation tasks in the final round. By leveraging
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intermediate understanding and analysis from earlier rounds, the model enhances the accuracy and
effectiveness of downstream tasks. The optimization loss for this multi-round dialogue setting is
defined as:

Loss = mean

( N∑
i=1

Ti∑
t=1

logPθ

(
y
(i)
t

∣∣y(i)<t, X
(i)
Ins , Y

(i), Xseq
))

(3)

where N is the total number of dialogue rounds, Ti is the number of tokens in the answer for the
i-th round, θ denotes the LLM parameters,y(i)t is the t-th token of the i-th round’s output, X(i)

Ins is
the input Instruction, and Y (i) represents the corresponding answer for the i-th round.

However, multi-round dialogues risk imbalanced training across different rounds. Rewriting the loss
from the token level to the round level, we get

Lossmulti-turn = −
N∑
i=1

Ti∑N
i=1 Ti

lossi (4)

where lossi denotes the average loss for the i-th round. This means that rounds with longer answers
dominate the overall loss, while those with shorter outputs receive less attention at the round level.
This is problematic in practice, as understanding tasks typically involve long outputs (often exceed-
ing 100 tokens), whereas prediction tasks only output the predicted behavior type (often fewer than
5 tokens). As a result, the model struggles to effectively learn shorter prediction tasks.

To address this issue, we introduce a simple yet effective loss balancing strategy that ensures equal
attention across rounds. Specifically, we apply a weight Wi =

∑N
i=1 Ti

NTi
that is inversely proportional

to the length of the answer in each round, encouraging balanced learning across all rounds. The final
loss function becomes:

Lossweighted = − 1

N

N∑
i=1

logPθ

(
y
(i)
t

∣∣∣ y(i)<t, X
(i)
Ins , Y

(i), Xseq

)
(5)

This balanced loss formula significantly enhances the performance of the model on the behavior
prediction task without significantly reducing the effectiveness on the understanding task.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluated our model on two real-world user behavior datasets: Behavior dataset:
This dataset is derived from the user’s mobile phone logs. After desensitization, it includes 37 daily
behaviors that cover a wide range of life scenarios, including activities related to learning, work,
entertainment, leisure, and more. Tencent Dataset (Shao et al., 2024): This dataset is derived
from the user’s social network and the user’s movement trajectory. It includes 14 human behavior
intentions, such as eating, going home, working, etc.

For both datasets, we split the users in a ratio of 8:1:1 to create training, validation, and test datasets.
For more detailed information about the datasets and their splits, please refer to the Appendix C.

Evaluation Metrics. For behavior prediction task, we adopt commonly used metrics, weighted
precision (Precw) and weighted recall (Recw)(equivalent to HR@1), to evaluate the overall predic-
tion performance of the model. Additionally, user data is often unevenly distributed and exhibits
a clear long-tail distribution in practice (Kim et al., 2024). Following relevant work (Liu et al.,
2019; Shi et al., 2024), we construct a long-tail intent test set and adopt global accuracy(denoted as
Overall), high-frequency behavior accuracy(denoted as Head), medium-frequency behavior accu-
racy(denoted as Medium), and long-tail behavior accuracy (denoted as Tail) to fairly evaluate the
model’s performance across different behavior categories. For the calculation methods and addi-
tional details on all six metrics, please refer to the Appendix D. For behavior generation task, we
adopt commonly used metrics BLEU , TV D, and JSD to measure the time, location, and behavior
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Table 1: Experiment results on next behavior prediction

Category Method Honor Dataset Tecent Dataset

Recw Precw Overall Head Medium Tail Recw Precw Overall Head Medium Tail

Traditional
SASRec 0.546 0.535 0.291 0.420 0.340 0.222 0.328 0.269 0.097 0.29 0.045 0.021

BehaveGPT 0.567 0.551 0.206 0.442 0.354 0.027 0.509 0.426 0.113 0.537 0 0

LLM-Enhanced
PITuning 0.617 0.603 0.408 0.481 0.444 0.361 0.524 0.466 0.120 0.546 0.009 0.0

AlphaFuse 0.578 0.575 0.242 0.457 0.380 0.075 0.507 0.435 0.118 0.547 0.001 0

LLM-Based

Deepseek-V3 0.492 0.495 0.237 0.330 0.265 0.191 0.318 0.282 0.119 0.303 0.083 0.038
TALLRec 0.617 0.607 0.398 0.452 0.434 0.355 0.561 0.543 0.134 0.513 0.044 0.019

A-LLMRec 0.584 0.557 0.348 0.422 0.394 0.299 0.539 0.523 0.140 0.542 0.037 0.025
CoLLM 0.618 0.596 0.408 0.453 0.448 0.363 0.560 0.543 0.152 0.530 0.067 0.034
LLaRA 0.615 0.608 0.404 0.462 0.439 0.361 0.564 0.545 0.152 0.543 0.060 0.033

BUA 0.644 0.642 0.471 0.538 0.489 0.446 0.600 0.574 0.207 0.62 0.114 0.041

Improv 4.2% 5.6% 15.4% 11.9% 9.2% 22.9% 6.4% 5.3% 36.2% 13.4% 37.4% 7.9%

similarity between the generated sequence and the real sequence data. The calculation methods for
the metrics are outlined in the Appendix E.

