
Attention-Only Transformers via Unrolled Subspace Denoising

Peng Wang1, Yifu Lu1, Yaodong Yu2, Druv Pai2, Qing Qu1, and Yi Ma2,3

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
2Department of Electrical Engineering and Computer Science, University of California, Berkeley

3Institute of Data Science, University of Hong Kong, Hong Kong

January 13, 2025

Abstract

Despite the great success of transformers in practice, their architectures have been em-

pirically designed, hence lack of mathematical justification and interpretability. Moreover,

many empirical studies have indicated that some components of the transformer architec-

tures may be redundant and can be removed or replaced without compromising overall

performance. Hence to derive a compact and interpretable transformer architecture, we

contend that the goal of representation learning is to compress a set of noisy initial token

representations towards a mixture of low-dimensional subspaces. Based on the existing lit-

erature, the associated denoising operation naturally takes the form of a multi-subspace

self-attention (MSSA). By unrolling such iterative denoising operations as a deep network,

we arrive at a highly compact architecture that consists of only an MSSA operator with

skip connections at each layer, without MLP. We rigorously prove that each layer of the

proposed transformer performs so highly efficient denoising that it improves the signal-to-

noise ratio of token representations at a linear rate with respect to the number of layers.

Despite its simplicity, extensive experiments on language and vision tasks demonstrate that

such a minimalistic attention-only transformer can achieve performance close to conventional

transformers, such as GPT-2 and CRATE.

1 Introduction

Over the past years, transformer architectures [58] have achieved remarkable empirical success

across various modern machine learning applications, including large language models (LLMs)

[15, 6], vision generative models [11, 5, 47], and reinforcement learning [10]. In general, trans-

former architectures are constructed by stacking multiple identical layers that work together to

process and learn from data. Each layer is composed of several interacting components arranged

in a specific sequence, including self-attention operators, layer normalization, multilayer per-

ceptron (MLP) networks, and skip connections. In practice, transformer architectures, such as

BERT [15] and GPT-4 [1], are highly deep, often with dozens to even hundreds of layers, and are

significantly over-parameterized, containing millions or even billions of parameters. This con-

1

siderable depth and a large number of parameters endow transformers with impressive learning

capabilities, allowing them to model complex patterns and relationships in real-world data.

Despite the remarkable success of transformers, their deep and over-parameterized archi-

tecture makes them complex “black box”, hindering interpretability and the understanding of

their inner mechanism. To address this, a common approach involves systematically remov-

ing or modifying certain components in transformers to simplify the architecture; see, e.g.,

[16, 3, 42, 21, 23, 26]. For example, [3] studied pure-attention hard-max transformers with

skip connections and showed that the output converges to a clustered equilibrium as the num-

ber of layers goes to infinity. [42] analyzed a modified softmax-based attention model with

skip connections, demonstrating that the limiting distribution can be described by a stochastic

differential equation. These studies indicate that the most basic components of transformers

are self-attention layers and skip connections. Although existing studies have provided valu-

able insights into different components of transformers, few of them elucidate the underlying

mechanisms by which transformers process and transform input into output across layers.

Moreover, existing empirical studies suggest that some components of transformers are not

be essential and can be removed or modified without compromising performance. For exam-

ple, [27] empirically demonstrated that transformer architecture can be simplified by removing

components such as skip connections, value matrix, and normalization layers without degrading

performance. Additionally, [53] investigated the effects of removing MLP blocks from transform-

ers and augmenting the self-attention layers to play a similar role to MLP blocks, showing that

performance can be preserved. Similarly, [48] examined the potential for reducing the frequency

of MLP layers in transformers. Other works also studied other simplifications of transformers,

such as linear attentions [31] and shared-QK attentions [34]. Based on these discussions, this

work focuses on addressing the following question regarding the understanding of the underlying

mechanism of transformers and the design of their architectures:

Can we design a minimalistic transformer-like deep architecture consisting of fully

interpretable and provably effective layers that achieves performance close to that of standard

transformers?

1.1 Related Works

Existing studies on self-attention mechanisms. It is widely believed that the power of

transformers primarily stems from their self-attention layers, which enable the model to capture

long-range dependencies and contextual relationships between tokens by dynamically weighing

token relationships across the input sequence [57, 58]. To explore the mechanism behind self-

attention, numerous studies have investigated the performance of pure self-attention networks,

often incorporating only one additional component to prevent rank collapse and maintain ex-

pressiveness. For example, [16] showed that in pure-attention transformers without skip con-

nections and MLP layers, token representations collapse exponentially to a rank-1 matrix across

layers. They also showed that self-attention networks with skip connections prevent rank col-

lapse. [21, 22] studied the dynamics of multi-head self-attentions and characterized clustering

behaviors of learned representations. Recently, [62] showed that pure self-attention networks

2

with LayerNorm can prevent rank collapse. While these studies have advanced the theoretical

understanding of self-attention mechanisms in simplified transformer architectures, they don’t

provide any empirical validation on real-world vision or language tasks, offering little insight

into the role of self-attention in practice.

Figure 1: Each layer of the

proposed attention-only trans-

former architecture.

Deep network architecture design via unrolled opti-

mization. It is commonly believed that the success of mod-

ern deep networks largely stems from their ability to trans-

form the raw data into compact and structured representations,

which facilitates downstream tasks [9, 13, 38, 64]. A princi-

pled and interpretable approach to learning such representa-

tions with transformers is to construct an architecture that

incrementally transforms tokens into these representations via

unrolling iterative optimization steps as layers of a deep net-

work [9, 41, 60, 65, 68]. Notably, Monga et al. [41] demonstrate

that such unrolled networks are more interpretable, parameter-

efficient, and effective compared to generic networks. In this

approach, each iteration of an algorithm for learning compact

and structured representations is represented as one layer of

deep networks. For example, [25] have demonstrated that sparse coding algorithms, such as

ISTA, can be used to construct MLPs. Recently, [9] constructed a “white-box” network based

on an iterative gradient descent scheme to optimize the maximal coding rate reduction objective.

More recently, Yu et al. [64] designed a “white-box” transformer architecture by implementing

an approximate alternating minimization to optimize the sparse rate reduction objective. The

proposed transformer achieves performance comparable to some popular ones such as ViT [17],

BERT [15], and DINO [8] on vision tasks. Notably, a key component in their design is the

multi-head subspace self-attention (MSSA) operator (see Eq. (3)). While they argued that

this operator can denoise token representations, they only showed that the negative gradient of

the compression term of the objective points to the denoising direction, without providing an

accurate analysis or guarantee for the denoising efficiency. The MSSA’s denoising capabilities

remain an open question.

Linear representation & superposition hypotheses. Recent empirical studies on lan-

guage tasks have raised the “linear representation hypothesis”, which posits that token repre-

sentations can be linearly encoded as one-dimensional feature vectors in the activation space

of LLMs [29, 46], and “superposition hypothesis”, which further hypothesizes that token repre-

sentations are a sparse linear combination of these feature vectors [18, 67, 4]. Building on these

hypotheses, various approaches have been proposed to understand and utilize token representa-

tions. For example, [55] employed sparse autoencoders to decompose the token representations

of Claude 3 Sonnet into more interpretable pieces. [37] leveraged sparse dictionary learning

to explore token representations, decomposing them into interpretable components based on a

3

concept dictionary. Recently, [19] conjectured that token representations in LLMs are the sum

of many sparse multi-dimensional features. This conjecture is supported by their experiments

on GPT-2 and Mistral 7B, where they used sparse autoencoders to identify multi-dimensional

features. Notably, all of these empirical studies come to the qualitative conclusion that the

token representations lie on a union of (possibly many) low-dimensional subspaces.

