
A Unified Approach to Routing and Cascading for LLMs

Jasper Dekoninck 1 Maximilian Baader 1 Martin Vechev 1

Abstract
The availability of a wide range of large language
models (LLMs) embedded in various agentic
systems has significantly increased the potential
of model selection strategies to improve the cost-
performance tradeoff. Existing strategies involve
either routing, where a single model is chosen per
query, or cascading, which sequentially runs in-
creasingly larger models until a satisfactory an-
swer is found. However, current approaches face
three key limitations: they (1) lack formal proofs
of optimality, (2) fail to identify the conditions
under which these strategies are most effective to
improve the cost-performance tradeoff, and (3)
are unable to combine both paradigms for fur-
ther improvements. To address these issues, we
first derive a novel optimal strategy for cascading
and prove the optimality of an existing routing
strategy. Further, we propose cascade routing,
a unified framework that integrates routing and
cascading into a theoretically optimal strategy.
Through our analysis, we identify good quality
estimators as the critical factor for the success of
model selection paradigms. Finally, in our ex-
periments, we show that cascade routing consis-
tently outperforms the individual approaches by
a large margin and we analyze quality estimators
to determine when routing and/or cascading are
useful paradigms for model selection.1

1. Introduction
Large language models (LLMs) have found applications in
a wide range of tasks, some of which are easily handled by
small models, while others require the full capacity of state-
of-the-art LLMs. This has led to the development of many
fine-tuned models of various sizes that target specific tasks.

1Department of Computer Science, ETH Zurich,
Switzerland. Correspondence to: Jasper Dekoninck
<jasper.dekoninck@inf.ethz.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code available at https://github.com/eth-sri/
cascade-routing

To maximize performance, it is crucial to select the most
suitable model for each query, accounting for both the ex-
pected quality of the model’s output and the model’s cost.
Such model selection strategies can significantly improve
performance over any individual model and can reduce in-
ference costs by selecting a smaller model when the query
does not require the full capacity of a larger model.

Routing and Cascading Two primary strategies have
been proposed to solve model selection. The first, routing,
directs each input query to a specific model from a set of
available models (Chen et al., 2022; Liu et al., 2024), as il-
lustrated in Fig. 1(a). This approach is particularly effective
when different expert LLMs are needed for diverse tasks,
enabling the selection of the most suitable expert for each
query. The second strategy, cascading, processes an input
query through a sequence of increasingly larger models,
stopping when a model produces an answer deemed suf-
ficiently good (Chen et al., 2023; Varshney & Baral, 2022),
as illustrated in Fig. 1(b). Cascading is particularly valu-
able for handling queries of varying difficulty, as it allows
simpler queries to be addressed by smaller models while
reserving more complex queries for larger models.

Restrictive Conditions Despite their utility, both routing
and cascading impose significant restrictions on the model
selection process. In routing, the initial selection of a model
is final, preventing any reconsideration after the initial de-
cision. In cascading, each query must sequentially pass
through all models in the chain, with no option to skip a
model. Therefore, a less restrictive strategy that combines
the strengths of both routing and cascading could offer sig-
nificant performance improvements.

Lack of Deeper Understanding Further, the conditions
under which current routing and cascading strategies are
optimal, are not well understood. For routing, an exten-
sive proof is required just to show that current strategies
are close to optimal (Chen et al., 2022), while the theo-
retical analysis of cascading does not provide optimality
guarantees (Chen et al., 2023; Varshney & Baral, 2022).
This lack of theoretical understanding hinders the develop-
ment of more effective model selection strategies. More-
over, prior work fails to provide insights into the limitations
of model selection strategies and cannot identify the con-
ditions under which they are useful in practical scenarios.

1

https://github.com/eth-sri/cascade-routing
https://github.com/eth-sri/cascade-routing

A Unified Approach to Routing and Cascading for LLMs

Query

Router

m2 m3m1

Stop

(a) Routing

Query

m1

Cascader

m2

Stop

Cascader Stop...
(b) Cascading

Query

Cascade Router

m2 m3m1

Stop

Cascade Router

m2 m3m1

Stop

...
(c) Cascade Routing (Ours)

Figure 1: Overview of three model selection strategies. Routing selects a single model for a query, cascading processes
queries through a sequence of models, and cascade routing generalizes both.

For instance, it is widely believed that one needs models of
various sizes to benefit from cascading (Chen et al., 2023;
Gupta et al., 2024; Khalili et al., 2022), but we show that
this notion is incorrect.

This Work: Cascade Routing To address these lim-
itations, we first derive optimal routing and cascading
strategies by framing them as linear optimization problems
aimed at maximizing output quality while remaining within
a given cost budget. For routing, this optimal strategy is
close to the one obtained by prior work, while for cascad-
ing we derive a new strategy that is provably better than
existing approaches. Building on this analysis, we propose
a new paradigm called cascade routing, which generalizes
both routing and cascading. As illustrated in Fig. 1(c), cas-
cade routing initially routes a query to any available model
but keeps rerouting to different models until a model pro-
duces an answer of sufficient quality. We prove the opti-
mality of cascade routing and show that it offers signifi-
cantly more flexibility in processing a query.

Importance of Quality Estimation Our theoretical anal-
ysis enables a more thorough investigation into the factors
that influence the effectiveness of model selection strate-
gies. Specifically, we find that accurate estimates of model
performance and response quality are most important. For
routing, reliable ex-ante quality estimation—the ability to
predict whether a model will perform well on a given
query—is essential. For cascading, robust post-hoc quality
estimation—the ability to evaluate the quality of a model’s
response after generation—is critical. Without it, the ef-
fectiveness of cascading strategies is severely limited even
when models of various sizes are available.

Results We evaluate cascade routing on a range of tasks,
demonstrating that it significantly outperforms both routing
and cascading. Notably, cascade routing consistently out-
performs other methods, improving performance by up to
8% on the RouterBench benchmark (Hu et al., 2024) and by
14% on the SWE-Bench benchmark (Jimenez et al., 2024).
Further, we show that our new cascading strategy outper-
forms existing cascades in several scenarios by over 10%.

Key Contributions Our main contributions are:

• We derive optimal strategies for routing and cascading
and obtain a new cascading strategy that is provably
better than prior approaches (§2, §3).

• We introduce cascade routing, a new paradigm that
combines the strengths of routing and cascading, and
prove its optimality (§4).

• We conduct a thorough evaluation, demonstrating that
cascade routing consistently outperforms the base-
lines, highlighting the critical role of quality estima-
tion for the effectiveness of model selection (§5).

2. Routing as Linear Optimization
We derive an optimal routing strategy to select the best
model for a given query, providing detailed proofs for all
statements in this section in App. A.

Brief Overview In this section, we begin by defining a
routing strategy as a function that maps queries to models.
Next, we introduce the notation for quality and cost func-
tions, demonstrating how the optimal routing strategy can
be formulated to maximize a linear tradeoff between these
two factors. Lastly, we give an illustrative example and dis-
cuss the significance of quality estimation in routing and its
impact on the effectiveness of the strategy.

Routing In routing, our goal is to develop a strategy that
selects the best language model for a given input query.
Formally, let X represent the distribution over all pos-
sible queries, and suppose we have k language models
m1, . . . ,mk available for routing. Further, let ∆k denote
the set of all probability distributions over k variables. A
routing strategy can then be defined as follows:

Definition 1 (Routing). A routing strategy s is a function
s : X → ∆k that maps a query x ∈ X to a probability
distribution over models. si(x) denotes the probability that
mi is selected for query x.

2

A Unified Approach to Routing and Cascading for LLMs

A routing strategy selects a model by sampling from the
distribution s(x) for each query x. In prior work, routing
strategies were restricted to be deterministic, i.e., si(x) ∈
{0, 1} (Chen et al., 2022; Hu et al., 2024). In contrast, we
propose using a more general probabilistic strategy that en-
ables a better solution and an easier theoretical analysis.

Quality and Cost In routing, we seek to maximize the
output quality of the selected model while adhering to a
given cost budget B. We define the quality function qi(x)
as the output quality of model mi on query x, and the cost
function ci(x) as the cost of running model mi on x. Qual-
ity could measure model accuracy, user preference, or any
other performance indicator. Cost could measure either
monetary costs or latency, depending on the use case.

However, since these functions are unknown in practice,
we need estimators q̂i(x) and ĉi(x) that approximate the
output quality and cost of querying model mi on input x.
Estimators for qi(x) can be created using small classifiers
trained to predict model accuracy, as done in prior work
(Hu et al., 2024; Shnitzer et al., 2023). ĉi(x) can be esti-
mated by tokenizing the input query and determining the
average output length of the model on a query. Then, we
can use API-specific costs per token to estimate the cost of
running a model on a query. Alternatively, we can also use
average execution time as a proxy for cost.

Optimal Routing Using these estimators, we can for-
mally define the optimal routing strategy:

Definition 2 (Optimal Routing). The optimal routing strat-
egy sOPT for a given cost budget B is the solution to the
optimization problem that maximizes the expected output
quality of the selected model while adhering to the budget:

max
s

Ex∈X

(∑k

i=1
si(x)q̂i(x)

)
s.t. Ex∈X

(∑k

i=1
si(x)ĉi(x)

)
⩽ B.

(1)

We now explain how to solve this optimization problem.
For a given query x, it can be shown (see App. A) that the
optimal routing strategy selects the model maximizing the
cost-quality tradeoff τi(x, λ) = q̂i(x)− λĉi(x). Here, λ ∈
R+ is a hyperparameter that controls the balance between
quality and cost based on the budget B.

However, it can occur that several models achieve the same
optimal cost-quality tradeoff for a given query. To ad-
dress this, we define two deterministic strategies sλMIN(x)
and sλMAX(x), which, respectively, select the cheapest and
most expensive model that achieves the optimal tradeoff.
The optimal routing strategy sOPT is then determined by:

Theorem 1 (Optimal Routing Strategy). For a cost budget
B, there exists a λ ∈ R+ and a γ ∈ [0, 1] such that the
optimal routing strategy sOPT equals γsλMIN + (1− γ)sλMAX.

Theorem 1, continued. Furthermore, all routing strategies
that have an expected cost that is exactly equal to B and
can be written as a convex combination of sλ

′

MIN and sλ
′

MAX

for some λ′ ∈ R+ achieve the same optimal quality.

In App. A, we show how to obtain the optimal λ and γ for a
cost budget B using a validation dataset D. In Algorithm 1,
we provide pseudocode for the optimal routing algorithm.

Algorithm 1 Optimal Routing Algorithm
Input: input query x, quality estimator q̂i, cost estimator
ĉi, tradeoff parameters λ and γ
Output: Model index i to be used for query x

1: τi(x, λ) := q̂i(x)− λĉi(x)
2: τmax(x, λ) := maxi∈{1,...,k} τi(x, λ)
3: best := {i ∈ {1, . . . , k}|τi(x, λ) = τmax(x, λ)}
4: min_cost_index := argmini∈best ci(x)
5: max_cost_index := argmaxi∈best ci(x)
6: if random(0, 1) < γ then
7: return min_cost_index
8: else
9: return max_cost_index

10: end if

Since γ is often not equal to 0 or 1, sOPT is not nec-
essarily deterministic, i.e., there are queries x such that
sOPT,i(x) /∈ {0, 1} for some index i. Therefore, prior work
that only considered deterministic routing strategies (Chen
et al., 2022; Hu et al., 2024) cannot express the optimal
routing strategy and fall back to the near-optimal sλMIN.

Example To illustrate routing, consider a scenario with
two models m1 and m2. The estimated cost ĉ(x) = (0.9, 1)
is constant across queries and slightly lower for m1 than
for m2. The quality is estimated based on the category
of the query, which is either math, code, or generic. For
instance, let q̂(xmath) = (0.8, 0.5), q̂(xcode) = (0.5, 0.8),
and q̂(xgeneric) = (0.8, 0.9). For λ = 1 and γ = 0.7, the
cost-quality tradeoff is highest for m1, resp. m2, on math,
resp. code, queries, and is equal for both models on generic
queries. Thus, the router will select m1, resp. m2, for math,
resp. code, queries, and select m1 with a probability of 0.7
and m2 with a probability of 0.3 for generic queries.

