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ABSTRACT

Spurious correlations arise when models learn non-causal features, such as back-
ground artifacts, instead of meaningful class-relevant patterns. This paper pro-
poses a novel Cross-Instance Contrastive Masking in Vision Transformer (CICM-
ViT) for hyperspectral image (HSI) classification, which attempts to reduce short-
cut learning through Cross-Instance Contrastive Masking (CICM) by shuffling and
masking patches, enforcing invariant and causal feature learning through spectral-
spatial feature extraction via self-supervision. Using the dependencies between
instances, CICM-ViT dynamically masks spectral patches across instances, pro-
moting the learning of discriminative features while reducing redundancy, espe-
cially in low-data settings. This approach reduces shortcut learning by focusing
on global patterns rather than relying on local spurious correlations. CICM-ViT
achieves state-of-the-art performance on HSI datasets, with 99.91% OA on Sali-
nas, 96.88% OA on Indian Pines, and 98.88% OA on Botswana, outperforming
most SOTA CNN- and Transformer-based approaches in both accuracy and ef-
ficiency, with only 89,680 parameters. Further experiments on a semi-synthetic
dataset demonstrate the effectiveness of the method against spurious correlations.

1 INTRODUCTION

The classification of hyperspectral images (HSI) (Li et al., 2019; Jain & Ghosh, 2022) plays a key
role in geoscience and remote sensing (Lary et al., 2016; Roy et al., 2013) but faces challenges
such as high dimensionality, overfitting, and inefficient feature extraction. While CNN-based mod-
els (Krizhevsky et al., 2012; Alzubaidi et al., 2021; Simonyan & Zisserman, 2015; He et al., 2016)
struggle with large datasets and global dependencies, world models like Vision Transformers (ViTs)
(Vaswani et al., 2017; Dosovitskiy et al., 2021) address these but miss local feature modeling cru-
cial for HSI representation. Attempting to address these challenges, various research papers have
evolved HSI classifications through different spectral-spatial models. Early methods like 2-DCNN
(Lee & Kwon, 2016) and SPRN (Zhang et al., 2022a) used convolutions and attention mechanisms,
while 3-DCNN (Hamida et al., 2018) captured spectral-spatial dependencies with 3D convolutions.
Hybrid models such as HybridSN (Roy et al., 2019) combine 2D and 3D CNNs. Transformer-based
methods like GAHT (Mei et al., 2022) and MorphFormer (Roy et al., 2023) used self-attention and
CNN-Transformer hybrids. Lightweight models like CAEVT (Zhang et al., 2022b) and GSC-ViT
(Zhao et al., 2024) focused on efficiency with 3D autoencoders and separable convolutions, empha-
sizing advanced spectral-sequence learning through multiscale aggregation and tokenization. Recent
methods combine CNNs and Transformers to balance local spatial detail with global spectral con-
text. DATN (Shu et al., 2024) uses spectral-local convolutional blocks with hybrid Transformers,
while DCTN (Zhou et al., 2024) fuses CNNs and EISA-based Transformers.

Contrary to other methods, we propose CICM-ViT for improved spectral-spatial learning. CICM
replaces masked patches with cross-instance features, encouraging the model to reconstruct miss-
ing information from distinct instances via self-supervision, rather than relying on redundant local
patterns and thereby reducing overfitting to spurious features. Experiments show that CICM-ViT
outperforms almost all the CNNs and Transformers in accuracy and parameter efficiency, making it
ideal for hyperspectral image (HSI) analysis and its applications with limited labeled data.
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2 METHODOLOGY

This section introduces Cross-Instance Contrastive Masking in Vision Transformer (CICM-ViT),
a self-supervised learning method designed to enhance spectral-spatial feature extraction for HSI
classification. CICM replaces masked patches with cross-instance features, prompting the model to
reconstruct missing information from distinct instances instead of relying on redundant local pat-
terns, thereby enabling the model to become less prone to shortcut learning. After self-supervised
feature extraction, a supervised fine-tuning is employed to enable effective feature aggregation for
various downstream tasks. In the following, we detail the complete methodology. Complete frame-
work is also described in Algorithm 1 of Appendix B.

Self-Supervised Spectral-Spatial Feature Learning. Given a hyperspectral image X ∈ RH×W×B

with height H , width W , and B spectral bands, we partition it into non-overlapping patches of size
P × P ×B. Each patch (Z0) is mapped to a D-dimensional embedding via:

Z0 = PatchEmbed(X) +Epos, (1)

where Epos ∈ RN×D is a learnable positional encoding that preserves spatial relationships in the
embedding space and N = HW

P 2 denotes the patch count.

