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Abstract

As large language models (LLM) are in-001
creasingly used for text generation tasks,002
it is critical to audit their usages, govern003
their applications, and mitigate their po-004
tential harms. Existing watermark tech-005
niques are shown effective in embedding006
single human-imperceptible and machine-007
detectable patterns without significantly af-008
fecting generated text quality and seman-009
tics. However, the efficiency in detecting010
watermarks, i.e., the minimum number of011
tokens required to assert detection with012
significance and robustness against post-013
editing, is still debatable. In this paper, we014
propose, Duwak, to fundamentally enhance015
the efficiency and quality of watermarking016
by embedding dual secret patterns in both017
token probability distribution and sampling018
schemes. To mitigate expression degrada-019
tion caused by biasing toward certain to-020
kens, we design a contrastive search to wa-021
termark the sampling scheme, which min-022
imizes the token repetition and enhances023
the diversity. We theoretically explain the024
interdependency of the two watermarks025
within Duwak. We evaluate Duwak exten-026
sively on Llama2 under various post-editing027
attacks, against four state-of-the-art wa-028
termarking techniques and combinations029
of them. Our results show that Duwak030
marked text achieves the highest water-031
marked text quality at the lowest required032
token count for detection, up to 70% tokens033
less than existing approaches, especially un-034
der post paraphrasing. Our anonymous035
code is available at https://anonymous.036
4open.science/r/Duwak-BDE5.037

1 Introduction038

Large language models (LLMs) are widely039

adapted for natural language tasks, includ-040

ing copywriting (OpenAI, 2022), machine-041

translation (Zhang et al., 2023), questioning042

and answering (Touvron et al., 2023), and 043

code generation (Rozière et al., 2023). While 044

LLMs achieve remarkable and human-like per- 045

formance, there are increasing risks of abusing 046

LLM’s (Kuditipudi et al., 2023) to produce 047

incorrect and adversarial content on social me- 048

dia and to commit fraud in academic rights. 049

Watermarking LLM content is one of the es- 050

sential solutions to govern the LLM applica- 051

tions and guardrail their misuse and harm to 052

the society, even requested by the governmen- 053

tal policies (Veale and Zuiderveen Borgesius, 054

2021). Much like physical watermarks, em- 055

bedding watermark signals on LLM-generated 056

text provides the means to trace content to 057

their generator as well as the LLM models that 058

constantly evolve. 059

Key criteria for watermarking generative lan- 060

guage models are multiple folds: having mini- 061

mal degradation of the generated content qual- 062

ity, imperceptible to humans for avoiding al- 063

teration, detectable by machines for rigorous 064

auditing, and robust against post-text edit- 065

ing. Recent studies show that a single water- 066

mark pattern can be hidden in generated text 067

through either altering the underlying token 068

probability distribution (Kirchenbauer et al., 069

2023a; Yoo et al., 2023; Fernandez et al., 2023) 070

or modifying the sampling strategy (Kuditipudi 071

et al., 2023; Christ et al., 2023; Aaronson, 072

2022).While the existing watermarks achieve 073

multiple criteria, their practicability on short 074

texts and post-edited text is limited, as the 075

minimum number of tokens required for suc- 076

cessful detection, e.g., low false positive rate, 077

under those scenarios is high. 078

In this paper, we propose a dual water- 079

marking approach, Duwak, which improves the 080

watermark detection efficiency and text qual- 081

ity by embedding two independent secret pat- 082

terns into the token probability distribution 083
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Figure 1: Duwak: dual watermarking LLMs. To generate a token xt, Duwak embeds two secret patterns,
governed by random number generation seeded by two private keys and prior tokens, via (i) pre-activation
logit modification and (2) a contrastive search sampling strategy.

and sampling scheme. To detect the water-084

mark, Duwak searches for the union of these085

two watermarks—the enabler for efficient detec-086

tion with a low token count. Under Duwak, we087

first modify the pre-activation logits of pseudo-088

randomly selected tokens seeded by a function089

(i.e., hash) of a prior token sequence and a se-090

cret key, similar to green-red list watermarking091

approaches (Kirchenbauer et al., 2023a; Yoo092

et al., 2023; Wang et al., 2023b; Zhao et al.,093

2023). Consecutively, we randomly split the094

token into the normal and watermark sampling095

set, which embeds an additional random num-096

ber sequence seeded by a second secret key.097

The challenge lies in efficiently detecting098

watermarks without degrading quality. It is099

known that watermarking activation signals100

inevitably degrade the text quality due to the101

bias term on a pseudo-random selection of to-102

kens (Welleck et al., 2020; Kuditipudi et al.,103

2023). To counteract this degradation, we ad-104

vocate the use of a quality aware sampling105

scheme—the contrastive search, which limits106

token sampling to top-k tokens resulting in107

the lowest similarity w.r.t. previous generated108

tokens. Unlike the popular cryptographic sam-109

pling, the contrastive search marks sampling110

patterns, thereby improving the text expres-111

sion, improving the diversity of token selection112

and thus the watermarked text quality (Ren113

et al., 2023; Liu et al., 2023).114

Our contributions are summarized in the115

following:116

Improving watermark efficiency, through117

Duwak’s joint dual watermarks patterns in the118

token probability distribution and sampling119

scheme.120

Increasing generation diversity and ro-121

bustness, by avoiding expression degradation122

of watermarked text. Duwak includes a novel123

quality-aware sampling scheme based on the 124

contrastive search. 125

Empirical evaluation showing the effective- 126

ness of Duwak against existing watermark solu- 127

tions under nine post-editing attacks. Thereby 128

showing the minimum number of tokens re- 129

quired to reach detection accuracy is up to 130

70% lower than related work, with nearly the 131

best text quality and diversity. 132

2 Background 133

LLM text synthesis Large language mod-
els are typically transformer-based neural net-
works, denoted by M and parameterized by
θ. Internally, these models tokenize the vocab-
ulary into a set, V, and generate a token se-
quence indexed by i, xi≥0, based on the prompt
text, which is represented as a token sequence
with negative index xi<0. Generally, generative
LLMs ‘complete’ a provided sequence (prompt)
in an auto-regressive fashion, i.e., the token of
t-th position is based on the prompt and thus
far generated tokens, i.e., tokens xi<t, from
here on notated simplified as x<t. The token
generation consists of two stages. First, the
LLM estimates the probability scores of the
succeeding token xn

t for all |V| tokens at the
position t, ∀n ∈ V by softmaxing the model’s
output logits, lnt = lθ (· | x<t)n,

pθ(·|x<t)n = softmax(lt)n,∀n ∈ V.

