
Diffusion Adversarial Post-Training for One-Step Video Generation

Shanchuan Lin 1 Xin Xia 1 Yuxi Ren 1 Ceyuang Yang 1 Xuefeng Xiao 1 Lu Jiang 1

Abstract
The diffusion models are widely used for image
and video generation, but their iterative genera-
tion process is slow and expansive. While ex-
isting distillation approaches have demonstrated
the potential for one-step generation in the image
domain, they still suffer from significant quality
degradation. In this work, we propose Adver-
sarial Post-Training (APT) against real data fol-
lowing diffusion pre-training for one-step video
generation. To improve the training stability and
quality, we introduce several improvements to
the model architecture and training procedures,
along with an approximated R1 regularization ob-
jective. Empirically, our experiments show that
our adversarial post-trained model can generate
two-second, 1280×720, 24fps videos in real-time
using a single forward evaluation step. Addition-
ally, our model is capable of generating 1024px
images in a single step, achieving quality com-
parable to state-of-the-art methods. Our project
page: https://seaweed-apt.com/

1. Introduction
The diffusion model (Ho et al., 2020; Song et al., 2020) has
become the de facto method for large-scale image and video
generation. Reducing the generation cost is an important
research area. Among the various methods, diffusion step
distillation has emerged as an effective approach to reduce
the inference cost. Generally, these methods start with a pre-
trained diffusion model as a teacher that generates targets
through multiple diffusion inference steps. They then apply
knowledge distillation (Hinton, 2015) to train a student
model that can replicate the teacher’s output using much
fewer diffusion inference steps.

One-step generation is often considered the pinnacle of dif-
fusion step distillation, yet it presents the most significant
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challenges. It deviates from the fundamental principle of
diffusion models, which rely on iterative denoising steps to
uncover the data distribution. While previous research has
demonstrated notable advancements for generating images
in a single step with promising results (Ren et al., 2024; Yin
et al., 2024a; Sauer et al., 2025; Lin et al., 2024), producing
high-quality images in one step remains challenging, partic-
ularly in achieving fine-grained details, minimizing artifacts,
and preserving the structural integrity.

Accelerated video generation, however, has seen limited
progress in the literature. Early efforts utilizing generative
adversarial networks (GANs) (Goodfellow et al., 2014), e.g.,
StyleGAN-V (Skorokhodov et al., 2021) can only generate
domain-specific data with poor quality in modern standards.
With the rise of diffusion methods, recent studies have be-
gun exploring the extension of image distillation techniques
to video diffusion models. However, existing works have
only explored distillation on small-scale and low-resolution
video models that only generate 512×512 videos for a total
of 16 frames (Lin & Yang, 2024; Zhai et al., 2024). A con-
current work (Yin et al., 2024b) has attempted distillation of
large-scale video models at 640×352 12fps. These methods
still generally need 4 diffusion steps. Given the prohibitive
computational cost associated with high-resolution video
generation, e.g., generating just a few seconds of 1280×720
24fps videos can take multiple minutes even on the state-
of-the-art GPUs like the H100, our work aims at generating
high-resolution videos in a single step.

In this paper, we introduce a new approach for one-step
image and video generation. Our method utilizes a pre-
trained diffusion model, specifically the diffusion trans-
former (DiT) (Peebles & Xie, 2023), as initialization, and
continues training the DiT using the adversarial training
objective against real data. It is important to notice the
contrast to existing diffusion distillation methods, which
use a pre-trained diffusion model as a distillation teacher
to generate the target. Instead, our method performs ad-
versarial training of the DiT directly on real data, using
the pre-trained diffusion model only for initialization. We
term this method Adversarial Post-Training or APT, as it
parallels supervised fine-tuning commonly performed dur-
ing the post-training stage. Empirically, we observe that
APT provides two benefits. First, APT eliminates the sub-
stantial cost associated with pre-computing video samples
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from the diffusion teacher. Second, unlike diffusion distil-
lation, where the quality is inherently constrained by the
diffusion teacher, APT demonstrates the ability to surpass
the teacher by a large margin in some evaluation criteria,
in particular, improving realism, resolving exposure issues,
and enhancing fine details.

Direct adversarial training on diffusion models is highly un-
stable and prone to collapse, particularly in our case, where
both the generator and discriminator are large transformer
models containing billions of parameters. To tackle this
issue, our method introduces several key designs to stabilize
training. It incorporates a generator initialized through deter-
ministic distillation and introduces several enhancements to
the discriminator, including transformer-based architectural
changes, a discriminator ensemble across timesteps, and an
approximated R1 regularization loss to stabilize training.

By virtue of APT, we have trained what may be one of the
largest GAN ever reported to date (∼16B), capable of gener-
ating both images and videos with a single forward evalua-
tion. Our experiments demonstrate that our model achieves
overall performance comparable to state-of-the-art one-step
image generation methods. More importantly, to the best
of our knowledge, our model is the first to demonstrate
high-resolution video generation in a single step (1280×720
24fps), surpassing the previous state-of-the-art, which gen-
erates 512×512 or 640×352 up to 12fps videos in four
steps. On a H100 GPU, our model can generate a two-
second 1280×720 24fps video latent using a single step in
two seconds. On 8×H100 GPUs with parallelization, the
entire pipeline with text encoder and latent decoder runs in
real-time.

2. Related Works
Accelerating Diffusion Models. Diffusion step distilla-
tion is a common and effective approach to accelerate diffu-
sion models. Existing methods address this problem using
either deterministic or distributional methods.

