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ABSTRACT

We present Wasserstein Embedding for Graph Learning (WEGL), a novel and
fast framework for embedding entire graphs in a vector space, in which various
machine learning models are applicable for graph-level prediction tasks. We
leverage new insights on defining similarity between graphs as a function of the
similarity between their node embedding distributions. Specifically, we use the
Wasserstein distance to measure the dissimilarity between node embeddings of
different graphs. Unlike prior work, we avoid pairwise calculation of distances
between graphs and reduce the computational complexity from quadratic to linear in
the number of graphs. WEGL calculates Monge maps from a reference distribution
to each node embedding and, based on these maps, creates a fixed-sized vector
representation of the graph. We evaluate our new graph embedding approach
on various benchmark graph-property prediction tasks, showing state-of-the-art
classification performance while having superior computational efficiency. The
code is available at https://github.com/navid-naderi/WEGL.

1 INTRODUCTION

Many exciting and practical machine learning applications involve learning from graph-structured
data. While images, videos, and temporal signals (e.g., audio or biometrics) are instances of data that
are supported on grid-like structures, data in social networks, cyber-physical systems, communication
networks, chemistry, and bioinformatics often live on irregular structures (Backstrom & Leskovec,
2011; Sadreazami et al., 2017; Jin et al., 2017; Agrawal et al., 2018; Naderializadeh et al., 2020).
One can represent such data as (attributed) graphs, which are universal data structures. Efficient and
generalizable learning from graph-structured data opens the door to a vast number of applications,
which were beyond the reach of classic machine learning (ML) and, more specifically, deep learning
(DL) algorithms.

Analyzing graph-structured data has received significant attention from the ML, network science,
and signal processing communities over the past few years. On the one hand, there has been a rush
toward extending the success of deep neural networks to graph-structured data, which has led to
a variety of graph neural network (GNN) architectures. On the other hand, the research on kernel
approaches (Gärtner et al., 2003), perhaps most notably the random walk kernel (Kashima et al., 2003)
and the Weisfeiler-Lehman (WL) kernel (Shervashidze et al., 2011; Rieck et al., 2019; Morris et al.,
2019; 2020), remains an active field of study and the methods developed therein provide competitive
performance in various graph representation tasks (see the recent survey by Kriege et al. (2020)).

To learn graph representations, GNN-based frameworks make use of three generic modules, which
provide i) feature aggregation, ii) graph pooling (i.e., readout), and iii) classification (Hu* et al.,
2020). The feature aggregator provides a vector representation for each node of the graph, referred
to as a node embedding. The graph pooling module creates a representation for the graph from
its node embeddings, whose dimensionality is fixed regardless of the underlying graph size, and
which can then be analyzed using a downstream classifier of choice. On the graph kernel side, one
leverages a kernel to measure the similarities between pairs of graphs, and uses conventional kernel
methods to perform learning on a set of graphs (Hofmann et al., 2008). A recent example of such
methods is the framework provided by Togninalli et al. (2019), in which the authors propose a novel
node embedding inspired by the WL kernel, and combine the resulting node embeddings with the
∗Denotes equal contribution.
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Wasserstein distance (Villani, 2008; Kolouri et al., 2017) to measure the dissimilarity between two
graphs. Afterwards, they leverage conventional kernel methods based on the pairwise-measured
dissimilarities to perform learning on graphs.

Considering the ever-increasing scale of graph datasets, which may contain tens of thousands of
graphs or millions to billions of nodes per graph, the issue of scalability and algorithmic efficiency
becomes of vital importance for graph learning methods (Hernandez & Brown, 2020; Hu et al., 2020).
However, both of the aforementioned paradigms of GNNs and kernel methods suffer in this sense.
On the GNN side, acceleration of the training procedure is challenging and scales poorly as the graph
size grows (Bojchevski et al., 2019). On the graph kernel side, the need for calculating the matrix
of all pairwise similarities can be a burden in datasets with a large number of graphs, especially if
calculating the similarity between each pair of graphs is computationally expensive. For instance, in
the method proposed in (Togninalli et al., 2019), the computational complexity of each calculation of
the Wasserstein distance is cubic in the number of nodes (or linearithmic for the entropy-regularized
distance).

To overcome these issues, inspired by the linear optimal transport framework of (Wang et al., 2013),
we propose a linear Wasserstein Embedding for Graph Learning, which we refer to as WEGL. Our
proposed approach embeds a graph into a Hilbert space, where the `2 distance between two embedded
graphs provides a true metric between the graphs that approximates their 2-Wasserstein distance. For
a set of M graphs, the proposed method provides:

1. Reduced computational complexity of estimating the graph Wasserstein distance (Togninalli
et al., 2019) for a dataset of M graphs from a quadratic complexity in the number of graphs,
i.e., M(M−1)

2 calculations, to linear complexity, i.e., M calculations of the Wasserstein
distance; and

2. An explicit Hilbertian embedding for graphs, which is not restricted to kernel methods, and
therefore can be used in conjunction with any downstream classification framework.

We show that compared to multiple GNN and graph kernel baselines, WEGL achieves either state-
of-the-art or competitive results on benchmark graph-level classification tasks, including classical
graph classification datasets (Kersting et al., 2020) and the recent molecular property-prediction
benchmarks (Hu et al., 2020). We also compare the algorithmic efficiency of WEGL with two
baseline GNN and graph kernel methods and demonstrate that it is much more computationally
efficient relative to those algorithms.

2 BACKGROUND AND RELATED WORK

In this section, we provide a brief background on different methods for deriving representations for
graphs and an overview on Wasserstein distances by reviewing the related work in the literature.

2.1 GRAPH REPRESENTATION METHODS

Let G = (V, E) denote a graph, comprising a set of nodes V and a set of edges E ⊆ V2, where two
nodes u, v ∈ V are connected to each other if and only if (u, v) ∈ E .1 For each node v ∈ V , we
define its set of neighbors as Nv , {u ∈ V : (u, v) ∈ E}. The nodes of the graph G may have
categorical labels and/or continuous attribute vectors. We use a unified notation of xv ∈ RF to denote
the label and/or attribute vector of node v ∈ V , where F denotes the node feature dimensionality.
Moreover, we use wuv ∈ RE to denote the edge feature vector for any edge (u, v) ∈ E , where E
denotes the edge feature dimensionality. Node and edge features may be present depending on the
graph dataset under consideration.