The second step is to sample the token based 134

on the estimated probability distribution. Com- 135

mon sampling schemes differ in their objectives 136

and complexity: greedy search, beam-search, 137

top-k sampling (Fan et al., 2018a), nucleus- 138

sampling (top-p) (Holtzman et al., 2020), multi- 139

nomial (random) sampling, and contrastive 140

search (Su et al., 2022). 141
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Watermarking LLM Watermarks are typ-142

ically embedded in the process of next-token143

generation through altering: (i) the logit and144

probability (Kirchenbauer et al., 2023a; Yoo145

et al., 2023; Lee et al., 2023a) and (ii) the sam-146

pling scheme (Aaronson, 2022; Christ et al.,147

2023; Kuditipudi et al., 2023). To change the148

probability distribution, the key idea is to split149

the vocabulary tokens into a green (preferred)150

and red list, V ∈ G ∪R, via a random number151

that is hashed from a secrete key and an ag-152

gregate of previous h tokens. The number of153

green tokens is controlled by hyper-parameter154

γ by taking |G| = γ|V|. The logit values of155

green tokens receive a bias δ, thereby increas-156

ing their probability estimates, thus increasing157

the likelihood of them being selected. The158

sampling scheme can remain the same as the159

original LLM. Consequently, watermarked text160

is expected to have an increase in the num-161

ber of green tokens. In contrast, sampling-162

based approaches are deterministic while keep-163

ing the model’s next token probability esti-164

mate untouched. Aaronson (2022) propose165

an exponential scheme and choose the token166

xt = arg maxn∈V

{
(rn)

1
pn
}

, where p is the unal-167

tered probability vector and r ∈ [0, 1]|V|, is the168

random number vector generated by hashing169

the prior h tokens and the secret key.170

Detecting Watermarking Detecting wa-171

termarks requires inspecting a sequence of N172

tokens and computing their watermark like-173

lihood score, SN . The exact score computa-174

tion depends on watermarking methods. In the175

case of logit modification through the green-red176

list (Kirchenbauer et al., 2023a), every token177

is classified into the green or red list based on178

the random split, conditioned on the random179

number sequence seeded by prior tokens and180

secret key. The total number of green tokens is181

the score. As for the sampling approach, e.g.,182

Aaronson (2022), computes a pre-determined183

threshold is exceeded by negative summation184

of
∑

i∈N ln(1 − ri). Here the intuition lies in185

the fact that a token with low pi would require186

an ri arbitrarily close to 1, thus limiting their187

contribution to the computed score. This met-188

ric essentially measures the aggregate deviation189

from the expected distribution of tokens under190

the manipulation of random number vector r.191

Watermarking Measures There are mul-192

tiple measures for watermarking algorithms: 193

text quality, detection efficiency, and robust- 194

ness. In terms of quality, perplexity (Kirchen- 195

bauer et al., 2023a; Wang et al., 2023a; Kudi- 196

tipudi et al., 2023) metrics , rating from an- 197

other (larger) LLM (Kocmi and Federmann, 198

2023; Piet et al., 2023), and diversity (Su et al., 199

2022; Kirchenbauer et al., 2023b) are used to 200

assess the (watermarked) LLM text. As for de- 201

tection efficiency and robustness, it measures 202

the number of N tokens needed to achieve sig- 203

nificant detection tests under differentattacks, 204

e.g., insertion, deletion, and paraphrasing (Piet 205

et al., 2023). 206

Z-statistic and p-value (Kirchenbauer et al., 207

2023a) are commonly used to evaluate the sig- 208

nificance of the detection test, assuming the 209

detection scores follow the normal distribution 210

with a mean of µ and standard deviation of 211

σ. The null hypothesis of the detection test 212

is that H0: the text is unwatermarked. The 213

Z-statistics represents the normalized observed 214

score value, which is subtracted by the esti- 215

mated mean and standard deviation. And, its 216

corresponding p-value represents the probabil- 217

ity of having a normalized score higher than 218

observed Z under the H0, i.e., the text is not 219

watermarked. 220

3 Duwak: Dual Watermarking 221

The objective of Duwak is to maintain the water- 222

marked text quality while keeping high detec- 223

tion efficiency, i.e., high detection confidence by 224

inspecting a low number of tokens. Duwak em- 225

beds two secret watermark signals sequentially 226

in the token probability distribution and token 227

sampling scheme as shown in Fig. 1. To miti- 228

gate the text distortion caused by modifying 229

the token probability, we design a contrastive 230

search sampling scheme that increases the di- 231

versity via selecting tokens with low similarity 232

among the top-k ones. We elucidate the in- 233

terdependency through the joint watermarking 234

scheme of Duwak, demonstrating that the two 235

watermarks can be integrated efficiently with 236

an efficiency guarantee. 237

3.1 Token Probability Watermark 238

To generate token xt from a given prompt and 239

prior generated token sequence, Duwak first al- 240

ters the token probability distribution pt → p̂t 241

by altering the logit values for a subset of n ∈ V . 242
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Specifically, a secret key κtp and the prior se-243