Baselines. For behavior prediction task, We selected representative algorithms from various cat-
egories to compare with our proposed algorithm. For traditional deep learning methods, we chose
SASRec (Kang & McAuley, 2018), BehaveGPT (Gong et al., 2025). For pure LLM-based prediction
methods, we selected DeepSeek-V3 (DeepSeek-AI, 2025) and TallRec (Bao et al., 2023). For meth-
ods that use modality fusion and LLM as recommendation systems (similar to ours), we selected
A-LLMRec (Kim et al., 2024), CoLLM (Zhang et al., 2025), and LLaRa (Liao et al., 2024). For
methods that employ modality fusion and LLM as recommendation system enhancers, we selected
PI-Tuing (Gong et al., 2024) and AlphaFuse (Hu et al., 2025). For behavior generation task, We
chose SAND (Yuan et al., 2023), a representative method based on deep learning, and D2A (Wang
et al., 2024), which uses LLM for user behavior activity generation based on Maslow’s Theory. For
further details on the baselines, please refer to the Appendix F.

Implementation Details. The hardware used in this experiment consists of 8 NVIDIA A100 40G
GPUs. We chose Qwen2.5-7B (Team, 2024) as the backbone model for the experiment. More details
about the implementation are in the Appendix G.

4.2 BEHAVIOR PREDICTION EXPERIMENT

To validate the effectiveness of our method, we evaluated the model on two real-world datasets
against the baselines. Our model consistently outperformed all baselines across all metrics, con-
firming its effectiveness, as shown in Figure 1. We further probe more conclusions by the following
analysis.

Overall Comparison. The results show that our method(BUA) outperforms all baselines on both
Precw and Recw under the real data distribution. Additionally, most LLM-based methods surpass
traditional models like SASRec, underscoring the value of semantic information in behavior predic-
tion. Notably, item embedding fusion approaches (e.g., LLARA, A-LLMRec) offer no clear advan-
tage over the pure LLM method, TallRec, indicating that item embeddings alone are insufficient to
fully leverage sequential knowledge.

Different Categories of Behaviors Comparison. The results show that our method achieves sub-
stantial gains across high-frequency, medium-frequency, and long-tail behaviors, with an overall
average improvement of 25.8% over the best baseline on both datasets. While the LLM-based
TallRec outperforms SASRec by over 50% on long-tail behaviors, it shows only a 10% gain on
high-frequency ones on Behavior dataset, emphasizing the importance of semantic information for
long-tail prediction. Although the item-embedding fusion method LLARA slightly outperforms the
pure LLM TallRec, the margin is small compared to our approach—further confirming the advantage
of our method.

7
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Table 2: Experiment result on behavior sequence generation

Method Event Timestamp Location

Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓
BehaveGPT 0.009 0.945 0.632 — — — — — —
SAND 0.142 0.304 0.083 0.344 0.204 0.038 — — —
D2A 0.315 0.183 0.039 0.287 0.223 0.049 0.396 0.529 0.173
Ours 0.354 0.140 0.020 0.541 0.147 0.020 0.711 0.065 0.005

4.3 BEHAVIOR GENERATION EXPERIMENT

We evaluated our method on the Behavior dataset against all baselines. To ensure fair comparison
with SAND, which outputs fixed-time behaviors, we generated one day of future behaviors. Our
model consistently outperformed all baselines across all metrics, demonstrating strong robustness
and effectiveness (see Figure 2). Note that − in table indicates the model lacks generation capability
and is not applicable for evaluation. Additionally, we found that BehaveGPT, despite large-scale
pretraining, performs poorly on the generation task even after fine-tuning, revealing limited capa-
bility. While SAND generates more accurate timestamps than D2A, it lags in behavior accuracy.
These results underscore the importance of behavioral semantics and the difficulty LLMs face with
temporal and numerical features. Our method addresses this by first understanding and summarizing
behavioral patterns, leading to superior performance.

4.4 SYNTHETIC DATA FOR DOWNSTREAM PREDICTION TASK

Figure 2: hybrid scenario

To further assess the usability of
the generated data, following (Yuan
et al., 2023), we evaluated our model
in a hybrid setting that augments
real data with synthetic data. Us-
ing the standard SASRec model for
next-behavior prediction (see Ap-
pendix H). As shown in Figure 2, our
generated data consistently outper-
forms the strongest baseline, D2A,
in both overall and average accu-
racy (Figure 2), significantly boosting
model performance. This confirms our model’s ability to generate high-fidelity behavior sequences
that capture underlying user patterns.

4.5 CROSS-MODEL ENHANCEMENT VIA BEHAVIORAL UNDERSTANDING TRANSFER

Table 3: Cross-Model enhancement via behavioral under-
standing transfer

Method Weighted Metrics Category Performance
Recw Precw Overall Head Medium Tail

Tallrec 0.609 0.587 0.384 0.460 0.440 0.319
Tallrec-cross 0.620 0.610 0.405 0.467 0.463 0.341
Llara 0.605 0.585 0.362 0.460 0.412 0.296
Llara-cross 0.610 0.595 0.403 0.468 0.466 0.335

To further validate the effectiveness
of our model’s behavior understand-
ing, we evaluate whether its ex-
tracted user features could enhance
other models. These features were
added to TallRec and LLARA, re-
sulting in TallRec-cross and LLARA-
cross. Specifically, BUA generated
user summaries for 20,000 samples to
supplement each model’s input. As shown in Table 3, this consistently improved prediction perfor-
mance, with notable gains on long-tail behaviors.