To introduce Cross-Instance Contrastive Masking (CICM), we first apply a binary mask M ∈
{0, 1}N to the patch embeddings Z0. The mask M determines which patches are to be masked
(40% masking probability was optimal in our case). Instead of using intra-instance masking (i.e.,
removing patches within the same instance), we replace the masked patches with a learnable token
T ∈ R1×D, which serves as a global placeholder for the missing data. During training, we then
replace the masked patches with shuffled patches from another instance. This shuffling operation is
done after masking and occurs only during training. It encourages the model to learn inter-instance
dependencies by forcing it to infer the missing information using features from different instances
guided by the task-specific contrastive loss. This cross-instance strategy reduces redundancy and
overfitting to spurious features, as the model must focus on high-level, global patterns (for HSI dif-
ferent spectral bands consist of varied information) rather than relying solely on local context. The
masked embedding Zm ∈ RN×D is defined as:

Zm = (1−M)⊙ Z0 +M⊙T, (2)

where ⊙ represents element-wise multiplication. After applying CICM, the masked embeddings
Zm are passed through the encoder of the Vision Transformer (ViT).

Contrastive Self-Supervised Learning. Traditional contrastive learning generates positive pairs
from the same instance and negative pairs from different instances, whereas our approach applies
contrastive loss to masked embeddings, with patches shuffled from different instances, promoting
generalizable feature learning through cross-instance contrast. We enforce robust feature discrimi-
nation by optimizing a contrastive loss that aligns embeddings from semantically similar instances
while pushing apart those from dissimilar ones. Given a masked embedding Zm obtained from the
Cross-Instance Contrastive Masking process, the ViT encoder learns its final representation Zi. For
a given instance embedding Zi, a positive counterpart Z+

i (another instance from a similar class),
and negative samples Z−

j (from different classes), the contrastive loss, LCICM, is formulated as:

LCICM = −
N∑
i=1

log
exp(sim(Zi,Z

+
i ))∑

j exp(sim(Zi,Z
−
j ))

, (3)

where sim(Zi,Zj) =
Z⊤

i Zj

∥Zi∥∥Zj∥ denotes the cosine similarity between two embeddings.

Unlike standard self-supervised methods that focus on intra-instance similarities, CICM-ViT ex-
plicitly contrasts embeddings across different instances. This forces the model to generalize beyond
instance-specific patterns, enhancing spectral-spatial feature learning by emphasizing shared class-
level structures over local redundancies. The cross-instance contrast reduces overfitting, improving
generalization even with minimal and spuriously correlated data.
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3 EXPERIMENTAL SETUPS

This section details the experimental setup of our approach on three benchmark hyperspectral
datasets (hyp): Indian Pines, Salinas, and Botswana. More details are given in Appendix A.1.

Training. The model was trained using the Adam optimizer (Kingma & Ba, 2015) with learning
rates of 0.001 for Salinas, and 0.01 for Indian Pines and Botswana. For the latter two, a batch size
of 64, learning rate decay of 0.1 every 350 epochs, and warm restarts (Appendix A.1) at epochs 400
and 750 were applied over 800 epochs. Salinas was trained for 150 epochs without decay. 10%
data was used for training keeping the rest 5% and 85% for validating and testing, respectively. The
task-specific contrastive loss, (equation 3) was used to optimize the self-supervised learning process.

Table 1: Comparison with other SOTA methods on various HSI datasets.

Methods Venue Indian Pines Salinas Botswana

OA (%) κ OA (%) κ OA (%) κ

CNN-based
(Lee & Kwon, 2016) IGARSS ’16 91.19 89.95 86.21 84.63 89.14 88.23
(Hamida et al., 2018) TGRS ’18 85.95 83.91 90.69 89.64 93.81 93.29
(Roy et al., 2019) GRSL ’19 93.10 92.12 94.86 94.28 95.90 95.55
(Zhang et al., 2022a) TGRS ’22 90.84 89.56 93.49 92.76 96.60 96.32

Transformer-based
(Hong et al., 2021) TGRS ’21 78.84 75.80 90.00 88.87 81.31 79.76
(Sun et al., 2022) TGRS ’22 93.15 92.18 94.72 94.13 96.35 96.05
(Mei et al., 2022) TGRS ’22 94.42 93.64 96.81 96.45 98.52 98.39
(Zhang et al., 2022b) Sensors ’22 93.93 93.08 94.79 94.20 97.95 97.78
(Roy et al., 2023) TGRS ’23 94.96 94.25 96.21 95.79 97.88 97.70
(Zhao et al., 2024) TGRS ’24 97.12 96.67 97.15 96.47 98.85 98.75
(Shu et al., 2024) EAAI ’24 97.18 96.78 98.95 98.83 96.40 96.10
(Zhou et al., 2024) TGRS ’24 96.76 96.30 98.11 97.89 97.18 96.95

OURS (CICM-ViT) 96.88 96.55 99.91 99.88 98.88 98.67

∆ -0.30 -0.23 +0.96 +1.05 +0.03 -0.08

4 ANALYSIS OF RESULTS

In this section, we analyze results using Overall Accuracy (OA) and Cohen’s Kappa coefficient (κ).