quence of window h, i.e., xt−h≤t≤t−1, are inputs244

to a pseudo-random number generator, RNG,245

for generating a fixed-length pseudo-random246

number sequence. Consecutively, each random247

number is used to split the token into binary248

types, i.e., green v.s. red.In general, secret249

keys used in watermark are only known to the250

watermark owner. Such a design guarantees251

that only the watermark owner can identify252

and decode the watermarked tokens, embed-253

ding a layer of security and specificity within254

the generated text. Following (Kirchenbauer255

et al., 2023a), a bias term, δ, is added to the256

logit of tokens on the favored list, termed green257

list, while keeping logits of non-biased tokens,258

coined red list, remains unchanged. As the259

token probability distribution is computed as260

taking the softmax function on the logit, shown261

in Eq. 1, the token probability distribution is262

thus modified, risking text quality degrada-263

tion. The higher the δ value, the higher the264

distortion to the probability and thus higher265

the possibilityof degradation in text quality266

We note that Duwak is compatible with any267

probability modification proposed in existing268

watermarking algorithms, and we, in practice,269

adopt the algorithms derived in (Kirchenbauer270

et al., 2023b). More specifically, defining pn
t as,271

272
p̂n

t =
exp

(
ln + 1

[
n ∈ G

]
δ
)∑

i∈V exp
(
li + 1

[
i ∈ G

]
δ
) , (1)273

where 1[c] is 1 when clause c is true, otherwise274

0.275

3.2 Contrastive Search Watermark276

One of the known limitations of LLM is277

anisotropic representation—repetitive wording278

and degenerated expression. (Ethayarajh, 2019;279

Su et al., 2022; Su and Collier, 2023) To avoid280

such degradation, (Su and Collier, 2023) define281

a self-similarity measure of token xt with re-282

spect to all other tokens in the vocabulary V,283

i.e., xj∈V \{i}. A higher value of self-similarity284

suggests a more isotropic representation space.285

To address the isotropic degradation, the token286

is then sampled to maximize the summation of287

the weighted token probability and the penalty288

of self-similarity.289

We adapt such a contrastive search principle290

into a watermark sampling scheme in a sliding291

window manner. This approach not only in-292

corporates a distinctive sampling scheme but 293

also significantly enhances the diversity of text 294

generation. Effectively reducing token repeti- 295

tion and mitigating text degeneration, leading 296

to more coherent and varied output. Here, to- 297

ken at position t, are split into two sets, (i) 298

C with a probability η, subject to contrastive 299

search sampling, and (ii) C with a probability 300

1 − η, where standard multinomial sampling 301

is applied. The segmentation into C and C is 302

facilitated by a pseudo-random number gener- 303

ator that leverages a hashing value of previous 304

tokens and a watermark key, κcs. 305

Contrastive searching sampling aims to re- 306

duce the similarity to the prior L token se- 307

quence. For all the contrastive set, we limit 308

the selection to the top-k tokens, i.e., V
(k)

t , 309

with the highest kth probability. The top-k 310

sampling is designed to reduce the risk that 311

unlikely tokens are sampled (Fan et al., 2018b), 312

reducing the search space of contrastive search. 313

We then choose a token, v ∈ V
(k)

t that maxi- 314

mizes the weighted probability and minimizes 315

self-similarity with respect to the prior L to- 316

kens. 317

We first define the similarity between xt 318

and xt−L≤j<t as the cosine distance between 319

their hidden state, s
(
hxt , hxj

)
= cos(hxi , hxj ), 320

where hxi and hxj represent the last layer hid- 321

den states in the model of token xi and xj 322

respectively, and cos is the cosine-similarity 323

between embeddings. Extending it to the 324

L window, the self-similarity of xt is com- 325

puted as the maximum value with respect to 326

all L prior tokens, xt−L≤j<t, i.e., sL(xt) = 327

maxt−L≤j<t

{
s
(
hxt , hxj

)}
. 328

Using a sliding window L increases genera- 329

tion efficiency by limiting the similarity com- 330

putation to L preceding tokens. Moreover, it 331

increases robustness against attacks by lim- 332

iting the context on which the watermark is 333

conditioned. The token is finally chosen by 334

maximizing the weighted probability, p̂v
t and 335

similarity penalty, ·sL(xv
t ), where α is a hyper- 336

parameter that balances the importance of the 337

weighted probability of the token against its 338

self-similarity penalty. 339

xt = arg max
v∈V(k)

{
(1− α) · p̂v

t − α · sL(xv
t )
}

(2) 340
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3.3 Detection in Duwak341

To detect the watermarks within a text se-342

quence x of length T , we employ hypothe-343

sis testing to differentiate between the null-344

hypothesis H0: “the text is generated natu-345

rally” and the alternative hypothesis H1: “the346

text is generated with Duwak.”347

Given the incorporation of two distinct wa-348

termarks, we treat the detection of each as two349

separate and independent tests. We first de-350

tect token probability and constrastive search351

watermark independently and compute their352

p-values, namely, Ptp and Pcs, against the full353

hypothesis that the text is not altered by token354

probability (constrastive search) watermark.355

We then apply Fisher’s method (Fisher, 1922)356

to that combining p-values from these two in-357

dependent tests into a single statistic follows a358

chi-square (χ2) distribution with d = 4 degrees359

of freedom:360

−2(ln(Ptp) + ln(Pcs)) ∼ χ2(4).361

Furthermore, the resulting p-value P , derived362

from the chi-square distribution, is given as:363

P = 1− Fχ2 (−2 (ln(Pkgw) + ln(Pcs)) , 4) ,364

where Fχ2 is the cumulative distribution func-365

tion (cdf) for the chi-square distribution. This366

provides a unified statistical measure to assess367

the presence of watermarks in the text.368

To compute the p-values for both water-369

marks, we resort to a concept of score, ϕ,370

which represents the discernible discrepancy371

between watermarked and non-watermarked372

texts. Higher the score, stronger the evidence373

of watermarked text. We explain how to derive374

the p-values from their detection scores.375

P-value of token probability watermark (Ptp).376

We use the number of detected green-listed377

tokens of the T token sequence as the score,378

i.e., ϕtp =
∑T

t=1 1 [xt ∈ Gt], where Gt is gener-379

ated from RNG (hash (x<t) , κ), which based on380

the watermark key and preceding tokens. To381

assert its significance, we apply a Z-test on382

ztp = ϕtp−γT√
T γ(1−γ)