To learn graph properties from the graph structure and its node/edge features, one can use a function
ψ : G → H to map any graph G in the space of all possible graphs G to an embedding ψ(G) in a
Hilbert space H. Kernel methods have been among the most popular ways of creating such graph
embeddings. A graph kernel is defined as a function k : G2 → R, where for two graphs G and G′,
k(G,G′) represents the inner product of the embeddings ψ(G) and ψ(G′) over the Hilbert spaceH.
The mapping ψ could be explicit, as in graph convolutional neural networks, or implicit as in the case

1Note that this definition includes both directed and undirected graphs, where in the latter case, for each edge
(u, v) ∈ E , the reverse edge (v, u) is also included in E .
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of the kernel similarity function k(·, ·) (i.e., the kernel trick). Kriege et al. (2014) provide a thorough
discussion on explicit and implicit embeddings for learning from graphs.

Kashima et al. (2003) introduced graph kernels based on random walks on labeled graphs. Subse-
quently, shortest-path kernels were introduced in (Borgwardt & Kriegel, 2005). These works have
been followed by graphlet and Weisfeiler-Lehman subtree kernel methods (Shervashidze et al., 2009;
2011; Morris et al., 2017). More recently, kernel methods using spectral approaches (Kondor &
Pan, 2016), assignment-based approaches (Kriege et al., 2016; Nikolentzos et al., 2017), and graph
decomposition algorithms (Nikolentzos et al., 2018) have also been proposed in the literature.

Despite being successful for many years, kernel methods often fail to leverage the explicit continuous
features that are provided for the graph nodes and/or edges, making them less adaptable to the
underlying data distribution. To alleviate these issues, and thanks in part to the prominent success
of deep learning in many domains, including computer vision and natural language processing,
techniques based on graph neural networks (GNNs) have emerged as an alternative paradigm for
learning representations from graph-based data. In general, a GNN comprises multiple hidden layers,
where at each layer, each node combines the features of its neighboring nodes in the graph to derive a
new feature vector. At the GNN output, the feature vectors of all nodes are aggregated using a readout
function (such as global average pooling), resulting in the final graph embedding ψ(G). More details
on the combining and readout mechanisms of GNNs are provided in Appendix A.4.

Kipf and Welling (Kipf & Welling, 2016) proposed a GNN architecture based on a graph convo-
lutional network (GCN) framework. This work, alongside other notable works on geometric deep
learning (Defferrard et al., 2016), initiated a surge of interest in GNN architectures, which has led
to several architectures, including the Graph Attention network (GAT) (Veličković et al., 2017),
Graph SAmple and aggreGatE (GraphSAGE) (Hamilton et al., 2017), and the Graph Isomorphism
Network (GIN) (Xu et al., 2019). Each of these architectures modifies the GNN combining and
readout functions and demonstrates state-of-the-art performance in a variety of graph representation
learning tasks.

2.2 WASSERSTEIN DISTANCES

Let µi denote a Borel probability measure with finite pth moment defined on Z ⊆ Rd, with corre-
sponding probability density function pi, i.e., dµi(z) = pi(z)dz. The 2-Wasserstein distance between
µi and µj defined on Z,Z ′ ⊆ Rd is the solution to the optimal mass transportation problem with `2
transport cost (Villani, 2008):

W2(µi, µj) =

(
inf

γ∈Γ(µi,µj)

∫
Z×Z′

‖z − z′‖2dγ(z, z′)

) 1
2

, (1)

where Γ(µi, µj) is the set of all transportation plans γ ∈ Γ(µi, µj) such that γ(A×Z ′) = µi(A) and
γ(Z ×B) = µj(B) for any Borel subsets A ⊆ Z and B ⊆ Z ′. Due to Brenier’s theorem (Brenier,
1991), for absolutely continuous probability measures µi and µj (with respect to the Lebesgue
measure), the 2-Wasserstein distance can be equivalently obtained from

W2(µi, µj) =

(
inf

f∈MP (µi,µj)

∫
Z
‖z − f(z)‖2dµi(z)

) 1
2

, (2)

where MP (µi, µj) = {f : Z → Z ′ | f#µi = µj} and f#µi represents the pushforward of measure
µi, characterized as∫

B

dµj(z
′) =

∫
f−1(B)

dµi(z) for any Borel subset B ⊆ Z ′. (3)

The mapping f is referred to as a transport map (Kolouri et al., 2017), and the optimal transport map
is called the Monge map. For absolutely continuous measures, the differential form of the above
equation takes the following form, det(Df(z))pj(f(z)) = pi(z), which is referred to as the Jacobian
equation. For discrete probability measures, when the transport plan γ is a deterministic optimal
coupling, such a transport plan is referred to as a Monge coupling (Villani, 2008).

Recently, Wasserstein distances have been used for representation learning on graphs and images
(Togninalli et al., 2019; Zhang et al., 2020; Bécigneul et al., 2020). In particular, (Togninalli et al.,
2019) proposed a Wasserstein kernel for graphs that involves pairwise calculation of the Wasserstein
distance between graph representations. Pairwise calculation of the Wasserstein distance, however,
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could be expensive, especially for large graph datasets. In what follows, we apply the linear optimal
transportation framework (Wang et al., 2013) to define a Hilbertian embedding, in which the `2
distance provides a true metric between the probability measures that approximatesW2. We show
that in a dataset containing M graphs, this framework reduces the computational complexity from
calculating M(M−1)

2 linear programs to M .

3 LINEAR WASSERSTEIN EMBEDDING

Figure 1: Graphical representation of
the linear Wasserstein embedding frame-
work, where the probability distributions are
mapped to the tangent space with respect to
a fixed reference distribution. The figure is
adapted from Kolouri et al. (2017).

Wang et al. (2013) and the follow-up works (Seguy &
Cuturi, 2015; Kolouri et al., 2016; Courty et al., 2018)
describe frameworks for isometric Hilbertian embedding
of probability measures such that the Euclidean distance
between the embedded images approximates W2. We
leverage the prior work and introduce the concept of
linear Wasserstein embedding for learning graph embed-
dings.

3.1 THEORETICAL FOUNDATION

We adhere to the definition of the linear Wasserstein em-
bedding for continuous measures. However, all deriva-
tions hold for discrete measures as well. More precisely,
let µ0 be a reference probability measure defined on
Z ⊆ Rd, with a positive probability density function p0,
s.t. dµ0(z) = p0(z)dz and p0(z) > 0 for ∀z ∈ Z . Let
fi denote the Monge map that pushes µ0 into µi, i.e.,

fi = argminf∈MP (µ0,µi)

∫
Z
‖z − f(z)‖2dµ0(z). (4)

Define φ(µi) , (fi − id)
√
p0, where id(z) = z,∀z ∈ Z is the identity function. In cartography,

such a mapping is known as the equidistant azimuthal projection, while in differential geometry, it is
called the logarithmic map. The mapping φ(·) has the following characteristics (partially illustrated
in Figure 1):

1. φ(·) provides an isometric embedding for probability measures, i.e., using the Jacobian
equation pi = det(Df−1

i )p0(f−1
i ), where fi = φ(µi)√

p0
+ id.