Deterministic methods exploit the fact that diffusion models
learn a deterministic probability flow with exact noise-to-
sample mappings and aim to predict the exact teacher output
using fewer steps. Prior works include progressive distilla-
tion (Salimans & Ho, 2022), consistency distillation (Song
et al., 2023; Song & Dhariwal, 2024; Lu & Song, 2024;
Luo et al., 2023a;b), and rectified flow (Liu et al., 2023a;b;
Yan et al., 2024). Deterministic methods are easy to train
using simple regression loss, but the results of few-step gen-
eration are very blurry, due to optimization inaccuracy and
reduced Lipschitz constant in the student model (Lin et al.,
2024). For large-scale text-to-image generation, determinis-
tic methods generally require more steps, e.g., eight steps,
to generate desirable samples (Luo et al., 2023a;b).

On the other hand, distributional methods only aim to ap-
proximate the same distribution of the diffusion teacher.
Most existing methods are researched for image generation.
They have severe artifacts for one-step generation and still
require multiple steps to obtain desirable results. Notably,
LADD (Sauer et al., 2024) and others (Kang et al., 2024;
Luo et al., 2024b; Chen et al., 2024) use pre-generated
teacher images as the adversarial target. Lightning (Lin
et al., 2024) and others (Ren et al., 2024; Kohler et al., 2024;
Wang et al., 2024a) learn the teacher trajectory with the
adversarial objective in the loop. DMD (Yin et al., 2023)
and others (Luo et al., 2024a) apply score distillation (Wang
et al., 2023b) from the teacher model. The above methods
set the teacher as the upper bound for quality. DMD2 (Yin
et al., 2024a) and others (Sauer et al., 2025; Chadebec et al.,
2024) apply both adversarial against real data and score
distillation from the teacher model. The closest to our work
is UFO-Gen (Xu et al., 2023b) which also only applies
adversarial training on real data. However, its discrimina-
tor adopts the DiffusionGAN (Wang et al., 2022) approach
which takes the corrupted data as input. Our method feeds
the discriminator with real, uncorrupted data. Hence, our ap-
proach follows the standard adversarial training as in GAN
more closely. Additionally, UFO-Gen’s image generator and
discriminator are convolutional models under 1B parame-
ters, while ours are transformer models with 8B parameters
and generate both image and video.

One-Step Video Generation. One-step video generation
works may trace back to the use of generative adversarial
networks (Skorokhodov et al., 2021; Clark et al., 2019; Tian
et al., 2021; Yu et al., 2022b). They can generate up to
1024px resolution videos but are trained only on domain-
restricted data, e.g., talking head videos, and the quality is
poor by modern standards. More recently, some distilla-
tion works (Lin & Yang, 2024; Wang et al., 2024b; Zhai
et al., 2024) have attempted to distill small-scale and low-
resolution video models, i.e., AnimateDiff (Guo et al., 2024)
and ModelScope (Wang et al., 2023a). These models only
generate low-resolution 256px or 512px videos of 16 frames
and have substantial quality degradation for one-step gener-
ation. For image-to-video generation (I2V), SF-V (Zhang
et al., 2024) and OSV (Mao et al., 2024) explore one-step
generation of 1024×576 14 frames videos. For text-to-video
(T2V) generation, a concurrent work (Yin et al., 2024b) has
demonstrated the generation of 640×352 12fps videos in
four steps. To the best of our knowledge, our work is the
first to demonstrate one-step T2V generation of 1280×720
24fps videos with a duration of 2 seconds (49 frames).

Stable Adversarial Training. R1 regularization (Roth
et al., 2017) has been shown effective for GAN convergence
(Mescheder et al., 2018). It has been used by many prior
GANs to improve performance (Karras et al., 2018; 2019;
2021; Kang et al., 2023; Brock et al., 2019; Huang et al.,
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2024a). However, many recent distillation works have ei-
ther completely not used R1 or only used it for parts of the
discriminator network. This is likely due to its higher-order
gradient computation is computationally expensive and is
not supported by modern deep learning software stacks, i.e.,
FSDP (Zhao et al., 2023), gradient checkpointing (Chen
et al., 2016), and FlashAttention (Dao et al., 2022; Dao,
2023; Shah et al., 2024). Our paper proposes an approxima-
tion method to address this issue and we find our approxi-
mated R1 loss is critical for preventing training collapse.

3. Method
Our objective is to convert a text-to-video diffusion model
to a one-step generator. We achieve this by fine-tuning the
diffusion model with the generative adversarial objective
against real data. We refer to this process as Adversarial
Post-Training or APT, due to its resemblance to supervised
fine-tuning in the conventional post-training stage.

3.1. Overview

We build our method on a pre-trained text-to-video diffusion
model (Seawead et al., 2025) capable of generating both
images and videos through T diffusion steps. The training
follows adversarial optimization that alternates through a
min-max game. The discriminator D classifies real samples
from generated ones, maximizing −LD, while the genera-
tor G aims to generate samples that fool the discriminator,
minimizing LG. Formerly, we have:

LD= E
x,c∼T

[
fD(D(x, c))

]
+ E

z∼N
c∼T

[
fG(D(G(z, c), c))

]
, (1)

LG= E
z∼N
c∼T

[
gG(D(G(z, c), c))

]
, (2)

where N denotes the standard Gaussian distribution, and
T represents the training data comprising a paired latent
sample x and text condition c. The latent and noise sam-
ples are of size x, z ∈ Rt′×h′×w′×c′ , where t′, h′, w′,
c′ represent the dimensions of time, height, width, and
channel. The functions fD, fG, and gG are the output
functions. Here, we use the simple non-saturating vari-
ant (Goodfellow et al., 2014): fD(x) = gG(x) = log σ(x)
and fG(x) = log(1 − σ(x)), where σ(x) is the sigmoid
function.

