
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CROSS-INSTANCE CONTRASTIVE MASKING IN
VISION TRANSFORMERS FOR SELF-SUPERVISED HY-
PERSPECTRAL IMAGE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This article presents a novel Cross-Instance Contrastive Masking-Enhanced
Vision Transformer (CICM-ViT) for hyperspectral image (HSI) classification,
which attempts to reduce shortcut learning through Cross-Instance Contrastive
Masking (CICM) to enhance spectral-spatial feature extraction through self-
supervision. Using the dependencies between instances, CICM-ViT dynamically
masks spectral patches across instances, promoting the learning of discrimina-
tive features while reducing redundancy, especially in low-data settings. This ap-
proach reduces shortcut learning by focusing on global patterns rather than relying
on local spurious correlations. CICM-ViT achieves state-of-the-art performance
on HSI datasets, with 99.91% OA on Salinas, 96.88% OA on Indian Pines, and
98.88% OA on Botswana, outperforming fourteen SOTA CNN- and transformer-
based approaches in both accuracy and efficiency, with only 89,680 parameters.

1 INTRODUCTION

Hyperspectral image (HSI) classification (Li et al., 2019; Jain & Ghosh, 2022; Roy et al., 2013) plays
a key role in geoscience and remote sensing (Lary et al., 2016) but faces challenges such as high di-
mensionality, overfitting, and inefficient feature extraction. While CNN-based models (Krizhevsky
et al., 2012; Alzubaidi et al., 2021; Simonyan & Zisserman, 2015; He et al., 2016) struggle with
large datasets and global dependencies, Vision Transformers (ViTs) (Vaswani et al., 2017; Dosovit-
skiy et al., 2021) address these but miss local feature modeling crucial for HSI representation.

Attempting to address these challenges, various research papers have evolved HSI classifications
through different spectral-spatial models. Early methods like 2-DCNN (Lee & Kwon, 2016) and
SPRN (Zhang et al., 2022a) used convolutions and attention mechanisms, while 3-DCNN (Hamida
et al., 2018) captured spectral-spatial dependencies with 3D convolutions. Hybrid models such as
HybridSN (Roy et al., 2019) combined 2D and 3D CNNs. Transformer-based methods like GAHT
(Mei et al., 2022) and MorphFormer (Roy et al., 2023) used self-attention and CNN-transformer hy-
brids. Lightweight models like CAEVT (Zhang et al., 2022b) and GSC-ViT (Zhao et al., 2024)
focused on efficiency with 3D autoencoders and separable convolutions, emphasizing advanced
spectral-sequence learning through multiscale aggregation and tokenization.

Contrary to other methods, we propose CICM-ViT, a Vision Transformer with Cross-Instance
Contrastive Masking (CICM) for improved spectral-spatial learning. CICM replaces masked
patches with cross-instance features, encouraging the model to reconstruct missing information from
distinct instances via self-supervision, rather than relying on redundant local patterns. Experiments
show CICM-ViT outperforms several CNNs and transformers in accuracy and parameter efficiency
(Figure 1), making it ideal for HSI applications with limited unlabeled data.

2 METHODOLOGY

This section introduces Cross-Instance Contrastive Masking in Vision Transformer (CICM-ViT),
a self-supervised learning method designed to enhance spectral-spatial feature extraction for hy-
perspectral image (HSI) classification. CICM replaces masked patches with cross-instance features,
prompting the model to reconstruct missing information from distinct instances instead of relying on
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redundant local patterns. Following feature extraction, a Global Average Pooling (GAP) followed
by a softmax-activated dense layer is employed for downstream tasks, ensuring effective feature
aggregation. Below we detail the complete methodology.

Self-Supervised Spectral-Spatial Feature Learning. Given a hyperspectral image X ∈ RH×W×B

with height H , width W , and B spectral bands, we partition it into non-overlapping patches of size
P × P ×B. Each patch (Z0) is mapped to a D-dimensional embedding via:

Z0 = PatchEmbed(X) +Epos, (1)
where Epos ∈ RN×D is a learnable positional encoding, and N = HW

P 2 denotes the patch count,
preserving spatial relationships in the embedding space.