2. φ(µ0) = 0, i.e., the reference is mapped to zero.

3. ‖φ(µi)− φ(µ0)‖2 = ‖φ(µi)‖2 =W2(µi, µ0), i.e., the mapping preserves distances to µ0.

4. ‖φ(µi) − φ(µj)‖2 ≈ W2(µi, µj), i.e., the `2 distance between φ(µi) and φ(µj), while
being a true metric between µi and µj , is an approximation ofW2(µi, µj).

Embedding probability measures {µi}Mi=1 via φ(·) requires calculating M Monge maps. The fourth
characteristic above states that φ(·) provides a linear embedding for the probability measures. There-
fore, we call it the linear Wasserstein embedding. The mapping φ(µi) could be thought as the
Reproducing Kernel Hilbert Space (RKHS) embedding of the measure, µi (Muandet et al., 2017). In
practice, for discrete distributions, the Monge coupling is used, which could be approximated from the
Kantorovich plan (i.e., the transport plan) via the so-called barycenteric projection (Wang et al., 2013).
We here acknowledge the concurrent work by Mialon et al. (2021), where the authors use a similar
idea to the linear Wasserstein embedding as a pooling operator for learning from sets of features.
The authors demonstrate the relationship between their proposed optimal transport-based pooling
operation and the widespread attention pooling methods in the literature. A detailed description of
the capabilities of the linear Wasserstein embedding framework is included in Appendix A.1. We
next provide the numerical details of the barycenteric projection (Ambrosio et al., 2008; Wang et al.,
2013).
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3.2 NUMERICAL DETAILS

Consider a set of probability distributions {pi}Mi=1, and let Zi =
[
zi1, . . . , z

i
Ni

]T ∈ RNi×d be an array
containing Ni i.i.d. samples from distribution pi, i.e., zik ∈ Rd ∼ pi,∀k ∈ {1, . . . , Ni}. Let us define
p0 to be a reference distribution, with Z0 =

[
z0

1 , . . . , z
0
N

]T ∈ RN×d , where N = b 1
M

∑M
i=1Nic

and z0
j ∈ Rd ∼ p0,∀j ∈ {1, . . . , N}. The optimal transport plan between pi and p0, denoted by

π∗i ∈ RN×Ni , is the solution to the following linear program,

π∗i = argminπ∈Πi

N∑
j=1

Ni∑
k=1

πjk‖z0
j − zik‖2, (5)

where Πi ,
{
π ∈ RN×Ni

∣∣ Ni N∑
j=1

πjk = N
Ni∑
k=1

πjk = 1, ∀k ∈ {1, . . . , Ni},∀j ∈ {1, . . . , N}
}

.

The Monge map is then approximated from the optimal transport plan by barycentric projection via

Fi = N(π∗i Zi) ∈ RN×d. (6)

Note that the transport plan πi could split the mass in z0
j ∈ Z0 and distribute it on ziks. The barycentric

projection calculates the center of mass of the transportation locations for z0
j to ensure that no mass

splitting is happening (see Figure 5), and hence it approximates a Monge coupling. Finally, the
embedding can be calculated by φ(Zi) = (Fi − Z0)/

√
N ∈ RN×d. With a slight abuse of notation,

we use φ(pi) and φ(Zi) interchangeably throughout the paper. Due to the barycenteric projection,
here, φ(·) is only pseudo-invertible.

4 WEGL: A LINEAR WASSERSTEIN EMBEDDING FOR GRAPHS

The application of the optimal transport problem to graphs is multifaceted. For instance, some works
focus on solving the “structured” optimal transport concerning an optimal probability flow, where the
transport cost comes from distances on an often unchanging underlying graph (Léonard et al., 2016;
Essid & Solomon, 2018; Titouan et al., 2019). Here, we are interested in applying optimal transport
to measure the dissimilarity between two graphs (Maretic et al., 2019; Togninalli et al., 2019; Dong
& Sawin, 2020). Our work significantly differs from (Maretic et al., 2019; Dong & Sawin, 2020),
which measure the dissimilarity between non-attributed graphs based on distributions defined by their
Laplacian spectra and is closer to (Togninalli et al., 2019).

Our proposed graph embedding framework, termed Wasserstein Embedding for Graph Learning
(WEGL), combines node embedding methods for graphs with the linear Wasserstein embedding
explained in Section 3. More precisely, let {Gi = (Vi, Ei)}Mi=1 denote a set of M individual graphs,
each with a set of possible node features {xv}v∈Vi and a set of possible edge features {wuv}(u,v)∈Ei .

Let h(·) be an arbitrary node embedding process, where h(Gi) = Zi =
[
z1, . . . , z|Vi|

]T ∈ R|Vi|×d.
Having the node embeddings {Zi}Mi=1, we can then calculate a reference node embedding Z0 (see
Section 4.2 for details), which leads to the linear Wasserstein embedding φ(Zi) with respect to Z0,
as described in Section 3. Therefore, the entire embedding for each graph Gi, i ∈ {1, . . . ,M}, is
obtained by composing φ(·) and h(·), i.e., ψ(Gi) = φ(h(Gi)). Figure 2 visualizes this process.

4.1 NODE EMBEDDING

There are many choices for node embedding methods (Chami et al., 2020). These methods in
general could be parametric or non-parametric, e.g., as in propagation/diffusion-based embeddings.
Parametric embeddings are often implemented via a GNN encoder. The encoder can capture different
graph properties depending on the type of supervision (e.g., supervised or unsupervised). Self-
supervised embedding methods have also been recently shown to be promising (Hu* et al., 2020).