Figure 1 illustrates the overall architecture. Both the gen-
erator and the discriminator backbone use the diffusion
model architecture but are initialized with different strate-
gies which will be discussed later in this section. Concretely,
our diffusion model uses the MMDiT architecture (Esser
et al., 2024) and is trained with the flow-matching objective
(Lipman et al., 2023) over a mixture of images and videos
at their native resolutions (Dehghani et al., 2024) in the
latent space (Rombach et al., 2021). The model comprises
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Figure 1: Architecture overview. Both the generator and
the discriminator backbone share the diffusion transformer
architecture (blue). We add additional output heads on the
discriminator network to produce the scalar logit (green).

36 layers of transformer blocks, amounting to a total of 8
billion parameters.

3.2. Generator

We find direct adversarial training on the diffusion model
leads to collapse. To tackle this, we first employ consistency
distillation (Song et al., 2023; Song & Dhariwal, 2024)
with mean squared error loss. The model is distilled with
a constant classifier-free guidance (Ho & Salimans, 2021)
scale of 7.5 and a fixed negative prompt.

Let Ĝ denote the distilled model. Given noise sample z and
text condition c, the model Ĝ predicts the velocity field v̂,
which can be converted to sample prediction x̂:

v̂ = Ĝ(z, c, T ), (3)
x̂ = z − v̂. (4)

Although the generated sample x̂ is very blurry, Ĝ pro-
vides an effective initialization for the subsequent adversar-
ial training. Therefore, we initialize our generator G with
the weights of Ĝ, defined as:

G(z, c) := z − Ĝ(z, c, T ). (5)

For the subsequent training, we primarily focus on one-step
generation capability and always feed the final timestep T
to the underlying model.

3.3. Discriminator

The discriminator is trained to produce a logit that effec-
tively distinguishes between real samples x and generated
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samples x̂. In this subsection, we discuss several effective
designs that contribute to stable training and quality im-
provement. Refer to the detailed results presented in our
ablation studies.

First, following prior works (Lin et al., 2024; Lin & Yang,
2024; Xu et al., 2023a; Sauer et al., 2024), we initialize
the discriminator backbone using the pre-trained diffusion
network and let it operate directly in the latent space. There-
fore, the discriminator backbone also comprises 36 layers
of transformer blocks and 8 billion parameters. We find
that training all parameters without freezing improves the
quality. Additionally, we find that initializing it with the
original diffusion model weights, as opposed to the distilled
model weights used by the generator, yields better results.

Second, we modify the diffusion transformer architecture
to produce logits. Specifically, we introduce new cross-
attention-only transformer blocks at the 16th, 26th, and
36th layers of the transformer backbone. Each block uses
a single learnable token as the query to cross-attend to all
the visual tokens from the backbone as the key and value,
producing a single token output. These tokens are then
channel-concatenated, normalized, and projected to yield a
single scalar logit output. We find that using features from
multiple layers enhances the structure and composition of
the generated samples.

Third, we directly provide the discriminator the raw sample
x, x̂ without any noise corruptions. This avoids the introduc-
tion of artifacts to our generated samples. However, since
our discriminator backbone is initialized from the diffusion
model, and the diffusion pre-training objective at t = 0 is
not meaningful, we find using t = 0 for our discriminator
leads to collapse. Therefore, we propose to use an ensemble
of different timestep values as input. Specifically, let D̂
denote the underlying discriminator model, we define the
D(x, c) in Equation (2) as:

D(x, c) := E
t∼shift(U(0,T ),s)

[
D̂(x, t, c)

]
, (6)

where t is sampled uniformly from the interval [0, T ] and
then shifted by transformation function:

shift(t, s) :=
s× t

1 + (s− 1)× t
. (7)

The shifting factor s is a hyperparameter determined by the
latent dimension t′, h′, and w′. We use s = 1 for images
and s = 12 for videos for our experiment. For efficiency,
we sample a single t per training sample x to compute
Equation (6).

3.4. Regularized Discriminator

Our discriminator, comprising billions of parameters, is
prone to collapse. Ensuring stable training is therefore cru-
cial to our problem. The R1 regularization (Roth et al., 2017)

is an effective technique in facilitating the convergence of
adversarial training. It penalizes the discriminator gradient
▽x on real data x, preventing the adversarial training from
deviating from the Nash-equilibrium:

LR1 = ∥▽xD(x, c)∥22. (8)

Training with R1 requires higher-order gradient computa-
tion. The first backward computes the discriminator gradient
on input ▽x as the R1 loss. The second backward computes
the gradient of the R1 loss regarding the discriminator pa-
rameter for the discriminator updates. However, PyTorch
FSDP (Zhao et al., 2023), gradient checkpointing (Chen
et al., 2016), FlashAttention (Dao et al., 2022; Dao, 2023;
Shah et al., 2024), and other fused operators (Nvidia-Apex)
do not support higher-order gradient computation or double
backward at the time of writing, preventing the use of R1 in
large-scale transformer models.