To introduce Cross-Instance Contrastive Masking (CICM), we first apply a binary mask M ∈
{0, 1}N to the patch embeddings Z0. The binary mask M determines which patches are to be
masked (40% masking probablity was optimal in our case). Instead of using intra-instance masking
(i.e., removing patches within the same instance), we replace the masked patches with a learnable to-
ken T ∈ R1×D, which serves as a global placeholder for the missing data. During training, we then
replace the masked patches with shuffled patches from another instance. This shuffling operation is
done after masking and occurs only during training. It encourages the model to learn inter-instance
dependencies by forcing it to infer the missing information using features from different instances
guided by the task-specific contrastive loss. This cross-instance strategy reduces redundancy, as the
model must focus on high-level, global patterns (for HSI different spectral bands consist of varied
information) rather than relying solely on local context. The masked embedding Zm ∈ RN×D is
defined as:

Zm = (1−M)⊙ Z0 +M⊙T, (2)

where ⊙ represents element-wise multiplication. After applying CICM, the masked embeddings
Zm are passed through the Vision Transformer (ViT) encoder.

Contrastive Self-Supervised Learning. Traditional contrastive learning generates positive pairs
from the same instance and negative pairs from different instances, whereas our approach applies
contrastive loss to masked embeddings, with patches shuffled from different instances, promoting
generalizable feature learning through cross-instance contrast. We enforce robust feature discrimi-
nation by optimizing a contrastive loss that aligns embeddings from semantically similar instances
while pushing apart those from dissimilar ones. Given a masked embedding Zm obtained from
the Cross-Instance Contrastive Masking process, the Vision Transformer (ViT) encoder learns its
final representation Zi. For a given instance embedding Zi, a positive counterpart Z+

i (another in-
stance from a similar class), and negative samples Z−

j (from different classes), the contrastive loss
is formulated as:

LCICM = −
N∑
i=1

log
exp(sim(Zi,Z

+
i ))∑

j exp(sim(Zi,Z
−
j ))

, (3)

where sim(Zi,Zj) =
Z⊤

i Zj

∥Zi∥∥Zj∥ denotes the cosine similarity between two embeddings.

Unlike standard self-supervised methods that focus on intra-instance similarities, CICM-ViT ex-
plicitly contrasts embeddings across different instances. This forces the model to generalize beyond
instance-specific patterns, enhancing spectral-spatial feature learning by emphasizing shared class-
level structures over local redundancies. The cross-instance contrast reduces overfitting to individual
samples, improving generalization even with minimal data.

3 EXPERIMENTAL SETUPS

This section details the experimental setup of our approach on three benchmark hyperspectral
datasets (hyp): Indian Pines, Salinas, and Botswana. More details are given in the supplementary.

Training. The model was trained using the Adam optimizer (Sun et al., 2019) with learning rates
of 0.001 for Salinas and 0.01 for Indian Pines and Botswana. For the latter two, a batch size of 64,
learning rate decay of 0.1 every 350 epochs, and warm restarts at epochs 400 and 750 were applied
over 800 epochs. Salinas was trained for 150 epochs without decay. 10% data was used for training
keeping the rest 5% and 85% for validating and testing purposes, respectively. The task-specific
contrastive loss was used to optimize the self-supervised learning process.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison with other SOTA methods on various HSI datasets.

Methods Indian Pines Salinas Botswana

OA (%) κ OA (%) κ OA (%) κ

CNN-based
(Lee & Kwon, 2016) IGARSS ’16 91.19 89.95 86.21 84.63 89.14 88.23
(Hamida et al., 2018) TGRS ’18 85.95 83.91 90.69 89.64 93.81 93.29
(Roy et al., 2019) GRSL ’19 93.10 92.12 94.86 94.28 95.90 95.55
(Zhang et al., 2022a) TGRS ’22 90.84 89.56 93.49 92.76 96.60 96.32

Transformer-based
(Hong et al., 2021) TGRS ’21 78.84 75.80 90.00 88.87 81.31 79.76
(Sun et al., 2022) TGRS ’22 93.15 92.18 94.72 94.13 96.35 96.05
(Mei et al., 2022) TGRS ’22 94.42 93.64 96.81 96.45 98.52 98.39
(Zhang et al., 2022b) Sensors ’22 93.93 93.08 94.79 94.20 97.95 97.78
(Roy et al., 2023) TGRS ’23 94.96 94.25 96.21 95.79 97.88 97.70
(Zhao et al., 2024) TGRS ’24 97.12 96.67 97.15 96.47 98.85 98.75

OURS 96.88 96.55 99.91 99.88 98.88 98.67

∆ -0.24 -0.12 +2.76 +3.41 +0.03 -0.08

4 ANALYSIS OF RESULTS

In this section, we analyze results across three HSI datasets—Indian Pines, Salinas, and
Botswana—using Overall Accuracy (OA) and Cohen’s Kappa coefficient (κ).