Comparison with Other SOTA Methods. As shown in Table 1, our method outperforms existing
models across multiple HSI datasets. On the Salinas, we achieve the highest Overall Accuracy
(OA) of 99.91% and Kappa coefficient (κ) of 99.88, significantly surpassing the previously best-
performing model, DATN (Shu et al., 2024), with 98.95% OA and 98.83 κ. On the Botswana
dataset, our method also leads with 98.88% OA, marginally outperforming GSC-ViT (Zhao et al.,
2024) (98.85% OA) and have clear advantage on hybrid models like DATN (Shu et al., 2024)
(96.40% OA). For the Indian Pines dataset, our method achieves 96.88% OA, slightly behind GSC-
ViT (97.12%) and DATN (97.18%), indicating some sensitivity to spectral variability in this dataset.
Overall, CICM-ViT surpasses most recent SOTA methods, including CNN, Transformer, and hy-
brid models, showing exceptional performance, particularly on datasets with complex spatial struc-
tures like Salinas. The best-performing model is marked in BOLD, with the second and third best in
BLUE and RED, respectively. Additional comparisons with four more SOTA methods are provided
in Appendix A.2 (Table 7). CICM-ViT achieves this performance through self-supervised learn-
ing, capturing rich representations using just 0.08M parameters — fewer than GSC-ViT (0.10M),
DCTN (4.01M), and GAHT (0.97M), as detailed in Table 4 and Figure 2 of Appendix A.2.

Ablation Study. The ablation studies in Tables 2, 5, 6 and Figure 3 (Appendix A.2) highlight the
impact of hyperparameters on accuracy (OA). Table 5 shows the highest OA of 99.91% with d = 32,
h = 32, and L = 6. Table 6 indicates that a batch size of 64 yields the best OA, while Table 2 shows
99.91% OA with a masking probability of 0.4. These results emphasize the importance of fine-
tuning hyperparameters for optimal performance, with detailed analysis given in the Appendix A.2.
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Table 2: Ablation study on the effectiveness of masking percentage on the proposed approach.

Masking Probability 0.2 0.4 0.6 0.8

OA (%) 99.67 99.91 98.05 97.13

Evaluation on Out-of-Distribution Data. To evaluate the model’s robustness under distributional
shifts of test data, we simulate a spurious correlation scenario for all three datasets. We inject label-
dependent perturbations into a single spectral band, where each pixel’s intensity is modified based
on its class index—introducing a synthetic, non-semantic correlation between spectral intensity and
class label. Crucially, this perturbation is applied only to the test set, preserving a clean training
distribution and creating a challenging out-of-distribution (OOD) setting. Under this setup (de-
scribed in Appendix A.3), strong baselines like ViT exhibit degraded generalization, as evidenced
by fragmented and overlapping clusters in the t-SNE (van der Maaten & Hinton, 2008) (Figure
1) feature space and unstable validation performance. In contrast, the proposed method maintains
well-separated clusters, exhibits stable training dynamics, demonstrating its ability to learn robust,
semantic features rather than overfitting to spurious cues. The curves indicate that our method gen-
eralizes significantly better than the ViT baseline, under spurious correlations. While ViT tends to
overfit training data and struggles on spurious test set, our model maintains a stable generalization
gap and shows its robustness to distribution shifts. In Figure 5 (Appendix A.3), we show the distribu-
tion shift between the original test set and the transformed spurious test set for this experimentation.

Figure 1: Robustness under spurious correlations. (a) Our model forms distinct clusters; (b) ViT
shows overlap, indicating spurious reliance; (c) training curves favor our model. Rows: top - Indian
Pines, middle - Botswana, bottom - Salinas.

5 CONCLUSION

In this paper, we introduce CICM-ViT, a Vision Transformer that employs Cross-Instance Con-
trastive Masking (CICM) to enhance hyperspectral image classification across different datasets.
CICM enforces contrastive learning across instances, capturing inter-instance dependencies and
promoting discriminative feature extraction. By dynamically masking informative patches, this ap-
proach improves spectral-spatial feature representation and generalization. Empirical results demon-
strate that CICM-ViT achieves SOTA performance with limited data and is also effective against
spurious correlations. Extensive experiments validate the robustness and effectiveness of CICM-
ViT across multiple OOD data settings. While the model is resilient to various forms of distribution
shift, its performance may be challenged under extreme noise or highly heterogeneous spectral do-
mains. Future directions include integrating domain-specific priors, enhancing robustness under
severe perturbations for hyperspectral applications.
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A APPENDIX