1.2 Our Contributions

Based on the above discussions, we use a simple yet effective model for the token representa-

tions that accurately reflects the behaviors of trained transformers (such as LLMs) based on

the previously referenced empirical studies. That is, we model the underlying distribution of

token representations as a mixture of low-rank Gaussians corrupted by noise (see Definition 1).

Specifically, each token representation lies in a subspace corrupted by the noise from other

spaces (see Eq. (1)). To denoise these token representations, we employ the multi-head sub-

space self-attention (MSSA) operator proposed in [64, 43] to incrementally update the token

representations (see Eq. (3)). Then, our contributions can be summarized as follows:

• Attention-only transformer with a minimalistic architecture via unrolled opti-

mization. Based on unrolling the iterative optimization steps Eq. (3), we construct a new

transformer with a streamlined architecture, consisting of only MSSA layers with skip connec-

tions (see Figure 1).1 This design simplifies transformer architectures significantly compared

to standard decoder-only transformers. More details are illustrated in Figure 3.

• Theoretical guarantees on the denoising performance of the proposed trans-

former. To quantify the denoising performance, we define a signal-to-noise (SNR) metric

(see Eq. (8)) for each block of the token representations. We prove that each layer of the pro-

posed transformer improves the SNR at a linear rate when the initial token representations are

sampled from a mixture of low-rank Gaussians (see Theorem 1). This indicates the MSSA

operator is highly effective in denoising token representations towards their corresponding

subspaces.

• Understanding roles of self-attention and MLP layers. Notably, the proposed trans-

former is a valuable model for understanding the mechanism of attention since it disentangles

the effect of MLP layers. Moreover, comparing the proposed transformer to standard trans-

formers provides insights into the specific role, or empirical benefits, of the MLP layers in

different tasks, such as for in-context learning (see experiments in Section 4.1.2).

We have conducted extensive experiments on both language and vision tasks, including

causal language modeling, in-context learning, and supervised image classification, to comple-

ment our theory and demonstrate the potential of our proposed transformer architecture. These

experiments highlight its ability to handle complex real-world applications, thereby confirming

the practical value of our streamlined attention-only transformer design.

1For language tasks, we additionally include LayerNorm layers to improve performance.

4

Notation. Given an integer n, we denote by [n] the set {1, . . . , n}. Given a vector a, let ∥a∥
denote the Euclidean norm of a and diag(a) denote the diagonal matrix with a as its diagonal.

Given a matrix A, let ∥A∥ denote the spectral norm of A, ∥A∥F denote the Frobenius norm,

and aij denote the (i, j)-th element. For sequences of positive numbers {an} and {bn}, we write

an ≲ bn or bn ≳ an if there exists an absolute constant C > 0 such that an ≤ Cbn. Given a

constant τ > 0, we define I(x > τ) = 1 if x > τ and I(x > τ) = 0 otherwise.

2 Technical Approach and Justification

To begin, we introduce the basic setup of transformers for learning representations from real-

world data. Real-world data, such as images, videos, and text, are often modeled as random

samples drawn from a high-dimensional probability distribution with low-dimensional intrinsic

structures [49, 61]. Instead of directly inputting data samples into transformers, a common

preprocessing step involves converting each sample into a sequence of vectors, referred to as

tokens. Each token represents a localized segment of the data, such as an image patch, a

snippet of text, or a frame in a video. Consequently, the input to transformers is typically a

sequence of tokens, denoted as X = [x1, . . . ,xN] ∈ RD×N . Then, the goal of transformers is

to learn a map f : RD×N → Rd×N that transforms these tokens into structured and compact

token representations that facilitate downstream tasks, such as classification [17], segmentation

[33], and generation [51], by capturing the underlying patterns and relationships in the data.

For ease of exposition, we denote the token representations as Z := f(X) ∈ Rd×N .

2.1 Learning Token Representations via Unrolled Optimization

In this subsection, we introduce how to learn token representations based on the approach of

unrolling optimization algorithms [9, 25, 41, 54, 60, 65, 68]. This approach involves constructing

each layer of a neural network according to a step of an iterative optimization algorithm. That

is, the network’s architecture is designed to implement a specific optimization algorithm, where

each layer corresponds to a single iterative step. By unrolling the algorithm, a “white-box”

transformer architecture can be constructed as a multi-layer neural network that incrementally

transforms input tokens into structured and compact representations. This process can be

described as follows:

f : X
f0

−→ Z(0) f1

−→ · · · · · · f l

−→ Z(l) f l+1

−→ · · · · · · fL

−→ Z(L) = Z,

where f0 : RD×N → Rd×N is a pre-processing mapping (e.g., positional encoding, token embed-

ding) that transforms input tokens X ∈ RD×N to initial token representations Z(0) ∈ Rd×N ,

f l : Rd×N → Rd×N denotes an incremental operation, and Z(l) denotes the token representa-

tions at the l-th layer for each l ∈ [L]. Then, a key question is how to design the operator f l

at each layer to learn meaningful token representations efficiently throughout the network in a

principled manner.

5

Figure 2: Layers of transformers f l gradually denoise token representations towards

their corresponding subspaces.

2.2 Denoising Operator for Learning Token Representations

In this subsection, we introduce a denoising operator for learning token representations incre-

mentally. To clarify the intuition behind this design, we assume that the initial token represen-

tations Z(0) are drawn from a mixture of noisy low-rank Gaussian distributions as follows.

Definition 1. Let C1, . . . , CK be a partition of the index set [N] and Uk ∈ Rd×pk denote the

orthonormal basis of the k-th cluster for each K ∈ [K]. We say that the token representations

{z(0)
i }Ni=1 are sampled from a mixture of noisy low-rank Gaussian distributions if for each k ∈

[K],

z
(0)
i = Ukai +

K∑
j ̸=k

Ujei,j , ∀i ∈ Ck, (1)

where ai
i.i.d.∼ N (0, Ipk) and ei,j

i.i.d.∼ N (0, δ2Ipj) for all i ∈ Ck and k ∈ [K], {ai} and {ei,j} are

respectively mutually independent, and {ai} is independent of {ei,j}.

Before proceeding, we make some remarks on this model. First, it provides a probabilistic

framework for modeling token representations, assuming that they are sampled from a mixture

of multiple low-rank Gaussian distributions with noise. Specifically, if a token representation

belongs to the k-th cluster as shown in Eq. (1), it consists of a signal component Ukai and a

noise component
∑K

j ̸=k Ujei,j . Second, this model aligns well with the “linear representation

hypothesis” [29, 46] and “superposition hypothesis” [18, 67, 4] regarding the structures of token

representations in pretrained LLMs. Indeed, the bases of subspaces can be interpreted as

semantics features, and each token representation can be approximately expressed as a sparse

linear combination of subspace bases when the noise variance δ is sufficiently small. Our goal

is to denoise these token representations towards the corresponding subspace; see Figure 2.

Denoising operator for token representations. In this work, we make the simplifying

assumption that the subspaces are orthogonal to each other in Definition 1, i.e., UT
k Uj = 0

for all k ̸= j. Note this assumption is not so limiting as in high-dimensional spaces, with

high-probability low-dimensional subspaces are incoherent, i.e., UT
k Uj ≈ 0 to each other [61].2

2It is not difficult to generalize our results to the more general case, with slightly more sophisticated analysis.