and then compute the corre-383

sponding p-value, as Ptp = 1 − Φ(ztp), where384

Φ is the cumulative distribution function of385

normal distribution.386

P-value of contrastive search watermark387

(Pcs). As the score distribution in non-388

watermarked text is unknown, our proposed389

score for the contrastive search watermark is 390

based on self-similarity difference between the 391

contrastive set, C and non-contrastive set C, 392

split by using the key κ. Intuitively, the score 393

is higher when the correct key, κcs, is used to 394

split the set, compared to using arbitrary keys. 395

To assert the statistical significance in the score 396

difference, we propose to compare the scores 397

between using the known private key κcs and 398

other M randomly chosen keys, κ1≤m≤M . 399

We first formally define these two sets as, C 400

and C. Following that we define the score of 401

contrastive search watermark using any key κ 402

as 403

ϕ(κ)
cs = −

(∑
t∈C sL(xt)
|C|

−
∑

t∈C sL(xt)
T − |C|

)
. (3) 404

We then compute the score for the key, κcs 405

and κm, and count the number of times that the 406

score of using κm is higher than κcs, Finally, we 407

approximate the p-value of contrastive search 408

as, 409

Pcs = 1
M + 1

(
1 +

M∑
m=1

1
[
ϕ(κtp)

cs ≥ ϕ(κcs)
cs

])
. 410

3.4 Theoretical Analysis 411

The following theorem shows that two water- 412

marks do not influence each other. 413

Theorem 3.1 (Green List Tokens using topk). 414

Given X = {x1, . . . , xT } from an LLM with 415

green list fraction γ, and token n’s adjusted 416

probability at t follows Eq. 1. Define V
(k)

t 417

as the set of top-k tokens by p̂n
t ,with xt ∼ 418

Uniform(V (k)
t ). Given E|V k

t |G ≥ ν, then the 419

expectation and variance of the count of green 420

list tokens |x|G in X are bounded as follows: 421

E|x|G ≥
ν

k
T, Var |x|G ≤ T · ν (k − ν) k−2. 422

In our theorem, we describe a bound that 423

elucidates the interdependency between two 424

watermarks. We model the contrastive search 425

as akin to uniformly sampling from the top-k 426

candidates. By influencing the selection among 427

the top-k tokens based on historical similarity, 428

with a large vocabulary size |V| and a small k, 429

the process effectively approximates random 430

selection. The theorem sets bounds on the 431

expectation and variance of "green list" tokens, 432

based on the limit of mean green token selection 433
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within the top-k candidates. This effectively434

outlines the interdependency between the two435

watermarks in our Duwak.436

4 Evaluation437

In this section, we first detail the evaluation438

setup on the LLM prompts and evaluation439

tasks. The evaluation metrics are the qual-440

ity of watermarked text and the token count441

needed to achieve certain detection p values un-442

der normal conditions and various post-editing443

attacks. We compare Duwak against existing444

single watermark techniques and combinations445

thereof.446

4.1 Evaluation setup447

Prompt. For evaluation, we use open-ended448

generation (Su and Collier, 2023) and MarkMy-449

Words’ (Piet et al., 2023) structured tasks. The450

detailed settings can be found in Appendix C.1.451

Evaluation metrics. To evaluate water-452

mark methods, we use the following metrics:453

Diversity, MAUVE, Rating, and Detection ef-454

ficiency. Details on these metrics and their455

configurations are provided in Appendix C.2.456

Baseline. A summarized baseline overview457

is given in Tab. 1 (i) the Kirchenbauer-Geiping-458

Wen (KGW) algorithm (Kirchenbauer et al.,459

2023a), Exponential (EXP) (Aaronson, 2022),460

Binary (Christ et al., 2023) (BINARY), Inverse461

Transform Sampling (Kuditipudi et al., 2023)462

(ITS) and Contrastive Search (CS) (ours) are463

the single watermarking algorithm, and (ii)464

KGW-EXP, CS-EXP, and Duwak (ours) are465

the dual watermark algorithms. We highlight466

where the watermark signals are inserted in467

the token probability or sampling. For dual468

watermarking schemes, we conduct the χ2 test469

on the p-value of each watermark as Duwak.470

Hyper-parameter setting. For a fair com-471

parison across algorithms, we limit the hashing472

input to the first preceding token to gener-473

ate watermark seeds for all watermarking algo-474

rithms. As for the fraction of green tokens, γ|V|475

under KGW probability modification, we use a476

fixed γ = 0.5. The detection window of Duwak477

is set as L = 50 token, and the probability of478

contrastive search is η = 0.5.479

4.2 Results480

Quality v.s. detection efficiency. We481

summarize the overall results in Tab. 3, high-482

Table 1: Watermarking algorithms: token probabil-
ity modification, and sampling scheme. ‘-’ denotes
no token probability distribution modification.

KGW EXP ITS BINARY KGW-EXP EXP-CS Duwak

∆P (xt|x<t) KGW - - - KGW - KGW

Sampler Multi Exp Inverse Binary Exp CS CS

Comp.
Alg.