Ex-Ante Quality Estimation We explicitly distinguish
between the model’s true quality qi(x) and the ex-ante
quality estimate q̂i(x). An optimal routing strategy will
select a good model only if qi(x) ≈ q̂i(x), otherwise the
objective in Eq. (1) is not appropriate. Thus, even when
routing is suited for the application, the strategy will fail if
the quality estimates are inaccurate. This makes quality es-
timation a critical component of routing strategies. While
cost estimation also faces similar challenges, we found that
it is less critical and can be approximated more easily.

3

A Unified Approach to Routing and Cascading for LLMs

3. Cascading as Sequential Routing
We extend our analysis of the optimal routing strategy to a
cascade, providing proofs for all statements in App. B.

Brief Overview In this section, we reinterpret cascading
as a sequence of routing problems. Furthermore, we show
how our approach improves upon the cascading strategies
used in prior work. Finally, we examine the impact of
post-hoc quality estimates on the effectiveness of cascad-
ing strategies.

Cascading In cascading, an input query is processed se-
quentially through a chain of models, typically arranged in
order of increasing size or cost. The cascade stops once a
model’s output meets a certain condition, and that output
is returned. We will reinterpret cascading as a sequence of
routing problems. To do so, we first define the models over
which we need to route, which we refer to as supermodels.

Definition 3 (Supermodel). A supermodel M is a se-
quence of models (mi1 , . . . ,mij) such that running a query
through M is equivalent to running it through each of the
models in the sequence. M denotes the set of all supermod-
els and by Mi:j we denote the supermodel (mi, . . . ,mj).

In cascading, we only need to consider the supermodels
M1:1, . . . ,M1:k. The full expressivity of Definition 3 will
only be necessary for cascade routing in §4.

Cascading as Sequential Routing Running a cascade on
a sample x occurs in a sequence of steps, where at each
step, the cascade determines whether to run the next model
in the sequence or terminate. By step j, we have obtained
outputs from the first j − 1 models. To decide whether to
continue and run mj , we need to determine, in expectation,
how well the supermodels M1:j−1, . . .M1:k will perform
on the sample x. Once again, this performance is measured
as having the highest expected output quality within a cer-
tain cost budget. If M1:j−1 offers the best performance, we
terminate the cascade and return its output, i.e., the output
of mj−1. Otherwise, if any of M1:j , . . . ,M1:k has better
performance, we continue the cascade and run mj . There-
fore, at step j, the cascade is equivalent to a routing strategy
that selects the best supermodel from M1:j−1, . . . ,M1:k.
Thus, a cascade can be formally defined as follows:

Definition 4 (Cascading Strategy). A cascading strategy s
is a sequence of routing strategies (s(1), . . . , s(k)) such that
s(j) routes between the supermodels M1:j−1, . . . ,M1:k.

Notably, while the action associated with supermodels
M1:j , . . . ,M1:k is the same, namely continuing the cas-
cade, it is important to consider all these supermodels. In-
deed, a model mj might perform poorly while mj+1 per-
forms exceptionally well on a given query. In such cases,

the quality-cost tradeoff of M1:j will be worse than the
tradeoff of M1:j−1, but M1:j+1 could still provide a better
outcome. Therefore, it is crucial to consider all supermod-
els M1:j , . . . ,M1:k at step j rather than making decisions
solely based on immediate performance.

Quality and Cost To apply Theorem 1 to find the op-
timal cascading strategy, we first need to derive the qual-
ity and cost estimates of the supermodels. Both of these
can depend on the answers of previously computed mod-
els. Therefore, let q̂(j)(x) and ĉ(j)(x) represent the updated
estimates in step j after computing the first j − 1 models.

We derive the quality and cost estimates associated with
supermodel M1:i, denoted as q̂

(j)
1:i (x) and ĉ

(j)
1:i (x), based

on the quality and cost estimates of the individual mod-
els. Trivially, the cost of the supermodel is equal to the
sum of the individual model costs. The quality of a su-
permodel, however, is governed by the best model within
it. Thus, it equals Eq̂i [max(q̂1(x), . . . , q̂i(x))], where the
expected value reflects the uncertainty in each quality esti-
mate. Specifically, each quality estimate q̂i(x) is modeled
as a random variable estimating the true quality qi(x). This
is crucial since ignoring uncertainty would falsely assume
that the quality of a supermodel is always equal to the best
model within it, even though the best model may return a
poor answer, while another returns a good one. To estimate
the uncertainties associated with the estimates, we compute
the variance of q̂(j)i (x)− q̂

(k)
i (x) over a validation dataset.

Optimal Cascading We now leverage the optimal rout-
ing strategy from Theorem 1 to determine the optimal cas-
cading strategy. As before, optimality is defined in terms
of maximizing the expected output quality while adhering
to a given cost budget. However, the budget is now only
enforced over the entire cascade, and not over individual
steps. This leads to a slightly different formulation:

Theorem 2 (Optimal Cascading Strategy). For a given
cost budget B, there exist λ1, . . . , λk ∈ R+ and a γ ∈
[0, 1] such that the optimal cascading strategy sOPT =

(s
(1)
OPT, . . . , s

(k)
OPT) is given by s(j)OPT = γs

(j),λj
MIN +(1−γ)s

(j),λj

MAX

where s
(j),λj
MIN and s

(j),λj

MAX are defined as in Theorem 1.

In App. B, we explain how to obtain the hyperparameters
λ1, . . . , λk and γ for a given cost budget B using a vali-
dation dataset D. In Algorithm 2, we provide pseudocode
for the optimal cascading algorithm, illustrating the steps
involved in selecting the best model for a given query.

Example To illustrate the optimal cascading strategy,
consider once again a scenario with two models m1,m2

with costs ĉ(1)(x) = (0.5, 1) and q̂(1)(x) = (0.5, 0.8) (ig-
noring uncertainty). In a cascade, we will always run m1

for a query x. Thus, we obtain the first model’s output.

4

A Unified Approach to Routing and Cascading for LLMs

Algorithm 2 Optimal Cascading Algorithm

Input: input query x, current step j, quality estimator q̂(j)i ,
cost estimator ĉ(j)i , tradeoff parameters λj and γ
Output: Whether to stop the cascade or continue with the
next model mj

1: for i = j − 1 to k do
2: q̂

(j)
1:i (x) := Eq̂(j) [max(q̂

(j)
1 (x), . . . , q̂

(j)
i (x))]

3: ĉ
(j)
1:i (x) :=

∑i
l=1 ĉ

(j)
l (x)

4: end for
5: index := Router

(
x, (q̂

(j)
1:j−1(x), . . . , q̂

(j)
1:k(x)),

6: (ĉ
(j)
1:j−1(x), . . . , ĉ

(j)
1:k(x)), λj , γ

)
7: if index == 1 then
8: return stop
9: else

10: return run mj

11: end if

Based on this output, we can adjust the quality and cost
estimates. Suppose, for instance, that the model output
is very long and its confidence in its own answer is only
30%. Then we update, for instance, q̂(2)(x) = (0.3, 0.6)
and ĉ(2)(x) = (1, 2). For λ2 = 1, we would now stop the
cascade and return the output of m1 since the cost-quality
tradeoff is highest for the supermodel {m1}. If, instead,
λ2 = 0.1, we would run m2 since the cost-quality tradeoff
is highest for the supermodel {m1,m2}. In this case, the
cascade would return the output of m2.

Prior Work Prior work on cascading has often relied
on strong assumptions to simplify the strategy, using a
treshold-strategy as an approximation of the optimal cas-
cade. Specifically, in step j, the cascade continues if
q̂
(j)
j−1(x) < τj for some threshold τj ∈ R. To the best

of our knowledge, all existing works can be seen as a spe-
cific instantiation of this thresholding scheme with cost and
quality estimators that depend on the specific application
used (Chen et al., 2023; Damani et al., 2024; Gupta et al.,
2024; Jitkrittum et al., 2023b; Nie et al., 2024). Below, we
outline the conditions under which this simplified approach
is optimal.
Corollary 1 (Optimal Threshold Strategy). Under minor
technical assumptions, the thresholding strategy is equiv-
alent to our cascading strategy if and only if the follow-
ing conditions hold: ĉ

(j)
i (x) is independent of x for all

i, j ∈ {1, . . . , k}, q̂(j)i (x) is independent of x for all i ⩾ j,
and q̂

(j)
1:i (x) is equal to q̂

(j)
i (x).

Post-Hoc Quality Estimation Once again, this theoreti-
cal framework highlights the importance of quality estima-
tion, with a shift in focus from ex-ante quality estimation
to post-hoc quality estimation, which now plays a critical

role. Cascading approaches are only advantageous when
the post-hoc quality estimate provides significantly better
information than the ex-ante estimate. If this improve-
ment is minimal, it would be more effective to directly
route queries to the most suitable model, bypassing the cas-
cading process. While the post-hoc estimate is essential
for refining decisions, the ex-ante quality estimate remains
valuable in determining whether future models can poten-
tially deliver better performance. Only in the threshold
cascade strategy, where the ex-ante estimate is fixed, does
it become irrelevant. By contrast, our approach improves
upon the threshold cascade by incorporating both ex-ante
and post-hoc quality estimates, thereby enabling more in-
formed decision-making.

4.Cascade Routing as Cascade Generalization
Both routing and cascading are powerful techniques that
enable the efficient use of multiple models. However, their
use is often orthogonal: while routing is useful when ex-
ante quality estimates are accurate, cascading is more ben-
eficial when post-hoc estimates are accurate. We therefore
present cascade routing, which is a generalization of both
techniques. Proofs for all theorems and lemmas in this sec-
tion are included in App. C.

Brief Overview In this section, we first define cascade
routing and explain how it generalizes both routing and cas-
cading. We then derive the optimal cascade routing strat-
egy and solve several of the additional challenges that arise
when applying cascade routing in practice. Finally, we pro-
vide an illustrative example.

Cascade Routing Cascade routing closely resembles
cascading, but with one crucial difference: the routing strat-
egy at step j routes between all possible supermodels, not
just the supermodels M1:j−1, . . . ,M1:k. Therefore, both
Definition 4 and Theorem 2 can be extended to this setting.

Definition 5 (Cascade Routing). A cascade routing strat-
egy s is a sequence of routing strategies (s(1), . . . , s(k))
such that, for a given sample x ∈ X , s(j) routes between
all supermodels in M that start with the j − 1 models that
have already been computed for this query.

Theorem 3 (Optimal Cascade Routing). For a given cost
budget B, there exist λ1, . . . , λk ∈ R+ and a γ ∈ R+

such that the optimal cascade routing strategy sOPT =

(s
(1)
OPT, . . . , s

(k)
OPT) is given by s(j)OPT = γs

(j),λj
MIN +(1−γ)s

(j),λj

MAX

where s
(j),λj
MIN and s

(j),λj

MAX are defined as in Theorem 1.

In Algorithm 3, we provide pseudocode for the cascade
routing algorithm. While cascade routing is a seemingly
simple extension of cascading, it also introduces additional
challenges which we address now.

5

A Unified Approach to Routing and Cascading for LLMs

Algorithm 3 Optimal Cascade Routing Algorithm
Input: input query x, model indices run so far
{i1, ..., ij−1}, quality estimator q̂

(j)
i , cost estimator ĉ

(j)
i ,

tradeoff parameters λj and γ
Output: Index of the next model to run

1: S = [M ⊂ {1, . . . k}|∀l ∈ {1, . . . , j − 1} : il ∈ M]
2: for M ∈ S do
3: q̂

(j)
M (x) := Eq̂(j) [maxl∈M (q̂

(j)
l (x))]

4: ĉ
(j)
M (x) :=

∑
l∈M ĉ

(j)
l (x)

5: end for
6: index := Router

(
x, (q̂

(j)
M (x) for M ∈ S),

7: (ĉ
(j)
M (x) for M ∈ S), λj , γ

)
8: possibilities := Sindex \ {i1, ..., ij−1}
9: if possibilities = ∅ then

10: return stop
11: else
12: min_cost_index := argmini∈possibilities ci(x)
13: return min_cost_index
14: end if

Model Order In cascading, the model order is predeter-
mined, and the routing strategy only decides whether to
proceed with the next model in the sequence. In contrast,
cascade routing must dynamically determine the order in
which models are computed. Despite this, both the esti-
mated quality q̂

(j)
M (x) and cost ĉ(j)M (x) of a supermodel M

are order-independent. Therefore, supermodels that con-
tain the same models in a different order will have the same
cost and quality. To mitigate this, we sort the models within
the selected supermodel by cost and compute the cheap-
est one first (illustrated in Lines 12-13 of Algorithm 3).
This approach aligns with cascading, where more expen-
sive models are only used if cheaper models do not suffice.