In this paper, for our node embedding process h(·), we follow a similar non-parametric
propagation/diffusion-based encoder as in (Togninalli et al., 2019). One of the appealing advantages
of this framework is its simplicity, as there are no trainable parameters involved. In short, given a
graph G = (V, E) with node features {xv}v∈V and scalar edge features {wuv}(u,v)∈E , we use the
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Figure 2: Our proposed graph embedding framework, WEGL, combines node embedding methods with the
linear Wasserstein embedding framework described in Section 3. Given a graph Gi = (Vi, Ei), we first embed
the graph nodes into a d-dimensional Hilbert space and obtain an array of node embeddings, denoted by
h(Gi) = Zi ∈ R|Vi|×d. We then calculate the linear Wasserstein embedding of Zi with respect to a reference
Z0, i.e., φ(Zi), to derive the final graph embedding.

following instantiation of equation 12 to define the combining function as

x(l)
v =

∑
u∈Nv∪{v}

wuv√
deg(u)deg(v)

· x(l−1)
u , ∀l ∈ {1, . . . , L}, ∀v ∈ V, (7)

where for any node v ∈ V , its degree deg(v) is defined as its number of neighbors in G augmented
with self-connections, i.e., deg(v) , 1 + |Nv|. Note that the normalization of the messages between
graph nodes by the (square root of) the two end-point degrees in equation 7 have also been used in
other architectures, including GCN (Kipf & Welling, 2016). For the cases where the edge weights are
not available, including self-connection weights {wvv}v∈V , we set them to one. In Appendix A.5, we
show how we use an extension of equation 7 to treat graphs with multiple edge features/labels. Finally,
we let zv = g

(
{x(l)

v }Ll=0

)
represent the resultant embedding for each node v ∈ V , where g(·) is a

local pooling process on a single node (not a global pooling), e.g., concatenation or averaging.

4.2 CALCULATION OF THE REFERENCE DISTRIBUTION

To calculate the reference distribution, we use the k-means clustering algorithm on
⋃M
i=1 Zi with

N =
⌊

1
M

∑M
i=1Ni

⌋
centroids. Alternatively, one can calculate the Wasserstein barycenter (Cuturi &

Doucet, 2014) of the node embeddings or simply use N samples from a normal distribution. While
approximation of the 2-Wasserstein distance in the tangent space depends on the reference distribution
choice, surprisingly, we see a stable performance of WEGL for different references. In Appendix A.2,
we compare the performance of WEGL with respect to different references.

5 EXPERIMENTAL EVALUATION

In this section, we discuss the evaluation results of our proposed algorithm on multiple benchmark
graph classification datasets. We use the PyTorch Geometric framework (Fey & Lenssen, 2019)
for implementing WEGL. In all experiments, we use scikit-learn for the implementation of our
downstream classifiers on the embedded graphs (Buitinck et al., 2013).

5.1 MOLECULAR PROPERTY PREDICTION ON THE OPEN GRAPH BENCHMARK

We first evaluate our algorithm on the molecular property prediction task on the ogbg-molhiv
dataset. This dataset is part of the Open Graph Benchmark (Hu et al., 2020), which involves
node-level, link-level, and graph-level learning and prediction tasks on multiple datasets spanning
diverse problem domains. The ogbg-molhiv dataset, in particular, is a molecular tree-like dataset,
consisting of 41, 127 graphs, with an average number of 25.5 nodes and 27.5 edges per graph. Each
graph is a molecule, with nodes representing atoms and edges representing bonds between them, and
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Method Validation ROC-AUC (%) Test ROC-AUC (%)
GCN (Kipf & Welling, 2016) 83.8± 0.9 76.0± 1.2
GIN + Virtual Node (Xu et al., 2019) 84.8± 0.7 77.1± 1.5
DeeperGCN (Li et al., 2020) 84.3± 0.6 78.6± 1.2
HIMP (Fey et al., 2020) - 78.8± 0.8

G
N

N

GCN + GraphNorm (Cai et al., 2020) 79.0± 1.1 78.8± 1.0
WEGL + Random Forest 79.2± 2.2 75.5± 1.5
WEGL + Virtual Node + Random Forest 81.9± 1.3 76.5± 1.8

O
ur

s
WEGL + Virtual Node + AutoML 81.6± 0.6 79.1± 0.3
GAP + Virtual Node + Random Forest 74.9± 2.4 72.1± 1.7

Table 1: Graph classification results on the ogbg-molhiv dataset. The results for GCN and GIN are reported
from (Hu et al., 2020). The best validation and test results are shown in bold.

it includes both node and edge attributes, characterizing the atom and bond features. The goal is to
predict a binary label indicating whether or not a molecule inhibits HIV replication.

To train and evaluate our proposed method, we use the scaffold split provided by the dataset, and
report the mean and standard deviation of the results across 10 different random seeds. We perform a
grid search over a set of hyperparameters and report the configuration that leads to the best validation
performance. We also report a virtual node variant of the graphs in our evaluations, where each
graph is augmented with an additional node that is connected to all the original nodes in the graph.
This node serves as a shortcut for message passing among the graph nodes, bringing any pair of
nodes within at most two hops of each other. The complete implementation details can be found in
Appendix A.5.

Table 1 shows the evaluation results of WEGL on the ogbg-molhiv dataset in terms of the
ROC-AUC (i.e., Receiver Operating Characteristic Area Under the Curve), alongside multiple GNN-
based baseline algorithms. Specifically, we show the results using two classifiers: A random forest
classifier (Breiman, 2001) and an automated machine learning (AutoML) classifier using the Auto-
Sklearn 2.0 library (Feurer et al., 2020). As the table demonstrates, while WEGL embeddings
combined with random forest achieve a decent performance level, using AutoML further enhances
the performance and achieves state-of-the-art test results on this dataset, showing the high expressive
power of WEGL in large-scale graph datasets, without the need for end-to-end training.

Moreover, as an ablation study, we report the evaluation results on the ogbg-molhiv dataset using a
random forest classifier, where the Wasserstein embedding module after the node embedding process
is replaced with global average pooling (GAP) among the output node embeddings of each graph to
derive the graph-level embedding. As the table demonstrates, there is a significant performance drop
when using GAP graph embedding, which indicates the benefit of our proposed graph embedding
method as opposed to average readout.

5.2 TUD BENCHMARK DATASETS

We also consider a set of social network, bioinformatics and molecule graph datasets (Kersting et al.,
2020). The social network datasets (IMDB-BINARY, IMDB-MULTI, COLLAB, REDDIT-BINARY,
and REDDIT-MULTI-5K) lack both node and edge features. Therefore, in these datasets we use a
one-hot representation of the node degrees as their initial feature vectors, as also used in prior work,
e.g., (Xu et al., 2019). To handle the large scale of the REDDIT-BINARY and REDDIT-MULTI-5K
and datasets, we clip the node degrees at 500.