0 100 200 300 400 500 600 inf

Detection efficiency (p-value=0.02) (↓)

0.65

0.70

0.75

0.80

0.85

R
at

in
g

(↑
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Duwak
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(a) p = 0.02
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0.70

0.75

0.80
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R
at
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BINARY

CS+EXP

Duwak

EXP

ITS

KGW

KGW+EXP

(b) p = 0.05

Figure 2: Rating v.s. token efficiency under differ-
ent watermarking methods and hyper-parameter
settings for different detection p-values.

lighting the difference among human, unal- 483

tered LLM, and watermarked LLM text from 484

all the watermarking methods. First of all, 485

human-written text shows the highest diversity 486

and MAUVE scores. Regarding the quality 487

of the watermarked text, Duwak ranks as the 488

first or the second-best method in terms of 489

diversity, MAUVE, and rating, achieving sim- 490

ilar results as the unaltered LLM text. CS 491

achieves the highest diversity and MAUVE as 492

expected among the single watermarks. Among 493

dual watermarks, the direct combination of the 494

common probability modification (KGW) and 495

token sampling (EXP) deteriorates text qual- 496

ity due to the EXP sampling method, which 497

heavily biases the modified token probabil- 498

ity.Overall, including contrastive search im- 499

proves the text quality to its CS-less coun- 500

terpart. 501

The efficiency of detection of watermarks 502

measures the number of tokens needed to de- 503

tect watermarks with p-values of 0.02. EXP-CS 504

is the only exception because both watermarks 505

are embedded in the sampling process and in- 506

terfere with each other, arguing the risk of 507

blending multiple watermarks. On the other 508

hand, a single watermark requires a signifi- 509

cantly higher number of tokens, especially for 510

BINARY, ITS, and CS, strengthen the water- 511

marked text’s robustness and quality. 512

Fig. 2 provides a sensitivity perspective 513

of watermark methods under different hyper- 514
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Table 2: Comparison of watermarking methods on different metrics. Arrows point to the direction of
better performance: a downward arrow (↓) means lower is better, and an upward arrow (↑) means higher
is better. Bold/underlined text means the best/second-best score.

Watermark Human No Watermark KGW EXP BINARY ITS CS KGW-EXP EXP-CS Duwak
Diversity (%) (↑) 93.62 86.66 81.41 39.58 44.56 78.72 86.53 17.90 83.83 83.98
MAUVE (%) (↑) 100.0 82.36 75.5 55.87 55.57 79.02 80.71 27.03 77.58 82.18
Rating (%) (↑) - 87.28 86.15 82.56 87.10 86.25 83.74 77.14 83.91 86.51
Dection token (↓) - - 113 89.5 847 >1024 >1024 79.5 572 94.5

parameter settings and p-values, 0.02 and 0.05.515

Specifically, different δ values are used in KGW516

probability modification. Duwak shows more517

consistent performance across all δ’s compared518

to KGW, i.e., slightly higher rating and lower519

tokens with a lower variance. This trend520

continues for a p-value of 0.05, with a more521

pronounced difference in their required token522

counts. Specifically, when compared to the best523

KGW watermark, our algorithm requires ∼ 40524

fewer tokens. When p-values are smaller, the525

number of tokens needed for detection increases526

considerably.527

Duwak achieves the best quality efficiency ra-528

tio, high diversity, MAUVE, and rating, using529

fewer tokens to detect watermarks accurately530

compared to other watermarking methods.

Table 3: Attacked detection efficiency, low is best.

Attack Conf. EXP KGW Duwak

None 89.5 113 94.5
Contraction 88.5 114 87.5
Lowercase 106 146 113
Repetition&deletion 83.5 108 87.0
Paraphrase GPT3.5 238 322 193
Misspelling 25% 93.5 119 82.5

50% 148 147 114
Swap 5% 83.0 113 77.5

10% 83.0 113 82.0
Synonym 25% 90.5 118 81.0

50% 100 134 100
75% 126 169 112
100% 170 213 125

Translation FR 118 147 114
RU 156 195 148

TypoAttack 5% 221 221 177
10% 389 337 301

531

Post-editing attack robustness. Here,532

we evaluate the robustness of Duwak under dif-533

ferent post-editing attacks, i.e., attacks that534

alter the tokenization. Specifically, we consider535

contraction, lowercase, misspelling, repetition,536

swap, synonym, translation, typo, and para-537

phrase attacks from MarkMyWords (Piet et al.,538

2023).Tab. 3 presents the efficiency of reach-539

ing a p-value of 0.02 under KGW, EXP, and540

Duwak. Such a selection is based on the obser-541

vation in Tab. 3 that only these three methods 542

achieve reasonable text quality while inspecting 543

roughly 100 tokens. 544

While EXP shows the best efficiency in the 545

no-attack scenario (through significant infer- 546

ence quality), Duwak requires significantly lower 547

tokens for inspection in the presence of attacks, 548

i.e., ranging between 6 to 70%. The presence 549

of attacks clearly increases the need to consider 550

more tokens for all watermark methods. Let’s 551

zoom into the performance of Duwak against 552

each of those attacks, in contrast to the cast of 553

no attack. TypoAttack significantly increases 554

the detection difficulty and results in a more 555

than 3× increase in the number of tokens. Mis- 556

spelling and repetition&deletion, swap, and 557

synonym (25%) are simple attacks, even re- 558

ducing the number of inspection tokens. Para- 559

graphs and TypoAttack are where Duwak has 560

the best performance, compared to EXP, the 561

second-best policy. We attribute this differ- 562

ence to the two watermarks and no interference 563

among them.Additionally, Duwak benefits from 564

incorporating two distinct watermarks that op- 565

erate without mutual interference, thereby en- 566

hancing its robustness. 567
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Figure 3: Detection efficiency (↓) of Duwak and
KGW with equal hyper-config under varying δ.