Number of Supermodels In cascading, the quality and
cost must be computed for a maximum of k supermodels
at each step. However, in cascade routing, the number of
supermodels grows exponentially, leading to the need to
evaluate up to 2k supermodels. This increase can become
prohibitively costly, particularly since the model selection
process must remain computationally negligible with re-
spect to model computation. To mitigate this, we lever-
age so-called negative marginal gains. It can be shown
(see App. C) that if a model m in a supermodel M neg-
atively impacts the quality-cost tradeoff, all supermodels
containing all models in M can be pruned from the search
space. For example, if m1 negatively affects the quality-
cost tradeoff of the supermodel {m1,m2}, we can prune
all supermodels that contain both m1 and m2. Since this
negative contribution is quite common, this allows us to
prune the search space significantly. More formally, this
pruning operation relies on the following lemma:

Lemma 1 (Negative Marginal Gain). Let M ∈ M and
m be any model in M . Let the marginal gain of m w.r.t.
M be defined as τM (x, λ) − τM\{m}(x, λ). Then, if the
marginal gain of m w.r.t. M is strictly negative for a given
query, the optimal cascade routing strategy will never run
a supermodel M ′ ∈ M that contains all models in M .

Example To illustrate the optimal cascade routing strat-
egy, consider a scenario with two models m1 and m2 with
costs ĉ(1)(x) = (0.5, 1) and q̂(1)(x) = (0.5, 0.8). In con-
trast to cascading, we do not necessarily need to run m1

first. In this scenario, if λ1 = 0.1, we would immedi-
ately run m2. While we would most likely stop after m2,
it is possible that its output is so bad that we update the
quality estimator to q̂(2)(x) = (0.5, 0.1). In this case, for
λ2 = 0.1, we would run m1 next and return its output. If
λ1 = 1, we come into the more classical cascading sce-
nario explained before where m1 is run first.

5. Experimental Evaluation
We now evaluate the performance of cascade routing
and demonstrate that it significantly outperforms all other
strategies. Additionally, we show that our new cascad-
ing approach outperforms the threshold-based cascading
method. For this purpose, we first conduct experiments on
RouterBench (Hu et al., 2024), a benchmark specifically
designed to evaluate routing and cascading (§5.1). Next,
we test cascade routing on several additional benchmarks to
evaluate its performance in more realistic scenarios (§5.2).
In the appendix, we perform an ablation study to examine
the impact of various design choices in cascade routing on
performance and runtime (App. F). Finally, in App. H, we
show detailed results as well as cost-quality tradeoff curves
for several benchmarks.

5.1. RouterBench

RouterBench (Hu et al., 2024) is a benchmark developed
to evaluate the efficacy of different model selection strate-
gies. It includes questions from seven diverse benchmarks,
such as MMLU (Hendrycks et al., 2021), GSM8k (Cobbe
et al., 2021), and MBPP (Austin et al., 2021), alongside
answers from eleven different models ranging from GPT-4
(OpenAI, 2023) to Mistral-7B (Jiang et al., 2023).

Quality and Cost Estimates Similar to (Hu et al., 2024),
we estimate quality and cost by adding zero-centered Gaus-
sian noise to their true values. Both cost and quality esti-
mates are modeled as linear functions fitted on these noisy
signals. Thus, the quality estimate can be expressed as
q̂W,b(x) = W (q(x)+ϵ)+b where ϵ ∼ N (0, σ2). A similar
expression holds for the cost estimate. We define the vari-
ance of the noisy signal as σ2

ante before model computation
(ex-ante estimates) and σ2

post after (post-hoc estimates).

6

A Unified Approach to Routing and Cascading for LLMs

Table 1: AUC scores in % for different strategies on RouterBench across model and noise levels. All baselines are always
worse than the 95% confidence intervals of cascade routing. For a discussion on confidence intervals, we refer to App. E.

Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Linear Interp. 69.62 69.62 69.62 69.22 69.22 69.22 70.51 70.51 70.51
Routing 79.73 74.97 71.81 81.24 74.43 71.33 83.25 74.63 72.67
Cascade (Baseline) 80.86 74.64 72.48 82.33 73.03 69.53 84.48 73.64 69.79

Cascade (Ours) 81.09 76.16 72.67 83.06 75.17 70.18 84.47 75.10 70.26
Cascade Routing (Ours) 82.36 76.55 73.22 84.33 76.31 72.75 87.24 77.57 74.40

0.0 0.6 1.2 1.8 2.4 3.0

σante

0.0

0.6

1.2

1.8

2.4

3.0

σ
p

os
t

0

3

6

9

12

(a) Comparison of cascade routing with routing.

0.0 0.6 1.2 1.8 2.4 3.0

σante

0.0

0.6

1.2

1.8

2.4

3.0

σ
p

os
t

2

4

6

8

(b) Comparison of cascade routing with cascading.
Figure 2: Difference in AUC performance between cascade routing and baseline strategies on RouterBench for various
noise values. Red indicates cascade routing is much better, while blue indicates it is only a bit better.

To explore different uncertainty levels, we vary the vari-
ances to simulate low-, medium-, and high-noise scenarios,
with exact values for the variances given in App. D.1.

Models We evaluate cascade routing on RouterBench us-
ing three, five, and eleven models available for model selec-
tion, ensuring a comprehensive evaluation across a range of
scenarios. The exact models are provided in App. D.1.

Strategies We compare cascade routing against several
baseline strategies, including the routing strategy described
in §2, the threshold-based cascading approach from prior
work (Corollary 1), and the optimal cascading strategy
(Theorem 2). Additionally, as in (Hu et al., 2024), we in-
clude a baseline that linearly interpolates cost and quality
on the Pareto frontier of the models.

Evaluation Metric For each method, we evaluate perfor-
mance using cost budgets ranging from the cheapest to the
most expensive model. This produces a quality-cost curve
for each strategy. Following (Hu et al., 2024), we use the
Area Under the Curve (AUC) as the performance metric.

Results Table 1 presents the results for the zero-shot set-
ting, with the five-shot results detailed in App. H. Cas-
cade routing consistently outperforms all baseline strate-
gies with performance gains between 1% to 4%, which
measured relatively to the naive linear interpolation base-
line means that cascade routing improves by 13% to 80%
over the baselines. This performance gap widens as more
models are available and narrows under higher noise lev-
els, indicating that cascade routing is most effective with
large model sets and accurate cost and quality estimates.
Furthermore, our new cascading strategy outperforms the
threshold-based cascade by up to 2%, reinforcing the prac-
tical relevance of our theoretical results.

Quality Estimation To better understand the impact of
quality estimation on model selection strategies, we ad-
ditionally conduct experiments with five models under a
broader range of varying noise levels. Fig. 2 illustrates the
difference in AUC performance between cascade routing
and baseline strategies for all possible noise levels. The re-
sults demonstrate that cascade routing consistently outper-
forms the baselines, achieving up to an 8% improvement
for cascading and up to a 12% improvement for routing.
Notably, the performance gap highlights key differences

7

A Unified Approach to Routing and Cascading for LLMs

between the cascading and routing strategies. For rout-
ing, the value of σante is critical—high σante significantly
reduces performance compared to cascade routing. Con-
versely, for cascading, σpost plays a more influential role,
with higher values causing substantial performance degra-
dation. These findings underscore the importance of accu-
rate quality estimation for both strategies. Cascade rout-
ing proves to be a more robust solution by unifying the
strengths of both approaches and effectively leveraging low
σante and low σpost to enhance performance.

5.2. Real-World Benchmarks
We now show that cascade routing outperforms baselines
on more realistic benchmarks with quality estimates that
can be used in real-world scenarios. We differentiate in
our analysis between benchmarks where accurate quality
estimation is available and those where it is not.

Accurate Quality Estimation We first evaluate cascade
routing on two benchmarks that allow for accurate qual-
ity estimation. First, in the domain of software engineer-
ing, it is often easier to generate tests to reproduce spe-
cific issues than to fix them. We therefore use SWE-Bench
(Jimenez et al., 2024) as a benchmark where accurate post-
hoc quality estimation is available. Specifically, we as-
sume that the quality of a model’s response can be accu-
rately estimated by testing it on the ground-truth test cases.
Second, to simulate a use-case where ex-ante quality es-
timation is accurate, we use the Math and Coder models
from the QWEN-2.5 model family (Yang et al., 2024; Hui
et al., 2024) and evaluate them on a combination of Min-
erva Math (Lewkowycz et al., 2022) and LiveCodeBench
(Jain et al., 2024). To obtain accurate quality estimates, we
incorporate a sample’s origin benchmark as a feature in the
quality estimation model. For all details about the bench-
marks, models, and estimators, we refer to App. D.1.

Results Table 2 (left) shows the results for both bench-
marks. In SWE-Bench, our methods outperform baseline
strategies by up to 14%. As expected, the routing strat-
egy does not outperform the trivial baseline on this bench-
mark, as ex-ante quality estimates are insufficient. Interest-
ingly, despite perfect post-hoc quality estimation for SWE-
Bench, the baseline cascade strategy also performs poorly.
This is due to the binary feedback of the quality estimator,
which leads the threshold τ of the baseline cascade to either
admit all models (τ = 0) or only correct ones (τ > 0).

For Minerva Math and LiveCodeBench, the opposite trend
holds true. With accurate ex-ante quality estimation, the
routing strategy achieves strong performance, surpassing
the baseline cascade strategy by 10%. However, the
cascade routing strategy still outperforms all methods,
highlighting its robustness across diverse benchmarks and

quality estimation scenarios. Interestingly, despite poor
post-hoc quality estimation, our cascading strategy nearly
matches the performance of routing. This suggests that the
cascade effectively leverages ex-ante quality estimation to
make informed decisions, unlike the baseline cascade.

We highlight that the cost estimator for SWE-Bench is
latency-based, computing cost as the time it takes to com-
plete the task. In contrast, the estimator for Minerva Math
and LiveCodeBench uses the cost of the generation. Thus,
cascade routing can adapt to different cost estimators.

Poor Quality Estimation We perform experiments on
classification and open-form reasoning tasks where there
is no known accurate quality estimator. The classification
benchmarks include ARC-Challenge (Clark et al., 2018),
MMLU-Pro (Wang et al., 2024), and MixEval (Ni et al.,
2024). For open-form reasoning tasks, we use MMLU-Pro
and GSM8k (Cobbe et al., 2021). In classification, models
select a single option representing their answer, with no in-
termediate reasoning process. In contrast, open-form rea-
soning allows models to generate their answers after rea-
soning. In this section, we evaluate two model families
consisting of three models, LLAMA and GEMMA, and show
similar numbers for the MISTRAL model family in App. H.
We create a quality estimator based on state-of-the-art work
Gupta et al. (2024), which uses log probabilities as features.
For full details on the benchmarks, models, and cost and
quality estimators, we refer to App. D.

Results Table 2 (right) presents the results for the
LLAMA and GEMMA model families across both bench-
marks. Cascade routing consistently performs on par with
or outperforms all baselines, though with much narrower
margins reaching up to 1.2%. This reduced gain can be at-
tributed to the fact that the quality and cost estimates are
very noisy, leading to performance gains over the naive
baseline similar to those observed in very high-noise sce-
narios on RouterBench.

6. Related Work
Routing Routing is a widely studied problem in machine
learning, particularly in the task of directing input queries
to specialized models. One of the most common appli-
cations of routing is model selection for natural language
input queries with a known answer (Chuang et al., 2024;
Ding et al., 2024; Hari & Thomson, 2023; Liu et al., 2024;
Jang et al., 2023; Nguyen et al., 2024; Sakota et al., 2024;
Shnitzer et al., 2023). All these works train a model to pre-
dict whether a given model will correctly answer a query.
Though the setups in these works are largely similar, they
vary in certain specifics, such as the type of input queries
or the features used for quality estimation.