4.6 ABLATION STUDY

We conduct an ablation study on the Behavior dataset to evaluate the influence of different design
components on overall performance. Specifically, we assess the model’s performance under the

8
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following conditions: (1) Removal of the first stage: Sequence-Level Feature Understanding (w/o
stage1), (2) Removal of User-Level Feature Extracting in second stage (w/o stage2), and (3) Re-
moval of the third stage: Self-reflective Refinement(w/o stage3)

Behavior Prediction To further analyze the contributions of each component to the Behavior Pre-
diction task, we additionally evaluate: (4) Removal of loss balancing strategy of multi-turn dialogue
in the second stage (w/o loss balance), (5) Use of item embedding instead of sequence embedding for
modality alignment (item-emb). The results are shown in Table 4, with key findings as follows: All
components contribute to overall performance, with the loss balancing strategy in the second-stage
multi-turn dialogue having the most significant impact on prediction. Without it, the model favors
the understandng task due to its longer output, reducing prediction effectiveness. Although the first
and third stages do not directly target prediction, they improve behavior sequence understanding,
indirectly enhancing prediction. Finally, replacing sequence embeddings with item embeddings for
modality fusion leads to performance degradation, confirming the superiority of sequence-level rep-
resentations.

Table 4: Ablation study for behavior prediction task
Method Weighted Metrics Category Performance

Recw Precw Overall Head Medium Tail

Ours 0.644 0.642 0.471 0.538 0.489 0.446
w/o stage1 0.613 0.607 0.370 0.485 0.452 0.286
w/o stage2 0.587 0.577 0.456 0.400 0.159 0.291
w/o stage3 0.592 0.586 0.334 0.420 0.357 0.300
w/o loss balance 0.560 0.552 0.285 0.385 0.364 0.197
item-emb 0.631 0.626 0.465 0.523 0.491 0.437

Behavior Generation All design
components contribute to the model’s
overall performance. Removing the
user-level feature extraction in the
second stage has the greatest im-
pact, showing that explicitly generat-
ing user behavior features enhances
understanding and guides future be-
havior generation. Additionally, the
behavior understanding tasks in the
first and third stages improve the model’s grasp of behavior sequences, as their removal weakens
pattern understanding and indirectly reduces generation performance. Please refer to Appendix I for
detailed results.

4.7 QUALITATIVE AND QUANTITATIVE ANALYSIS OF INTERPRETABILITY

To comprehensively evaluate the model’s understanding and interpretability capabilities, we con-
ducted both qualitative case studies and quantitative human evaluations.

Qualitative Analysis: Evolution of User Profiling.

We demonstrate the model’s ability to capture semantic modalities through the evolution of User
Feature Summarization across the three curriculum stages. For clarity, we present only a represen-
tative sub-feature, as full outputs are too lengthy.

Stage 1: The user frequently reads news throughout the day and is a news enthusiast.
Stage 2: News Enthusiast: The user has a strong habit of consuming news, often checking it multiple
times in quick succession. This suggests a desire to stay informed about current events.
Stage 3: Information-Seeking Behavior: The user has a strong habit of consuming news and check-
ing the weather, indicating a desire to stay informed about current events and environmental condi-
tions. This behavior is consistent throughout the week, with slight variations in timing.

The outputs show clear improvement across training stages. After the first stage, the model produces
simple summaries (e.g., “the user likes to read news”). By the end of the second stage, it begins iden-
tifying behavioral patterns like “checking multiple times in rapid succession” and inferring intent.
In the third stage, the model generates more comprehensive features, grouping behaviors such as
“reading news” and “checking the weather” into higher-level categories like “information-seeking
behavior” with richer detail. These results highlight the effectiveness of our three-stage training
framework.

Quantitative Analysis: Human Evaluation. To more accurately assess the quality and inter-
pretability of the behavioral features generated by our model, we conducted a systematic human
evaluation following standard protocols (Lei et al., 2024). We randomly selected 120 test samples
from the Honor dataset. For each sample, user features were generated by three sources: (1) Human

9
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annotators, (2) BUA (Ours), and (3) the Base Model (Qwen2.5-7B without fine-tuning). A group of
human judges evaluated these blinded samples on a 0–3 scale based on two dimensions:

• Rationality: The degree to which the features align with the user’s historical behavior.

• Interpretability: The extent to which the features help explain the user’s predicted future
behavior.

Table 5: Average Scores (0–3 Scale)

Type Rationality Interpretability

Human 2.51 2.55
BUA 2.46 2.39
No Tune 1.90 1.83

Table 6: Best Score Probability
Metric Human BUA No Tune

Rationality 39.8% 37.9% 22.3%
Interpretability 45.3% 33.3% 21.4%

The results are summarized in Table 5 and Table 6. While human-written features achieve the
highest performance, BUA significantly outperforms the Base Model, improving the interpretability
score from 1.83 to 2.39. Furthermore, regarding the ”Best Score Probability”, which measures
how often a model’s output was rated as the best among all candidates, BUA achieves competitive
results comparable to human annotations (e.g., 37.9% vs. 39.8% in Rationality). These results
quantitatively demonstrate that BUA acquires a deep, alignable understanding of user behavior that
approaches human-level. For more detailed experimental setup and interpretability question settings,
please refer to Appendix Q and Appendix R respectively.

5 CONCLUSION

This paper presents the Behavior Understanding Alignment (BUA) framework, which integrates
large language models into human behavior modeling using structured curriculum learning. BUA
addresses key limitations of traditional models—such as poor long-tail predictions and limited in-
terpretability—by aligning behavior and language through sequence embeddings from pretrained
models.