Moreover, for the molecule (PTC-MR) and bioinformatics (ENZYMES and PROTEINS) datasets, we
use the readily-provided node labels in (Kersting et al., 2020) as the initial node feature vectors.
Besides, for PTC-MR which has edge labels, as explained in Appendix A.5, we use an extension
of equation 7 to use the one-hot encoded edge features in the diffusion process. To evaluate the
performance of WEGL, we follow the methodology used in (Yanardag & Vishwanathan, 2015;
Niepert et al., 2016; Xu et al., 2019), where for each dataset, we perform 10-fold cross-validation with
random splitting on the entire dataset, conducting a grid search over the desired set of hyperparameters
as mentioned in Appendix A.5, and we then report the mean and standard deviation of the validation
accuracies achieved during cross-validation. For this experiment, we use two ensemble classifiers,

7



Published as a conference paper at ICLR 2021

Method IMDB-B IMDB-M COLLAB RE-B RE-M5K PTC-MR ENZYMES PROTEINS

DGCNN (Zhang et al., 2018a) 69.2±3.0 45.6±3.4 71.2±1.9 87.8±2.5 49.2±1.2 58.6 38.9±5.7 72.9±3.5
GraphSAGE (Hamilton et al., 2017) 68.8±4.5 47.6±3.5 73.9±1.7 84.3±1.9 50.0±1.3 63.9±7.7 - 75.9±3.2
GIN (Xu et al., 2019) 75.1±5.1 2.3±2.8 80.2±1.9 92.4±2.5 57.5±1.5 64.6±7.0 - 76.2±2.8
GNTK (Du et al., 2019) 76.9±3.6 52.8±4.6 83.6±1.0 - - 67.9±6.9 - 75.6±4.2
CapsGNN (Xinyi & Chen, 2019) 73.1±4.8 50.3±2.6 79.6±0.9 - 52.9±1.5 - 54.7±5.7 76.3±3.6

G
N

N

GraphNorm (Cai et al., 2020) 76.0±3.7 - 80.2±1.0 93.5±2.1 - 64.9±7.5 - 77.4±4.9
DGK (Yanardag & Vishwanathan, 2015) 67.0±0.6 44.6±0.5 73.1±0.3 78.0±0.4 41.3±0.2 57.3±1.1 27.1±0.8 71.7±0.5
WL (Shervashidze et al., 2011) 73.8±3.9 49.8±0.5 74.8±0.2 68.2±0.2 51.2±0.3 57.0±2.0 53.2±1.1 72.9±0.6
RetGK (Zhang et al., 2018b) 71.0±0.6 46.7±0.6 73.6±0.3 90.8±0.2 54.2±0.3 67.9±1.4 59.1±1.1 75.2±0.3
AWE (Ivanov & Burnaev, 2018) 74.5±5.8 51.5±3.6 73.9±1.9 87.9±2.5 50.5±1.9 - 35.8±5.9 -

G
K

WWL (Togninalli et al., 2019) 74.4±0.8 - - - - 66.3±1.2 59.1±0.8 74.3±0.6
WEGL + SVM-RBF 73.4±2.5 51.7±3.1 78.6±1.0 92.1±1.9 56.1±2.3 63.4±5.3 57.3±4.2 76.0±4.4
WEGL + Random Forest 75.4±5.0 52.0±4.1 79.8±1.5 92.0±0.8 55.1±2.5 67.5±7.7 60.5±5.9 76.5±4.2

O
ur

s

WEGL + GBDT 75.2±5.0 52.3±2.9 80.6±2.0 92.9±1.9 55.4±1.6 66.2±6.9 60.0±6.3 76.3±3.9

Table 2: Graph classification accuracy (%) of our method and comparison with the state-of-the-art GNNs and
graph kernels (GKs) on various TUD graph classification tasks. The results for DGCNN are reported from (Errica
et al., 2020). The top-three performers on each dataset are shown in bold.

namely Random Forest and Gradient Boosted Decision Tree (GBDT), together with kernel-SVM with
an RBF kernel (SVM-RBF). Given that the Euclidean distance in the embedding space approximates
the 2-Wasserstein distance, the SVM-RBF classification results are comparable with those reported
by Togninalli et al. (2019).

Table 2 shows the classification accuracies achieved by WEGL on the aforementioned datasets
as compared with several GNN and graph kernel baselines, whose results are extracted from the
corresponding original papers. As the table demonstrates, our proposed algorithm achieves either
state-of-the-art or competitive results across all the datasets, and in particular, it is among the top-three
performers in all of them. This shows the effectiveness of the proposed linear Wasserstein embedding
for learning graph-level properties across different domains.

5.3 COMPUTATION TIME

As mentioned before, one of the most important advantages of WEGL as compared to other graph rep-
resentation learning methods is its algorithmic efficiency. To evaluate that, we compare the wall-clock
training and inference times of WEGL with those of GIN and the Wasserstein Weisfeiler-Lehman
(WWL) graph kernel on five different TUD datasets (IMDB-B, MUTAG, PTC-MR, PROTEINS, and
NCI1)2. For WEGL and WWL, we use the exact linear programming solver (as opposed to the
entropy-regularized version). We carry out our experiments for WEGL and WWL on a 2.3 GHz
Intel R© Xeon R© E5-2670 v3 CPU, while we use a 16 GB NVIDIA R© Tesla R© P100 GPU for GIN. As a
reference, we implement GIN on the aforementioned CPU hardware as well.

Figure 3 shows how the training and inference run-times of WEGL, WWL and GIN scale with the
number of graphs in the dataset, the average number of nodes per graph, and the average number of
edges per graph. As the figure illustrates, while having similar or even better performance, training
WEGL is several orders of magnitude faster than WWL and GIN, especially for datasets with larger
numbers of graphs. Note that training WWL becomes very inefficient as the number of graphs in the
dataset increases due to the pairwise distance calculation between all the graphs.

During inference, WEGL is slightly slower than GIN, when implemented on a GPU. However,
on most datasets, WEGL is considerably faster in inference as compared to GIN implemented
on a CPU. Moreover, both algorithms are significantly faster than WWL. Using GPU-accelerated
implementations of the diffusion process in equation 7 and the entropy-regularized transport problem
could potentially further enhance the computational efficiency of WEGL during inference.

2The complete classification results of WEGL on these datasets can be found in Appendix A.6.
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Figure 3: Average wall-clock time comparison of our proposed method, WEGL with WWL (Togninalli et al.,
2019) and GIN (Xu et al., 2019). WEGL and WWL were implemented on a 2.3 GHz Intel R© Xeon R© E5-2670
v3 CPU. Moreover, GIN was implemented twice, once using the aforementioned CPU and once using a 16 GB
NVIDIA R© Tesla R© P100 GPU, with 5 hidden layers, 300 training epochs and a batch size of 16 in both cases.