8

A Unified Approach to Routing and Cascading for LLMs

Table 2: AUC scores on practical benchmarks. On the left, resp. right, side we show the benchmarks with good, resp. poor,
quality estimates. The highest numbers are bolded, and underlined numbers are within the 95% confidence intervals of the
highest number. For a discussion on confidence intervals, refer to App. E. In App. G, we present benchmark-specific AUC
values for results averaged over several benchmarks.

SWE-Bench Math+Code Classification Open-Form

10 MODELS 5 MODELS QWEN LLAMA GEMMA LLAMA GEMMA

Linear Interp. 40.51 38.64 39.63 74.28 61.68 79.11 54.10
Routing 40.47 39.40 47.46 74.92 64.44 79.32 58.40
Cascade (Baseline) 38.52 45.89 37.68 74.81 54.32 79.23 56.18

Cascade (Ours) 53.20 50.94 46.76 75.46 62.79 79.22 56.18
Cascade Routing (Ours) 54.12 51.09 48.55 75.52 64.84 79.88 59.66

Routing is also applied in other areas. For instance, Lu
et al. (2024); Ong et al. (2024) use preference data to train
a quality estimator, which facilitates routing in scenarios
involving real-world user queries where clear ground-truth
answers may not exist. Additionally, Chen et al. (2022)
employ routing for API selection in multi-label classifica-
tion tasks, focusing on directing queries to the appropriate
API based on task requirements. Similarly, Zhang et al.
(2024b) apply routing in software agent environments, di-
recting user issues to the agent most suited to handle them.
Finally, Pichlmeier et al. (2024) dynamically routes token
generation instead of entire queries, allowing for more fine-
grained routing decisions.

Cascading Cascading techniques are primarily used to
reduce inference costs by employing smaller models ini-
tially and only cascading to larger models if the smaller
ones fail to provide a sufficiently accurate answer. Most of-
ten, cascading decisions are based on the smaller model’s
confidence in its own predictions (Chen et al., 2023; 2024;
Ramírez et al., 2024; Varshney & Baral, 2022). However,
alternative techniques also exist. For example, Madaan
et al. (2023) propose running models multiple times and
measuring the variance in their responses to decide whether
to cascade to a larger model.

For classification tasks, early stopping is another cascad-
ing strategy (Li et al., 2021; Schuster et al., 2022). In this
approach, the cascade halts when a model’s intermediate
layers generate representations that are sufficiently infor-
mative to predict the correct class. This reduces compu-
tational costs by avoiding the need to process every query
through the entire model.

There has also been specific research on quality estimation
within cascading frameworks. Gupta et al. (2024) exam-
ine various measures of uncertainty in language model an-
swers, evaluating their impact on cascading performance.
Meanwhile, Jitkrittum et al. (2023a) explore failure cases
in cascading mechanisms that rely on uncertainty, introduc-
ing alternative quality measures that enhance cascade effi-

ciency. Furthermore, Xue et al. (2023) apply cascading to
majority voting for a single model to obtain a method called
dynamic voting: the cascade stops depending on the aggre-
gated answers of all previous model computations. Lastly,
(Zhang et al., 2024a) propose the use of multi-objective
quality metrics to guide cascading decisions and do not
solely focus on accuracy.

All works mentioned here can be seen as an instantiation
of the thresholding mechanism outlined in Corollary 1 with
application-specific quality and cost estimates.

7. Conclusion
In this work, we introduced a novel framework for routing
and cascading that enabled us to propose theoretically op-
timal strategies for both paradigms. Further, we used this
analysis to propose a new paradigm for model selection,
cascade routing, which combines the benefits of routing
and cascading. We showed that cascade routing can signif-
icantly outperform its baselines, especially with good qual-
ity and cost estimates. We also find that our new cascad-
ing strategy significantly outperforms existing approaches
to cascading, showing our theoretical analysis also leads to
practical gains.

Impact Statement
Our work can significantly impact the field of model selec-
tion strategies. By providing a theoretical foundation for
routing and cascading, we have shown that these strategies
can be improved by using more accurate quality and cost
estimates. Cascade routing combines the strengths of both
routing and cascading and offers a more flexible and effec-
tive model selection strategy. Furthermore, by underscor-
ing the importance of quality estimation, we highlighted a
critical area for future research in model selection strategies
that could lead to further improvements in this area.

9

A Unified Approach to Routing and Cascading for LLMs

Acknowledgements
This work was funded in part by the Swiss National Sci-
ence Foundation (SNSF) [200021_207967].

This work has been done as part of the EU grant ELSA
(European Lighthouse on Secure and Safe AI, grant agree-
ment no. 101070617). Views and opinions expressed are
however those of the authors only and do not necessarily
reflect those of the European Union or European Commis-
sion. Neither the European Union nor the European Com-
mission can be held responsible for them.

The work has received funding from the Swiss State Secre-
tariat for Education, Research and Innovation (SERI).

References
Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https://

arxiv.org/abs/2108.07732.

Chen, D., Zhuang, Y., Zhang, S., Liu, J., Dong, S.,
and Tang, S. Data shunt: Collaboration of small and
large models for lower costs and better performance.
In Wooldridge, M. J., Dy, J. G., and Natarajan, S.
(eds.), Thirty-Eighth AAAI Conference on Artificial In-
telligence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pp. 11249–11257. AAAI Press,
2024. doi: 10.1609/AAAI.V38I10.29003. URL https:

//doi.org/10.1609/aaai.v38i10.29003.

Chen, L., Zaharia, M., and Zou, J. Efficient online ML API
selection for multi-label classification tasks. In Chaud-
huri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G.,
and Sabato, S. (eds.), International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pp. 3716–3746. PMLR,
2022. URL https://proceedings.mlr.press/v162/

chen22ad.html.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use
large language models while reducing cost and improv-
ing performance. CoRR, abs/2305.05176, 2023. doi:
10.48550/ARXIV.2305.05176. URL https://doi.org/

10.48550/arXiv.2305.05176.

Chuang, Y., Zhou, H., Sarma, P. K., Gopalan, P., Boc-
cio, J., Bolouki, S., and Hu, X. Learning to route with
confidence tokens. CoRR, abs/2410.13284, 2024. doi:

10.48550/ARXIV.2410.13284. URL https://doi.org/

10.48550/arXiv.2410.13284.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the AI2 reasoning chal-
lenge. ArXiv preprint, abs/1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun,
H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J.,
Nakano, R., Hesse, C., and Schulman, J. Training ver-
ifiers to solve math word problems. ArXiv preprint,
abs/2110.14168, 2021.

Damani, M., Shenfeld, I., Peng, A., Bobu, A., and Andreas,
J. Learning how hard to think: Input-adaptive allocation
of LM computation. CoRR, abs/2410.04707, 2024. doi:
10.48550/ARXIV.2410.04707. URL https://doi.org/

10.48550/arXiv.2410.04707.

Ding, D., Mallick, A., Wang, C., Sim, R., Mukherjee,
S., Rühle, V., Lakshmanan, L. V. S., and Awadallah,
A. H. Hybrid LLM: cost-efficient and quality-aware
query routing. In The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,
DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,
A., Li, H., McDonell, K., Muennighoff, N., Ociepa,
C., Phang, J., Reynolds, L., Schoelkopf, H., Skowron,
A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang,
K., and Zou, A. A framework for few-shot language
model evaluation, 07 2024. URL https://zenodo.org/

records/12608602.

Gupta, N., Narasimhan, H., Jitkrittum, W., Rawat, A. S.,
Menon, A. K., and Kumar, S. Language model cascades:
Token-level uncertainty and beyond. In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?

id=KgaBScZ4VI.

Hari, S. N. and Thomson, M. Tryage: Real-time, intelli-
gent routing of user prompts to large language models.
CoRR, abs/2308.11601, 2023. doi: 10.48550/ARXIV.
2308.11601. URL https://doi.org/10.48550/arXiv.

2308.11601.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring massive mul-
titask language understanding. In Proc. of ICLR, 2021.

Hu, Q. J., Bieker, J., Li, X., Jiang, N., Keigwin, B., Ran-
ganath, G., Keutzer, K., and Upadhyay, S. K. Router-
bench: A benchmark for multi-llm routing system.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1609/aaai.v38i10.29003
https://doi.org/10.1609/aaai.v38i10.29003
https://proceedings.mlr.press/v162/chen22ad.html
https://proceedings.mlr.press/v162/chen22ad.html
https://doi.org/10.48550/arXiv.2305.05176
https://doi.org/10.48550/arXiv.2305.05176
https://doi.org/10.48550/arXiv.2410.13284
https://doi.org/10.48550/arXiv.2410.13284
https://doi.org/10.48550/arXiv.2410.04707
https://doi.org/10.48550/arXiv.2410.04707
https://openreview.net/forum?id=02f3mUtqnM
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://doi.org/10.48550/arXiv.2308.11601
https://doi.org/10.48550/arXiv.2308.11601

A Unified Approach to Routing and Cascading for LLMs

CoRR, abs/2403.12031, 2024. doi: 10.48550/ARXIV.
2403.12031. URL https://doi.org/10.48550/arXiv.

2403.12031.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang,
L., Liu, T., Zhang, J., Yu, B., Dang, K., Yang,
A., Men, R., Huang, F., Ren, X., Ren, X., Zhou,
J., and Lin, J. Qwen2.5-coder technical report.
CoRR, abs/2409.12186, 2024. doi: 10.48550/ARXIV.
2409.12186. URL https://doi.org/10.48550/arXiv.

2409.12186.

Jain, N., Han, K., Gu, A., Li, W., Yan, F., Zhang,
T., Wang, S., Solar-Lezama, A., Sen, K., and Sto-
ica, I. Livecodebench: Holistic and contamination
free evaluation of large language models for code.
CoRR, abs/2403.07974, 2024. doi: 10.48550/ARXIV.
2403.07974. URL https://doi.org/10.48550/arXiv.

2403.07974.

Jang, J., Kim, S., Ye, S., Kim, D., Logeswaran, L., Lee,
M., Lee, K., and Seo, M. Exploring the benefits of
training expert language models over instruction tuning.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), International Con-
ference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pp. 14702–14729.
PMLR, 2023. URL https://proceedings.mlr.press/

v202/jang23a.html.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux,
M., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b. CoRR, abs/2310.06825,
2023. doi: 10.48550/ARXIV.2310.06825.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. Swe-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?

id=VTF8yNQM66.

Jitkrittum, W., Gupta, N., Menon, A. K., Narasimhan, H.,
Rawat, A. S., and Kumar, S. When does confidence-
based cascade deferral suffice? In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023a. URL http:

//papers.nips.cc/paper_files/paper/2023/hash/

1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.

html.

Jitkrittum, W., Gupta, N., Menon, A. K., Narasimhan, H.,
Rawat, A. S., and Kumar, S. When does confidence-
based cascade deferral suffice? In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S. (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023b. URL http:

//papers.nips.cc/paper_files/paper/2023/hash/

1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.

html.

Khalili, L., You, Y., and Bohannon, J. Babybear:
Cheap inference triage for expensive language models.
CoRR, abs/2205.11747, 2022. doi: 10.48550/ARXIV.
2205.11747. URL https://doi.org/10.48550/arXiv.

2205.11747.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V. V., Slone, A., Anil,
C., Schlag, I., Gutman-Solo, T., Wu, Y., Neyshabur,
B., Gur-Ari, G., and Misra, V. Solving quantita-
tive reasoning problems with language models. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems 35: Annual Con-
ference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, Novem-
ber 28 - December 9, 2022, 2022. URL http:

//papers.nips.cc/paper_files/paper/2022/hash/

18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.

html.

Li, L., Lin, Y., Chen, D., Ren, S., Li, P., Zhou, J.,
and Sun, X. Cascadebert: Accelerating inference of
pre-trained language models via calibrated complete
models cascade. In Moens, M., Huang, X., Specia,
L., and Yih, S. W. (eds.), Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 16-20
November, 2021, pp. 475–486. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.
FINDINGS-EMNLP.43. URL https://doi.org/10.