ETHICS STATEMENT

We implemented robust measures to ensure ethical data handling throughout the research process,
prioritizing privacy, security, and bias mitigation. To protect individual privacy, trajectory data is
strictly anonymized and contains no personally identifiable information (PII). We took several steps
to address privacy and ethical considerations:

• Anonymization procedure: Each user is assigned a random, anonymous ID, which is
regenerated every three months to prevent long-term tracking.

• Location data processing: We do not collect precise location coordinates. Instead, before
data is uploaded, we apply a rule-based aggregation algorithm to identify the 10 most fre-
quently visited areas by users. These areas are represented using low-resolution area IDs,
which are uploaded instead of actual latitude and longitude data, ensuring location privacy.

• Long-term privacy protection: These measures collectively ensure that users cannot be
identified through long-term behavioral or location analysis.

All datasets are stored on secure, encrypted servers with strict access control protocols, ensuring
access is granted only to authorized researchers bound by confidentiality agreements.

Furthermore, to proactively address fairness concerns, the datasets intentionally exclude any demo-
graphic or user-specific attributes, such as gender, race, or age. This design inherently reduces the
risk of our models learning or perpetuating societal biases associated with these characteristics.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making our work as transparent and
accessible as possible.

[leftmargin=*]

• Code: The source code for our proposed model, experimental setup, and evaluation scripts
will be made publicly available in a GitHub repository upon publication of this work. The
repository will include detailed instructions for setting up the environment and running the
experiments.

• Implementation Details: Key hyperparameters and architectural choices for our model
are described in the main paper. A comprehensive list of all hyperparameters, along with
details about the computational environment (hardware, software libraries, and versions),
will be provided in the README.md file of our code repository.

The implementation of BUA is available online at https://anonymous.4open.science/
r/dasjijio-21B2/

6 ETHICAL CONCERNS

We have taken several steps to address privacy and ethical considerations:

• Anonymization Procedures: Each user is assigned a random anonymous ID, which is
re-generated every three months to prevent long-term tracking.

• Location Data Handling: We do not collect precise location coordinates. Instead, prior
to data upload, we apply a rule-based aggregation algorithm that identifies the user’s top
10 most frequently visited areas. These are represented using low-resolution area IDs and
ultimately uploaded instead of actual latitude and longitude data, ensuring location privacy.

• Long-Term Privacy Protection: These measures collectively make it infeasible to identify
users through behavioral or location analysis over time.
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A USE OF LLMS

We used LLMs to assist in writing the paper, such as identifying typos and correcting grammatical
errors, as well as polishing some paragraphs.

B SUMMARY OF ALL UNDERSTANDING TASKS

Summary as shown in Figure 3.
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Figure 3: Summary of all understanding tasks

C DATASET INFORMATION

Behavior dataset: This large-scale dataset is derived from mobile phone usage logs. When users
interact with their mobile phones, various types of logs are generated, desensitized, and reported
with user consent. After desensitizing the original data, we extract 37 daily behaviors that are
reliably extracted from raw logs and also cover broad life scenarios, including activities related to
learning, work, entertainment, leisure, etc. The dataset spans from March 1, 2024, to April 29, 2024,
and consists of over 50 million behavior events from 24,133 anonymous users. We preprocess the
dataset and construct samples in the format of (weekday, timestamp, location, behaviortype).
Since our target is fine-tuning the LLM instead of training from scratch, we only randomly select a
subset (100,000) of data for experiments.

Tencent dataset: The Tencent Trajectory dataset, collected from a social network, captures user
mobility trajectories. Points of interest (POIs) are manually annotated with detailed intent types.
The dataset includes 2,000 users and spans from October 8 to December 31, 2019, comprising
320,516 records. Each record contains an anonymized location ID, the associated intent type, and a
timestamp.

The characteristics of both datasets are presented in Table 7.

Table 7: Statistics of the datasets
Dataset # Users # Behav. Type # Logs

Behavior Dataset 24,133 37 100,000
Tencent Dataset 2,000 14 320,516
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D DETAILS OF USED METRICS FOR PREDICTION

D.1 BEHAVIOR CATEGORY

For long-tailed learning, following the settings of relevant work (Liu et al., 2019; Shi et al., 2024),
we evaluate four accuracy metrics based on behavior occurrence frequencies: category-average ac-
curacy across all behaviors (Overall), head-category accuracy for behaviors with > 5.0% frequency
(Head), medium-category accuracy for those between 1.0% and 5.0% frequency (Medium), and
tail-category accuracy for the remaining low-frequency behaviors (Tail).

D.2 BEHAVIOR PREDICTION METRICS

The formula for Precw :

Precw =

∑
c∈C(TPc + FPc) · Precisionc∑

c∈C(TPc + FPc)
(6)

The formula for Recw :

Recw =

∑
c∈C(TPc + FNc) · Recallc∑

c∈C(TPc + FNc)
(7)

The formula for Overall :
Accuracy =

1

|C|
∑
c∈C

TPc

TPc + FNc
(8)

The formula for Head :
Accuary =

1

|Ch|
∑
c∈Ch

TPc

TPc + FNc
(9)

The formula for Medium :

Accuary =
1

|Cm|
∑
c∈Cm

TPc

TPc + FNc
(10)

The formula for Tail :
Accuary =

1

|Ct|
∑
c∈Ct

TPc

TPc + FNc
(11)

Where |C| represents the total number of classes, |Ch| represents the total number of classes belong-
ing to the head category, Where |Cm| represents the total number of classes belonging to the medium
category, Where |Ch| represents the total number of classes belonging to the tail category. True Pos-
itives (TP c) denotes the number of samples correctly classified as class c, False Positives (FP c)
represents the number of samples incorrectly classified as class c, and False Negatives (FN c) stands
for the number of samples incorrectly classified as other classes instead of class c. And Precisionc
and Recallc respectively refer to the precision and recall of class c.