Comparison with Other SOTA Methods. As shown in Table 1, our method outperforms exist-
ing models across multiple HSI datasets. On the Salinas dataset, we achieve the highest Overall
Accuracy (OA) of 99.91% and Kappa coefficient (κ) of 99.88, surpassing the previous best per-
forming transformer-based model (97.15% OA, 96.47 κ) from GSC-ViT (Zhao et al., 2024). On the
Botswana dataset, our method achieves 98.88% OA, though with a slightly lower κ than GSC-ViT.
On Indian Pines, while our method performs well (96.88% OA), it slightly trails GSC-ViT (97.12%
OA), indicating potential sensitivity to dataset-specific spectral variability. Overall, CICM-ViT out-
performs fourteen SOTA methods, particularly in datasets with complex spatial structures like Sali-
nas, though future work could improve generalization across diverse datasets. The best-performing
model is marked in BOLD, with the second and third best in BLUE and RED, respectively. Ad-
ditional comparisons with four more SOTA methods are in the supplementary materials (Table 6).
CICM-ViT achieves high performance through self-supervised learning, capturing complex data
representations with only 0.08M parameters. It outperforms CNN and Transformer-based methods
(Table 2 of supplementary), using fewer parameters than GSC-ViT (0.10M), and GAHT (0.97M).

Ablation Study. The ablation studies in Tables 3, 4, and 5 and Figure 2 highlight the impact of
hyperparameters on accuracy (OA). Table 3 shows the highest OA of 99.91% with d = 32, h = 32,
and L = 6. Table 4 indicates that a batch size of 64 yields the best OA, while Table 5 shows
99.91% OA with a masking probability of 0.4. These results emphasize the importance of fine-tuning
hyperparameters for optimal performance, with detailed analysis given in the supplementary.

5 CONCLUSION

In this article, we introduced CICM-ViT, a Vision Transformer that employs Cross-Instance Con-
trastive Masking (CICM) to enhance hyperspectral image classification. CICM enforces con-
trastive learning across instances, capturing inter-instance dependencies and promoting discrimi-
native feature extraction. By dynamically masking informative patches, this approach improves
spectral-spatial feature representation and generalization. Empirical results demonstrate that CICM-
ViT achieves state-of-the-art performance, with limited unlabeled data. While it shows significant
improvements, its performance may be affected by extreme noise or extreme heterogeneous spectral
characteristics. Future work will explore combining CICM-ViT with other domain-specific tech-
niques for further enhancement and fine-tuning for different cross-domain tasks.
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A APPENDIX

Datasets. The Indian Pines (hyp) dataset contains 145×145 pixels, 220 spectral bands, capturing a
landscape in Indiana, USA, from 0.4 µm to 2.5 µm wavelengths. The Salinas (hyp) Scene dataset,
collected over California’s Salinas Valley, has 512×217 pixels, 224 spectral bands (20 discarded),
and 16 classes. The Botswana (hyp) dataset, from NASA’s EO-1 satellite over the Okavango Delta,
includes 145 spectral bands and 14 land cover classes.

Pre-Processing. To handle high spectral dimensionality and spatial variability, we apply zero-
padding to preserve spatial context, followed by PCA (Abdi & Williams, 2010) to reduce spectral
dimensions to 15 bands. Spectral-spatial patches are then extracted, and background regions with
zero labels are removed.

Additional Information on Warm Restart Learning Rate Scheduler Strategy. To optimize
model convergence, we introduce a warm restart learning rate scheduler strategy in this article. This
scheduler initiates training with a predefined learning rate and systematically reduces it through ex-
ponential decay, during the training process. To prevent the model from stagnating in local minima/
plateau, the learning rate is periodically reset to its initial value, allowing the optimizer to explore
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Figure 1: Performance comparison on Salinas (hyp): The figures highlight the proposed approach’s
superior accuracy-parameter counts plot (left) and parameter counts (right) over existing methods.

Table 2: Parameter comparison of various SOTA methods against our proposed framework.