18653/v1/2021.findings-emnlp.43.

Liu, Y., Zhang, H., Miao, Y., Le, V., and Li, Z. Optllm:
Optimal assignment of queries to large language models.
CoRR, abs/2405.15130, 2024. doi: 10.48550/ARXIV.
2405.15130. URL https://doi.org/10.48550/arXiv.

2405.15130.

Lu, K., Yuan, H., Lin, R., Lin, J., Yuan, Z., Zhou, C.,
and Zhou, J. Routing to the expert: Efficient reward-
guided ensemble of large language models. In Duh,
K., Gómez-Adorno, H., and Bethard, S. (eds.), Pro-
ceedings of the 2024 Conference of the North Amer-

11

https://doi.org/10.48550/arXiv.2403.12031
https://doi.org/10.48550/arXiv.2403.12031
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2403.07974
https://doi.org/10.48550/arXiv.2403.07974
https://proceedings.mlr.press/v202/jang23a.html
https://proceedings.mlr.press/v202/jang23a.html
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1f09e1ee5035a4c3fe38a5681cae5815-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2205.11747
https://doi.org/10.48550/arXiv.2205.11747
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.18653/v1/2021.findings-emnlp.43
https://doi.org/10.48550/arXiv.2405.15130
https://doi.org/10.48550/arXiv.2405.15130

A Unified Approach to Routing and Cascading for LLMs

ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), NAACL 2024, Mexico City, Mex-
ico, June 16-21, 2024, pp. 1964–1974. Association for
Computational Linguistics, 2024. doi: 10.18653/V1/
2024.NAACL-LONG.109. URL https://doi.org/10.

18653/v1/2024.naacl-long.109.

Madaan, A., Aggarwal, P., Anand, A., Potharaju, S. P.,
Mishra, S., Zhou, P., Gupta, A., Rajagopal, D., Kap-
paganthu, K., Yang, Y., Upadhyay, S., Mausam, and
Faruqui, M. Automix: Automatically mixing lan-
guage models. CoRR, abs/2310.12963, 2023. doi:
10.48550/ARXIV.2310.12963. URL https://doi.org/

10.48550/arXiv.2310.12963.

Nguyen, Q. H., Hoang, D. C., Decugis, J., Manchanda,
S., Chawla, N. V., and Doan, K. D. Metallm: A
high-performant and cost-efficient dynamic framework
for wrapping llms. CoRR, abs/2407.10834, 2024. doi:
10.48550/ARXIV.2407.10834. URL https://doi.org/

10.48550/arXiv.2407.10834.

Ni, J., Xue, F., Yue, X., Deng, Y., Shah, M., Jain, K.,
Neubig, G., and You, Y. Mixeval: Deriving wis-
dom of the crowd from LLM benchmark mixtures.
CoRR, abs/2406.06565, 2024. doi: 10.48550/ARXIV.
2406.06565. URL https://doi.org/10.48550/arXiv.

2406.06565.

Nie, L., Ding, Z., Hu, E., Jermaine, C. M., and Chaud-
huri, S. Online cascade learning for efficient infer-
ence over streams. In Forty-first International Confer-
ence on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=Wz4lgc8dsN.

Ong, I., Almahairi, A., Wu, V., Chiang, W., Wu,
T., Gonzalez, J. E., Kadous, M. W., and Stoica, I.
Routellm: Learning to route llms with preference data.
CoRR, abs/2406.18665, 2024. doi: 10.48550/ARXIV.
2406.18665. URL https://doi.org/10.48550/arXiv.

2406.18665.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023. doi: 10.48550/arXiv.2303.08774.

Pichlmeier, J., Ross, P., and Luckow, A. Domain-Aware
LLM Routing During Generation . In 2024 IEEE Inter-
national Conference on Big Data (BigData), pp. 8235–
8237, Los Alamitos, CA, USA, December 2024. IEEE
Computer Society. doi: 10.1109/BigData62323.2024.
10825152. URL https://doi.ieeecomputersociety.

org/10.1109/BigData62323.2024.10825152.

Ramírez, G., Birch, A., and Titov, I. Optimising calls
to large language models with uncertainty-based two-
tier selection. CoRR, abs/2405.02134, 2024. doi:

10.48550/ARXIV.2405.02134. URL https://doi.org/

10.48550/arXiv.2405.02134.

Sakota, M., Peyrard, M., and West, R. Fly-swat or can-
non? cost-effective language model choice via meta-
modeling. In Caudillo-Mata, L. A., Lattanzi, S., Med-
ina, A. M., Akoglu, L., Gionis, A., and Vassilvitskii,
S. (eds.), Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, WSDM
2024, Merida, Mexico, March 4-8, 2024, pp. 606–615.
ACM, 2024. doi: 10.1145/3616855.3635825. URL
https://doi.org/10.1145/3616855.3635825.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL http:

//papers.nips.cc/paper_files/paper/2022/hash/

6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.

html.

Shnitzer, T., Ou, A., Silva, M., Soule, K., Sun, Y.,
Solomon, J., Thompson, N., and Yurochkin, M.
Large language model routing with benchmark datasets.
CoRR, abs/2309.15789, 2023. doi: 10.48550/ARXIV.
2309.15789. URL https://doi.org/10.48550/arXiv.

2309.15789.

Varshney, N. and Baral, C. Model cascading: To-
wards jointly improving efficiency and accuracy of
NLP systems. In Goldberg, Y., Kozareva, Z., and
Zhang, Y. (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pp. 11007–11021. Association for
Computational Linguistics, 2022. doi: 10.18653/V1/
2022.EMNLP-MAIN.756. URL https://doi.org/10.

18653/v1/2022.emnlp-main.756.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo,
S., Ren, W., Arulraj, A., He, X., Jiang, Z., Li, T.,
Ku, M., Wang, K., Zhuang, A., Fan, R., Yue, X.,
and Chen, W. Mmlu-pro: A more robust and chal-
lenging multi-task language understanding benchmark.
CoRR, abs/2406.01574, 2024. doi: 10.48550/ARXIV.
2406.01574. URL https://doi.org/10.48550/arXiv.

2406.01574.

Xue, M., Liu, D., Lei, W., Ren, X., Yang, B., Xie, J.,
Zhang, Y., Peng, D., and Lv, J. Dynamic voting for ef-
ficient reasoning in large language models. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023,

12

https://doi.org/10.18653/v1/2024.naacl-long.109
https://doi.org/10.18653/v1/2024.naacl-long.109
https://doi.org/10.48550/arXiv.2310.12963
https://doi.org/10.48550/arXiv.2310.12963
https://doi.org/10.48550/arXiv.2407.10834
https://doi.org/10.48550/arXiv.2407.10834
https://doi.org/10.48550/arXiv.2406.06565
https://doi.org/10.48550/arXiv.2406.06565
https://openreview.net/forum?id=Wz4lgc8dsN
https://doi.org/10.48550/arXiv.2406.18665
https://doi.org/10.48550/arXiv.2406.18665
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825152
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825152
https://doi.org/10.48550/arXiv.2405.02134
https://doi.org/10.48550/arXiv.2405.02134
https://doi.org/10.1145/3616855.3635825
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2309.15789
https://doi.org/10.48550/arXiv.2309.15789
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.18653/v1/2022.emnlp-main.756
https://doi.org/10.48550/arXiv.2406.01574
https://doi.org/10.48550/arXiv.2406.01574

A Unified Approach to Routing and Cascading for LLMs

Singapore, December 6-10, 2023, pp. 3085–3104. As-
sociation for Computational Linguistics, 2023. doi: 10.
18653/V1/2023.FINDINGS-EMNLP.203. URL https:

//doi.org/10.18653/v1/2023.findings-emnlp.203.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C.,
Liu, D., Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin,
R., Liu, T., Ren, X., and Zhang, Z. Qwen2.5-math
technical report: Toward mathematical expert model via
self-improvement. CoRR, abs/2409.12122, 2024. doi:
10.48550/ARXIV.2409.12122. URL https://doi.org/

10.48550/arXiv.2409.12122.

Zhang, K., Peng, L., Wang, C., Go, A., and Liu, X.
LLM cascade with multi-objective optimal consider-
ation. CoRR, abs/2410.08014, 2024a. doi: 10.
48550/ARXIV.2410.08014. URL https://doi.org/

10.48550/arXiv.2410.08014.

Zhang, K., Yao, W., Liu, Z., Feng, Y., Liu, Z., Murthy,
R., Lan, T., Li, L., Lou, R., Xu, J., Pang, B., Zhou,
Y., Heinecke, S., Savarese, S., Wang, H., and Xiong,
C. Diversity empowers intelligence: Integrating ex-
pertise of software engineering agents, 2024b. URL
https://arxiv.org/abs/2408.07060.

13

https://doi.org/10.18653/v1/2023.findings-emnlp.203
https://doi.org/10.18653/v1/2023.findings-emnlp.203
https://doi.org/10.48550/arXiv.2409.12122
https://doi.org/10.48550/arXiv.2409.12122
https://doi.org/10.48550/arXiv.2410.08014
https://doi.org/10.48550/arXiv.2410.08014
https://arxiv.org/abs/2408.07060

A Unified Approach to Routing and Cascading for LLMs

A. Routing
First, we explain how to obtain the hyperparameters λ and γ for the routing strategy. We then provide a more exact
formulation of the routing optimization problem and prove Theorem 1.

Hyperparameters Due to the second part of Theorem 1, we only need to find a set of hyperparameters λ and γ that achieve
the cost budget. Indeed, all routing strategies that have an expected cost that is exactly equal to B and can be written as a
convex combination of sλ

′

MIN and sλ
′

MAX for some λ′ ∈ R+ achieve the same optimal quality.

To determine these parameters, we estimate the cost of a strategy using a validation dataset D that is representative of the
query distribution X . We then perform a hyperparameter search to find optimal values of λ and γ. By leveraging several
properties of routing strategies, one can show that this hyperparameter search can be reduced to a single binary search over
λ, enabling a quick and efficient hyperparameter optimization process.

Proving the Theorem To prove Theorem 1, we first rewrite the routing optimization problem in Eq. (1) as a linear
program over functions s : X → Rk instead of functions s : X → ∆k. This makes the optimization problem more
tractable. Specifically, Eq. (1) can be rewritten as follows:

max
r

Ex∼X

[
k∑

i=1

si(x)q̂i(x)

]

s.t. Ex∼X

[
k∑

i=1

si(x)ĉi(x)

]
⩽ B

∀i ∈ {1, ..., k} : ∀x ∈ X : si(x) ≥ 0 ∧
k∑

j=1

sj(x) = 1

(2)

We then rewrite Theorem 1 to allow for a more exact formulation of the optimal routing strategy:

Theorem 4. (Optimal Routing Strategy) Suppose there exists an admissible solution to the set of constraints in Eq. (2).
For any λ ∈ R+, let Sλ be the set of routing strategies s that satisfy the following constraints:

∀x ∈ X ,∀i ∈ {1, ..., k} : q̂i(x)− λĉi(x) < max
j

q̂j(x)− λĉj(x) ⇒ si(x) = 0 (3)

If there exists a strategy in S0 that has a cost less than or equal to B, then this strategy achieves the optimal quality.
Otherwise, there exists a λ∗ ∈ R+ such that Sλ contains a routing strategy that has exactly cost B and all routing
strategies in

⋃
λ∈R+ Sλ that have cost B achieve the same optimal quality.

There is one extra condition mentioned here that we omitted in the main text. The requirement of having at least an
admissible solution to the constraints in Eq. (2) is necessary to ensure that the set of possible solutions to Eq. (2) is not
empty. For instance, the cost budget B can be too low such that even running the cheapest model for each query is too
expensive.

The formulation of sOPT as a convex combination of sλMIN and sλMAX is a direct consequence of Theorem 4. Indeed, let λ∗ be
as defined in Theorem 4. Then sλ

∗

MIN, resp. sλ
∗

MAX, must have the lowest, resp. highest, cost among all routing strategies in
Sλ∗ . Since there is a routing strategy in Sλ∗ that has cost B, there must exist a convex combination of sλ

∗

MIN and sλ
∗

MAX that
also has cost B and thus achieves the optimal quality.

We first prove several lemmas before proving the theorem.