E DETAILS OF USED METRICS FOR GENERATION

The formula for BLEU :

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(12)

Where BP = min
(
1, e1−r/c

)
is the brevity penalty, pn is the modified n-gram precision, r is the

reference length, and c is the candidate length.

The formula for TV D:

TVD(P,Q) =
1

2

k∑
i=1

|P (i)−Q(i)| (13)

Where P and Q are probability distributions over k classes, P (i) denotes the predicted probability
of class i, Q(i) denotes the ground truth probability.
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The formula for JSD:

JSD(P∥Q) =

√
1

2
DKL(P∥M) +

1

2
DKL(Q∥M) (14)

Where M = 1
2 (P + Q) is the midpoint distribution, and DKL denotes the Kullback-Leibler diver-

gence:

DKL(P∥Q) =

k∑
i=1

P (i) log
P (i)

Q(i)
(15)

F DETAILS OF BASELINES

SASRec (Kang & McAuley, 2018). uses self-attention mechanisms to model user behavior se-
quences. It captures both short-term and long-term dependencies in sequential data, allowing it to
focus on the most relevant items in the user’s interaction history for recommendation.

BehaveGPT (Gong et al., 2025) is a transformer-based model pre-trained specifically on user be-
havior data. Its novel pre-training paradigm enables it to learn complex behavior patterns and sup-
port various downstream tasks, including next behavior prediction, long-term generation, and cross-
domain adaptation.

PITuning (Gong et al., 2024) loads pre-trained Large Language Model (LLM) parameters to ac-
quire textual knowledge and then designs an adaptive unlearning strategy to address the long-tail
preference issue, achieving excellent performance in user behavior prediction.

AlphaFuse (Hu et al., 2025) is a simple yet effective language-guided learning strategy that ad-
dresses long-tail intent modeling by learning ID embeddings within the null space of language em-
beddings.

TALLRec (Bao et al., 2023) is one of the earlier methods to integrate Large Language Models
(LLMs) with the recommendation domain. It employs a two-stage tuning process—Alpaca Tuning
and Rec-Tuning—to finetune LLMs for recommendations, enabling effective and efficient adapta-
tion of LLMs with only a small number of tuning samples.

A-LLMRec (Kim et al., 2024) bridges the knowledge between the language and recommendation
domains by training an alignment network with a variety of tasks, targeting both warm and cold-start
scenarios.

CoLLM (Zhang et al., 2025) captures collaboration information using external traditional models
and maps it into the LLM’s input embedding space as collaboration embeddings. This external
integration allows effective modeling of collaboration without modifying the LLM, enabling flexible
use of various collaboration modeling techniques.

LLaRa (Liao et al., 2024) introduces a hybrid prompting method that integrates both world knowl-
edge and behavioral patterns into item representations. It conducts curriculum prompt tuning to
achieve modality alignment.

For comparison, we also consider LLMs that are not fine-tuned on behavioral data, i.e., Deepseek-
V3 (DeepSeek-AI, 2025), which is a powerful Mixture-of-Experts (MoE) language model with
671B total parameters and 37B activated per token, offering performance comparable to GPT-
4 Hurst et al. (2024) at a lower cost.

G IMPLEMENTATION DETAILS

The hardware used in this experiment consists of 8 NVIDIA A100 40G GPUs. We selected
Qwen2.5-7B (Team, 2024) as the backbone for our experiments. Our experiments utilized the
AdamW optimizer with a cosine annealing learning rate schedule, setting the warm-up proportion to
0.03. The maximum learning rate for cosine annealing was set to 5e-5, while both the minimum and
initial warm-up learning rates were set to 1e-6. We conducted LoRA (Hu et al., 2022) fine-tuning
and parallel training acceleration. All experiments were performed with a maximum of 3 training
epochs and a batch size of 96, selecting the best-performing model on the validation set for testing.
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Our experiments are typically completed within 8 hours.And for the experimental results, due to
limited computing resources, we fixed the random seed to 42 and only ran it once

H DETAILS OF PRACTICAL APPLICATIONS

H.1 DATA GENERATION PROCESS

For the behavior dataset, we use our model and baselines to generate one day of user behavior data
based on a history sequence of 100 behaviors (spanning over one day). From the generated output,
we take the most recent 41 behaviors and use the first 40 to predict the final one.

H.2 DOWNSTREAM TASK EXPERIMENTAL SETTINGS

To evaluate the utility of the generated synthetic data, we employed SASRec as the downstream
behavior prediction model. To ensure a fair comparison across datasets of varying sizes (e.g., real
data vs. real + synthetic data) and to address concerns regarding gradient steps, we adopted a “train
to convergence” strategy. Instead of fixing the total number of gradient steps, we utilized Early
Stopping with a patience of 5 epochs (monitoring validation loss). This approach ensures that
all models, regardless of the training data volume, are trained to their maximum potential without
overfitting or underfitting. The specific hyperparameters used for the downstream SASRec model
are consistent with standard settings and are detailed as follows:

• Model Architecture:

– Hidden Units: 50
– Number of Blocks (Layers): 2
– Number of Attention Heads: 1
– Dropout Rate: 0.1
– Max Sequence Length: 40

• Optimization:

– Optimizer: Adam
– Learning Rate: 0.001
– Batch Size: 16
– L2 Embedding Regularization (l2 emb): 0.01

• Training Config:

– Maximum Epochs: 200
– Early Stopping Patience: 5 epochs

I ABLATION STUDY FOR BEHAVIOR GENERATION TASK

The ablation results on the generation task are shown in the following Table 8.