Impact of contrastive search sampling. 568

Here, we highlight the impact of contrastive 569

search compared to the single KGW water- 570

mark. In Fig. 3, we show the rating and the 571
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number of inspected tokens to achieve a p-572

value of 0.02 under the different distribution573

shifting(δ ∈ {2.5, 3, 3.5}) with clean and para-574

phrase attack versions. Unsurprisingly, Duwak575

outperforms KGW due to the addition of con-576

trastive search, such the advantage diminishes577

with increasing δ. When δ is large, e.g., 3.5,578

it introduces a large distortion in the genera-579

tion probability, leaving little room for Duwak580

to further improve the quality. In the case581

of the challenging paraphrasing post-attacks,582

shown in Fig. 4b, one can observe the clear583

advantage of using contrastive search. This584

observation again verifies our design of dual585

watermark, which is inherently more robust to586

the post-editing when compared to the token-587

level approaches of prior art.588

5 Related Studies589

Prior single watermark solutions embed the wa-590

termark signal at the token level with a modi-591

fication of the generation process by modifying592

either the token probability distribution (Lee593

et al., 2023b; Wu et al., 2023; Takezawa et al.,594

2023) or sampling scheme (Aaronson, 2022;595

Christ et al., 2023; Kuditipudi et al., 2023).596

Watermark in token probability distri-597

bution. Kirchenbauer et al. (2023a) design598

the very first single-bit watermark method for599

LLM text generation, splitting tokens into a600

green and red list using a cryptographic key.601

To further improve the text quality and ro-602

bustness, subsequent studies modify the crite-603

ria of green-red splits. Zhao et al. (2023) prove604

that global red-green splits improve robustness605

against post-editing attacks, whereas Kirchen-606

bauer et al. (2023b) propose to use the mini-607

mum hashed token to determine the red-green608

list. Furthermore, to improve the governance of609

watermarks and provide additional information,610

e.g., copyright and timestamp, multi-bit water-611

marks (Wang et al., 2023b; Yoo et al., 2023;612

Fernandez et al., 2023) are proposed, introduc-613

ing message-specific red-green lists. We note614

that such watermarks split the text into mul-615

tiple sections, each of which has only a single616

watermark in their token probability, whereas617

our solution embeds up to two watermarks into618

a single token.619

Watermark in Sampling Binary water-620

mark (Christ et al., 2023) samples the token621

based on the comparison of the predicted prob- 622

ability and the pseudo-random presentation. 623

Because of the fixed length of pseudo-random 624

numbers, the LLM can end up generating the 625

same text for the same prompt. Kuditipudi 626

et al. (2023) propose the usage of longer pseudo- 627

random number sequences than the generated 628

text itself and randomly choose the insertion 629

location in the text to add the watermark. 630

Hou et al. (2023) resort to watermarking via 631

sentence-level sampling, which iteratively per- 632

forms sentence-level rejection sampling until 633

the sampled sentence falls within the water- 634

marked region. 635

We note that orthogonal to watermark de- 636

tection is more general detection of whether 637

text is synthesized by LLMs (Solaiman et al., 638

2019; Gehrmann et al., 2019; Mireshghallah 639

et al., 2023; Mitchell et al., 2023). However, as 640

traceability to specific models cannot be pro- 641

vided, these detection works are limited in their 642

application for the governance of synthesized 643

text. 644

6 Conclusion 645

In this paper, we propose a dual watermark 646

scheme for LLM, Duwak, which embeds human 647

imperceptible and machine detectable water- 648

marks in token probability distribution and 649

sampling schemes. Combining two watermarks 650

significantly decreases the minimum number 651

of tokens for detecting watermarks with a de- 652

sirable false positive rate, especially when en- 653

countering post-editing attacks. To avoid text 654

quality degradation due to watermarking token 655

probabilities, we design a contrastive search 656

sampling scheme that samples tokens with the 657

lowest similarity. We show the effectiveness of 658

Duwak by providing a theoretical lower bound 659

on the watermarked tokens and extensive em- 660

pirical evaluation. Compared against existing 661

single watermark solutions and combinations 662

thereof, Duwak provides a better watermarked 663

text quality. This is especially highlighted in 664

terms of diversity, and robustness against nine 665

post-editing attacks, using up to 70% less to- 666

kens for detection. 667

7 Limitation 668

This study introduces advancements in water- 669

marking techniques for Large Language Models 670
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(LLMs) through Duwak, while also recognizing671

certain limitations that warrant future inves-672

tigation. Firstly, our approach’s effectiveness673

is contingent on the specific characteristics of674

the LLMs evaluated, primarily Llama2. Con-675

sequently, the applicability of Duwak to differ-676

ent models and subsequent versions of LLMs677

is a subject that merits further exploration.678

Moreover, our evaluation was restricted to text-679

generation tasks. The extension of our method-680

ology to encompass additional tasks, such as681

the generation of mathematical proofs or code,682

remains an area requiring in-depth study. Ad-683

ditionally, Duwak necessitates conducting two684

separate detection processes for each water-685

mark, which results in a decrease in detection686

time efficiency compared to single watermark687

methods.688

Impact Statements689

With the popularity of large language models690

and their applications, embedding watermarks691

into their generated content is an essential step692

toward trustworthy and responsible AI technol-693

ogy development and deployment. Our findings694

of improved watermark detection performance695

and utility provide novel insights into the re-696

search and practice of watermarking for large697

language models.698
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Nomenclature909

α Parameter balancing the importance of token probability and self-similarity in contrastive910

search.911

θ Large language model parameters used for text generation.912

δ Bias term added to the logits of tokens on the green list to alter their probabilities.913

η Probability determining whether contrastive search or multinomial sampling is used for914

token generation.915

γ Portion of the vocabulary designated as the green list in the token probability modification916

process.917

p̂n
t The probability distribution over tokens after applying watermark modifications.918

κcs, κtp Secret keys used for embedding watermarks in the text.919

G A subset of tokens selected for next word generation, influenced by a watermark key.920

V The set of all possible tokens the LLM model can generate.921

Φ, Fχ2 Cumulative distribution functions used to calculate p-values in hypothesis testing for922

watermark detection.923

ϕcs A score for Contrastive Search watermark.924

ϕtp A score computed for token token probability watermark925

HV The representation of tokens in the model’s hidden layer.926

k Top-k parameter defining the number of top predictions considered in the generation927

process.928

L Sliding window length used in contrastive search to compute token similarity.929

lt The raw outputs of the LLM model for the next token, before applying the softmax930

function.931

P , Pcs, Ptp P-values indicating the likelihood of observing the test results under the null hypoth-932

esis.933

sL(xt) A measure of a token’s similarity to its preceding tokens within a sliding window of length934