Lemma 2. Sλ is non-empty and convex for all λ ∈ R+.

Proof. Non-emptiness follows from the fact that the routing strategy that assigns all probability mass for a sample x to a
model i for which q̂i(x)− λĉi(x) is maximal, is in Sλ. For convexity, let s(1), s(2) ∈ Sλ be arbitrary. Let sγ be the convex
combination of s(1) and s(2) with weight γ ∈ [0, 1]. Let x ∈ X be arbitrary. Then, sγi (x) > 0 if and only if s(1)i (x) > 0

or s(2)i (x) > 0. Since s(1), s(2) ∈ Sλ, we have q̂i(x) − λĉi(x) ⩾ maxj q̂j(x) − λĉj(x) for all i such that s(1)i (x) > 0 or
s
(2)
i (x) > 0. This implies that q̂i(x)− λĉi(x) ⩾ maxj q̂j(x)− λĉj(x) for all i such that sγi (x) > 0. Thus, sγ ∈ Sλ.

14

A Unified Approach to Routing and Cascading for LLMs

Lemma 3. Let λ1 < λ2 and s(1), resp. s(2) be arbitrary routing strategies in Sλ1
, resp. Sλ2

. Then, the cost of s(1) is
greater or equal to the cost of s(2), i.e.,

Ex∼X

[
k∑

i=1

s
(1)
i (x)ĉi(x)

]
⩾ Ex∼X

[
k∑

i=1

s
(2)
i (x)ĉi(x)

]

Proof. We show that for any x ∈ X , the cost of s(1) is greater or equal to the cost of s(2). Let x ∈ X be arbitrary. Suppose
s(1) is strictly cheaper than s(2). Then, there must exist a model pair i, j such that ĉi(x) < ĉj(x), s

(1)
i (x) > s

(2)
i (x) ⩾ 0,

and s
(2)
j (x) > s

(1)
j (x) ⩾ 0. However, s(1)i (x) > 0 implies

q̂i(x)− λ1ĉi(x) ⩾ q̂j(x)− λ1ĉj(x).

Furthermore, since λ1 − λ2 < 0, we have

ĉi(x)(λ1 − λ2) > ĉj(x)(λ1 − λ2).

Adding these two inequalities gives
q̂i(x)− λ2ĉi(x) > q̂j(x)− λ2ĉj(x),

which is a contradiction with s
(2)
j (x) > 0. Thus, the cost of s(1) is greater or equal to the cost of s(2).

Lemma 4. Let Λ be the set of points λ ∈ R such that there exist an x ∈ X and i ̸= j such that q̂i(x) − λĉi(x) =
q̂j(x)− λĉj(x). Let λ1 < λ2 be such that [λ1, λ2] ∩ Λ = ∅. Then, Sλ1 = Sλ2 . Furthermore, if [λ1, λ2] ∩ Λ = {λ∗}, then
Sλ ⊂ Sλ∗ for all λ ∈ [λ1, λ2].

Proof. We first show the first statement by showing that Sλ1 \ Sλ2 = ∅. Sλ2 \ Sλ1 = ∅ follows analogously. Suppose
there exists a routing strategy s ∈ Sλ1 \ Sλ2 . Since s /∈ Sλ2 , there must exist an x ∈ X and model i such that si(x) > 0
and q̂i(x) − λ2ĉi(x) < maxj q̂j(x) − λ2ĉj(x). Let j be an index such that q̂i(x) − λ2ĉi(x) < q̂j(x) − λ2ĉj(x). Since
s ∈ Sλ1

, we have q̂i(x)−λ1ĉi(x) ⩾ q̂j(x)−λ1ĉj(x). By continuity, there exists a λ ∈ [λ1, λ2] such that q̂i(x)−λĉi(x) =
q̂j(x)− λĉj(x), which is a contradiction with [λ1, λ2] ∩ Λ = ∅.

Now suppose [λ1, λ2] ∩ Λ = {λ∗}. Let λ ∈ [λ1, λ
∗) be arbitrary and let s ∈ Sλ be arbitrary. We show that s ∈ Sλ∗ . For

λ ∈ (λ∗, λ2], the proof is completely analogous. By contradiction, suppose there exists an x ∈ X and model i such that
si(x) > 0 and q̂i(x)− λ∗ĉi(x) < maxj q̂j(x)− λ∗ĉj(x). This means there exists a model j such that q̂i(x)− λ∗ĉi(x) <
q̂j(x) − λ∗ĉj(x). Since s ∈ Sλ, we know that q̂i(x) − λĉi(x) ⩾ q̂j(x) − λĉj(x). This implies that there must exist a
λ′ ∈ [λ1, λ

∗) such that q̂i(x)− λ′ĉi(x) = q̂j(x)− λ′ĉj(x). However, this is a contradiction with [λ1, λ
∗) ∩ Λ = ∅. Thus,

s ∈ Sλ∗ .

In what follows, we will assume that |Λ| < ∞. This is a very minor assumption. For instance, if q̂ and ĉ only take on a
finite amount of values, this is trivially satisfied. Since estimators are implemented on a computer, they will always have a
finite precision, meaning that q̂ and ĉ will only take on a finite amount of values.

Lemma 5. Let λ1 < λ2 and s(1), resp. s(2) be arbitrary routing strategies in Sλ1 , resp. Sλ2 , with costs resp. B1 and B2.
Then, for any B ∈ [B1, B2] there exists a λ ∈ [λ1, λ2] such that Sλ contains a routing strategy that has exactly cost B.

Proof. Let B ∈ [B1, B2] be arbitrary. If B = B1 or B = B2, the statement is trivially true. Therefore, suppose
B ∈ (B1, B2). Let Λ be as defined in Lemma 4. By Lemma 3, there exists a λ∗ ∈ [λ1, λ2] such that all strategies in Sλ

for λ < λ∗, resp. λ > λ∗, have cost at least, resp. at most, B. If λ∗ /∈ Λ, then the first part of Lemma 4, together with
|Λ| < ∞, implies that Sλ∗ = Sλ∗−ϵ = Sλ∗+ϵ for some ϵ > 0. All the strategies in Sλ∗ must therefore have cost both at
least and at most B, meaning they should equal B. We can therefore assume that λ∗ ∈ Λ. By Lemma 4 and |Λ| < ∞,
there is en ϵ > 0 such that Sλ∗−ϵ ⊂ Sλ∗ and Sλ∗+ϵ ⊂ Sλ∗ . Let s− ∈ Sλ∗−ϵ and s+ ∈ Sλ∗+ϵ be arbitrary. Let sγ be the
convex combination of s− and s+ with weight γ ∈ [0, 1]. Since s−, s+ ∈ Sλ∗ , we have sγ ∈ Sλ∗ by Lemma 2. Denote
by B−, resp. B+, the cost of s−, resp s+. Furthermore, the cost of sγ is γB− + (1− γ)B+. Since B ∈ [B−, B+], there
exists a γ ∈ [0, 1] such that sγ has cost exactly B.

We can now prove the theorem.

15

A Unified Approach to Routing and Cascading for LLMs

Proof. If S0 contains a solution that has cost less than or equal to B, then this solution trivially achieves the optimal
quality. Thus, for the rest of the proof we can assume that the cost of every solution in S0 is greater than B. For λ → ∞,
Sλ contains the solution that assigns all probability mass to the model with the lowest cost. Since there is an admissible
solution, this solution necessarily has cost less than B. Therefore, by Lemma 5, there exists a λ∗ ∈ R such that Sλ∗

contains a routing strategy that has exactly cost B.

Let s be an arbitrary routing strategy in
⋃

λ∈R+ Sλ that has cost B. Specifically, let s ∈ Sλ. Let s′ be any other routing
strategy that is an admissible solution to the optimization problem. Then:

Ex∈X

[
k∑

i=1

s′i(x)q̂i(x)

]
= Ex∈X

[
k∑

i=1

s′i(x)q̂i(x)− λB + λB

]

⩽ Ex∈X

[
k∑

i=1

s′i(x) (q̂i(x)− λĉi(x)) + λB

]

⩽ Ex∈X

[
k∑

i=1

si(x) (q̂i(x)− λĉi(x)) + λB

]

= Ex∈X

[
k∑

i=1

si(x)q̂i(x)

]

Thus, s achieves the optimal quality.

B. Cascading
To prove Theorem 2, we heavily rely on the results derived in App. A. As explained in §3, cascading can be reinterpreted
as a sequence of routing problems. However, to prove optimality, we need to be slightly more careful with the exact
formulation of the problem.

At step j, the cascading strategy needs to decide whether to stop the cascade or to continue to the next model. It should con-
tinue to the next model if any of the supermodels M1:j , . . . ,M1:k is better to run than M1:j−1 for some measure of ’better’.
Therefore, the cascading strategy is indeed performing a routing operation between the supermodels M1:j−1, . . . ,M1:k.

However, the optimization problem does slightly change compared to the routing problem. First of all, for each query
x ∈ X , there is a possibility that the cascade is stopped before step j. Therefore, the cascade should not aim to optimize
the quality at step j for such a query, since it would not have any effect on the overall quality of the cascade. Furthermore,
the budget B is only enforced over the entire cascade, and not over the individual steps. Since the problem changes through
steps, it is not required that the cost of the router at step j is exactly equal to B.

Therefore, we reformulate cascading using an inner and outer optimization problem. The inner optimization problem aims
to find the optimal routing strategy at step j for a given budget Bj . The outer optimization problem aims to find the optimal
budget Bj for each step j such that the overall quality of the cascade is maximized under the constraint that the total cost
of the cascade is at most B.

To formulate this more exactly, let Pj(M) be the probability that the cascade computed supermodel M by step j. Then,
the inner optimization problem at step j can be formulated as:

16

A Unified Approach to Routing and Cascading for LLMs

max
r(j)

Ex∼X

Pj(M1:j−1)

k∑
i=j−1

r1:i(x)q̂
(j)
1:i (x)


s.t. Ex∼X

Pj(M1:j−1)

k∑
i=j−1

r1:i(x)ĉ
(j)
1:i (x)

 ⩽ Bj

∀i ∈ {j − 1, ..., k} : ∀x ∈ X : r1:i(x) ≥ 0 ∧
k∑

i=j−1

r1:i(x) = 1

(4)

Note that Pj(M1:j−1) can be incorporated in the quality and cost estimates. This leaves us with the exact same optimization
problem as the routing problem, but with a different budget Bj . Since the chosen model only depends on the maximization
of Pj(M1:j−1)q̂

(j)
i (x)−λjPj(M1:j−1)ĉ

(j)
i (x), the probability Pj(M1:j−1) can be divided out of the optimization problem.

The inner optimization problems prove the existence of optimal routing strategies at each step j with parameters λj . We
note that there only needs to be one parameter γ that determines the convex combination since the budget B is only
enforced over the entire cascade.

Let us denote the quality and cost of the entire cascading strategy for given parameters λ1, . . . , λk and γ as
Q(λ1, . . . , λk, γ) and C(λ1, . . . , λk, γ) respectively. Then, the outer optimization problem can be formulated as:

max
λ1,...,λk,γ

Q(λ1, . . . , λk, γ)

s.t. C(λ1, . . . , λk, γ) ⩽ B
(5)

To solve this outer optimization problem, we simply perform a hyperparameter search over the budgets B1, . . . , Bk using
a hyperparameter optimization search as discussed in §3.

B.1. Prior Approximations

We now prove Corollary 1. Before doing so, we first need to define what we exactly mean by equivalency. For this purpose,
let C1 be defined as follows:

C1 =
{
s | s is a cascading strategy with parameters λ1, . . . , λk, γ = 0 using estimates q̂(j), ĉ(j)

}
Similarly, let C2 be defined as follows:

C2 =
{
s | s is a thresholding strategy with parameters τ1, . . . , τk using estimates q̂(j), ĉ(j)

}
We note that we set γ = 0 since the thresholding strategy is deterministic. We therefore restrict the cascading strategy to
be deterministic as well.

We define the equivalence between the two sets as follows:

Definition 6 (Equivalence of Strategies). We say a set of strategies C1 is equivalent to another set of strategies C2, denoted
as C1 ≡ C2, if for all s0 ∈ C1 ∪ C2 there exists a s1 ∈ C1, and a s2 ∈ C2 such that for all x ∈ X , s0, s1 and s2 take the
same decisions on x.