Table 8: Ablation Study for Behavior Generation Task

Method Event Timestamp Location

Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓
Ours 0.354 0.140 0.020 0.541 0.147 0.020 0.711 0.065 0.005
w/o stage1 0.309 0.167 0.028 0.500 0.162 0.024 0.640 0.093 0.007
w/o stage2 0.304 0.189 0.029 0.580 0.095 0.008 0.745 0.064 0.006
w/o stage3 0.343 0.146 0.022 0.523 0.156 0.025 0.708 0.079 0.008
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J ANALYSIS OF ERROR SOURCES IN BEHAVIOR PREDICTION

We additionally conducted error analysis experiments to better analyze the sources of error in the
behavior prediction task. Specifically, for the three progressive subtasks in the second stage, we re-
placed the model-generated outputs with ground-truth values from their respective supervised train-
ing tasks. The experimental setup includes four groups, as shown below(Note that understanding
task1, task2, and task3 in the table represent the User Key Behavior Identification, User Behavior
Pattern, and User Feature Summarization Discovery tasks, respectively.). In the table, ”pred” in-
dicates that the corresponding feature uses the model’s own generated result (which may contain
errors), while ”label” denotes the use of the ground-truth value from the supervised training tasks.

Table 9: Experimental Setup for Error Analysis
ID understanding task1 understanding task2 understanding task3

1 pred pred pred
2 label pred pred
3 label label pred
4 label label label

Under these four experimental settings, we analyzed changes in the accuracy on the long-tail test set.
The results are summarized in the table below. In the table, r2w represents the percentage of data
that changed from correct to incorrect predictions compared to the previous row’s settings, while
w2r represents the opposite, and Difference indicates the net accuracy improvement (the difference
between w2r and r2w).

Table 10: Error Analysis Results on Long-Tail Test Set
ID Overall r2w w2r Difference

1 0.336 - - -
2 0.417 6.3% 14.4% 8.1%
3 0.432 2.7% 4.2% 1.5%
4 0.480 1.8% 6.6% 4.8%

The experimental results reveal that User Key Behavior Identification and User Feature Summariza-
tion have the greatest impact on errors. User Key Behavior Identification serves as the starting point
for behavioral analysis in stage 2, where even small initial errors can propagate and compound across
subsequent subtasks. Meanwhile, the final User Feature Summarization task, being directly linked
to behavior prediction, significantly influences the final accuracy. The quality of the summarized
features directly affects the precision of behavior predictions, hence its substantial impact.

In the paper, we primarily focused on enhancing User Feature Summarization through self-reflection
optimization tasks. However, we acknowledge that insufficient attention was given to the User Key
Behavior Identification task, which also has a significant impact on errors. This insight offers a
valuable direction for our future work.

K JOINT OPTIMIZATION

Joint Optimization – Consider using adaptive learning rate schedules to resolve convergence mis-
match between prediction and generation tasks

We implemented an adaptive learning rate schedule by dynamically adjusting the task loss weights
based on the ratio of current loss to initial loss. This effectively assigns a higher weight to the
prediction task and a lower weight to the generation task, accelerating convergence of the former
while slowing down the latter. Below is a detailed description of the strategy:

K.1 DYNAMIC TASK WEIGHTING STRATEGY

Let:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• L
(0)
i : the initial loss of task i

• L̂i: the current exponentially moving averaged (EMA) loss of task i

• ri =
L̂i

L
(0)
i

: the loss ratio of task i

• r̄ = 1
|V|
∑
i∈V

ri: the average loss ratio across valid tasks

• si =
r̄
ri

: the relative learning speed of task i (slower tasks will have larger values)

• α: a tunable exponent to control the sensitivity of the weighting

The normalized task weight wi is computed as:

wi =


sαi∑

j∈V
sαj

· |V|, if L(0)
i > 0

1, otherwise

Where:
V =

{
i | L(0)

i > 0
}

is the set of valid tasks (i.e., those with positive initial loss values).

After applying this method, the step corresponding to the lowest total loss shifted from 2600 to
3200, with corresponding unweighted prediction and generation losses improving slightly to 0.2674
and 0.271 (from 0.2690 and 0.2726). These data show that this method does make the convergence
speed of prediction and generation tasks more matched.

The table below shows performance comparisons, where ”No optimization” refers to results without
multi-task optimization (as in the paper)

K.1.1 PREDICTION TASK

Table 11: Performance of the Prediction Task Under Different Optimization Methods
Optimization method Precw Recw Overall Head Medium Tail

No optimization 0.644 0.642 0.471 0.538 0.489 0.446
Adaptive learning rate 0.638 0.648 0.479 0.528 0.497 0.452

K.1.2 GENERATION TASK

Table 12: Performance of the Generation Task Under Different Optimization Methods

Method Event Timestamp Location

Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓ Bleu ↑ TVD ↓ JSD ↓
None 0.354 0.140 0.020 0.541 0.147 0.020 0.711 0.065 0.005
Adaptive learning rate 0.363 0.141 0.020 0.553 0.146 0.019 0.708 0.079 0.008

As shown, while some metrics improved, results are not consistently better across all tasks. This
suggests that multi-task optimization requires more sophisticated strategies, and we plan to
explore further methods (e.g., separate optimizers or gradient balancing techniques) in future work.