6 CONCLUSION

We considered the problem of graph property prediction and introduced the linear Wasserstein
Embedding for Graph Learning, which we denoted as WEGL. Similar to (Togninalli et al., 2019),
our approach also relies on measuring the Wasserstein distances between the node embeddings of
graphs. Unlike (Togninalli et al., 2019), however, we further embed the node embeddings of graphs
into a Hilbert space, in which their Euclidean distance approximates their 2-Wasserstein distance.
WEGL provides two significant benefits: i) it has linear complexity in the number of graphs (as
opposed to the quadratic complexity of (Togninalli et al., 2019)), and ii) it enables the application of
any ML algorithm of choice, such as random forest, gradient boosted decision tree, or even AutoML.
We demonstrated WEGL’s superior performance and highly efficient training on a wide range of
benchmark datasets, including the ogbg-molhiv dataset and the TUD graph classification tasks.
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A APPENDIX

Here we provide further details on the theoretical aspect of WEGL, our implementation details, and
the sensitivity of the results to the choice of reference distribution. We also share our implementation
code on the ogbg-molhiv dataset to help with the review process.

A.1 DETAILED DISCUSSION ON LINEAR WASSERSTEIN EMBEDDING

The linear Wasserstein embedding used in WEGL is based on the Linear Optimal Transport (LOT)
framework introduced in (Wang et al., 2013). The main idea is to compute the “projection” of the
manifold of probability measures to the tangent space at a fixed reference measure. In particular, the
tangent space at measure µ0 is the set of vector fields Vµ0

= {v : Z → Rd |
∫
Z |v(z)|2dµ0(z) <∞}

such that the inner product is the weighted `2:

〈vi, vj〉µ0
=

∫
Z
vi(z) · vj(z)dµ0(z). (8)

We can then define vi(·) , f(·)− id(·), where f(·) is the optimal transport map from µ0 to µi. Note
that vi ∈ Vµ0

, v0 = 0, and

‖vi − v0‖2µ0
= ‖vi‖2µ0

= 〈vi, vi〉µ0 =

∫
Z
‖f(z)− z‖2dµ0(z) =W2(µi, µ0). (9)

In the paper, we use φ(µi) = vi
√
p0 to turn the weighted-`2 into `2.

The discussion above assumes an absolutely continuous reference measure µ0. A more interest-
ing treatment of the problem is via the generalized geodesics defined in (Ambrosio et al., 2008),
connecting µi and µj and enabling us to use discrete reference measures. Following the notation
in (Ambrosio et al., 2008), given the reference measure µ0, let Γ(µi, µ0) be the set of transport plans
between µi and µ0, and let Γ(µi, µj , µ0) be the set of all measures on the product space Z × Z × Z
such that the marginals over µi and µj are Γ(µj , µ0) and Γ(µi, µ0), respectively. Then the linearized
optimal transport distance is defined as

d2
LOT,µ0

(µi, µj) = inf
γ∈Γ(µi,µj ,µ0)

∫
Z×Z×Z

‖z − z′‖2dγ(z, z′, z′′). (10)

In a discrete setting, where µi = 1
Ni

Ni∑
n=1

δzn , µj = 1
Nj

Nj∑
m=1

δz′m , and µ0 = 1
N

N∑
l=1

δz′′l , we have

d2
LOT,µ0

(µi, µj) = min
γ∈Γ(µi,µj ,µ0)

1

NiNjN

Ni∑
n=1

Nj∑
m=1

N∑
l=1

γnml‖zn − z′m‖2. (11)

See Figure 4a for a depiction of Equation equation 11’s meaning. Finally, the idea of barycenteric
projection used to approximate Monge couplings and provide a fixed-size representation is shown in
Figure 4b.
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Figure 4: Illustration of (a) the meaning behind γnml used in the LOT distance in equation 11, and (b) the idea
of the barycenteric projection, which provides a fixed-size representation (i.e., of size N ).
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Figure 5: An experiment demonstrating the capability of the linear Wasserstein embedding. (a) A simple
dataset consisting of shifted and scaled noisy ring distributions {pi}Mi=1, where we only observe samples
Zi = [zik ∼ pi]

Ni
i=1 from each distribution, together with the process of obtaining the linear Wasserstein

embedding with respect to a reference distribution. In short, for each distribution pi, the embedding approximates
the Monge-map (i.e., a vector field) from the reference samples Z0 to the target samples Zi by a barycentric
projection of the optimal transport plan. Adding samples in the embedding space corresponds to adding
their vector fields, which can be used to calculate (b) the mean distribution in the embedding space, i.e.,
φ−1( 1

M

∑M
i=1 φ(pi)) and (c)-(d) the Euclidean geodesics in this space, i.e., φ−1(αφ(pi) + (1− α)φ(pj)) for

α ∈ [0, 1]. As can be seen, the calculated mean is the Wasserstein barycenter of the dataset, and the Euclidean
geodesics in the embedding space follow the Wasserstein geodesics in the original space.

Next, to demonstrate the capability of the linear Wasserstein embedding, we present the following
experiment. Consider a set of distributions {pi}Mi=1, where each pi is a translated and dilated ring
distribution in R2, and Ni samples are observed from pi, where Ni and Nj could be different for
i 6= j. We then consider a normal distribution as the reference distribution and calculate the linear
Wasserstein embedding with respect to the reference (See Figure 5a). Given the pseudo-invertible
nature of the embedding, to demonstrate the modeling capability of the framework, we calculate the
mean in the embedding space (i.e., on the vector fields), and invert it to obtain the mean distribution
p̄. Figure 5b shows the calculated mean, indicating that the linear Wasserstein embedding framework
has successfully retrieved a ring distribution as the mean. Finally, we calculate Euclidean geodesics
in the embedding space (i.e., the convex combination of the vector fields) between pi and p0, as well
as between pi and pj , and show the inverted geodesics in Figures 5c and 5d, respectively. As the
figures demonstrate, the calculated geodesics follow the Wasserstein geodesics.