L.935

Hash A function used to generate a hash value based on the current context.936

RNG A function generating pseudo-random numbers based on a seed and possibly a key.937
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A Pseudocode 938

Algorithm 1 Duwak Token Generation.
Input: θ, κtp, κcs
Params: RNG, k, L, Hash, η, sL

Output: xt ∈ V
1: function DuwakGenerate
2: seed← hash(x<t)
3: r ← RNG(seed, κcs)
4: procedure TokenProbWatermark
5: G ← RNG(seed, κtp)
6: Compute p̂n

t as Eq. 1
7: procedure CSWatermark
8: if r < η then
9: V(k)

t ← topk(p̂t)
10: Contrastive search as Eq. 2
11: else
12: xt ∼ Multinomial(p̂t)
13: return xt

Algorithm 2 Duwak Watermark Detection.
Input: θ, κtp, κcs
Params: γ, T, η, M, L
Output: p-value ∈ [0, 1)

1: function DuwakDetection
2: procedure Compute_Ptp

3: ϕtp ←
∑T

t=1 1
[
xt ∈ Gt

]
4: ztp = ϕtp−γT√

T γ(1−γ)
5: Ptp = 1− Φ(ztp)
6: procedure Compute_Pcs

7: Pcs ← 1
8: for κm ∈ {κm | κm ̸= κcs}Mi=m do
9: Pcs ← Pcs + 1

[
ϕ

(κm)
cs ≥ ϕ

(κcs)
cs

]
10: Pcs ← 1

1+M Pcs

11: P ← 1− Fχ2 (−2 (ln (Ptp) + ln (Pcs)) , 4)
12: return P

B Additional Results 939

B.1 Rating and perplexity comparison between Duwak and KGW 940

941

B.2 Empirical false positive rates 942

To assess the theoretical false positive rate (p-value) through empirical means, we utilize a the 943

following methodology to identify unwatermarked text within the Wikitext dataset. For each 944

watermark, we examine 10,000 samples, each with an average length of 260 tokens. The empirical 945

false positive rate is determined by the proportion of texts erroneously identified as watermarked 946

at the p-value threshold. 947
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Figure 4: Comparative analysis of Duwak and KGW with identical hyper-parameters under varying δ,
detection efficiency (↓).
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(b) Zoomed-in version of Fig. 5a from 0 to 0.1.

Figure 5: Comparison of empirical false positive rate and theoretical false positive rate for different
watermarks

We observe that our algorithm does not result in an empirical false positive rate (FPR) higher948

than the theoretical FPR. Moreover, all methods tend to overestimate the false positive rate949

when the p-value is lower than 0.1, particularly in the case of KGW.950

B.3 Detection Efficiency Under Different p-value Thresholds951

C Evaluation Setup952

C.1 Prompt953

For evaluation, we use open-ended generation and MarkMyWords’ (Piet et al., 2023) structured954

tasks.955

Open-ended text generation: Following Su and Collier (2023), 40 WebText corpus token prompts956

are used to generate completions of up to 200 tokens. Comparing the quality of watermarked957

generations to the datasets’ human-completions indicates the watermarkings’ relative effectiveness.958

MarkMyWords generation tasks: Additionally, we include three tasks from the MarkMyWords959
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Figure 6: Detection efficiency vs. rating under different watermarking methods and hyper-parameter
settings with p-value 0.01 and 0.01. Arrows are drawn between the corresponding configurations with
different p-values to indicate the reduction of detection tokens required for a more lenient p-value.

dataset—book reports, story generation, and fake news generation—to mirror realistic scenarios 960

where watermarking allows for harm mitigation and accountability. 961

C.2 Evaluation metrics 962

We use the following metrics to assess the performance and effectiveness of watermark methods. 963

Diversity: Accounts variance in generated content using repetition under varying n-grams 964

(n ∈ {2, 3, 4}). 965

MAUVE: (Pillutla et al., 2021) Measures the similarity between generated and human-written 966

text token distributions. Higher MAUVE shows better resemblance to human text. 967

Rating: Automated evaluation with the GPT-3.5 Turbo API, rating the relevance and fluency 968

of watermarked texts on a 100-point scale based on zero-shot prompting. 969

Detection efficiency: The minimum token count required for watermark detection for a type-I 970

error rate (p-value). Thus ensuring a precise balance between text length and the efficacy of 971

watermark detection, highlighting our watermarking technique’s efficiency. 972

C.3 Assessment Guidelines for Rating Responses 973

To systematically evaluate the text quality, each text will be graded out of a total of 100 points 974

by GPT-3.5. The grading criteria are divided into four key categories, with points allocated as 975

follows: 976

Accuracy (20 points): This measures the correctness and relevance of the response in 977

relation to the provided prompt. Points are awarded based on how well the response adheres to 978

factual accuracy and pertinence to the initial query or statement. 979

Detail (20 points): This assesses the comprehensiveness and depth of the response. A higher 980

score is given for responses that cover the topic thoroughly, providing a nuanced understanding 981

15



of the subject matter.982

Grammar and Typing (30 points): This category evaluates the grammatical and typo-983

graphical precision of the response. A flawless submission, free from spelling errors, punctuation984

mistakes, and grammatical inaccuracies, will receive full points.985

Vocabulary (30 points): This criterion looks at the appropriateness and richness of the986

language used. Responses that utilize a diverse vocabulary appropriately and effectively to987

convey ideas will score higher in this category.988

Points should be deducted for any deficiencies observed within each category. The total score,989

calculated out of 100, should be presented at the beginning of the evaluative feedback.990