6

Without loss of generality, we rearrange the token representations Z(0) such that the token

representations from the same subspace are concatenated together, i.e.,

Z(0) =
[
Z

(0)
1 . . . Z

(0)
K

]
=
[
U1A1 +

∑
j ̸=1UjE1,j . . . UKAK +

∑
j ̸=K UjEK,j

]
,

where the columns of Z
(0)
k denote the token representations from the k-th subspace for each

k ∈ [K], the columns of Ak ∈ Rpk×Nk consists of {ai}i∈Ck
, and the columns of Ek,j ∈ Rpj×Nk

consists of {ei,j}i∈Ck
for each k ∈ [K] with Nk = |Ck| for each k ∈ [K]. Obviously, projecting

token representations onto their corresponding subspace helps separate the signal from the noise

components, i.e.,

UkU
T
k Z(0)

s =

UkAk, if s = k,

UkEs,k, if s ̸= k.
(2)

To denoise the token representations from k-th subspace, we can compute the similarity of

projected token representations via (UT
k Z)T (UT

k Z) and verify that the similarity between pro-

jected token representations from the k-th subspace is high, while the similarity between other

pairs of projected token representations is low when δ < 1. Then, we convert it to a distribution

of membership with function φ, such as hard-thresholding or soft-max functions, and denoise

the token representations towards to the corresponding subspace using this membership. Now,

we formalize the considered operator as follows:

Z(l+1) = Z(l) + η
K∑
k=1

UkU
T
k Z(l)φ

(
Z(l)TUkU

T
k Z(l)

)
, l = 0, 1, . . . , L− 1, (3)

where η > 0 is the denoising strength and φ(·) : Rd×N → Rd×N is an operator applied to each

column of an input matrix, i.e.,

φ (X) =
[
φ(x1) . . . φ(xN)

]
. (4)

Notably, this operator, referred to as the multi-head subspace self-attention (MSSA), is first

proposed by [64, 65] to approximately optimize the compression term of the sparse rate re-

duction objective for constructing a transformer architecture. They showed that the negative

compression gradient of the objective points from the token representation to the corresponding

subspace. However, they do not give any accurate analysis of the denoising efficiency of the

MSSA operator (3).

2.3 Transformer Architecture Design via Unrolled Optimization

Now, we formally introduce the proposed transformer architecture. Specifically, by unrolling

the iterative optimization steps (3) as layers of a deep network, we construct a transformer

architecture in Figure 3. Each layer of the proposed architecture only consists of the MSSA

operator and a skip connection. For language tasks, we additionally incorporate LayerNorm

before the MSSA operator to improve performance. The complete architecture is built by

stacking such layers, along with essential task-specific pre-processing and post-processing steps,

7

Figure 3: Details of the attention-only transformer (AoT) architecture. Each layer

consists of the MSSA operator and a skip connection. In addition, LayeNnorm is included only

for language tasks. In practice, backpropagation is applied to train the model parameters using

training samples.

such as positional encoding, token embedding, and final task-specific head to adapt to different

applications.

Remark 1. Generally speaking, the standard decoder-only transformer architecture is composed

of the following key components [7, 50, 58]: (1) positional encoding, (2) multi-head QKV self-

attention mechanisms, (3) feed-forward MLP networks, (4) layer normalization, and (5) residual

connections. In contrast, our proposed transformer architecture adopts a streamlined design

by incorporating several key simplications. Specifically, it employs shared-QKV subspace self-

attention mechanisms, excludes MLP layers, and reduces the frequency of LayerNorm.

Differences from previous works on attention-only transformers. In the literature,

some theoretical works have studied attention-only transformers. For example, [16, 62] showed

that pure-attention transformers with skip connections or LayerNorm can prevent rank col-

lapse. Additionally, [3] studied the clustering behavior of attention-only hardmax transformers.

While these studies contribute significantly to our understanding of the role of self-attention

in transformers, they lack empirical validation and practical implications. In contrast to these

works, we not only show that each layer of the proposed attention-only transformer can denoise

token representations but also conduct experiments on real-world language and vision tasks to

demonstrate the potential.

The role of backward propagation. Notably, our approach constructs a transformer ar-

chitecture in the forward pass by interpreting each layer as a denoising operator, conditioned

on the assumption that the subspace bases {Uk}Kk=1 are known. However, in practice, these

subspace matrices, i.e., network parameters, are unknown and need to be learned gradually via

iterative optimization too. Hence, the forward denoising operator (3) at the l-th layer/iteration

8

(a) Noise level δ = 0.2 (b) Noise level δ = 0.5

Figure 4: Denosing performance of the attention-only transformer. Here, we sample

initial token representations from a mixture of low-rank Gassuains in Definition 1. Then, we

apply (3) to update token representations and report the SNR at each layer.

becomes

Z(l+1) = Z(l) + η
K∑
k=1

U
(l)
k U

(l)T

k Z(l)φ
(
Z(l)TU

(l)
k U

(l)T

k Z(l)
)
, l = 0, 1, . . . , L− 1. (5)

We should emphasize that the parameters {U (l)
k } now depend on the layer index l and can be

different across layers. Note that U
(l)
k at different layers can represent different intermediate

estimates for Uk via certain optimization. In practice, they can be estimated through end-to-

end training via backpropagation. This flexibility brings additional capacity for the overall deep

architecture, allowing learning denoising bases {U (l)
k } at each layer that is locally adaptive to

the distribution of Z(l).

3 Theoretical Guarantee for the Attention-Only Transformer

In this section, we rigorously show that each layer of the proposed transformer denoises token

representation when the initial token representations are sampled from a mixture of low-rank

Gaussians as defined in Definition 1. To quantify the denoising capability, we define the signal-

to-noise ratio (SNR) for each block of the token representations at the l-th layer as follows:

SNR(Z
(l)
k) :=

∥UkU
T
k Z

(l)
k ∥F

∥(I −UkU
T
k)Z

(l)
k ∥F

, ∀k ∈ [K]. (6)

To simplify our analysis, we assume that p = p1 = · · · = pK , N1 = · · · = NK = N/K, and[
U1 . . . UK

]
∈ Od×Kp. (7)

With the above setup, we now characterize the denoising performance of the proposed

transformer.

9

Theorem 1. Let Z(0) be defined in Definition 1 and φ(·) in Eq. (4) be φ(x) = h (σ(x)), where

σ : RN → RN is the soft-max function and h : RN → RN is an element-wise thresholding

function with h(x) = τI {x > τ} for each i ∈ [N]. Suppose that p ≳ logN , δ ≲
√

logN/
√
p, and

τ ∈
(

1

2
,

1

1 + N exp(−9p/32)

]
.

For sufficiently large N , it holds with probability at least 1−KLN−Ω(1) that for each l ∈ [L−1],

SNR(Z
(l+1)
k) = (1 + ητ)SNR(Z

(l)
k), ∀k ∈ [K]. (8)

The proof is deferred to Appendix A. Here we comment on significance of this theorem:

• Linear denoising performance of the attention-only transformer. In the theorem,

when the initial token representations are sampled from a mixture of low-rank Gaussian dis-

tributions with a noise level O(
√

logN/
√
p) and φ(·) is defined in (4), we show that each

layer of the proposed transformer denoises token representations at a linear rate. This indi-

cates the MSSA operator’s efficiency in reducing noise across layers. Notably, our theoretical

results are well-supported by experimental observations in Figure 4, which further validate

the practical denoising capability of the proposed transformer.

• Difficulties in analyzing the dynamics of the update (3). It is worth noting that the

update (3) is highly nonlinear and complicated. Specifically, it is cubic in terms of update

variables Z(l) and the operator φ is nonlinear, being composed of soft-max and thresholding

functions. These characteristics lead to intricate interactions among consecutive updates that

complicate the analysis of the learning dynamics. Compared to the existing works [2, 69, 52]

that mainly focus on linear self-attention with φ(·) being the identify function, our analysis

provides more pertinent results for understanding the denoising performance and learning

dynamics of attention mechanisms, capturing the nonlinear interactions and transformations

across the layers of modern transformer architectures.