We propose an approximated R1 loss, written as:

LaR1 = ∥D(x, c)−D(N (x, σI), c)∥22. (9)

Specifically, we perturb the real data with Gaussian noise of
small variance σ. The loss encourages the discriminator’s
predictions to be close between the real data and its pertur-
bation, thereby reducing the discriminator gradient on real
data and achieving a consistent objective as the original R1
regularization. Thus, the final discriminator loss LD is:

LD = E
x,c∼T

[
fD(D(x, c))

]
+ E

z∼N
c∼T

[
fG(D(G(z, c), c))

]
+ λ E

x,c∼T

[
∥D(x, c)−D(N (x, σI), c)∥22

]
. (10)

In our experiments, we use λ = 100, σ = 0.01 for images
and σ = 0.1 for videos. The approximated R1 is applied on
every discriminator step.

3.5. Training Details

We first train the model on only 1024px images. We use
128∼256 H100 GPUs with a batch size of 9062. The learn-
ing rate is 5e−6 for both the generator and the discriminator.
We find the model adapts quickly. We use an Exponential
Moving Average (EMA) decay rate of 0.995 and adopt the
EMA checkpoint after 350 updates on the generator before
the quality starts to degrade.

We then train the model on only 1280×720 24fps videos.
The videos are clipped to 2 seconds. The generator is initial-
ized from the image EMA checkpoint. The discriminator is
re-initialized from the diffusion weights. We use 1024 H100
GPUs with gradient accumulation to reach a batch size of
2048. We lower the learning rate to 3e−6 for stability and
train it for 300 updates. We find that the one-step model can
also perform zero-shot two-step inference with improved
details, but more steps lead to artifacts.
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Diffusion APT Diffusion APT

Figure 2: Our 1-step APT model can sometimes generate
more realistic tones and better details compared to 25-step
diffusion with CFG.

RMSProp optimizer is used with α = 0.9, which is equiva-
lent to Adam (Kingma & Ba, 2014) with β1 = 0, β2 = 0.9
with reduced memory consumption. We do not use weight
decay or gradient clipping. The entire training is conducted
in BF16 mixed precision. We use the same datasets as the
original diffusion model.

4. Experimental Results
This section empirically verifies the proposed Adversarial
Post-Training (APT) method. Section 4.1 provides a qualita-
tive comparison of our method against other one-step image
generation baselines and an analysis of the characteristics of
the results generated by our approach. Section 4.2 presents
several user studies that quantitatively assess our method.
More results are in supplementary materials.

Baseline. For comparison with one-step image genera-
tion methods, we select FLUX-Schnell (FLUX-Schnell),
SD3.5-Turbo (Sauer et al., 2024), SDXL-DMD2 (Yin et al.,
2024a), SDXL-Hyper (Ren et al., 2024), SDXL-Lightning
(Lin et al., 2024), SDXL-Nitro (Chen et al., 2024), and
SDXL-Turbo (Sauer et al., 2025) as the comparison base-
lines. These models are selected because they are either the
latest research publications or commonly available open-
source distilled models. We also compare their original
diffusion models, i.e., FLUX (FLUX), SD3 (Esser et al.,
2024), and SDXL (Podell et al., 2023), against ours in 25
Euler steps. We use the default classifier-free guidance
(CFG) (Ho & Salimans, 2021) setting of each model as con-
figured in diffusers (von Platen et al., 2022), while ours uses
CFG 7.5. All models are 1024px, except SDXL-Turbo is
512px.

4.1. Qualitative Evaluation

For image generation, we first compare our APT’s one step
with our original diffusion model’s 25 steps in Figure 2.
We observe that the diffusion model with CFG often gen-
erates over-exposed images, rendering the images appear
synthetic. In comparison, the APT model tends to generate
images with a more realistic tone. Figure 3 further compares
our method with other one-step image generation methods.
Our method shows advantages in preserving details and

structural integrity.

For video generation, Figure 4 compares our APT one-step
and two-step results with the original diffusion’s 25-step
results. Both the good and the bad cases of the APT method
are displayed. For good cases, APT improves details and
realism. The one- or two-step APT models still perform
worse in terms of structural integrity and text alignment
compared to 25-step diffusion. Videos are in supplementary
materials.

4.2. User Study

Evaluation Protocol. We conduct a series of user stud-
ies with respect to three criteria: visual fidelity, structural
integrity, and text alignment. Specifically, visual fidelity
accounts for texture, details, color, exposure, and realism;
structural integrity focuses on the structural correctness of
the objects and body parts; text alignment measures close-
ness to the conditional prompts. Human raters are shown
pairs of samples generated by different models and asked
to choose their preferences regarding each criterion or to
indicate no preference if a decision cannot be made.

Afterward, the preference score is calculated as (G −
B)/(G + S + B), where G denotes the number of good
samples preferred, B denotes the number of bad samples
not preferred, and S denotes the number of similar samples
without preference. Thus, a score of 0% represents equal
preference between the two models. +100% represents the
model is preferred over all evaluated samples, and vice versa
for −100%.

For image evaluation, we follow the evaluation protocol
in previous diffusion distillation works (Sauer et al., 2024;
2025) and generate samples using 300 randomly selected
prompts from PartiPrompt (Yu et al., 2022a) and DrawBench
(Saharia et al., 2022). We generate 3 images per prompt.
For video evaluation, we generate one video per 96 custom
prompts. We have 3 raters to evaluate each comparison pair.
The entire user study takes 50,328 sample comparisons.

Additionally, following the previous works (Lin et al., 2024;
Sauer et al., 2024; 2025), we also report the FID (Heusel
et al., 2017), PFID (Lin et al., 2024), and CLIP (Radford
et al., 2021) metrics on COCO dataset (Lin et al., 2014).
Note that we find these automatic metrics to be less ac-
curate than user studies for assessing the model’s actual
performance. We provide the results and discussion in Ap-
pendix A. We also provide video quantitative metrics on
VBench (Huang et al., 2024b) in Appendix B.