APPROXIMATION ERROR OF THE EMBEDDING

Given the Euclidean distance in the embedding space is a transport-based distance (i.e., the so-
called LOT distance) that approximates the Wasserstein distance, a natural question arises about the
approximation error. Here we point the reader to the recent work of Moosmüller & Cloninger (2020)
in which the authors provide bounds on how well the Euclidean distance in the embedding space
approximates the 2-Wasserstein distance. In particular, the authors show that:

W2(µi, µj) ≤ ‖φ(µi)− φ(µj)‖2 ≤ W2(µi, µj) + ‖fµj
µi
− fµj

µ0
◦ fµ0

µi
‖µi

,

where fµj
µi is the optimal transport map from µi to µj . This inequality simply indicates that the

approximation error is caused by conditioning the transport map to be obtained by composition of the
optimal transport maps from µi to µ0, and then from µ0 to µj . More importantly, it can be shown
that if µi and µj are shifted and scaled versions of the reference measure, µ0, then the embedding is
isometric (See Figure 1 and 2 in Moosmüller & Cloninger (2020)).

Maybe a less interesting upper bound can also be obtained by the triangle inequality:

W2(µi, µj) ≤ ‖φ(µi)− φ(µj)‖2 ≤ W2(µi, σ) +W2(σ, µj),

which ensures some regularity of the embedding.
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REGULARITY OF THE EMBEDDING

A good question was raised during the feedback period, about the regularity of the proposed embed-
ding. The regularity of the graph embedding will depend on both the regularity of node-embedding
and the Wasserstein embedding. In the following, we avoid the discussion on regularity of the node-
embedding (as it is not the main focus of our work), and focus on the regularity of the Wasserstein
embedding. To that end, we first point out several regularity characteristics pointed out in Appendix
A of Moosmüller & Cloninger (2020). Most notably Theorem 4.2 in their paper, shows an almost
isometric property when the distortions are within an ε-tube around the set of shifts and scalings. In
short, let µ ∈ P2(Z), R > 0, ε > 0, E be the set of all shifts and scalings, and

Eµ,R = {h ∈ E : ‖h‖µ ≤ R},
and let

Gµ,R,ε = {g ∈ L2(Z, µ) : ∃h ∈ Eµ,R : ‖g − h‖µ ≤ ε},
which is the ε-tube around set of shifts and scalings. Now, assume µ0 ∈ P2(Z) is the reference
measure and both µ and µ0 satisfy Caffarelli’s regularity theorem. Then for g1, g2 ∈ Gµ,R,ε we have

0 ≤ ‖φ(g1#µ)− φ(g2#µ)‖2 −W2(g1#µ, g2#µ) ≤ Cµ0,µ,Rε+ C̄µ0,µ,Rε
2,

where Cµ0,µ,R and C̄µ0,µ,R are constants depending on µ0, µ, and R.

The results shown above can be used to derive regularity results for the linear Wasserstein embedding
with respect to additive noise. We know that the addition of two random variables leads to a new
random variable with its PDF being the convolution of the original PDFs. Therefore, for features
Zi = [z1, ..., zNi

]T , let Ẑi = [z1 + e1︸ ︷︷ ︸
ẑ1

, ..., zNi
+ eNi︸ ︷︷ ︸
ẑNi

]T denote the noisy samples for ei ∼ η, where η

is the noise distribution. Then the noisy samples, ẑi, will be distributed according to µ̂i = µi ∗ η. For
instance, for the Gaussian additive noise, µ̂i is the smoothed version of µi. Therefore, there exists a
transport map in g ∈ Gµi,R,ε for which, µ̂i = g#µi and ‖g − id‖µi =W2(µ̂i, µi) ≤ ε, and we have:

0 ≤ ‖φ(µi)− φ(µ̂i)‖2 ≤ (Cµ0,µi,R + 1)ε+ C̄µ0,µi,Rε
2.

A.2 SENSITIVITY TO THE CHOICE OF REFERENCE DISTRIBUTION

To measure the dependency of WEGL on the reference distribution choice, we changed the reference
to a normal distribution (i.e., data-independent). We compared the results of WEGL using the new
reference distribution to that using a reference distribution calculated via k-means on the training set.
We used the ogbg-molhiv dataset with initial node embedding of size 300 and 4 diffusion layers.
We ran the experiment with 100 different random seeds, and measured the test ROC-AUC of WEGL
calculated with the two aforementioned reference distributions. Figure 6 shows the results of this
experiment, indicating that the choice of reference distribution is statistically insignificant.

72 74 76 78 80
ROC-AUC (%)

0

2

4

6

8

10

12

p-value: 0.05

k-means, 76.86 ± 1.44
Normal,   76.45 ± 1.47

Figure 6: ROC-AUC (%) results on ogbg-molhiv dataset, when the reference distribution is calculated by
k-means (Section 4.2) on the training dataset (denoted as k-means), compared to when it is fixed to be a normal
distribution (denoted as Normal). With a p-value= 0.05, the choice of the template is statistically insignificant.
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Figure 7: Comparing the performance of the linear programming (LP) solver with the Sinkhorn algorithm (on
entropy regularized OT problem) on the ogbg-molhiv dataset for various regularization parameters.

A.3 LINEAR PROGRAMMING VS. ENTROPY REGULARIZATION

In this paper, we used the Python Optimal Transport (Flamary & Courty, 2017) for the calculation
of the optimal transport plans. During the feedback period, a point came up regarding the entropy-
regularized version of the OT problem (Cuturi & Doucet, 2014), which reduces the complexity of the
linear programming problem from being cubic, in the number of nodes, to being quadratic, using
the Sinkhorn algorithm. Given the Sinkhorn algorithm’s iterative nature, the computational gain of
the method is prominent when calculating the transportation problem between graphs with a large
number of nodes (e.g., larger than 103). However, the graph datasets used in this paper often have
a small number of nodes (e.g., < 50). In these settings, linear programming is efficient. To obtain
any computational gain using the Sinkhorn algorithm, one would need to use a large regularization
coefficient, which reduces the Sinkhorn algorithm’s precision.

Here we ran an experiment on the ogbg-molhiv dataset. We obtain the transport plans between the
node embeddings and the reference distribution using the linear programming solver (using ot.emd2
from (Flamary & Courty, 2017)) and the Sinkhorn algorithm for the entropy-regularized problem
(using ot.sinkhorn2 from (Flamary & Courty, 2017)). We measure the calculation time as well
as the calculated distances for both algorithms. For the Sinkhorn algorithm, we used four different
regularization values. We report the mean and standard deviation of calculation time ratio, i.e.,
tSinkhorn

tLP
and the relative error of calculating the 2-Wasserstein distance, i.e., |W2,Sinkhorn−W2,LP

W2,LP
|

in Figure 7. As the figure shows, due to the small graph size, the LP solver is efficient and little
to no gain can be obtained using the Sinkhorn algorithm. Nevertheless, in the case of dealing with
larger graph sizes, the entropy regularized formulation should be the definite choice. Finally, for
the entropy-regularized OT problem, more efficient solvers have been proposed that outperform the
Sinkhorn algorithm (Dvurechensky et al., 2018). However, given the acceptable performance of the
linear programming solver (at least for the graph datasets in this paper), we did not find it necessary
to seek more efficient solvers.