4 Experimental Results

In this section, we evaluate our proposed attention-only transformer (AoT) architecture on both

language and vision tasks. Due to limited computing and engineering resources, the goal of our

experimentation is not to outperform state-of-the-art transformers but to verify that AoT can

achieve similar or comparable performance on complex language and vision tasks. Hence we

believe, while offering a fully interpretable architecture with a layerwise performance guarantee,

AoT holds great potential in practical applicability with further engineering development in the

future. In all our implementations, we set the operator φ(·) in Eq. (3) to be the softmax

function.

4.1 Decoder-Only Transformer for Language Tasks

To study the performance of our architecture on language tasks, we consider the widely used

Generative Pre-Training (GPT) task [50]. In the context of causal language modeling, the goal

10

is to do the next token prediction in a sequence. To adapt to this task, we modify the AoT

architecture by changing the MSSA operator to be a causally masked MSSA, i.e., replacing (5)

by

Z(l+1) = Z(l) + η
K∑
k=1

U
(l)
k U

(l)T

k Z(l)φ
(

Mask
(
Z(l)TU

(l)
k P

(
U

(l)T

k Z(l)
)))

,

where [Mask(A)]ij = aij if i ≤ j and [Mask(A)]ij = −∞ otherwise. Following the implementa-

tion used in Kitaev et al. [34], we apply normalization to the “query matrix” U
(l)T

k Z(l), where

A′ = P(A) project each column of A = [a1, . . . ,an] ∈ Rd×n onto unit sphere, i.e., a′ = a/∥a∥.

We follow the same pre-processing and post-processing steps in [66, Section 4.1.4]. Our im-

plementation of the GPT-2 type transformer and training pipeline is based on the framework

outlined in [30].3 In addition, to study the effect of removing the MLP layer, we also train

models with MLPs in the first half of transformer blocks, referred as Hybrid, as well as models

with MLPs in all blocks, referred as Full MLP.

4.1.1 Language Modeling

Pre-training language models. We pre-train AoT-based language models of different sizes

and GPT-2 (see Table 1 for model sizes) on OpenWebText [24]. Here, we train these models

over a 1024-token context using the AdamW optimizer [36]. We plot the training loss and

validation loss against the number of training iterations in Figure 5(a) and (b), respectively. It

is observed that AoT-based language models of medium and large size can achieve comparable

performance to the GPT-2 base model in terms of training and validation loss. In addition,

a comparison of AoT models with the Hybrid and Full MLP configurations demonstrates that

incorporating MLP layers can accelerate the training process.

Zero-shot evaluation. Using the above pre-trained models, we compute the cross-entropy

validation loss without training on datasets WikiText [40]4, LAMBADA [44]5, and PTB [39]

in Table 1. In addition, we report zero-shot accuracy in Table 1 on LAMBADA for predicting

the final word of sentences, as well as on the Children’s Book Test (CBT) [28], where the task

is to choose either common nouns (CN) or named entities (NE) from 10 possible options for

an omitted word in a paragraph. It is observed that AoT with medium and large parameter

sizes can achieve comparable performance to the GPT-2 base model on these tasks. Moreover,

we found that adding MLP layers to AoT does not improve the zero-shot performance. These

results highlight the potential of attention-only models to achieve competitive results while

maintaining interpretability.

3https://github.com/karpathy/nanoGPT.git
4For WikiText2 and WikiText103 [40], the test splits are the same, so we merge them as a single dataset

referred to as WikiText.
5To obtain the accuracy on LAMBADA dataset, we use greedy decoding.

11

(a) Training Loss (b) Validation Loss

Figure 5: The curves of both training and validation losses of models pretrained on OpenWeb-

Text.

4.1.2 In-Context Learning on Simple Function Classes

In-context learning (ICL) refers to the ability of modern language models to perform tasks

by using examples provided in the input prompt, along with a new query input, generating

outputs without updating the parameters [7, 20, 45]. We evaluate the ICL capabilities of our

AoT and compare its performance with that of GPT-2 [50]. Each model is trained from scratch

on specific tasks, including linear and sparse linear regressions. We mainly follow the setup

in [20] to train models to learn linear functions in context. Specifically, for a specific function

class G, we generate random prompts by sampling a function g ∈ G from distribution DG over

functions random inputs x1, . . . ,xN ∈ Rd i.i.d. from DX over inputs. To evaluate the inputs

on g, we create a prompt P = (x1, g(x1), . . . ,xN , g(xN)). We train the model fθ to minimize

the expected loss over all prompts prefixes:

min
θ

EP

[
1

N

N−1∑
i=1

(
fθ(P i) − g(xi)

)2]
, (9)

where P i is the prompt prefix up to the input i-th in-context example P = (x1, g(x1), . . . ,xi).

Tasks. We consider both linear functions and sparse linear functions with dimension d = 20.

The in-context examples xi are sampled from the isotropic Gaussian distribution. For linear

functions, we define G = {g : g(x) = wTx}, where x is sampled from the isotropic Gaussian

distribution as well. For sparse linear functions, the setup is similar, but with a modification:

only 3 coordinates in the vector w are set as non-zero, while the remaining coordinates are set

as zero.

Training and evaluation. For all experiments, we set the number of heads to 8 and em-

bedding size 128. To match the sizes of different models by controlling the number of layers.

The transformer and Full MLP has 16 layers, Hybrid 24, and AoT 16. To train the model, we

sample a batch of random prompts with size 64 and train the models for 50,000 iterations using

12

(a) Linear regression (b) Sparse linear regression

Figure 6: Evaluating models on in-context learning linear functions. We plot the normalized

squared error as a function of in-context examples.

Adam optimizer [32] . We evaluate models using same DG and DX to sample 1280 prompts.

We refer the reader to [45] for more details.

Table 1: Zero-shot results on several benchmark datasets.

Models LAMBADA PTB WikiText LAMBADA CBT CN CBT NE

of parameters (val loss) ↓ (val loss) ↓ (val loss) ↓ (acc) ↑ (acc) ↑ (acc) ↑

Base 102M 4.70 6.03 4.65 0.25 0.80 0.74

Medium 182M 4.47 5.08 4.22 0.29 0.84 0.77

Large 326M 4.26 4.77 3.99 0.34 0.86 0.81

Hybrid 81M 4.84 5.83 4.56 0.25 0.79 0.73

Full MLP 109M 4.73 6.95 4.70 0.30 0.83 0.77

GPT-2 Base 124M 4.32 5.75 4.13 0.40 0.87 0.84

We plot the estimation error against in-context samples in Figure 6. It is observed that our

AoT architecture can in-context learn linear functions and sparse linear functions, achieving

performance close to that of GPT-2 style transformer. Adding MLPs does not improve the in-

context learning ability of AoT, which further supports the effectiveness of our attention-only

architecture.

4.2 Vision Transformers for Supervised Image Classification

Now we evaluate the performance of AoT as a backbone architecture for supervised image

classification tasks. For further simplification, we do not even use LayerNorm layers in the AoT

architecture.

Model architecture. As we mentioned earlier, for vision tasks, we can use an even simpler

architecture without the Layernorm (see Figure 3). We use the same pre-processing map and

classification head defined in [64, Section 4.1.1] to construct the AoT-based model. Moreover,

13

we consider AoT-based models with different number of parameters and attention layers, as in

Table 2.

Table 2: Top-1 accuracy on ImageNet with different models when pre-trained on ImageNet-21K

and then fine-tuned on ImageNet-1K.