Image Generation: One-Step v.s. 25-Step. We first com-
pare all one-step model against their corresponding original
diffusion model in 25 steps in Table 1. The table shows
that all existing one-step methods have degradation in all
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Ours FLUX SD3.5 SDXL
Diffusion APT Dev Schnell Diffusion Turbo Diffusion DMD2 Hyper Lightning Nitro
25 Steps 1 Step 25 Steps 1 Step 25 Steps 1 Step 25 Steps 1 Step 1 Step 1 Step 1 Step

(a) A frustrated child.

(b) The city of London.

(c) A close-up of the eyes of an owl.

Figure 3: Image generation comparison across methods and models. We show results of 1-step generation and the
corresponding diffusion model 25-step generation. Our method is significantly better in image details and is among the best
in structural integrity. More results are in ??.

Diffusion Adversarial Post-Trained
25 Steps (50NFE) 2 Steps (2NFE) 1 Step (1NFE)

(a) Good case: Adversarial post-training enhances details and realism. A Western princess, with sunlight shining through the leaves
on her face, facial close-up.

(b) Average case: Adversarial post-training can produce the scene but with degradation in structure and text alignment.
First-person perspective, the camera passes through a classroom entering the school playground.

(c) Failure case: Adversarial post-training can fail at some prompts. A terracotta warrior holds a white paper in one hand, and the
paper flutters in the wind. The background is a museum.

Figure 4: Video generation results. Adversarial post-training can improve visual fidelity, i.e., details and realism, but
few-step generation still has degradation in structure and text alignment. More full videos are provided in ??.
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Table 1: One-step image generation compared to their cor-
responding original diffusion models in 25 steps.

Image One-Step v.s. Diffusion
1 Step v.s. 25 Steps

Visual
Fidelity

Structural
Integrity

Text
Align

FLUX-Schnell -36.6% -24.4% -2.8%
SD3.5-Large-Turbo -94.4% -30.1% -20.4%
SDXL-DMD2 -9.3% -16.8% -4.6%
SDXL-Hyper -8.8% -12.3% -2.1%
SDXL-Lightning -7.7% -15.1% -17.4%
SDXL-Nitro-Realism -21.6% -22.7% -5.6%
SDXL-Turbo -80.1% -14.9% -1.2%

APT (Ours) +37.2% -13.1% -8.1%

Table 2: Comparison to the state-of-the-art one-step image
generation. Both absolute and relative preference scores
(adjusted for base model performance) are presented. The
methods are sorted by average preference.

Image Ours v.s. Others
1 Step

Visual
Fidelity

Structural
Integrity

Text
Align Average

Absolute
FLUX-Schnell +35.7% -21.5% -28.1% -4.6%
SDXL-DMD2 +34.7% +10.3% -11.8% +11.1%
SDXL-Nitro-Realism +24.6% +16.7% -4.9% +12.1%
SDXL-Hyper +43.6% +4.1% -6.7% +13.7%
SDXL-Lightning +34.1% +14.1% +11.4% +19.9%
SDXL-Turbo +68.9% +14.9% -7.9% +25.3%
SD3.5-Large-Turbo +97.8% +7.7% -16.7% +29.6%

Relative
SDXL-DMD2 +22.6% +9.1% -12.0% +6.6%
SDXL-Nitro-Realism +12.5% +15.5% -5.1% +7.6%
SDXL-Hyper +31.5% +2.9% -6.9% +9.2%
SDXL-Lightning +22.0% +12.9% +11.2% +15.4%
SDXL-Turbo +56.8% +13.7% -8.1% +20.8%
FLUX-Schnell +77.1% +11.4% -9.2% +26.4%
SD3.5-Large-Turbo +134.0% +33.3% -2.5% +54.9%

three criteria. In terms of structural integrity, our method
has degradation but is less than almost all existing methods
except for SDXL-Hyper. Our method is weaker in text align-
ment but is still mid-tier. It is worth noting that our model is
the only one to achieve a more favorable evaluation criterion
(visual fidelity), aligning with our qualitative observation
that APT enhances details and realism. The improvement
over the original diffusion model can be attributed to our
method’s approach, which forgoes using the diffusion model
as a teacher and instead performs direct adversarial training
on real data. More discussions are provided in Section 5.3.

One-Step Image Generation: Comparison to the State-
of-the-Art. In Table 2, we compare our one-step gen-
eration to the state-of-the-art one-step image generation
models. We show both the absolute preference score and
the adjusted relative change based on their corresponding
diffusion model baseline, which will be described later.

The results in Table 2 demonstrate that our method achieves

Table 3: Comparison of other base diffusion models with
our base model for image generation. All models are evalu-
ated using 25 steps. Since our model is designed to handle
both video and image generation, its image generation per-
formance is slightly inferior to FLUX and SD3.5.

Image Ours v.s. Others
25 Steps

Visual
Fidelity

Structural
Integrity

Text
Align

FLUX -41.4% -32.9% -18.9%
SD3.5-Large -36.2% -25.6% -14.2%
SDXL +12.1% +1.2% +0.2%

Table 4: Comparison of one-step (and two-step) video gen-
eration with the original 25-step diffusion models.