A.4 INNER WORKING OF GNNS

In its most general form, a GNN consists of L hidden layers, where at the lth layer, each node v ∈ V
aggregates and combines messages from its 1-hop neighboring nodes Nv, resulting in the feature
vector

x(l)
v = Ψcombine

(
x(l−1)
v ,

{
(x(l−1)
u , wuv)

}
u∈Nv

)
, ∀l ∈ {1, . . . , L}, ∀v ∈ V, (12)

where Ψcombine(·) denotes a parametrized and differentiable combining function.

At the input layer, each node v ∈ V starts with its initial feature vector x0
v = xv ∈ RF , and the

sequential application of GNN layers, as in equation 12, computes intermediate feature vectors
{x(l)

v }Ll=1. At the GNN output, the feature vectors of all nodes from all layers go through a global
pooling (i.e., readout) function Ψreadout(·), resulting in the final graph embedding

ψ(G) = Ψreadout

({
x(l)
v

}
v∈V,l∈{0,...,L}

)
. (13)
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A.5 IMPLEMENTATION DETAILS

To derive the node embeddings, we use the diffusion process in equation 7 for the datasets without
edge features/labels, i.e., all the social network datasets (IMDB-BINARY, IMDB-MULTI, COLLAB,
REDDIT-BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K) and four of the molecule
and bioinformatics datasets (ENZYMES, PROTEINS, D&D, and NCI1). We specifically set wuv = 1
for any (u, v) ∈ E and also for all self-connections, i.e., wvv = 1, ∀v ∈ V .

The remaining datasets contain edge labels that cannot be directly used with equation 7. Specifically,
each edge in the MUTAG and PTC-MR datasets has a categorical label, encoded as a one-hot vector of
dimension four. Moreover, in the ogbg-molhiv dataset, each edge has three categorical features
indicating bond type (five categories), bond stereochemistry (six categories) and whether the bond is
conjugated (two categories). We first convert each categorical feature to its one-hot representation,
and then concatenate them together, resulting in a binary 13-dimensional feature vector for each edge.

In each of the three aforementioned datasets, for any edge (u, v) ∈ E , let us denote its binary feature
vector bywuv ∈ {0, 1}E , whereE is equal to 4, 4, and 13 for MUTAG, PTC-MR, and ogbg-molhiv,
respectively. We then use the following extension of the diffusion process in equation 7,

x(l)
v =

∑
u∈V

(
E∑
e=1

wuv,e√
dege(u)dege(v)

)
x(l−1)
u , ∀l ∈ {1, . . . , L}, ∀v ∈ V, (14)

where for any e ∈ {1, . . . , E}, wuv,e denotes the eth element of wuv, and for any node v ∈ V , we
define dege(v) as its degree over the eth elements of the edge features; i.e., dege(v) ,

∑
u∈V wuv,e.

We assign vectors of all-one features to the self-connections in the graph; i.e., wvv,e = 1, ∀v ∈
V,∀e ∈ {1, . . . , E}. Note that the formulation of the diffusion process in equation 14 can be seen
as an extension of equation 7, where the underlying graph with multi-dimensional edge features is
broken into E parallel graphs with non-negative single-dimensional edge features, and the parallel
graphs perform message passing at each round/layer of the diffusion process.

For the ogbg-molhiv experiments in which virtual nodes were appended to the original molecule
graphs, we set the initial feature vectors of all virtual nodes to all-zero vectors. Moreover, for any
graph Gi in the dataset with |Vi| nodes, we set the edge features for the edge between the virtual
node vvirtual and each of the original graph nodes u ∈ Vi as wuvvirtual,e = 1

|Vi| ,∀e ∈ {1, . . . , E}. The
normalization by the number of graph nodes is included so as to regulate the degree of the virtual
node used in equation 14. We also include the resultant embedding of the virtual node at the end of
the diffusion process in the calculation of the graph embedding ψ(Gi).

In the experiments conducted on each dataset, once the node embeddings are derived from the
diffusion process, we standardize them by subtracting the mean embedding and dividing by the
standard deviation of the embeddings, where the statistics are calculated based on all the graphs in
the dataset. Moreover, to reduce the computational complexity of estimating the graph embeddings
for the ogbg-molhiv dataset, we further apply a 20-dimensional PCA on the node embeddings.

HYPERPARAMETERS

We use the following set of hyperparameters to perform a grid search over in each of the experiments:

• Random Forest: min_samples_leaf ∈ {1, 2, 5}, min_samples_split ∈
{2, 5, 10}, and n_estimators ∈ {25, 50, 100, 150, 200}.
• Gradient Boosted Decision Tree (GBDT): min_samples_leaf ∈ {1, 2, 5},
min_samples_split ∈ {2, 5, 10}, n_estimators ∈ {25, 50, 100, 150, 200}, and
max_depth ∈ {1, 3, 5}.
• SVM-Linear and SVM-RBF: C ∈ {10−2, . . . , 105}.
• Multi-Layer Perceptron (MLP):
hidden_layer_sizes ∈ {(128), (256), (128, 64), (256, 128)}.

• Auto-ML: Auto-Sklearn 2.0 searches over a space of 42 hyperparameters using Bayesian
optimization techniques, as mentioned in Feurer et al. (2020).
• Number of Diffusion Layers in equation 7 and equation 14: L ∈ {3, . . . , 8}.
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• Initial Node Feature Dimensionality (for ogbg-molhiv only): {100, 300, 500}.
• Node Embedding Type: For a graph with F -dimensional initial node features, we consider

using the following three types of node embedding:

– Concat: zv =
[
x

(0)
v ‖ x(1)

v ‖ . . . ‖ x(L)
v

]
∈ R(L+1)F , where ‖ denotes concatenation.

– Average: zv = 1
L+1

∑L
l=0 x

(l)
v ∈ RF .

– Final: zv = x
(L)
v ∈ RF .

A.6 TUD BENCHMARK — COMPLETE RESULTS

Here, we report the comprehensive set of classification results of our proposed method, WEGL, for
each of the node embedding types mentioned in Section A.5, using five different classifiers: Linear
SVM, Kernel-SVM (SVM-RBF), Gradient Boosted Decision Trees (GBDT), Multi-Layer Perceptron
(MLP), and Random Forest (RF). The results are shown in Table 3.
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