Models ImageNet-1K # of Parameters # of Layers

AoT-Base 70.2% 16M 12 (Atten)

AoT-Large 75.7% 52M 24 (Atten)

AoT-Huge 79.2% 86M 32 (Atten)

crate-α-B/16 [63] 81.2% 72.3M 12 (Atten+MLP)

crate-α-L/14 [63] 83.9% 253.8M 24 (Atten+MLP)

Training setup. We employ Lion optimizer [12] to pre-train the above AoT-based trans-

former on ImageNet-21K and AdamW [35] to fine-tune it on ImageNet-1K [14] by minimizing

the cross-entropy (CE) loss. During the pre-training, we set the learning rate as 1×10−4, weight

decay as 0.05, and batch size as 4096. During the fine-tuning, the learning rate as 5 × 10−5,

weight decay as 0.05, and batch size as 2048. Standard data augmentation techniques, includ-

ing random cropping, random horizontal flipping, and random augmentation, are used in our

implementation, the same as those used in Yu et al. [65].

Based on the above experimental setup, we report the top-1 accuracy of AoT on ImageNet-

1K in Table 2. For comparison, we also report the performance of CRATE-α models in Yang

et al. [63], which are enhanced white-box vision models built on CRATE [65]. Despite the

absence of MLP layers in AoT, it achieves a competitive performance comparable to that of

CRATE. This result demonstrates the effectiveness and efficiency of the attention-only archi-

tecture.

5 Conclusion

In this work, we propose a new and minimalistic transformer architecture by interpreting each

layer as the application of a subspace denoising operator to token representations, where these

representations are assumed to be sampled from a mixture of low-rank Gaussians. Remarkably,

this architecture consists of subspace self-attention layers and skip connections at each layer,

without the MLP operators at all. We have shown that each such layer improves the signal-to-

noise ratio of token representations at a linear rate with respect to the number of layers. We

have verified the practical potential of this simple architecture through extensive experiments

on both language and vision tasks, which strongly suggest that it could lead to more efficient

and effective architectures in the future.

14

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

[2] K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transformers learn to implement precon-

ditioned gradient descent for in-context learning. arXiv preprint arXiv:2306.00297, 2023.

[3] A. Alcalde, G. Fantuzzi, and E. Zuazua. Clustering in pure-attention hardmax transformers

and its role in sentiment analysis. arXiv preprint arXiv:2407.01602, 2024.

[4] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. Linear algebraic structure of word

senses, with applications to polysemy. Transactions of the Association for Computational

Linguistics, 6:483–495, 2018.

[5] F. Bao, S. Nie, K. Xue, Y. Cao, C. Li, H. Su, and J. Zhu. All are worth words: A vit

backbone for diffusion models. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 22669–22679, 2023.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,

R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,

S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and

D. Amodei. Language models are few-shot learners. In Advances in Neural Information

Processing Systems, volume 33, pages 1877–1901, 2020.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in

neural information processing systems, 33:1877–1901, 2020.

[8] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerg-

ing properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF

international conference on computer vision, pages 9650–9660, 2021.

[9] K. H. R. Chan, Y. Yu, C. You, H. Qi, J. Wright, and Y. Ma. Redunet: A white-box deep

network from the principle of maximizing rate reduction, 2022.

[10] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas,

and I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling.

Advances in neural information processing systems, 34:15084–15097, 2021.

[11] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative

pretraining from pixels. In International conference on machine learning, pages 1691–1703.

PMLR, 2020.

15

[12] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, H. Pham, X. Dong, T. Luong, C.-J.

Hsieh, Y. Lu, et al. Symbolic discovery of optimization algorithms. Advances in neural

information processing systems, 36, 2024.

[13] Y. Chen, Z. Yun, Y. Ma, B. Olshausen, and Y. LeCun. Minimalistic unsupervised rep-

resentation learning with the sparse manifold transform. In The Eleventh International

Conference on Learning Representations, 2023.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[15] J. Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[16] Y. Dong, J.-B. Cordonnier, and A. Loukas. Attention is not all you need: Pure atten-

tion loses rank doubly exponentially with depth. In International Conference on Machine

Learning, pages 2793–2803. PMLR, 2021.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[18] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,

R. Lasenby, D. Drain, C. Chen, et al. Toy models of superposition. arXiv preprint

arXiv:2209.10652, 2022.

[19] J. Engels, I. Liao, E. J. Michaud, W. Gurnee, and M. Tegmark. Not all language model

features are linear. arXiv preprint arXiv:2405.14860, 2024.

[20] S. Garg, D. Tsipras, P. Liang, and G. Valiant. What can transformers learn in-context? a

case study of simple function classes, 2023. URL https://arxiv.org/abs/2208.01066.

[21] B. Geshkovski, C. Letrouit, Y. Polyanskiy, and P. Rigollet. The emergence of clusters in

self-attention dynamics. arXiv preprint arXiv:2305.05465, 2023.

[22] B. Geshkovski, C. Letrouit, Y. Polyanskiy, and P. Rigollet. A mathematical perspective

on transformers. arXiv preprint arXiv:2312.10794, 2023.

[23] M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-

value memories. arXiv preprint arXiv:2012.14913, 2020.

[24] A. Gokaslan and V. Cohen. Openwebtext corpus. http://Skylion007.github.io/

OpenWebTextCorpus, 2019.

[25] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Proceedings of

the 27th international conference on international conference on machine learning, pages

399–406, 2010.

16

https://arxiv.org/abs/2208.01066
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[26] J. Guo, X. Chen, Y. Tang, and Y. Wang. Slab: Efficient transformers with simplified

linear attention and progressive re-parameterized batch normalization. arXiv preprint

arXiv:2405.11582, 2024.

[27] B. He and T. Hofmann. Simplifying transformer blocks. In The Twelfth International

Conference on Learning Representations, 2024.

[28] F. Hill, A. Bordes, S. Chopra, and J. Weston. The goldilocks principle: Reading children’s

books with explicit memory representations, 2016. URL https://arxiv.org/abs/1511.

02301.

[29] Y. Jiang, G. Rajendran, P. Ravikumar, B. Aragam, and V. Veitch. On the origins of linear

representations in large language models. arXiv preprint arXiv:2403.03867, 2024.

[30] A. Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

[31] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast

autoregressive transformers with linear attention. In International conference on machine

learning, pages 5156–5165. PMLR, 2020.

[32] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017. URL

https://arxiv.org/abs/1412.6980.

[33] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,

A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[34] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient transformer. arXiv preprint

arXiv:2001.04451, 2020.

[35] I. Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,

2017.

[36] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019. URL https:

//arxiv.org/abs/1711.05101.

[37] J. Luo, T. Ding, K. H. R. Chan, D. Thaker, A. Chattopadhyay, C. Callison-Burch, and

R. Vidal. Pace: Parsimonious concept engineering for large language models. arXiv preprint

arXiv:2406.04331, 2024.

[38] Y. Ma, D. Tsao, and H.-Y. Shum. On the principles of parsimony and self-consistency for

the emergence of intelligence. Frontiers of Information Technology & Electronic Engineer-

ing, 23(9):1298–1323, 2022.

[39] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus

of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL

https://aclanthology.org/J93-2004.

[40] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

17

https://arxiv.org/abs/1511.02301
https://arxiv.org/abs/1511.02301
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://aclanthology.org/J93-2004

[41] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep

learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44,

2021.

[42] L. Noci, C. Li, M. Li, B. He, T. Hofmann, C. J. Maddison, and D. Roy. The shaped

transformer: Attention models in the infinite depth-and-width limit. Advances in Neural

Information Processing Systems, 36, 2024.