Video
1 and 2 Steps v.s. 25 Steps Steps Visual

Fidelity
Structural
Integrity

Text
Align

APT (Ours) 2 +32.3% -31.3% -9.4%
1 +10.4% -38.5% -8.3%

performance comparable to the state-of-the-art in one-step
image generation. On average, it ranks second in absolute
preference, trailing FLUX-Schnell, and ranks first in relative
preference. Compared to the baseline methods, our model is
preferred for its visual fidelity and structural integrity but is
less preferred in text alignment. The weaker text alignment
is a limitation of the APT method. Further discussion on
the causes can be found in Section 5.5.

The relative preference score is introduced to reduce the
bias that a strong base model can unfairly influence the eval-
uation of the one-step acceleration method. Thus we report
the base model rates in Table 3. Because our base model
handles both video and image generation, uses different
training data, and has not undergone human-preference tun-
ing, our diffusion model is weaker compared to FLUX and
SD3.5. We highlight these differences in the base model for
interpreting the comparison of one-step image generation in
Table 2.

One-step Video Generation. Table 4 compares the one-
step and two-step video generation results compared to the
original diffusion baseline using 25 steps. The trend is simi-
lar to the image performance, where our model outperforms
the original diffusion model in visual fidelity, but has degra-
dation in structural integrity and text alignment. Despite
the degradation, the videos generated in one step maintain
decent quality at 1280×720 resolution. We refer readers to
view the videos on our website. The degradation in struc-
tural integrity appears to be more severe in videos compared
to images since it now involves motions. Our work is a
preliminary proof of concept. We emphasize the need for
further research to advance one-step video generation.
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5. Ablation Study and Discussion
5.1. The Effect of Approximated R1 Regularization

We find that the approximated R1 regularization is critical
for maintaining stable training. Without this regularization,
training collapses rapidly. As shown in Figure 5, the black
curve represents the discriminator loss without regulariza-
tion, which quickly approaches zero compared to the green
curve that includes the regularization. When the discrimi-
nator loss approaches zero, the generator produces colored
plates, as depicted on the right side of Figure 5.

Figure 5: Without approximated R1 regularization, the dis-
criminator loss reaches zero (black) and the training col-
lapses. With approximated R1 regularization, the discrimi-
nator loss does not reach zero (green).

5.2. Discriminator Design

We first experiment with using different depths of the pre-
trained diffusion model as our discriminator. Figure 6 shows
that a deeper discriminator leads to better image quality.

Half-Depth
Discriminator

Two-Third-Depth
Discriminator

Full-Depth
Discriminator

Layer 14, 16, 18th Layer 18, 22, 26th Layer 16, 26, 36th

Figure 6: A deeper discriminator that includes the full depth
of the pre-trained network leads to better quality.

We then verify the effectiveness of using multilayer features.
Figure 7 shows that using multilayer features can improve
structural correctness.

Last-Layer Discriminator Multi-Layer Discriminator
Layer 36th Layer 16, 26, 36th

Figure 7: The multi-layer discriminator improves structural
integrity.

5.3. The Reason for Visual Improvement

We find our APT model mainly resolves the over-exposure
and over-saturating tone issue resulting from CFG. We find
APT can help the generator learn distributions closer to the
real data. More discussions are in Appendix H.

5.4. The Cause of Structural Degradation

We take the one-step image model and interpolate the input
noise z to generate latent traversal visualizations. We find
structural incorrectness often occurs during the smooth tran-
sition between modes, where the diffusion model switches
between modes more sharply. We hypothesize the generator
being under-capacitated is one of the main causes of the
degradation in structural integrity. More discussions are in
Appendix I.

Mode A Transitioning Mode B

Figure 8: One-step generator has limited capacity to make
sharp switches between modes.

5.5. Analysis of Text Alignment Degradation

Previous research has found CFG can force the generated
distribution to have even stronger text alignment than the
real data distribution, i.e., samples looking canonical (Kar-
ras et al., 2024; Lin & Yang, 2023). APT learns from the real
distribution without CFG’s boosting effect. Our dataset has
been re-captioned, so our APT model still has acceptable
text alignment, though not as strong as CFG. Furthermore,
the problem in Section 5.4 also has a negative impact on the
alignment of the text. We have conducted additional experi-
ments and have provided more discussions in Appendix J.

6. Conclusion and Limitations
We propose Adversarial Post-Training (APT) for single-step
generation of both image and video. Our method incorpo-
rates several architectural enhancements and an approximate
R1 regularization, which are crucial for training stability.

To the best of our knowledge, we present the first proof of
concept for generating high-resolution videos (1280×720
24fps) in a single step. However, we identify several limi-
tations in the current approach. First, due to computational
constraints, we were only able to train the model to gen-
erate videos for up to two seconds. Second, the one-step
generation still has degradation in structural integrity and
text alignment, which we aim to address in future works.
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A. Image Quantitative Metrics
Following the previous works (Sauer et al., 2025; Chen
et al., 2024; Yin et al., 2024a; Lin et al., 2024), we calcu-
late Fréchet Inception Distance (FID) (Heusel et al., 2017),
Patch Fréchet Inception Distance (PFID) (Lin et al., 2024),
and CLIP score (Radford et al., 2021) on COCO dataset
(Lin et al., 2014). We notice some of the works use COCO-
5K (Sauer et al., 2025; Chen et al., 2024) while others use
COCO-10K (Lin et al., 2024; Yin et al., 2024a). We provide
both in Tables 5 and 6. Specifically, we take the first 5,000
and 10,000 captions from the COCO 2014 validation dataset
as the generation prompts. FID is calculated between the
generated images and the ground-truth COCO images. The
ground-truth images are cropped to a square aspect ratio
before resizing to 299px for the inception network (Szegedy
et al., 2015). Resizing is done properly with established
library (Parmar et al., 2021). Patch FID (PFID) metrics (Lin
et al., 2024; Yin et al., 2024a) center-crops 299px patches
without resizing to measure image details. For 512px mod-
els, the results are bilinear upsampled to 1024px before
center-crop following prior work (Lin et al., 2024). For
the CLIP score, we follow the previous works (Sauer et al.,
2025) to use the laion/CLIP-ViT-g-14-laion2B-s12B-b42K
model. We use each model’s default CFG (Ho & Salimans,
2021) as configured in diffusers (von Platen et al., 2022),
e.g., FLUX uses 3.5 baked-in CFG. Our diffusion model
uses 7.5 CFG. We also verify that our metric calculations
match what was reported in the original publications, e.g.,
DMD2’s reported FID 19.01 is close to our report of 18.10.
SDXL-Lightning’s reported FID 22.61 is close to our re-
port of 23.40, etc. The difference can be attributed to the
randomness of the seed and the selection of prompts.