L EFFICIENCY COMPARISON

Efficiency Comparison – Compare inference time and memory usage with baseline models

Regarding computational cost during inference:

• Hardware: All inference tests were conducted on NVIDIA A100 (40GB).
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• Inference Time (on 20,000 samples from the Honor dataset):

– < 3 minutes: SASRec, BehaveGPT, PITuning, AlphaFuse
– ˜25 minutes: TALLRec, A-LLMRec, CoLLM, LLaRa
– ˜40 minutes: BUA
– Not available: DeepSeek (API-based)

• Memory Usage:

– Low (< 2GB): SASRec (˜1GB), BehaveGPT, PITuning, AlphaFuse (˜2GB)
– High (˜30–32GB): TALLRec, A-LLMRec, CoLLM, LLaRa, BUA

BUA’s inference efficiency is comparable to other LLM-based baselines, though higher than tra-
ditional methods—reflecting a broader trend in LLM-based approaches. We anticipate continued
advances in LLM optimization that will help narrow this efficiency gap in the near future.

M CROSS-CULTURAL CONTEXTS EVALUATION

Cross-Cultural Contexts Evaluation – Test the model on datasets from different domains or cul-
tural backgrounds

To address this, we incorporated a new dataset: the Carat Top 1000 Users App Usage Dataset,
which collects app usage and battery data from volunteers across multiple countries, including the
U.S., Japan, and the U.K., and notably excludes China. This provides a complementary perspective
to the Honor and Tencent datasets used in our original submission.

We compared our method (BUA) with the best-performing baselines from each category on this
dataset. The results are shown in Table 13.

Table 13: Performance on Carat Top 1000 Users App Usage Dataset
Method Precw Recw Overall Head Medium Tail

BehaveGPT 0.299 0.318 0.210 0.303 0.219 0.052
PITuning 0.352 0.356 0.357 0.362 0.425 0.152
CoLLM 0.400 0.365 0.367 0.377 0.418 0.233
Ours (BUA) 0.447 0.418 0.400 0.409 0.451 0.267

As shown, our method continues to achieve strong performance on a dataset with a markedly differ-
ent demographic and geographical distribution, further validating its generalizability.

N PRETRAINED BASE MODEL REPLACEMENT

Pretrained Base Model Replacement – Evaluate the effect of replacing the current pre-trained base
model

We have replaced BehaveGPT with SASRec as the pretrained behavior sequence encoder. The
performance is shown in Table 14.

Table 14: Performance Comparison of Different Pretrained Base Models
Pretrained Model Precw Recw Overall Head Medium Tail

SASRec 0.561 0.589 0.331 0.466 0.389 0.247
BehaveGPT 0.644 0.642 0.471 0.538 0.489 0.446

While SASRec underperforms compared to BehaveGPT, our method still achieves notable gains
over SASRec alone, demonstrating its effectiveness.
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O SELF-REFLECTION DETAILS

Self-Reflection Details – Provide a more detailed explanation of the self-reflection optimization
method.

To clarify, the model identifies recurring shortcomings in initial profiles through prompt-guided
reflection, focusing on issues such as:

1. insufficient abstract summarization,
2. inadequate detail association and reasoning,
3. poor structural clarity,
4. weak information hierarchy,
5. inaccurate temporal pattern analysis, and
6. lack of personalized expression.

The corresponding correction criteria are designed as follows:

• For abstract summarization: Elevate surface-level behaviors to infer deeper cognitive
traits (e.g., deducing ”information-driven lifestyle” from frequent news consumption).

• For temporal analysis: Calibrate behavior frequencies and highlight periodic patterns.
• For structure: Implement a three-layer hierarchy—from cognitive-level traits to habit in-

teractions and specific behavioral anchors.
• For personalization: Emphasize distinctive, user-specific behavioral descriptors while

avoiding vague generalities.

Importantly, this self-reflective process is not limited to output refinement. As described above,
feedback from these reflections is also used to update model parameters via supervised fine-tuning,
leading to further performance improvements.

P DATA GRANULARITY

Data Granularity – Clarify what is meant by ”high-level daily activities” and how they are repre-
sented in the data.

To clarify the granularity of “Behavior Type ID,” we define it at the level of high-level daily activ-
ities—neither raw sensor signals nor overly abstract categories. Below is a simplified example of a
typical user’s day to illustrate the scope:

• Morning: Alarm clock, check weather
• Commute (to work): Subway, watch news, payment
• Work hours: Editing video, online meeting
• Lunch break: Ordering takeout, watching video
• Commute (to home): Subway, watching video, payment
• Evening: Online shopping, gaming, watching video

Due to space limitations, this example condenses some activity details, but it reflects the typical
granularity used across different scenarios.

Q HUMAN EVALUATION

Human Evaluation – Human evaluation experiments on the quality and interpretability of model-
generated profile features

We have conducted a human evaluation study to more systematically assess the interpretability of
the generated portrait features.
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Following the methodology of prior work [1], we randomly selected 120 test samples from the
Honor dataset. For each sample, portrait features were generated by three sources:

1. human annotators,
2. our proposed model (BUA),
3. the base model (Qwen2.5-7B without fine-tuning).

This resulted in a total of 360 portrait feature samples, which were evaluated by a separate group of
human judges using consistent evaluation criteria.