A.1 DATASETS AND DETAILED EXPERIMENTAL SETUP

Datasets. Hyperspectral imaging datasets (hyp) are crucial for remote sensing applications, offer-
ing rich spectral information across numerous bands. Three widely studied datasets in this domain
are the Indian Pines, Salinas Scene, and Botswana, each with distinct characteristics and applica-
tions. The Indian Pines dataset, collected using the Airborne Visible/Infrared Imaging Spectrometer
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(AVIRIS) sensor, captures a landscape in Indiana, USA, featuring 145×145 pixels and 220 spectral
bands, covering wavelengths from 0.4 µm to 2.5 µm. It primarily consists of agricultural fields
and some forested regions, with 16 ground truth classes. Due to the high spectral similarity be-
tween certain crop types and the presence of mixed pixels, classification tasks on this dataset can
be challenging. The Salinas Scene dataset, also acquired using AVIRIS, focuses on agricultural
land in California’s Salinas Valley. It has a higher spatial resolution and consists of 512×217 pix-
els, 224 spectral bands (with 20 bands discarded due to water absorption), and 16 land-cover
classes. The finer spatial resolution and high spectral variability among crop types make it well-
suited for agricultural analysis. In contrast, the Botswana dataset, captured by NASA’s Hyperion
sensor aboard the EO-1 satellite, covers the Okavango Delta, a wetland ecosystem with diverse veg-
etation and water bodies. It includes 256×1476 pixels (often cropped to 145×145), 145 spectral
bands after removing water absorption bands, and 14 land cover classes. Unlike Indian Pines and
Salinas, which focus on agriculture, the Botswana dataset captures a natural ecosystem, making it
valuable for environmental monitoring and wetland classification. Table 3 below summarizes the
distinct properties of these datasets. Moreover, major challenges are also listed when dealing with
high-dimensional datasets, such as hyperspectral images.

Table 3: Details on Indian Pines, Salinas, and Botswana Hyperspectral Datasets
Feature Indian Pines Salinas Botswana

Location Indiana, USA California, USA Okavango Delta, Botswana
Sensor AVIRIS (airborne) AVIRIS (airborne) Hyperion (satellite)
Spatial Size 145 × 145 px 512 × 217 px 256 × 1476 (cropped to 145×145) px
Spectral Bands 220 224 (20 removed) 145
Ground Truth Classes 16 (crops, forest) 16 (agriculture) 14 (natural land cover)
Primary Use Agricultural land classification Crop classification Environmental analysis
Major Challenge Spectral similarity between crops High-resolution spectral variation Complex vegetation-water interactions

Pre-Processing. To handle high spectral dimensionality, spatial variability, and to preserve spatial
context, we apply zero-padding, followed by PCA (Abdi & Williams, 2010) to reduce spectral di-
mensions to 15 bands. Spectral-spatial patches are then extracted, and background regions with zero
labels are removed.

Warm Restart Learning Rate Scheduler Strategy. To optimize model convergence, we intro-
duce a warm restart learning rate scheduler strategy in our work. This scheduler initiates training
with a predefined learning rate and systematically reduces it through exponential decay during the
training process. To prevent the model from stagnating in local minima or plateaus, the learning
rate is periodically reset to its initial value, allowing the optimizer to explore new regions of the
loss landscape. This cyclical scheduling approach effectively balances exploration and exploitation,
facilitating more efficient training dynamics.

A.2 ANALYSIS OF RESULTS

Details on Evaluation Metrics. For HSI classification, we use both overall accuracy (OA) and the
Kappa coefficient (κ). While OA measures the proportion of correct predictions, it can be misleading
on imbalanced datasets. In contrast, κ accounts for agreement by chance, offering a more reliable
assessment of model’s performance. This makes κ especially important for HSI data, where class
imbalance is common. A κ value close to 1 indicates strong agreement with ground truth, while
lower values suggest poor classification.

Parameter Efficiency. Table 4 presents a comprehensive comparison of parameter counts against
various state-of-the-art (SOTA) methods in hyperspectral image classification. The proposed frame-
work, highlighted in cyan, is a transformer-based architecture with only 0.08 million parameters,
making it the most lightweight among all compared methods (also see Figure 2). Notably, it re-
quires fewer parameters than even compact CNN-based models such as 3DCNN (0.16M)and SPRN
(0.18M), while significantly undercutting the parameter-heavy transformer baselines like DATN
(3.31M) and DCTN (4.01M).