We find that the metrics can be far off from the model’s
actual performance. For example, FLUX 1-step surpasses
FLUX 25-step in all metrics. However, this strongly contra-
dicts our human perception and evaluation in Table 1, and
our observation that FLUX 1-step has visible degradation in
visual quality and structural integrity. Furthermore, the met-
rics suggest that SDXL 25-step is better than FLUX 25-step
in all metrics. This also contradicts our human evaluation
in Table 3 and our observation that SDXL should have a
weaker performance than FLUX.

We notice that most previous diffusion distillation publica-
tions (Sauer et al., 2024; 2025; Lin et al., 2024; Ren et al.,
2024; Chen et al., 2024) are conducted on the SDXL model.
The metrics within the SDXL family of models appear more
reasonable, potentially concealing the issue. Yet, this does
not mean that the metrics are valid within the same archi-
tecture family of models, as the metrics wrongly identify
FLUX 1-step as being better than FLUX 25-step.

Therefore, we primarily rely on human evaluations for our
work. We caution researchers to interpret these metrics

Table 5: Quantitative metrics on COCO5K across different
models and methods for image generation. We find the
metrics inaccurately capture the actual performance of the
model. Discussion are provided in Appendix A.

Method Steps FID↓ PFID↓ CLIP↑
FLUX-Dev 25 31.8 38.7 32.9
FLUX-Schnell 1 24.9 30.0 33.7

SD3.5-Large 25 25.1 30.8 33.8
SD3.5-Turbo 1 61.6 174.5 30.4

SDXL 25 25.1 28.7 33.9
SDXL-DMD2 1 24.1 33.0 34.1
SDXL-Hyper 1 36.9 41.8 33.1
SDXL-Lightning 1 28.9 36.9 31.9
SDXL-Nitro-Realism 1 26.4 32.8 33.9
SDXL-Turbo (512px) 1 28.4 66.0 33.8

Our Diffusion 25 26.9 30.6 33.2
Our Consistency 1 119.6 164.6 22.3
Our APT 1 27.9 34.6 32.3

Table 6: Quantitative metrics on COCO10K for image gen-
eration. The metrics also inaccurately capture the actual
performance of the model. Discussion are provided in Ap-
pendix A.

Method Steps FID↓ PFID↓ CLIP↑
FLUX-Dev 25 26.3 32.8 32.9
FLUX-Schnell 1 18.8 23.7 33.7

SD3.5-Large 25 19.2 23.7 33.8
SD3.5-Turbo 1 55.7 170.9 30.4

SDXL 25 19.2 22.5 33.9
SDXL-DMD2 1 18.1 26.2 34.0
SDXL-Hyper 1 31.4 35.3 33.2
SDXL-Lightning 1 23.4 30.4 31.9
SDXL-Nitro-Realism 1 20.2 26.2 33.9
SDXL-Turbo (512px) 1 22.8 35.7 33.8

Our Diffusion 25 20.7 24.7 33.1
Our Consistency 1 114.1 161.3 22.3
Our APT 1 22.1 28.5 32.3

carefully, and we leave the exploration for better metrics to
future works.

B. Video Quantitative Metrics
For video generation, we also provide VBench (Huang
et al., 2024b) quantitative metrics in VBench in Table 7.
Specifically, we generate 5 videos for each of VBench’s
946 prompts and report the VBench scores. As the table
shows, APT significantly outperforms the baseline consis-
tency distillation 1NFE, 2NFE, and 4NFE. We observe that
the consistency 1NFE baseline generates lower-quality re-
sults (e.g., blurry videos), and these issues persist even when
increasing to 4NFE. These metrics verify the effectiveness
of APT post-training compared to the baseline. Even when
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compared to our base model at 50NFE (25 steps + CFG),
despite this being an unfair comparison, our APT 1NFE
achieves a comparable total score (82.00 vs. 82.15).

Table 7: Quantitative metrics on VBench for video gener-
ation. Comparison between our APT model and the diffu-
sion/consistency baselines.

Method Steps Total
Score

Quality
Score

Semantic
Score

Diffusion 25 82.15 84.36 73.31

Consistency
4 77.97 81.93 62.10
2 74.20 78.83 55.69
1 67.05 73.78 40.15

APT 2 81.85 84.39 71.70
1 82.00 84.21 73.15

C. Inference Speed
Table 8 shows the inference speed of our model on different
numbers of H100 GPUs with parallelization. Our model
can generate a 1280×720 24fps 2-second video in 6.03s
on a single H100 GPU. With 8 H100 GPUs, it can achieve
real-time. More optimization can be applied to make it more
efficient.