[43] D. Pai, S. Buchanan, Z. Wu, Y. Yu, and Y. Ma. Masked completion via structured dif-

fusion with white-box transformers. In The Twelfth International Conference on Learning

Representations, 2023.

[44] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,

G. Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad

discourse context, 2016. URL https://arxiv.org/abs/1606.06031.

[45] J. Park, J. Park, Z. Xiong, N. Lee, J. Cho, S. Oymak, K. Lee, and D. Papailiopoulos. Can

mamba learn how to learn? a comparative study on in-context learning tasks, 2024. URL

https://arxiv.org/abs/2402.04248.

[46] K. Park, Y. J. Choe, and V. Veitch. The linear representation hypothesis and the geometry

of large language models. arXiv preprint arXiv:2311.03658, 2023.

[47] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[48] T. P. Pires, A. V. Lopes, Y. Assogba, and H. Setiawan. One wide feedforward is all you

need. arXiv preprint arXiv:2309.01826, 2023.

[49] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The intrinsic dimension

of images and its impact on learning. In International Conference on Learning Represen-

tations, 2020.

[50] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models

are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[51] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-

tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion

models with deep language understanding. Advances in Neural Information Processing

Systems, 35:36479–36494, 2022.

[52] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight pro-

grammers. In International Conference on Machine Learning, pages 9355–9366. PMLR,

2021.

[53] S. Sukhbaatar, E. Grave, G. Lample, H. Jegou, and A. Joulin. Augmenting self-attention

with persistent memory. arXiv preprint arXiv:1907.01470, 2019.

18

https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/2402.04248

[54] X. Sun, N. M. Nasrabadi, and T. D. Tran. Supervised deep sparse coding networks for

image classification. IEEE Transactions on Image Processing, 29:405–418, 2019.

[55] A. Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3

sonnet. Anthropic, 2024.

[56] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,

N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample.

Llama: Open and efficient foundation language models, 2023. URL https://arxiv.org/

abs/2302.13971.

[57] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer

dissection: An unified understanding for transformer’s attention via the lens of kernel. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 4344–4353, 2019.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,

30, 2017.

[59] R. Vershynin. High-dimensional probability: An introduction with applications in data

science, volume 47. Cambridge university press, 2018.

[60] S. Wang, S. Fidler, and R. Urtasun. Proximal deep structured models. Advances in Neural

Information Processing Systems, 29, 2016.

[61] J. Wright and Y. Ma. High-dimensional data analysis with low-dimensional models: Prin-

ciples, computation, and applications. Cambridge University Press, 2022.

[62] X. Wu, A. Ajorlou, Y. Wang, S. Jegelka, and A. Jadbabaie. On the role of attention masks

and layernorm in transformers. arXiv preprint arXiv:2405.18781, 2024.

[63] J. Yang, X. Li, D. Pai, Y. Zhou, Y. Ma, Y. Yu, and C. Xie. Scaling white-box transformers

for vision. arXiv preprint arXiv:2405.20299, 2024.

[64] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, H. Bai, Y. Zhai, B. D. Haeffele,

and Y. Ma. White-box transformers via sparse rate reduction: Compression is all there is?

arXiv preprint arXiv:2311.13110, 2023.

[65] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, B. D. Haeffele, and Y. Ma. White-box

transformers via sparse rate reduction. arXiv preprint arXiv:2306.01129, 2023.

[66] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, H. Bai, Y. Zhai, B. D. Haeffele, and

Y. Ma. White-box transformers via sparse rate reduction: Compression is all there is?,

2024. URL https://arxiv.org/abs/2311.13110.

19

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2311.13110

[67] Z. Yun, Y. Chen, B. A. Olshausen, and Y. LeCun. Transformer visualization via dictionary

learning: contextualized embedding as a linear superposition of transformer factors. arXiv

preprint arXiv:2103.15949, 2021.

[68] J. Zhang and B. Ghanem. Ista-net: Interpretable optimization-inspired deep network for

image compressive sensing. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1828–1837, 2018.

[69] R. Zhang, S. Frei, and P. L. Bartlett. Trained transformers learn linear models in-context.

arXiv preprint arXiv:2306.09927, 2023.

20

To simplify our development, we introduce some further notation. We use BlkDiag(X1, . . . ,XK)

to denote a block diagonal matrix whose diagonal blocks are X1, . . . ,XK .

A Proof of Theorem 1

A.1 Preliminary Results

To prove Theorem 1, we first establish several probabilistic results about Gaussian random

vectors. First, we present a probabilistic bound on the deviation of the norm of Gaussian

random vectors from its mean. This is an extension of [59, Theorem 3.1.1].

Lemma 1. Let x ∼ N (0, δ2Id) be a Gaussian random vector. It holds with probability at least

1 − 2 exp
(
−t2/2δ2

)
that ∣∣∣∥x∥ − δ

√
d
∣∣∣ ≤ t + 2δ. (10)

Based on the above lemma, we can respectively estimate the norm of coefficients in the

signal and noise parts, the products between different pairs of Gaussian random vectors, and

the bounds on the soft-max values of these products.

Lemma 2. Consider the setting in Definition 1 with p = p1 = · · · = pK and N1 = · · · = NK =

N/K. Suppose that p ≥ 16(
√

logN + 1)2 and

N ≥ 8πK2 log3N, δ ≤ 1

8

√
logN

p
. (11)

The following statements hold:

(i) With probability at least 1 − 2KN−1, we have

|∥ai∥ −
√
p| ≤ 2

(√
logN + 1

)
, ∀i ∈ [N],

|∥ei,l∥ − δ
√
p| ≤ 2δ

(√
logN + 1

)
,∀i ∈ Ck, l ̸= k ∈ [K].

(12)

(13)

(ii) With probability at least 1 − 4KN−2, we have

|⟨ai,aj⟩| ≤ 3
√

logN∥ai∥,∀i ̸= j ∈ Ck, k ∈ [K],

|⟨ai, ej,l⟩| ≤ 3
√

logN∥ej,l∥, ∀i ∈ Ck, j ∈ Cl, k ̸= l ∈ [K],

|⟨ei,k, ej,k⟩| ≤ 3δ
√

logN∥ej,k∥,∀i ∈ Cl, j ∈ Cm, l,m ̸= k.

(14)

(15)

(16)

(iii) With probability at least 1 − 2N−1, we have

max
i∈Ck

⟨ai, ej,k⟩ ≥
√

logN∥ej,k∥, ∀j ∈ Cl, l ̸= k ∈ [K]. (17)

(iv) With probability at least 1 − 4KN−1, we have

exp (⟨ai, ej,k⟩)∑
i′∈Ck

exp (⟨ai′ , ej,k⟩)
≤ 1

2
,∀i ∈ Ck, j ∈ Cl, k ̸= l ∈ [K],

exp (⟨ei,k, ej,k⟩)∑
i′ ̸=j,i′∈Cl

exp
(
⟨ei′,k, ej,k⟩

) ≤ 1

2
, ∀i ̸= j, i ∈ Cl, j ∈ Cm, l,m ̸= k.

(18)

(19)

21

Proof. (i) Applying Lemma 1 to ai ∼ N (0, Ip) with t = 2
√

logN yields

P
(
|∥ai∥ −

√
p| ≤ 2(

√
logN + 1)

)
≥ 1 − 2N−2.

This, together with the union bound, yields that (12) holds for all i ∈ [N] with probability

at least 1 − 2N−1. Using the same argument, we obtain that (13) holds for all i ∈ Ck and

l ̸= k ∈ [K] with probability at least 1−2(K−1)N−1. Finally, applying the union bound yields

that the probability is 1 − 2KN−1.