Impact of Hyperparameter Combinations. Table 5 provides an extensive analysis of the impact
of different hyperparameter combinations, including the embedding dimension (D), the number of
attention heads (h), and the number of layers (L) used in the transformer encoder, on the overall
accuracy (OA) for the Salinas dataset. The results indicate that increasing the embedding dimension
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Figure 2: Performance comparison on all three datasets (hyp): The figures highlight the proposed
approach’s superior accuracy-parameter counts plot (left) and parameter counts (right) over existing
methods.

Table 4: Parameter comparison of various SOTA methods against our proposed framework.

Category Method Parameters (M)

CNN-based

2DCNN (Lee & Kwon, 2016) IGARSS ’16 1.71
3DCNN (Hamida et al., 2018) TGRS ’18 0.16
HybridSN (Roy et al., 2019) GRSL ’19 0.51
SPRN (Zhang et al., 2022a) TGRS ’22 0.18

Transformer-based

SpectralFormer (Hong et al., 2021) TGRS ’21 0.34
SSFTT (Sun et al., 2022) TGRS ’22 0.95
GAHT (Mei et al., 2022) TGRS ’22 0.97
CAEVT (Zhang et al., 2022b) Sensors ’22 0.36
MorphFormer (Roy et al., 2023) TGRS ’23 0.19
GSC-ViT (Zhao et al., 2024) TGRS ’24 0.10
DATN (Shu et al., 2024) EAAI ’24 3.31
DCTN (Zhou et al., 2024) TGRS ’24 4.01

Transformer-based OURS 0.08

generally improves the OA, with a significant jump observed when D increases from 8 to 32, leading
to an OA of 99.91%. However, further increasing D to 64 does not yield a substantial improvement,
suggesting a saturation point where increasing representation capacity does not translate to better
performance. Additionally, the number of attention heads plays a crucial role, as an increase from
h = 8 to h = 32 contributes to an improvement in OA. However, beyond this, increasing h to
64 does not result in significant gains, indicating that excessive attention heads may not always be
beneficial. The number of layers L also affects performance, with the best accuracy achieved at
L = 6, while deeper models (e.g., L = 8) do not show substantial improvement, potentially due to
overfitting or redundant feature extraction. This suggests that an optimal combination of moderate
embedding dimension, sufficient attention heads, and a balanced depth provides the best trade-off
between accuracy and computational efficiency.

Table 5: Ablation study on Salinas: Impact of hyperparameter combinations Ci (embedding dimen-
sion D, number of attention heads h, and layers L) on overall accuracy (OA).

Hyperparameters C1 C2 C3 C4 C5 C6 C7 C8 C9

D 8 8 8 8 8 16 32 64 64
h 8 8 8 16 32 32 32 32 64
L 2 4 6 6 6 6 6 6 8

OA (%) 98.27 98.71 98.73 98.12 98.33 99.45 99.91 99.51 99.46
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Table 6: Ablation Study with varying batch sizes for Salinas.

Batch Size (BS) 8 16 32 64 128 256

OA (%) 98.49 98.64 99.62 99.91 99.50 99.02

Effect of Batch Size on Overall Accuracy. Table 6 explores the influence of batch size on model
performance. Smaller batch sizes, such as BS = 8 and BS = 16, result in relatively lower accu-
racies (98.49% and 98.64%, respectively), likely due to higher variance in gradient updates, which
can lead to instability during training. As the batch size increases to BS = 32 and BS = 64, there
is a noticeable jump in accuracy, with BS = 64 achieving the highest OA of 99.91%. This suggests
that larger batch sizes enable more stable gradient updates, facilitating better convergence. How-
ever, beyond this optimal point, increasing the batch size to BS = 128 and BS = 256 results in a
slight decline in accuracy (99.50% and 99.02%, respectively). This decline may be attributed to a
reduction in gradient noise, which, while beneficial for stability, can also hinder the model’s ability
to escape sharp local minima. Thus, a batch size of 64 appears to provide the best balance between
stability and generalization performance.

Effectiveness of Masking Probability. Table 2 examines the impact of different masking probabil-
ities on the overall accuracy of the proposed approach. The results reveal that a moderate masking
probability of 0.4 yields the highest OA of 99.91%, suggesting that this level of information masking
helps the model learn more robust representations. A lower masking probability of 0.2 also performs
well (99.67%), but does not fully exploit the benefits of masked feature learning. However, when
the masking probability increases beyond 0.4, performance starts to degrade, with OA dropping to
98.05% at 0.6 and further declining to 97.13% at 0.8. This indicates that excessive masking re-
moves too much information, making it harder for the model to recover useful features, thereby
negatively impacting accuracy. These findings suggest that an optimal masking probability exists,
where enough information is hidden to encourage feature learning, but not so much that the model
struggles to make meaningful predictions.