Table 8: Inference speed under different numbers of H100
GPUs for one-step two-second 1280×720 24fps video gen-
eration.

# of H100 Component Seconds

1

Text Encoder 0.28
DiT 2.65
VAE 3.10
Total 6.03

4

Text Encoder (no parallelization) 0.28
DiT 0.73
VAE 1.19
Total 2.20

8

Text Encoder (no parallelization) 0.28
DiT 0.50
VAE (only 4-GPU parallelization) 1.19
Total 1.97

D. The Effect of Training Iterations and EMA
Figure 9 shows the model adapts fast. For the non-EMA
model, even after 50 updates, it is able to generate sharp
images. The EMA model generally performs better than the
non-EMA. We find the quality peaks at 350 updates for the
EMA model, and training it longer leads to more structural
degradation.

0 50 150 250 350 450 550 650

Figure 9: Training progression measured by generator up-
dates. (EMA top, non-EMA bottom)

E. The Effect of the Batch Size
For images, our early experiments suggest that a larger batch
size improves stability and structural integrity, confirming
with previous research (Xu et al., 2023b; Kang et al., 2023).
For videos, we find that using a small batch size of 256
leads to mode collapse as shown in Figure 10 whereas a
large batch size of 1024 does not. Therefore, our final
training adopts a large batch size of 9062 for images and a
batch size of 2048 for videos.

Video Batch Size 256 Video Batch Size 1024
Seed A Seed B Seed A Seed B

Figure 10: A large batch size prevents mode collapse. A
small batch size has mode-collapsed across prompts and
seeds.

F. The Effect of the Learning Rate
We first search for learning rates in image settings. We
find that 1e-6 and 1e-5 are either too small or too large
and settle on 5e-6 for stable training. Then we experiment
with freezing or lowering the learning rate for the discrim-
inator backbone but find that it is best to train the entire
discriminator network, as shown in Figure 11.

Freeze Backbone Low Backbone LR Full LR
0, 5e-6 (new param) 1e-6, 5e-6 5e-6, 5e-6

Figure 11: It is better to train the entire discriminator than to
freeze or lower the learning rate of the backbone. Freezing
the backbone produces undesirable artifacts (zoom in for
detail). Lowering the backbone learning rate causes slow
convergence.
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G. Understanding the Model Internals
We freeze the model and add an additional linear projection
on every layer. It is trained to match the final layer’s latent
prediction with mean squared error loss. This helps us
visualize the internals of our model. As Figure 12 shows,
the network’s shallow layers generate the coarse structure
and the deeper layers generate the high-frequency details.
This is similar to the iterative generation process of diffusion
models, except in our model the entire generation process
is compressed within the 36 transformer layers in a single
forward pass.

Layer 6 Layer 12 Layer 18 Layer 24 Layer 30 Layer 36

Figure 12: The intermediate result of each transformer layer
inside the one-step image generation model.

H. More Discussion on Visual Improvement
Diffusion models without classifier-free guidance (CFG)
(Ho & Salimans, 2021) generate very poor samples (Lin &
Yang, 2023). CFG is used ubiquitously to boost perceptual
quality and text alignment, but recent works have shown
that it can push the generated distribution away from the
training distribution, resulting in samples that appear syn-
thetic, over-saturated, and canonical (Lin et al., 2023; Karras
et al., 2024). A recent work (Lin & Yang, 2023) has elu-
cidated that the cause of diffusion models generating poor
samples without CFG may be rooted in the mean squared
error (MSE) loss objective. It has also demonstrated the use
of perceptual loss can better learn the real data distribution.
We hypothesize that adversarial training can be viewed as
an extension of this work, where it does not have the MSE
issue and the discriminator is a learnable, in-the-loop, per-
ceptual critic. This helps the generator to learn distributions
closer to the real training data.

I. More Discussion on Structural Degradation
We take the one-step image model and interpolate the input
noise z to generate latent traversal videos. The videos are
available on the webpage described in ??. Unlike GAN
models which normally have a low-dimensional noise z,
our model has a very high-dimensional z ∈ Rt′×h′×w′×c′ .
We find interpolation on the high-dimensional z still pro-
duces traversal videos with semantic morphing. Compared
to the diffusion model which switches between modes very
quickly, our one-step generation model has a much smoother

transition between modes. This is likely because the one-
step model effectively is much shallower in depth, has less
nonlinearity, and has a lower capacity for making drastic
changes. This effect has also been observed by a prior
work (Lin et al., 2024). We hypothesize the generator being
under-capacitated is one of the main causes of the degrada-
tion in structural integrity. As Figure 8 shows, we find that
structural incorrectness often occurs during the transition
between modes. This negatively affects the text alignment,
as hallucinations may occur, e.g., one object might appear
as two during the transition phase. The training loss sup-
ports this hypothesis, where the discriminator can always
differentiate before convergence. We aim to address this
issue in future works.

J. Additional Explorations on Text Alignment
We have explored several techniques to improve text align-
ment but found them to be ineffective. These include: (1)
providing the discriminator with unmatched conditional
pairs to penalize misalignment, as proposed by (Kang et al.,
2023; Sauer et al., 2023). However, we choose not to adopt
this approach because our early experiments showed min-
imal improvements; (2) incorporating CLIP loss (Radford
et al., 2021). Our experiments indicate that it could nega-
tively impact visual fidelity, leading to poorer details and
artifacts. We leave further investigation to future research.
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