(ii) For each pair (i, j) with i ̸= j ∈ Ck and k ∈ [K], conditioned on ai, we have ⟨ai,aj⟩ ∼
N (0, ∥ai∥2). According to the tail bound the Gaussian random variable, we have

P
(
|⟨ai,aj⟩| ≥ 3∥ai∥

√
logN

∣∣∣ai

)
≤ 2N−4.

This, together with the union bound, implies that conditioned on ai, it holds with probability

at least 1− 2N−2 that |⟨ai,aj⟩| ≤ 2∥ai∥
√

logN for all i ̸= j ∈ Ck and k ∈ [K]. Using the same

argument, we obtain (15) and (16). Finally, applying the union bound yields the probability.

(iii) Conditioned on ej,k, we obtain that Xi := ⟨ai, ej,k⟩/∥ej,k∥ ∼ N (0, 1) for each i ∈ Ck

are i.i.d. standard normal random variables. Then, we have

P
(

max
i∈Ck

Xi ≥
√

logN

)
= 1 −

(
P
(
X1 <

√
logN

))Nk

. (20)

Using the property of the standard Gaussian random variable, we have

P (X1 ≥ t) ≥
(

1

t
− 1

t3

)
1√
2π

exp

(
− t2

2

)
.

Taking t =
√

logN , we obtain

P
(
X1 ≥

√
logN

)
=

1√
logN

(
1 − 1

logN

)
1√
2π

exp

(
− logN

2

)
≥ 1

2
√

2πN logN
, (21)

where the inequality follows from N ≥ exp(2). Substituting this into (20) yields

P
(

max
i∈Ck

Xi ≥
√

logN

)
≥ 1 −

(
1 − 1

2
√

2πN logN

)N/K

≥ 1 − exp

(
−

√
N

2K
√

2π logN

)
≥ 1 −N−1,

where the second inequality uses 1 − x ≤ exp (−x) for all x > 0 and the last inequality follows

from N ≥ 8πK2 log3N . This, together with the definition of Xi, implies (17).

(iv) Conditioned on ej,k, we have Xi := ⟨ai, ej,k⟩ ∼ N (0, ∥ej,k∥2) for each i ∈ Ck are i.i.d.

normal random variables. Suppose that (13) holds for all i ∈ Ck, l ̸= k ∈ [K], which happens

with probability at least 1 − 2(K − 1)N−1 according to (i). This implies for all j ∈ Ck and

k ∈ [K],

∥ej,k∥ ≤ δ
(√

p + 2
√

logN + 2
)
≤ 3

2
δ
√
p, (22)

22

where the last inequality follows from p ≥ 16(
√

logN + 1)2 due to (11). For ease of exposition,

let

σ := ∥ej,k∥, S :=
∑
i∈Ck

exp(Xi). (23)

Obviously, showing (18) is equivalent to proving

2 exp(Xi) ≤
∑
i′∈Ck

exp (Xi′) = S, ∀i ∈ Ck. (24)

Note that Xi/σ ∼ N (0, 1) for all i ∈ Ck. Using the tail bound of the standard normal random

variable, we have

P
(
|Xi|
σ

≥ 2
√

logN

)
≤ 2N−2, ∀i ∈ Ck.

This, together with the union bound, yields that it holds with probability 1 − 2N−1 that

|Xi| ≤ 2σ
√

logN for all i ∈ [N]. Using this, (22), (23), and the union bound, we obtain with

probability at least 1 − 2KN−1,

|Xi| ≤ 3δ
√

p logN, ∀i ∈ [N].

Therefore, we have

exp
(
−3δ

√
p logN

)
≤ exp(Xi) ≤ exp

(
3δ
√
p logN

)
, ∀i ∈ [N]. (25)

Using this and (23), we have

S ≥ N

K
exp

(
−3δ

√
p logN

)
.

This, together with (25), implies that proving (24) is sufficient to proving

logN ≥ 6δ
√
p logN + log (2K) ,

which holds when N ≥ max{16K4, exp
(
64δ2p

)
} due to (11). According to the union bound,

(18) holds with probability at least 1 − 2KN−1. Using the same argument, (19) holds with

probability at least 1 − 2KN−1. ⊔⊓

A.2 Proof of Theorem 1

To simplify our development, let

23

M1 :=

θ2AT

1 A1 θAT
1 E2,1 . . . θAT

1 EK,1

θET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

θET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 ∈ RN×N ,

M2 :=

ET

1,2E1,2 θET
1,2A2 . . . ET

1,2EK,2

θAT
2 E

T
1,2 θ2AT

2 A2 . . . θAT
2 EK,2

...
...

. . .
...

ET
K,2E1,2 θET

K,2A2 . . . ET
K,2EK,2

 ∈ RN×N ,

...

MK :=

ET

1,KE1,K ET
1,KE2,K . . . θET

1,KAK

ET
2,KE1,K ET

2,KE2,K . . . θET
2,KAk

...
...

. . .
...

θAT
KE1,K θAT

KE2,K . . . θ2AT
KAK

 ∈ RN×N .

(26)

where θ ≥ 1. Recall that

Z(0) =
[
Z

(0)
1 . . . Z

(0)
K

]
=
[
U1A1 +

∑
j ̸=1UjE1,j . . . UKAK +

∑
j ̸=K UjEK,j

]
, (27)

Lemma 3. Consider the setting in Definition 1 with p = p1 = · · · = pK and N1 = · · · = NK =

N/K. Let φ(·) be

φ(x) = h(σ(x)), (28)

where σ : RN → RN is the soft-max function and h : RN → RN is an element-wise thresholding

function with h(x) = τI {x > τ} for each i ∈ [N]. Suppose that (11) holds. Suppose in addition

that p ≥ 64(
√

logN + 1)2 and

τ ∈
(

1

2
,

1

1 + N exp(−9p/32)

]
(29)

The following statements hold with probability at least 1 −KN−Ω(1) that ,

φ(M1) = BlkDiag(τI,0, . . . ,0), . . . , φ(MK) = BlkDiag(0,0, . . . , τI). (30)

Proof. Suppose that (12)-(19) hold, which happens with probability at least 1 − KN−Ω(1)

according to Lemma 2, (11), and the union bound. Now, we focus on studying M1 as defined

in (26). For ease of exposition, we denote the i-th column of M1 by mi ∈ RN for each i ∈ [N].

Moreover, recall that

C1 =

{
1, 2, . . . ,

N

K

}
, . . . , CK =

{
(K − 1)N

K
+ 1,

(K − 1)N

K
+ 2, . . . , N

}
.

We now divide our proof into two cases. We first study the i-th column of M1 for each i ∈ C1,

and then study the i-th column of M1 for each i ∈ Ck with k ̸= 1.

24

Case 1. According to (26), we have for each i ∈ C1,

mij = θ2⟨ai,aj⟩, ∀j ∈ C1, mij = θ⟨ai, ej,k⟩, ∀j ∈ Ck, k ̸= 1.

For each pair (i, j) with i ̸= j ∈ C1, we compute

σi(mi)

σj(mi)
= exp (mii −mij) ≥ exp

(
θ∥ai∥

(
θ∥ai∥ − 3

√
logN

))
≥ exp

(
9θ2p

32

)
, (31)

where the first inequality follows from (14) and the second uses (12) and
√
p ≥ 8(

√
logN + 1).