Figure 3: Performance comparison on Salinas (hyp): The figure illustrates different experimental
settings. The upper left plot shows the impact of varying hyperparameters on overall accuracy,
while the lower left plot demonstrates its effect of masking probability. The upper right plot explores
batch size influence, and the lower right plot compares our method against additional state-of-the-art
(SOTA) approaches in OA (%) on Indian Pines (green) and Salinas (blue).
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t-SNE Visualizations on In-Distribution Test Set. Figure 4 reveals a sharp contrast in feature
representations in the t-SNE (van der Maaten & Hinton, 2008) between the supervised ViT and our
self-supervised CICM-ViT with 10% data for all three datasets. The supervised ViT shows entan-
gled, snake-like patterns, signaling overfitting to label-specific nuances and poor generalization. In
contrast, CICM-ViT forms compact, well-separated clusters with smooth boundaries, capturing in-
trinsic, semantically rich features. This distinction reveals the strength of self-supervised learning
in disentangling features and enhancing generalization, particularly in high-dimensional hyperspec-
tral data. In low-data regimes, critical for HSI tasks, such clear separability highlights CICM-ViT’s
robustness and adaptability.

Figure 4: t-SNE visualization for all datasets with 10% training data: The top row shows supervised
ViT’s results for Indian Pines (left), Botswana (middle), and Salinas (right). The bottom row shows
the corresponding results using CICM-ViT.

Analysis of Results with Additional SOTA Methods. After a comprehensive literature review, we
further compare with four additional state-of-the-art (SOTA) methods to ensure a rigorous compari-
son with our proposed approach. SSAN (Sun et al., 2020) introduced the Spectral-Spatial Attention
Network (SSAN), which reduces the effect of interfering pixels at land-cover boundaries using an
attention module embedded within a simple spectral-spatial network. SST-FA (He et al., 2021) de-
veloped the Spatial-Spectral Transformer (SST), combining CNNs for spatial features with a modi-
fied Transformer to model spectral sequences, demonstrating the potential of attention-based models
to outperform traditional CNN approaches in HSI classification. (Qing et al., 2022) proposed the
3D Self-Attention Multiscale Feature Fusion Network (3DSA-MFN), integrating multiscale con-
volutions with a 3D self-attention mechanism to capture both local and long-range dependencies.
Further research carried out by (Kong et al., 2023) proposed a self-supervised learning (SSL) frame-
work that reconstructs the central pixel of a hyperspectral patch using global contextual information.
This method embeds spatial priors into the transformer architecture, addressing the lack of induc-
tive bias highlighted by (Vaswani et al., 2017). By combining pixel-wise reconstruction with metric
space projections, the model learns both local and global features. However, its focus on localized
pixel reconstruction may limit its capacity to fully exploit the complex spectral-spatial correlations
inherent to hyperspectral data.

When compared to the reconstruction approach, proposed by (Kong et al., 2023), which minimizes
pixel-wise distances in a fixed metric space, our approach, Cross-Instance Contrastive Masking
(CICM), exploits cross-instance contrastive learning, which enhances spectral-spatial feature ex-
traction by forcing the model to learn discriminative features not just within an image but also
across different instances. This approach promotes learning from the relationships between differ-
ent samples in the dataset, fostering better generalization, reducing shortcut learning. Moreover, our
method utilizes learnable mask tokens in the contrastive learning process, which allows the model
to dynamically infer missing spectral information, providing more robust and generalized feature
representations compared to pixel-wise reconstruction techniques and is validated by superior per-
formance (Table 7) across benchmark datasets (hyp).

The comparative results in Table 7 further reinforce the efficacy of our proposed method. On the
Indian Pines dataset, our approach surpasses the self-supervised model from (Kong et al., 2023) by
0.33% in Overall Accuracy (OA) and 0.45 in Kappa score. Although (Kong et al., 2023) achieves
high accuracy (96.55% OA) due to its reconstruction-based pretraining, our model’s contrastive
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Table 7: Comparison with additional SOTA methods on Indian Pines and Salinas datasets.

Methods
Indian Pines Salinas

OA (%) κ OA (%) κ

SSAN (Sun et al., 2020) TGRS ’20 95.49 94.85 96.81 96.54
SST-FA (He et al., 2021) RS ’21 88.98 86.70 94.94 94.32
3DSA-MFN (Qing et al., 2022) RS ’22 96.02 94.78 99.72 99.13
SSL (Kong et al., 2023) ICLR ’23 96.55 96.10 99.85 99.75
OURS 96.88 96.55 99.91 99.88
∆ +0.33 +0.45 +0.06 +0.13

learning strategy provides more discriminative features, leading to improved classification robust-
ness.