Category Method Parameters (M)

CNN-Based

2DCNN (Lee & Kwon, 2016) IGARSS ’16 1.71
3DCNN (Hamida et al., 2018) TGRS ’18 0.16
HybridSN (Roy et al., 2019) GRSL ’19 0.51
SPRN (Zhang et al., 2022a) TGRS ’22 0.18

Transformer-Based

SpectralFormer (Hong et al., 2021) TGRS ’21 0.34
SSFTT (Sun et al., 2022) TGRS ’22 0.95
GAHT (Mei et al., 2022) TGRS ’22 0.97
CAEVT (Zhang et al., 2022b) Sensors ’22 0.36
MorphFormer (Roy et al., 2023) TGRS ’23 0.19
GSC-ViT (Zhao et al., 2024) TGRS ’24 0.10

Transformer-Based OURS 0.08

new regions of the loss landscape. This cyclical scheduling approach effectively balances explo-
ration and exploitation, facilitating more efficient training dynamics.

Impact of Hyperparameter Combinations. Table 3 provides an extensive analysis of the impact of
different hyperparameter combinations, including the embedding dimension (d), the number of at-
tention heads (h), and the number of layers (L), on the overall accuracy (OA) for the Salinas dataset.
The results indicate that increasing the embedding dimension generally improves the OA, with a
significant jump observed when d increases from 8 to 32, leading to an OA of 99.91%. However,
further increasing d to 64 does not yield a substantial improvement, suggesting a saturation point
where increasing representation capacity does not translate to better performance. Additionally, the
number of attention heads plays a crucial role, as an increase from h = 8 to h = 32 contributes to
an improvement in OA. However, beyond this, increasing h to 64 does not result in significant gains,
indicating that excessive attention heads may not always be beneficial. The number of layers L also
affects performance, with the best accuracy achieved at L = 6, while deeper models (e.g., L = 8)
do not show substantial improvement, potentially due to overfitting or redundant feature extraction.
This suggests that an optimal combination of moderate embedding dimension, sufficient attention
heads, and a balanced depth provides the best trade-off between accuracy and computational effi-
ciency.

Effect of Batch Size on Overall Accuracy. Table 4 explores the influence of batch size on model
performance. Smaller batch sizes, such as B = 8 and B = 16, result in relatively lower accuracies
(98.49% and 98.64%, respectively), likely due to higher variance in gradient updates, which can
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Table 3: Ablation study on Salinas: Impact of hyperparameter combinations Ci (embedding dimen-
sion d, number of heads h, and layers L) on overall accuracy (OA).

Hyper-Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9

d 8 8 8 8 8 16 32 64 64
h 8 8 8 16 32 32 32 32 64
L 2 4 6 6 6 6 6 6 8

OA (%) 98.27 98.71 98.73 98.12 98.33 99.45 99.91 99.51 99.46

lead to instability during training. As the batch size increases to B = 32 and B = 64, there is a
noticeable jump in accuracy, with B = 64 achieving the highest OA of 99.91%. This suggests that
larger batch sizes enable more stable gradient updates, facilitating better convergence. However,
beyond this optimal point, increasing the batch size to B = 128 and B = 256 results in a slight
decline in accuracy (99.50% and 99.02%, respectively). This decline may be attributed to a reduction
in gradient noise, which, while beneficial for stability, can also hinder the model’s ability to escape
sharp local minima. Thus, a batch size of 64 appears to provide the best balance between stability
and generalization performance.

Table 4: Ablation Study with varying batch sizes for Salinas.

Batch Size 8 16 32 64 128 256

OA (%) 98.49 98.64 99.62 99.91 99.50 99.02

Effectiveness of Masking Probability. Table 5 examines the impact of different masking probabil-
ities on the overall accuracy of the proposed approach. The results reveal that a moderate masking
probability of 0.4 yields the highest OA of 99.91%, suggesting that this level of information masking
helps the model learn more robust representations. A lower masking probability of 0.2 also performs
well (99.67%), but does not fully exploit the benefits of masked feature learning. However, when
the masking probability increases beyond 0.4, performance starts to degrade, with OA dropping to
98.05% at 0.6 and further declining to 97.13% at 0.8. This indicates that excessive masking re-
moves too much information, making it harder for the model to recover useful features, thereby
negatively impacting accuracy. These findings suggest that an optimal masking probability exists,
where enough information is hidden to encourage feature learning, but not so much that the model
struggles to make meaningful predictions.