Using the same argument, for each pair (i, j) with i ∈ C1, j ∈ Ck, and k ̸= 1, we obtain

σi(mi)

σj(mi)
≥ exp

(
9θ2p

32

)
,

This, together with
∑N

j=1 σj(mi) = 1, yields
(
1 + (N − 1) exp

(
−9θ2p/32

))
σi(mi) ≥ 1. There-

fore, we have for each i ∈ C1,

σi(mi) ≥
1

1 + N exp(−9θ2p/32)
>

1

2
, σj(mi) ≤

1

2
, ∀j ̸= i, (32)

where the last inequality follows from p ≥ 64(
√

logN + 1)2. This, together with the value of τ

in (29), yields for each i ∈ C1,

σj(mi) < τ < σi(mi), ∀j ̸= i.

Using this and (28), we have for each i ∈ C1,

h (σi(mi)) = τ, h (σj(mi)) = 0, ∀j ̸= i.

Case 2. For each i ∈ Ck with k ̸= 1, it follows from (26) that

mij = θ⟨ei,1,aj⟩,∀j ∈ C1, mij = ⟨ei,1, ej,1⟩, ∀j ∈ Cl, l ̸= 1.

Consider a fixed i ∈ Ck with k ̸= 1, it follows from (17) that there exists ji ∈ C1 such that

miji ≥ θ∥ei,1∥
√

logN . This implies

σji(mi)

σi(mi)
= exp (θmiji −mii) ≥ exp

(
∥ei,1∥

(
θ
√

logN − ∥ei,1∥
))

≥ exp

(
3δθ

4

√
p logN − 25

16
δ2p

)
,

where the second inequality follows from (13). This, together with σi(mi)+σji(mi) < 1, implies

σi(mi) <
1

1 + exp
(
3δθ

√
p logN/4 − 25δ2p/16

) <
1

1 + exp
(
δθ
√
p logN/2

) <
1

2
, (33)

where the second inequality uses δ
√
p ≤

√
logN/8 due to (11). On the other hand, it follows

from (18) and (19) that

σj(mi) ≤
1

2
,∀j ̸= i.

25

This, together with (33), δ ≤ 1/8,
√
p ≥ 8(

√
logN + 1), and the value of τ by (29), yields for

each i ∈ Ck with k ̸= 1,

σj(mi) < τ, ∀j ∈ [N]. (34)

This directly implies

h (σ(mi)) = 0, ∀i ∈ Ck, k ̸= 1.

Then, we have φ(M1) =

[
τI 0

0 0

]
. Applying the same argument to M2, . . . ,MK , we obtain

(30). ⊔⊓

Armed with the above result, we are ready to prove Theorem 1.

Proof of Theorem 1. For ease of exposition, let M
(l)
k := Z(l)TUkU

T
k Z(l) for each k ∈ [K] and

l ∈ [L]. Suppose that (30) holds, which happens with probability at least 1−KN−Ω(1) according

to (11), and (29), Lemma 3. We claim that for each l ∈ [L], we have

Z(l) =
[
(1 + ητ)l U1A1 +

∑
j ̸=1UjE1,j . . . (1 + ητ)l UKAK +

∑
j ̸=K UjEK,j

]
. (35)

This, together with (6), yields for each k ∈ [K] and l ∈ [L],

SNR(Z
(l)
k) =

∥UkU
T
k Z

(l)
k ∥F

∥(I −UkU
T
k)Z

(l)
k ∥F

=
(1 + ητ)l∥Ak∥F
∥
∑

j ̸=k UjEk,j∥F
,

which directly implies (8) for each k ∈ [K] and l ∈ [L− 1]. According to the union bound, the

probability is 1 −KLN−Ω(1).

The rest of the proof is devoted to proving the claim (35) using the induction method. First,

we consider the base case l = 1. According to (27) and (7), we compute

U1U
T
1 Z(0) =

[
U1A1 U1E2,1 . . . U1EK,1

]
,

M
(0)
1 = (U1U

T
1 Z(0))T (U1U

T
1 Z(0)) =

AT

1 A1 AT
1 E2,1 . . . AT

1 EK,1

ET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

ET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 .

Using the same argument, we can compute M
(0)
k for each k ∈ [K]. This, together with (30) for

each k ∈ [K], yields

K∑
k=1

UkU
T
k Z(0)φ(M

(0)
k) =

[
τU1A1 τU2A2 . . . τUKAK

]
.

Using this, (27), and (3), we directly obtain that (35) holds for l = 1. Next, we consider the

case l ≥ 2. Suppose that (35) holds for some l ≥ 1. We compute

U1U
T
1 Z(l) =

[
(1 + ητ)lU1A1 U1E2,1 . . . U1EK,1

]
,

M
(l)
1 =

(1 + ητ)2lAT

1 A1 (1 + ητ)lAT
1 E2,1 . . . (1 + ητ)lAT

1 EK,1

(1 + ητ)lET
2,1A1 ET

2,1E2,1 . . . ET
2,1EK,1

...
...

. . .
...

(1 + ητ)lET
K,1A1 ET

K,1E2,1 . . . ET
K,1EK,1

 .

26

(a) Linear regression (b) Sparse linear regression

Figure 7: Evaluating models of Llama architectures on in-context learning linear functions. We

plot the normalized squared error as a function of in-context examples.

Using the same argument, we can compute M
(l)
k for each k ∈ [K]. This, together with (30) for

each k ∈ [K], yields

K∑
k=1

UkU
T
k Z(0)φ(M

(0)
k) =

[
(1 + ητ)lτU1A1 (1 + ητ)lτU2A2 . . . (1 + ητ)lτUKAK

]
.

Using this, (27), and (3), we directly obtain that (35) holds for l + 1. Then, we prove the

claim. ⊔⊓

B Supplementary Experiments

B.0.1 More on ICL

In addition, we performed the same ICL analysis as in Section 4.1.2. All the settings are the

same, except that we changed the base model architecture to Llama [56]. And, we can see that

the results are similar.

B.0.2 Emergence of Semantic Properties

The attention heads in our models have different semantic meanings, and indeed demonstrate

the interpretability of our proposed architecture in practice. In Figure 8, we visualize the self-

attention heatmaps between the [CLS] token and other image patches. We select 5 attention

heads by manual inspection and find that they capture different parts of objects, displaying

different semantic meanings.

B.0.3 Computing Requirement

In this section, we present the computing resources of a forward pass used by AoT-based lan-

guage models and GPT-2 empirically in Table 3. The context window is 1024 tokens and the

batch size is 16. The GFLOPS is measured by the PyTorch profiler, the total GPU memory

27

Figure 8: Visualization of attention heads. We feed our AoT a mini-batch of images and

extract the attention maps of different heads from the penultimate layer. We show that these

heads capture certain semantic meanings across different images.

consumption by the NVIDIA System Management Interface, and the running time of one for-

ward pass by the Python time module. The only optimization we use is the default mode of

the PyTorch compiler.

28

Table 3: The GFLOPS, total GPU memory consumption, and the running time of one forward

pass are shown of AoT and GPT-2 at different sizes.

Models GFLOPS Total GPU Memory in MiB Running time in ms

Base 102M 1651 21482 43

Medium 182M 3868 36198 78

Large 326M 8056 57896 225

GPT-2 Base 124M 2785 23300 27

GPT-2 Medium 335M 9898 51578 158

29

	Introduction
	Related Works
	Our Contributions

	Technical Approach and Justification
	Learning Token Representations via Unrolled Optimization
	Denoising Operator for Learning Token Representations
	Transformer Architecture Design via Unrolled Optimization

	Theoretical Guarantee for the Attention-Only Transformer
	Experimental Results
	Decoder-Only Transformer for Language Tasks
	Language Modeling
	In-Context Learning on Simple Function Classes

	Vision Transformers for Supervised Image Classification

	Conclusion
	Proof of thm:1
	Preliminary Results
	Proof of thm:1

	Supplementary Experiments
	More on ICL
	Emergence of Semantic Properties
	Computing Requirement