On the Salinas dataset, our model maintains a slight but meaningful edge over prior approaches
(Sun et al., 2020; He et al., 2021; Qing et al., 2022; Kong et al., 2023), achieving the highest OA
(99.91%) and Kappa score (99.88). Our method’s consistent outperformance of other SOTAs across
multiple datasets highlights its robustness, efficacy, and low computational overhead, showing its
potential as a new state-of-the-art lightweight solution for hyperspectral image classification.

A.3 DETAILS ON SPURIOUS OOD TEST CONSTRUCTION

Motivation. To evaluate the model’s robustness against non-semantic correlations, we introduce a
controlled spurious signal into the test data that artificially correlates a spectral feature with the class
label. This allows us to simulate an out-of-distribution (OOD) scenario where models may rely on
shortcut features rather than learning robust semantics.

Data Representation. As mentioned earlier, the hyperspectral data cube be defined as: X ∈
RH×W×B , where H , W , and B denote the spatial height, width, and number of spectral bands,
respectively. Let y ∈ {0, 1, . . . , C − 1} be the semantic class label, and let x ∈ RB represent a
spectral vector corresponding to a spatial patch or pixel.

Spurious Signal Injection. We introduce a label-dependent signal into a selected band bs ∈ [0, B)
by defining a normalized version of the label index:

ynorm =
y

C − 1
(4)

This maps the discrete class label to a continuous value in [0, 1]. The spurious signal is then added
as:

X′[:, :, bs] = X[:, :, bs] + α · ynorm (5)

where:

• α ∈ R+ is a scalar controlling the intensity of the spurious correlation (in our experiment,
it is set to 5),

• X′ denotes the perturbed test data,

• The perturbation is applied only to the test set.

Distributional Shift and OOD Justification. Let Ptrain(x, y) denote the joint distribution of in-
put, x, and label, y, in the training set. Under the perturbation defined in Eq. 5, the conditional
distribution in the test set becomes:

Ptest(x
′ | y) ̸= Ptrain(x | y), (6)

since the value of x′
bs

is now explicitly dependent on the class label y via ynorm.

Consequently, the joint distribution also shifts:

Ptest(x
′, y) ̸= Ptrain(x, y). (7)
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This constitutes a deliberate covariate shift where a non-semantic spectral band becomes spuriously
correlated with the label—mimicking real-world cases of shortcut learning. Evaluating models un-
der this modified test distribution provides a controlled setup to assess their reliance on causal versus
spurious features.

Visualization of Spurious Test Set via UMAP. Visualization via UMAP (Uniform Manifold Ap-
proximation and Projection) (McInnes et al., 2018), as depicted in Figure 5, reveals distinct clus-
tering patterns amongst the training, clean test, and spurious test samples. While the train and real
test distributions exhibit significant overlap in the low-dimensional space—indicating similar fea-
ture characteristics—the spurious test samples form noticeably separate clusters, often located at
different regions of the embedding. These spurious clusters, marked by square symbols, suggest
a distributional shift introduced through artificial correlation. This supports the notion that spuri-
ous correlations impact learned representations, causing the model to perceive out-of-distribution
features as distinct from in-distribution data.

Figure 5: UMAP visualization comparing Train (◦), Test (△), and Spurious Test (□) samples.
Spurious samples form a separate cluster away from the overlapping clusters formed by the original
Train and Test samples, highlighting a clear distribution shift induced by spurious correlations on
Indian Pines, Botswana, and Salinas (left to right).

Figure 6: Spurious Correlation Analysis in Colored MNIST. (a–c) t-SNE plots show stronger clus-
tering by spurious color (not digit) as flip prob decreases (0.3 → 0.1), indicating growing model
reliance on non-causal features. (d) Mutual Information (MI) between color and label supports this:
high MI in training drops on test data, revealing poor generalization. (e) Our method maintains
strong performance across all settings, including flip prob = 0.1, and generalizes well to the
decorrelated test set (flip prob = 1.0), demonstrating robustness to spurious correlations.
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Analysis on Another Spurious Correlation Dataset. Colored MNIST (Arjovsky et al., 2019) is
a variant of the standard MNIST dataset where each grayscale digit is overlaid with a synthetic
color, introducing a spurious correlation between the digit class and color. In this dataset, typi-
cally, in training, certain digit classes are consistently associated with specific colors, encouraging
models to rely on color rather than digits’ shape for classification. In our setup, we construct a semi-
synthetic Colored MNIST benchmark by embedding each MNIST digit into a high-dimensional
sparse representation across CC color channels (e.g., CC = 15). During training, each digit
class is deterministically assigned to one channel, injecting a strong but controllable spurious cor-
relation. A flip prob parameter controls how often this class-to-color mapping is violated—
ranging from 0.0 (perfect correlation) to 1.0 (fully randomized). All models are evaluated under
flip prob = 1.0, simulating out-of-distribution (OOD) generalization, where reliance on spu-
rious color cues is penalized. We additionally quantify the spuriousness via mutual information
between input channels and labels.