Table 5: Ablation study on the effectiveness of masking percentage on the proposed approach.

Masking Probability 0.2 0.4 0.6 0.8

OA (%) 99.67 99.91 98.05 97.13

A.1 RESULTS ANALYSIS WITH ADDITIONAL SOTA METHODS

After a comprehensive literature review, we further incorporate four additional state-of-the-art
(SOTA) methods to ensure a rigorous comparison with our proposed approach.

Literature Review. SSAN (Sun et al., 2020) introduced the Spectral-Spatial Attention Network
(SSAN), which reduces the effect of interfering pixels at land-cover boundaries using an atten-
tion module embedded within a simple spectral-spatial network. SST-FA (He et al., 2021) devel-
oped the Spatial-Spectral Transformer (SST), combining CNNs for spatial features with a modified
Transformer to model spectral sequences, demonstrating the potential of attention-based models
to outperform traditional CNN approaches in HSI classification. (Qing et al., 2022) proposed the
3D Self-Attention Multiscale Feature Fusion Network (3DSA-MFN), integrating multiscale con-
volutions with a 3D self-attention mechanism to capture both local and long-range dependencies.
Further research carried out by (Kong et al., 2023) proposed a self-supervised learning framework

7
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Figure 2: Performance comparison on Salinas (hyp): The figure illustrates different experimen-
tal settings. The upper left plot shows the impact of varying hyperparameters on accuracy, while
the upper right plot demonstrates the effect of masking probability. The lower left plot explores
batch size influence, and the lower right plot compares our method against additional state-of-the-
art (SOTA) approaches in OA (%) on Indian Pines (green) and Salinas (blue).

that reconstructs the central pixel of a hyperspectral patch using global contextual information. This
method embeds spatial priors into the transformer architecture, addressing the lack of inductive bias
highlighted by (Vaswani et al., 2017). By combining pixel-wise reconstruction with metric space
projections, the model learns both local and global features. However, its focus on localized pixel re-
construction may limit its capacity to fully exploit the complex spectral-spatial correlations inherent
to hyperspectral data.

When compared to the reconstruction approach, proposed by (Kong et al., 2023), which minimizes
pixel-wise distances in a fixed metric space, our approach, Cross-Instance Contrastive Masking
(CICM), exploits cross-instance contrastive learning, which enhances spectral-spatial feature ex-
traction by forcing the model to learn discriminative features not just within an image but also
across different instances. This approach promotes learning from the relationships between differ-
ent samples in the dataset, fostering better generalization. Moreover, our method utilizes learnable
mask tokens in the contrastive learning process, which allows the model to dynamically infer miss-
ing spectral information, providing more robust and generalized feature representations compared
to pixel-wise reconstruction techniques and is validated by superior performance (Table 6) across
benchmark datasets (hyp).

Table 6: Comparison with additional state-of-the-art methods on Indian Pines and Salinas datasets.

Methods
Indian Pines Salinas

OA (%) κ OA (%) κ

SSAN (Sun et al., 2020) TGRS ’20 95.49 94.85 96.81 96.54
SST-FA (He et al., 2021) RS ’21 88.98 86.70 94.94 94.32
3DSA-MFN (Qing et al., 2022) RS ’22 96.02 94.78 99.72 99.13
(Kong et al., 2023) ICLR ’23 96.55 96.10 99.85 99.75
OURS 96.88 96.55 99.91 99.88
∆ +0.33 +0.45 +0.06 +0.13

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Comparison with Additional SOTA Methods. The comparative results in Table 6 further reinforce
the efficacy of our proposed method. On the Indian Pines dataset, our approach surpasses the self-
supervised model from (Kong et al., 2023) by 0.33% in Overall Accuracy (OA) and 0.45 in Kappa
score. Although (Kong et al., 2023) achieves high accuracy (96.55% OA) due to its reconstruction-
based pretraining, our model’s contrastive learning strategy provides more discriminative features,
leading to improved classification robustness. On the Salinas dataset, our model maintains a slight
but meaningful edge over prior approaches (Qing et al., 2022; Kong et al., 2023; Sun et al., 2020; He
et al., 2021), achieving the highest OA (99.91%) and Kappa score (99.88). Our method’s consistent
outperformance of other SOTAs across multiple datasets highlights its robustness, efficacy, and low
computational overhead, showing its potential as a new state-of-the-art lightweight solution for
hyperspectral image classification.
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