Prompt Template:991

[INST] <<SYS>> You are given a prompt and a response,992

and you need to grade the response out of 100 based on:993

Accuracy (20 points) - correctness and relevance to the prompt;994

Detail (20 points) - comprehensiveness and depth;995

Grammar and Typing (30 points) - grammatical and typographical accuracy;996

Vocabulary (30 points) - appropriateness and richness.997

Deduct points for shortcomings in each category.998

Give a total grade at the first line of the response. <</SYS>>999

Prompt: {}1000

Response: {}1001

[/INST] Grade out of 100:1002

This structured approach ensures a comprehensive and fair assessment of GPT-3.5’s responses,1003

facilitating a consistent evaluation process.1004
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D Generated text 1005
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A Proofs for Section 3 (Duwak: Dual Watermarking)1006

Theorem 3.1 (Green List Tokens using topk). Given X = {x1, . . . , xT } from an LLM with1007

green list fraction γ, and token n’s adjusted probability at t follows Eq. 1. Define V
(k)

t as the1008

set of top-k tokens by p̂n
t ,with xt ∼ Uniform(V (k)

t ). Given E|V k
t |G ≥ ν, then the expectation and1009

variance of the count of green list tokens |x|G in X are bounded as follows:1010

E|x|G ≥
ν

k
T, Var |x|G ≤ T · ν (k − ν) k−2.1011

Proof. Expectation: The expected number of green list tokens, E|x|G , is calculated as the sum1012

of expectations over all tokens being selected from the green list across all T steps. Given that1013

xt is uniformly chosen from the set of top-k tokens V
(k)

t , the probability of choosing a green list1014

token at any step t is the fraction of green list tokens in V
(k)

t , which is |
V k

t |G
k . Therefore:1015

E|x|G =
T∑

t=1

∣∣∣V k
t

∣∣∣
G

k
= 1

k

T∑
t=1

E
[∣∣∣V k

t

∣∣∣
G

]
.1016

Given E
∣∣∣V k

t

∣∣∣
G
≥ ν, it follows that:1017

E|x|G ≥
ν

k
T.1018

Variance: For the variance, considering the sum of independent but not identically distributed1019

Bernoulli trials, each trial’s success probability is the fraction of green list tokens at step t, |
V k

t |G
k .1020

The variance of a Bernoulli variable with probability p is p(1− p). Therefore, the variance of the1021

total count of green list tokens is:1022

Var |x|G =
T∑

t=1

∣∣∣V k
t

∣∣∣
G

k

1−

∣∣∣V k
t

∣∣∣
G

k

 .1023

This simplifies to:1024

Var |x|G = T · E


∣∣∣V k

t

∣∣∣
G

k

1−

∣∣∣V k
t

∣∣∣
G

k


 .1025

By applying Jensen’s Inequality, due to the concavity of the function f(x) = x(1− x) for x in1026

[0,1], and given E
∣∣∣V k

t

∣∣∣
G
≥ ν, we derive:1027

Var |x|G ≤ T · ν

k

(
1− ν

k

)
.1028

1029

Theorem A.1 (Green List Tokens in Duwak). Given X = {x1, . . . , xT } from an LLM with green1030

list fraction γ, and adjusted probability of token n at t being1031

p̂n
t = exp(ln + 1[n ∈ G]δ)∑

i∈V exp(li + 1[i ∈ G]δ) ,1032

define V
(k)

t as top-k tokens by p̂n
t , with xt ∼ Uniform(V (k)

t ). The expectation and variance of1033

green list tokens, |x|G, are bounded by:1034

E|x|G ≥ AT,1035

1036
Var |x|G ≤ AT (1−A)(k + T − 1)k−1,1037

20



with 1038

A = γβS⋆

1 + (β − 1)γ 1039

under an approximation of top-k sampling to a stochastic sampling based on adjusted probability 1040

without replacement for k times. So (xt) from V
(k)

t approximates a stochastic process without 1041

replacement, reflecting the dynamic adjustment of probabilities as tokens are selected. 1042

Proof. Referencing Lemma E.1 from Kirchenbauer et al. (2023a), when a token index v is sampled 1043

from the watermarked distribution, the probability that the token is from the green list in the 1044

top-k candidates is 1045

P[v ∈ G] ≥ γβ

1 + (β − 1)γ St. 1046

For simplification in the proof, we rewrite
∣∣∣V k

t

∣∣∣
G

as V k
t and |x|G as x. 1047

Then, the expectation of the number of green list tokens in the top-k can be expressed as: 1048

Ek[V k
t ] = k · γβ

1 + (β − 1)γ St. 1049

Given V k
t , the expectation of the number of green list tokens in X is 1050

Et[x | V k
t ] = T

k
Ek[V k

t ]. 1051

Therefore, the total expectation of green list tokens in X becomes 1052

Et[x] = Et

[
T

k
Ek[V k

t ]
]

= T

k
· k · γβ

1 + (β − 1)γEtS
t ≥ T · γβS⋆

1 + (β − 1)γ , 1053

i.e., 1054

Et[XG] ≥ TA 1055

. 1056

Then, the variance of the green list tokens in the top-k, considering a Bernoulli distribution: 1057

Var V k
t = k

γβSt

1 + (β − 1)γ

(
1− γβSt

1 + (β − 1)γ

)
. 1058

Consider the variance within the top-k candidates, the variance of the green list token number in 1059

the whole sequence is 1060

Var x = Et[Var[x | V k
t ]] + Var[Ek[x | V k

t ]]. 1061
1062

Var[x | V k
t ] = T · V k

t

k
(1− V k

t

k
), 1063

1064

Et[Var[x | V k
t ]] = T

(
Et[V k

t ]
k

− Et[(V k
t )2]

k2

)
, 1065

given Et[(V k
t )2] = (Et[V k

t ])2 + Vart V k
t and Et[V k

t ] ≥ kA, Vart V k
t ≤ kA(1−A), 1066

Var[Ek[x | V k
t ]] = T 2 · Var V k

t

k2 ≤ T 2 · kA(1−A)
k2 , 1067

combine all terms together: 1068

Var x ≤ AT (1−A)(k + T − 1)k−1. 1069

1070
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