Figure 6 presents a diagnostic analysis of our constructed semi-synthetic dataset, where spurious
correlations are introduced by mapping each digit class in MNIST to a dominant color channel.
This controlled correlation is governed by a flip prob parameter, which stochastically disrupts
the label–color alignment during training, while the test set is fully decorrelated (flip prob =
1.0), representing a worst-case out-of-distribution (OOD) scenario. Subfigures (a–c) of Figure 6
visualize t-SNE projections for training data under increasing spurious correlation (decreasing flip
probabilities, 0.3, 0.2, 0.1). At low flip probabilities (e.g., 0.1), clear clustering patterns emerge,
driven predominantly by the color-channel cue, suggesting that models trained in this regime may
overfit to non-causal features. As the flip probability increases, these clusters dissolve, indicating a
more complex feature space and reduced reliance on spurious signals.

Subfigure (d) of Figure 6 quantifies this behavior using Mutual Information (MI) between the dom-
inant color channel and the ground-truth label. As expected, the training MI is high for low flip
probabilities, reflecting strong spurious alignment. However, the test MI remains consistently low
across all regimes, emphasizing the distribution shift between training and evaluation—a key factor
in the model’s brittleness under spurious correlation. Subfigure (e) of Figure 6 illustrates the per-
formance of our proposed method across four levels of flip probability. The model demonstrates
graceful degradation, with relatively consistent accuracy even under fully decorrelated test condi-
tions. This suggests that our approach learns features that are more causally aligned with the task,
rather than overfitting to color-channel shortcuts.

B DETAILED ALGORITHM OF CICM-VIT

CICM-ViT is a self-supervised algorithm for HSI feature learning that masks input patches and
replaces them with cross-instance patches. The model learns to reconstruct missing information
using non-local, semantically relevant features. A contrastive loss over masked embeddings enforces
inter-instance discrimination, enhancing spectral-spatial representation without labels. After self-
supervised training, the encoder is fine-tuned with labeled data to adapt the learned representations
for specific downstream tasks (See Algorithm 1 for details).

CICM combined with contrastive loss forces the model to reconstruct missing patches using cross-
instance information, breaking local dependencies. This prevents shortcut learning by eliminating
reliance on spatially or spectrally adjacent patterns within the same instance. The contrastive loss
reinforces this by aligning semantically similar instances and separating dissimilar ones. Together,
they drive the model to capture global, class-level spectral-spatial structures. This leads to more
generalizable, robust representations without using labels.

Why we choose ViT as our foundational model?

ViT effectively captures long-range spectral-spatial dependencies via self-attention, which is es-
sential for HSI. Its patch-token structure enables seamless integration with CICM’s masking and
cross-instance replacement. ViT also scales well and supports both self-supervised pretraining and
supervised fine-tuning, making it a strong foundation.
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Algorithm 1 Cross-Instance Contrastive Masking Algorithm

Require: HSI dataset D = {X(i) ∈ RH×W×B}Si=1, patch size P , embedding dim D, masking
ratio p, positional encoding Epos, learnable token T , ViT encoder fθ, temperature τ , epochs E,
batch size Bs

Ensure: Trained encoder fθ
1: for epoch = 1 to E do
2: for each mini-batch {X(1), . . . , X(Bs)} ⊂ D do
3: for each instance X(i) do
4: Partition X(i) into patches
5: Compute patch embeddings: Z(i)

0 = PatchEmbed(X(i)) + Epos

6: Apply binary mask M (i) ∈ {0, 1}N
7: Replace masked patches with token T :

Z(i)
m = (1−M (i))⊙ Z

(i)
0 +M (i) ⊙ T

8: Replace each masked patch with the corresponding patch from a randomly selected
instance X(j), where j ̸= i

9: Encode using ViT: Zi = fθ(Z
(i)
m )

10: end for
11: for each encoded instance Zi do
12: Construct positive pair (Zi, Z

+
i ) from semantically similar instance (sampled from

batch)
13: Construct negative pairs {Z−

j } from other instances in batch
14: Compute cosine similarity:

sim(Zi, Zk) =
Z⊤
i Zk

∥Zi∥∥Zk∥

15: Compute contrastive loss:

LCICM = −
Bs∑
i=1

log
exp(sim(Zi, Z

+
i )/τ)∑

j ̸=i

exp(sim(Zi, Z
−
j )/τ)

16: end for
17: Update encoder parameters using gradient descent
18: end for
19: end for
20: Fine-tune encoder fθ with labeled HSI data for downstream tasks
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