The evaluation focused on two dimensions:

• Rationality: the degree to which the portrait features align with the user’s historical be-
havior

• Interpretability: the extent to which the portrait features help explain the user’s predicted
future behavior

Scores ranged from 0 to 3, with higher scores indicating better performance. To avoid bias, the order
and source of the portrait features were anonymized and randomly shuffled for each evaluation
instance. (Note: If multiple sources achieve the highest score for a sample, the credit is divided
equally among them.)

Table 15: Average Scores of Human Evaluation (0–3 Scale)
Type Rationality Interpretability

Human 2.51 2.55
BUA 2.46 2.39
No Tune 1.90 1.83

Table 16: Best Score Probability per Sample
Category Human BUA No Tune

Best in Rationality 39.8% 37.9% 22.3%
Best in Interpretability 45.3% 33.3% 21.4%

These results indicate that while human-written features still achieve the highest overall perfor-
mance, our fine-tuned model (BUA) significantly outperforms the base model in both rationality and
interpretability. Moreover, BUA’s performance approaches that of human-written features, demon-
strating meaningful gains in interpretability.

R QUESTIONNAIRE SETUP DETAILS

TASK DESCRIPTION:

Your task is to evaluate the quality of user features based on two dimensions

DIMENSION 1 (RATIONALITY):

Does the user feature accurately reflect the user’s historical behavior sequence?

DIMENSION 2 (INTERPRETABILITY):

Can the user feature help explain the predicted next behavior of the user? Does it provide a reason-
able basis for why the predicted behavior might occur?
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SCORING CRITERIA FOR DIMENSION 1 (RATIONALITY: 0–3 POINTS)

Score Description
0 No Match: The profile feature is not reflected at all in the user’s behavior se-

quence.
1 Weak Match: The profile feature is only partially reflected in the behavior se-

quence.
2 Basic Match: The feature is generally reflected in the behavior sequence but is

overly broad (e.g., “user likes playing games”).
3 Strong Match: The feature is clearly and specifically reflected in the behavior

sequence (e.g., “user likes playing games on Friday nights after watching short
videos”).

SCORING CRITERIA FOR DIMENSION 2 (INTERPRETABILITY: 0–3 POINTS)

S EMPIRICAL ANALYSIS OF CURRICULUM LEARNING STRATEGY

To empirically validate the necessity and effectiveness of our proposed three-stage curriculum de-
sign, we conducted a comprehensive ablation study comparing the convergence dynamics of our
approach against a standard multi-task learning baseline. Specifically, we contrasted our proposed
Staged Training strategy, where the model is optimized sequentially through Sequence-Level Un-
derstanding (Stage 1), User-Level Feature Modeling (Stage 2), and Self-Reflective Refinement
(Stage 3), against a Joint Training baseline. In the Joint setting, the model is trained simultane-
ously on all tasks across the three stages from scratch, disregarding the hierarchical dependencies
inherent in behavioral understanding. This comparison aims to verify whether the structured, easy-
to-hard progression provides tangible optimization benefits over simple joint optimization.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

0.4

0.6

0.8

1.0

1.2
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Loss vs Epoch
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mixed_stage3_loss
separate_stage1_loss
separate_stage2_loss
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Figure 4: Validation loss comparison between our Staged Curriculum (Separate) and Joint Training
(Mixed) strategies. The solid lines represent our Staged Training, while the faded lines with stars
represent Joint Training.

The validation loss curves for each stage’s specific tasks under both settings are presented in Fig-
ure 4. The comparative analysis reveals three critical insights regarding the training dynamics:
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Score Description
0 No Match: The profile feature is completely unrelated to the predicted user

behavior.
1 Weak Match: The feature can be loosely connected to the predicted behavior

(e.g., “user often engages in leisure activities” → predicted behavior: “playing
games”).

2 Basic Match: The feature aligns with the predicted behavior but is too general
(e.g., “user likes playing games” → predicted behavior: “playing games”).

3 Strong Match: The feature directly and specifically supports the predicted be-
havior (e.g., “user likes playing games on Friday nights after reading the news”
→ predicted behavior: “playing games”; it is Friday night and the user has just
read the news).

• Comparable Performance on Baselines (Stage 1): For the most fundamental task,
Sequence-Level Understanding, the loss curves for both Separate (Red solid line) and
Mixed (Red faded line) settings are relatively close. This indicates that simple semantic
alignment is less sensitive to the training strategy and can be adequately learned via joint
optimization.

• Superiority in User-Level Modeling (Stage 2): A significant divergence appears in the
more difficult Stage 2 tasks. The Separate Training (Blue solid line) achieves a consistently
lower minimum validation loss compared to the Mixed setting (Blue faded line). This
confirms that a solid foundation in Stage 1 is essential for mastering complex user features,
as the model benefits from pre-aligned semantic representations.

• Cold-Start Challenge in Self-Reflection (Stage 3): Notably, the Mixed Stage3 Loss
(Green faded line) starts at an extremely high value (> 1.5), indicating that the model
struggles to perform self-reflective refinement without a pre-established user profile con-
text. In contrast, the Staged approach (Green solid line) allows the model to tackle Stage
3 with initialized understanding, resulting in a smoother optimization landscape and lower
final loss.

These empirical results strongly corroborate the theoretical foundation of our curriculum design,
rooted in cognitive scaffolding and curriculum learning (Bengio et al., 2009). The convergence
patterns demonstrate that while joint training is sufficient for aligning basic semantic representations,
it struggles with higher-order reasoning tasks without established prerequisites. By enforcing a
structured, easy-to-hard learning progression, our staged approach ensures that the model acquires
a robust understanding of fundamental behavioral semantics before tackling complex user profiling
and self-reflection, achieving superior performance.
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