We can now more accurately state the conditions under which the thresholding strategy is equivalent to the optimal strategy.

Corollary 2 (Optimal Thresholding Strategy). Let C1, C2 be defined as above. Then, C1 ≡ C2 if and only if there exists
alternative quality and cost estimates q̂(j)

′

i (x) and ĉ
(j)′

i (x) with associated set of cascading strategies C′
1 such that C1 ≡ C′

1

and the following conditions hold on these alternative quality and cost estimates: ĉ(j)
′

i (x) is independent of x and bigger
than 0, q̂(j)

′

i (x) is independent of x for all i ⩾ j, and q̂
(j)′

1:i (x) is equal to q̂
(j)′

i (x).

The main difference between Corollary 2 and Corollary 1 is that we impose the possibility of alternative quality and cost
estimates. However, this does not really influence equivalency in the intuitive sense. Indeed, one could alternatively phrase

17

A Unified Approach to Routing and Cascading for LLMs

the corollary as follows: the thresholding strategy is equivalent to any of our cascading strategies if and only if it is possible
to construct alternative estimates such that the conditions hold.

Proof. We note that the cascade s ∈ C1 continues on a sample if the following condition holds:

q̂
(j)
1:j−1(x)− λj ĉ

(j)
1:j−1(x) < max

i∈{j,...,k}
q̂
(j)
1:i (x)− λj ĉ

(j)
1:i (x) (6)

If C1 ≡ C′
1, it is clear that Eq. (6) reduces to the thresholding strategy for all strategies in C′

1. Indeed, for any s ∈ C′
1,

set τj = maxi∈{j,...,k} q̂
(j)
1:i − λj ĉ

(j)
j:i and the thresholding strategy is equivalent to s. Alternatively, if s ∈ C2, suppose

maxi∈{j,...,k} q̂
(j)
1:i −λj ĉ

(j)
j:i = q̂

(j)
1:i −λj ĉ

(j)
j:i for some index i. Then, set λj = τj/ĉ

(j)
j:i − q̂

(j)
1:i /ĉ

(j)
j:i and the cascading strategy

is equivalent to s. Therefore, C1 ≡ C′
1 ≡ C2.

Suppose now that C1 ≡ C2. We construct alternative quality and cost estimates q̂(j)
′

i (x) and ĉ
(j)′

i (x) such that the conditions
hold and such that C1 ≡ C′

1. For this purpose, we define ĉ
(j)′

i (x) = 1 for all i, j ∈ {1, . . . , k}, q̂(j)
′

i (x) = 1 for all i ⩾ j,
and q̂

(j)′

i (x) = q̂
(j)
i (x) otherwise. Furthermore, we set q̂(j)

′

1:i (x) = q̂
(j)′

i (x) for all i, j ∈ {1, . . . , k}. The equivalence of C′
1

and C2 can now be proven analogously to the previous paragraph. Therefore, C1 ≡ C′
1 ≡ C2.

C. Cascade Routing
We first note that the proof of the optimality of the cascade routing strategy is equivalent to the proof of the optimality of
the cascade strategy, except that the expectation in the optimization problem Eq. (4) is now not only over x ∈ X , but also
over all possible supermodels that were computed by step j − 1. However, this does not change the optimization problem,
and the proof is completely analogous to the proof given in §3. Thus, all we need to prove is Lemma 1. To prove the
lemma, we first prove the following lemma.
Lemma 6. Let Q1, ..., Qk be distributions. Let S be the superset of {1, ..., k}. Then f : S → R defined as f(S) =
E(maxi∈S Qi) is submodular. Here, we define maxi∈∅ Qi = −∞

Proof. Let T ⊂ S ⊂ {1, . . . , k} and j ∈ {1, . . . , k} be arbitrary. To show the submodularity of f , we need to show that

f(T ∪ {j})− f(T) ≥ f(S ∪ {j})− f(S).

We can write:

f(S ∪ {j})− f(S) = E(max
i∈S∪{j}

Qi)− E(max
i∈S

Qi)

= E(max(0, Qj −max
i∈S

Qi))

⩽ E(max(0, Qj −max
i∈T

Qi))

= E(max
i∈T∪{j}

Qi)− E(max
i∈T

Qi)

= f(T ∪ {j})− f(T).

In the proof, we needed maxi∈∅ Qi = −∞ in the case T = ∅.

We note that the assertion that maxi∈∅ Qi = −∞ corresponds to the fact that giving no answer to a query has −∞ quality.

We can now prove Lemma 1.

Proof. Let M and m be as in the lemma. Suppose M ′ is a supermodel that contains all models in M . Furthermore, let
M ′′ = M ′ \ m. We show that the supermodel M ′′ is always strictly preferred over M ′. To see this, we note that the
difference between τM ′(x, λ) and τM ′′(x, λ) is equal to

E(max
m′∈M ′

q̂m′(x))− E(max
m′∈M ′′

q̂m′(x))− λj ĉm(x)

By Lemma 6, this difference is smaller than q̂M (x) − q̂M\{m}(x) − λj ĉm(x). Thus, by assumption, this difference is
negative, and therefore M ′′ is always preferred over M ′, which concludes the proof.

18

A Unified Approach to Routing and Cascading for LLMs

Table 3: Standard deviations of the noise levels on the RouterBench dataset.

Quality Cost

σbefore σafter σbefore σafter

LOW 0.6 0.3 0.0002 0.00005
MEDIUM 1.6 0.8 0.0004 0.0001
HIGH 2.4 1.2 100 100

D. Experimental Details
We describe some additional details about the experimental setup and the datasets used in our experiments.

D.1. Routerbench

Data Split We use 5% of the RouterBench data (around 2000 samples) to optimize the hyperparameters of cascading,
routing, and cascade routing. The remaining 95% is used for evaluation. We use the same data split for all noise levels.

Noise In Table 3 we specify the standard deviations of the noise levels on the RouterBench dataset. To put these numbers
into context, we note that quality varies between 0 and 1, and the average cost of the smallest models is 0.000073, while the
average cost of the largest models is 0.003281. We fit a logistic regression model on this noisy signal to obtain the quality
and cost estimates. This simulates the noise in the features that are used to estimate the quality and cost of the models.

Models In the evaluated scenarios for three models, we use the models MIXTRAL-8X7B-CHAT, GPT-3.5-TURBO-
1106, and GPT-4-1106-PREVIEW. When using five models, we add WIZARDLM-13B-V1.2 and CLAUDE-V2 to the
mix. For eleven models, we use all models available in the benchmark.

D.2. Accurate Quality Estimation

Data Split For the SWE-Bench benchmark, we use its verified data split and divide the dataset into training and cali-
bration subsets, with each comprising 50% of the data. For the Minerva Math and LiveCodeBench benchmark, we only
include the Algebra portion of Minerva Math to ensure that both benchmarks have a comparable number of samples for
evaluation. Similarly, we also perform a 50% split of this dataset into training and calibration sets.

Evaluation Setting For the SWE-Bench evaluation, we analyze the performance of 10 models submitted to the bench-
mark’s leaderboard. The logs for these models were obtained from the official SWE-Bench repository2. Specifically, we
evaluated the following models:

• 20240402_sweagent_claude3opus

• 20241007_nfactorial

• 20240728_sweagent_gpt4o

• 20240620_sweagent_claude3.5sonnet

• 20241016_epam-ai-run-gpt-4o

• 20240824_gru

• 20241106_navie-2-gpt4o-sonnet

• 20240820_epam-ai-run-gpt-4o

• 20241202_agentless-1.5_claude-3.5-sonnet-20241022

• 20241028_agentless-1.5_gpt4o

For each model, we extract the time required to complete a task to measure cost.

2https://github.com/swe-bench/experiments

19

https://github.com/swe-bench/experiments

A Unified Approach to Routing and Cascading for LLMs

For LiveCodeBench and Minerva Math, we evaluate the following models:

• QWEN-2.5-CODER-7B-INSTRUCT

• QWEN-2.5-CODER-1.5B-INSTRUCT

• QWEN-2.5-MATH-7B-INSTRUCT

• QWEN-2.5-MATH-1.5B-INSTRUCT

We conduct experiments using version 5 of the LiveCodeBench benchmark from its official repository. For Minerva Math,
we utilize the LM Evaluation Harness (Gao et al., 2024) to ensure consistent and reliable evaluation.

Cost Estimation For SWE-Bench, the cost is defined as the time (in seconds) that a model takes to complete a task. A
linear regression model is fitted to predict this cost based on the query length and, when available, the cost of running other
models.

For LiveCodeBench and Minerva Math, the cost is calculated as the total number of tokens in both the query and the
answer, multiplied by the size of the model (in billions of parameters). Similar to SWE-Bench, a linear model is used to
predict the cost based on query length and other models’ costs.

Quality Estimation For ex-ante quality estimation in SWE-Bench, we train a logistic regression model that predicts
quality based on the query length and a one-hot encoded variable representing the query’s source repository. Post-hoc
quality estimation leverages the ground-truth quality scores computed during evaluation.

For ex-ante quality estimation in Minerva Math and LiveCodeBench, we include the query length, query source (Minerva
Math or LiveCodeBench), and the difficulty level of the problem as defined by the benchmark. Post-hoc quality estimation
incorporates additional information, such as whether the parsed answers from different models agree with one another.

D.3. Poor Quality Estimation

Data Split We split each dataset in each benchmark into a training set and a test set, each comprising 50% of the data.
For all datasets except GSM8k, the training set is created by splitting the original test data. In the case of GSM8k, since a
separate training set is already available, we use this pre-existing training data, leaving the original test set unchanged. The
training set is then further divided, with 50% used for training quality and cost estimators, and the remaining 50% reserved
for hyperparameter optimization through validation.

Evaluation Setting We use completion-based evaluation in a one-shot setting for each benchmark. For the classification
tasks, we obtain the probability associated with each class ("A", "B", "C", . . .) from the model directly. For open-form
reasoning tasks, we extract the answer by instruction the model to generate a completion that ends with an extractable
answer. If the model does not output an answer in the correct format, we perform a best-effort extraction by trying various
regex patterns. Details on the prompts and regex patterns used for each benchmark are provided in the code repository.

Models For the LLAMA-3.1 model family, we use the models LLAMA-3.1-8B-INSTRUCT, LLAMA-3.1-70B-
INSTRUCT, and LLAMA-3.1-405B-INSTRUCT. For the GEMMA model family, we use the models GEMMA-2B-
INSTRUCT, GEMMA-2-9B-INSTRUCT, and GEMMA-2-27B-INSTRUCT. For the MISTRAL model family, we use the
models MISTRAL-7B-INSTRUCT-V0.3, MIXTRAL-8X7B-INSTRUCT-V0.1, and MIXTRAL-8X22B-INSTRUCT-V0.1.

Cost Estimation For cost estimation, we first calculate the number of tokens in both the query and the model’s response.
We then use API-based prices per token for each model to estimate the cost.3 In classification, where responses consist
of a single token, the cost can be determined before running the model. In open-form reasoning tasks, where response
lengths vary, we estimate this length based on responses from previous models in the cascade if the model has not yet been
computed. If no model response is available, we estimate the response length using the average from the training data.

3We used the Together API for all our experiments.

20

https://www.together.ai/

A Unified Approach to Routing and Cascading for LLMs

Table 4: AUC scores in % for different strategies on RouterBench in the 0-shot setting with 2σ confidence intervals.

Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Cascade Routing (Ours) 82.37+0.31
−0.32 76.57+0.34

−0.35 73.23+0.37
−0.38 84.33+0.29

−0.29 76.32+0.34
−0.37 72.75+0.36

−0.40 87.24+0.23
−0.26 77.58+0.30

−0.33 74.41+0.33
−0.36

− Routing 2.64+0.15
−0.16 1.59+0.13

−0.15 1.40+0.15
−0.17 3.10+0.17

−0.15 1.88+0.17
−0.16 1.41+0.17

−0.17 4.00+0.17
−0.21 2.94+0.20

−0.21 1.73+0.19
−0.19

− Cascade (Baseline) 1.50+0.12
−0.12 1.91+0.18

−0.19 0.74+0.19
−0.18 2.00+0.17

−0.15 3.29+0.26
−0.27 3.22+0.24

−0.24 2.76+0.14
−0.14 3.92+0.28

−0.28 4.61+0.28
−0.28

− Cascade (Ours) 1.28+0.12
−0.11 0.39+0.15

−0.14 0.54+0.18
−0.17 1.27+0.10

−0.11 1.14+0.20
−0.21 2.57+0.21

−0.26 2.77+0.13
−0.13 2.46+0.22

−0.24 4.14+0.25
−0.27

Table 5: AUC scores in % for different strategies on RouterBench in the 5-shot setting across model and noise levels with
2σ confidence intervals. Bold numbers indicate that the confidence interval contains zero.

Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Cascade Routing (Ours) 83.79+0.3
−0.33 78.85+0.29

−0.34 77.1+0.32
−0.35 85.5+0.26

−0.26 78.77+0.32
−0.33 76.74+0.34

−0.36 88.78+0.22
−0.22 80.89+0.28

−0.29 78.03+0.3
−0.31

− Routing 2.3+0.14
−0.13 1.64+0.15

−0.15 1.1+0.13
−0.14 3.08+0.16

−0.14 1.94+0.16
−0.14 1.21+0.14

−0.15 3.43+0.15
−0.17 3.13+0.19

−0.2 1.6+0.17
−0.16

− Cascade (Baseline) −0.64+0.11
−0.1 0.28+0.13

−0.14 0.22+0.16
−0.16 1.23+0.12

−0.12 2.19+0.21
−0.21 2.83+0.24

−0.24 1.64+0.12
−0.13 2.29+0.24

−0.24 3.09+0.27
−0.26

− Cascade (Ours) 1.02+0.1
−0.09 0.09+0.11

−0.11 0.1+0.14
−0.14 1.25+0.1

−0.09 1.59+0.17
−0.17 2.45+0.21

−0.21 2.06+0.1
−0.1 2.22+0.21

−0.19 2.95+0.23
−0.24

Features Quality Estimates We specify the exact features used for the logistic regression model that serves as the
quality estimator in §5.2. First, we include a one-hot encoding of the various datasets in each benchmark. Furthermore, for
classification, we include the probability associated with the highest class and the entropy of the class probabilities if the
model has been computed. If several models have been computed, we include both whether they agree on their prediction,
and the JS-divergence between their class probabilities. For open-form reasoning, we include the perplexity, number of
tokens, and several quantiles of the logits if the model has been computed, in accordance with Gupta et al. (2024). If
several models have been computed, we also include whether they agree on their prediction.

We note that we train a separate logistic regression model for each history of computed models, and for each model
separately as well. Thus we have one linear model for each combination of a target model mi and computed models
mi1 , . . . ,mij . All the linear models are trained on the training set included in the benchmark.

E. Confidence Intervals
To check whether the results obtained by cascade routing are significantly higher than our baselines in Tables 1, 2 and 10,
we perform bootstrapping on the samples in the dataset. Specifically, we compute the confidence interval associated with
the difference between the AUC scores of cascade routing and the baselines. If this difference is positive and its 2σ
confidence interval does not contain zero, we can conclude that cascade routing is significantly better than the baseline.
These confidence intervals are reported in Tables 4–6.

F. Additional Experiments
F.1. Ablation Study
We conduct an ablation study to examine the impact of various design choices in cascade routing on performance and
runtime. Runtime is a critical factor because the overhead introduced by the strategy must be negligible compared to the
time required for model computation. If the strategy adds significant overhead, its performance gains may be offset by the
increased runtime. We also include an additional ablation that specifically targets runtime on random data in App. F.2.

To investigate this, we repeat the experiment from §5.1 when using all eleven models, testing different variations of cascade
routing. We evaluate a slower variation that omits Lemma 1, thereby requiring more supermodels to be evaluated (SLOW),
a greedy variation that only considers supermodels of length j+1 at step j (GREEDY), and a version that does not compute
the expected value when evaluating supermodel quality, using the quality of the best model instead (NO-EXPECT).

Results Table 7 presents the results. As expected, the SLOW variation is almost an order of magnitude slower while
achieving similar performance. In contrast, both GREEDY and NO-EXPECT are faster but perform worse in the low-
and medium-noise scenarios by 0.5% to 1.3%. Interestingly, there is a much smaller performance gap in the high-noise
scenario. This is due to the very low variance in the quality estimates, since the linear model used for quality estimation
predicts an almost constant value for each query in this scenario, making the expected value computation less important.

21

A Unified Approach to Routing and Cascading for LLMs

Table 6: AUC scores on the realistic benchmarks with 2σ confidence intervals. Bold numbers indicate that the confidence
interval contains zero.

SWE-Bench Math+Code Classification Open-Form

10 MODELS 5 MODELS QWEN LLAMA GEMMA MISTRAL LLAMA GEMMA MISTRAL

Cascade Routing (Ours) 54.21+7.49
−7.17 51.20+7.44

−7.22 48.51+2.95
−2.99 75.56+1.22

−1.16 64.89+1.36
−1.42 65.02+1.40

−1.24 79.95+1.28
−1.33 59.70+1.62

−1.61 58.77+1.42
−1.50

− Routing 13.65+4.50
−4.32 11.71+4.39

−4.14 1.11+0.81
−0.80 0.60+0.32

−0.34 0.39+0.50
−0.47 0.08+0.12

−0.10 0.56+0.38
−0.42 1.26+0.57

−0.55 0.02+0.05
−0.05

− Cascade (Baseline) 15.36+3.90
−3.22 5.17+1.69

−1.63 10.77+1.71
−1.72 0.71+0.30

−0.28 10.51+0.62
−0.61 3.79+0.73

−0.77 0.65+0.23
−0.27 3.47+0.37

−0.40 10.45+1.15
−1.06

− Cascade (Ours) 0.83+1.90
−1.50 0.11+1.05

−1.04 1.82+0.58
−0.55 0.06+0.15

−0.17 2.04+0.33
−0.31 1.67+0.41

−0.42 0.20+0.19
−0.19 2.00+0.25

−0.25 3.06+0.65
−0.63

Table 7: AUC scores and average runtime for variations of cascade routing on RouterBench when using all eleven models.

Low-Noise Medium-Noise High-Noise

AUC (%) Time (ms) AUC (%) Time (ms) AUC (%) Time (ms)

Cascade Routing 87.29 15.26 77.61 9.53 74.41 13.68
SLOW 87.30 78.88 77.61 87.72 74.40 88.76
GREEDY 85.93 1.39 77.17 1.17 74.35 0.89
NO-EXPECT 85.98 4.78 77.11 2.49 74.35 2.08

Furthermore, the GREEDY and NO-EXPECT variants perform very similarly, while GREEDY is about twice as fast as NO-
EXPECT. This suggests that one should almost always use the normal variant of cascade routing, and only consider the
GREEDY variant if runtime is a critical concern. Neither the SLOW nor the NO-EXPECT variant is recommended, as they
either perform worse or are significantly slower than the normal variant.

F.2. Runtime Analysis
We further analyze the runtime of the four variants of cascade routing presented in App. F.1. Specifically, we perform
experiments with random data, scaling the number of models to 80 to evaluate the runtime of all variants. Furthermore,
we include a fifth variant of cascade routing in the analysis MAX-DEPTH, which restricts cascade routing to a maximum
depth of 3 models. MAX-DEPTH does not reduce performance of cascade routing if the optimal depth is less than or equal
to 3 models. However, it does significantly reduce the runtime of cascade routing.

For each number of models, we generate 100 data points, each with random quality and cost estimates associated with each
model. For each point, we generate the hyperparameters λ1, ..., λk and γ randomly. We then report the average runtime of
the five variants of cascade routing in Fig. 3.

0 20 40 60 80
Number of Models

10−4

10−3

10−2

10−1

100

101

102

Runtime (s)

Normal

Greedy

No Expectation

Slow

Max Depth

Figure 3: Runtime of cascade routing vari-
ants for different numbers of models.

The results show the varying computational complexity of the different
variants of cascade routing. SLOW has the highest runtime, and becomes
computationally too expensive even when using less than 20 models. In
contrast, standard cascade routing has a significantly lower runtime, and is
able to handle up to 40 models within a 1 second runtime. Its faster variant,
MAX-DEPTH, is able to handle up to 80 models within a 1 second runtime.
Furthermore, we now also see a clear difference between NO-EXPECT and
GREEDY. While GREEDY remains computationally very cheap even for
80 models, NO-EXPECT has a significantly higher runtime, even obtaining
higher runtimes than MAX-DEPTH for 80 models.

Thus, the conclusions from App. F.1 are further supported by the runtime
analysis: GREEDY is the most efficient variant of cascade routing, while
NORMAL is the most efficient variant that does not compromise perfor-
mance. MAX-DEPTH is a good choice if the optimal depth is known to
be less than or equal to 3 models, as it significantly reduces runtime with-
out compromising performance. Since cascades of more than 3 models are
rare, MAX-DEPTH is a good choice in practice.

22

A Unified Approach to Routing and Cascading for LLMs

Table 8: Classification AUC values for each benchmark separately for the experiment performed in §5.2.

LLAMA GEMMA MISTRAL

MMLU ARC MixEval MMLU ARC MixEval MMLU ARC MixEval

Linear Interp. 53.82 93.15 82.86 39.40 82.28 70.97 39.76 85.39 73.03
Routing 55.32 93.12 82.86 40.01 83.13 73.12 40.61 85.64 74.28
Cascade (Baseline) 54.80 94.08 84.15 36.43 77.53 66.10 36.99 83.88 72.73

Cascade (Ours) 55.05 94.16 84.00 37.68 79.80 70.57 37.03 86.27 74.42
Cascade Routing (Ours) 55.40 93.90 83.91 39.93 83.74 73.16 40.56 86.52 74.64

Table 9: Open-form AUC values for each benchmark separately for the experiment performed in §5.2.

LLAMA GEMMA MISTRAL

MMLU GSM8k MMLU GSM8k MMLU GSM8k

Linear Interp. 65.64 94.43 36.52 73.86 41.40 67.84
Routing 65.75 94.15 38.08 75.01 43.03 68.00
Cascade (Baseline) 66.07 95.17 35.76 68.44 38.88 60.82

Cascade (Ours) 66.25 94.94 38.16 71.10 40.76 64.53
Cascade Routing (Ours) 66.60 94.69 40.43 75.25 42.93 68.30

G. Detailed Results
We present benchmark-specific AUC values for the experiment performed in §5.2 in Table 8 for classification and Table 9
for open-form reasoning. In Fig. 4, we show the quality-cost tradeoff curves for several benchmarks. The curves are
obtained by varying the cost threshold λ and plotting the resulting accuracy and cost values in a curve.

H. Additional Results
In Table 10 we report the AUC scores for the RouterBench dataset for different noise levels for the five-shot evaluation.
Our conclusions presented in §5.1 remain consistent with the results presented in Table 10. However, there is one notable
inconsistency: in two of the three low-noise scenarios, our cascading strategy performs worse than the threshold-based
baseline cascade. In the scenario with three models, we find its cause can be found in the more difficult optimization
surface for the hyperparameters of our cascading strategy. Specifically, our cascading strategy at some point starts to lose
quality as cost increases. By simply setting the hyperparameters of the cascading strategy once it starts to lose quality to
the ones where it obtained its highest quality, we obtain a quality of 83.35% over the 83.17% of the baseline cascade.

In contrast, for low-noise and eleven models, a similar approach does not yield a better result. Rather, the discrepancy
is caused by a small mismatch between the quality estimates of supermodels and the chosen model. While the quality
estimate is based on the expected maximum of all models, we restrict the selected model to be the last model that was
computed in the cascade. Since the expected maximum is higher than the quality of the last model, this discrepancy can
lead to suboptimal decisions. By allowing both the baseline cascade and our cascading strategy to select the model with
the highest quality estimate, we find that our cascading strategy once again outperforms the baseline cascade. Note that
this slight discrepancy is not relevant for cascade routing, since the extra restriction is not imposed in this setting.

23

A Unified Approach to Routing and Cascading for LLMs

0.000 0.001 0.002 0.003
Cost

0.5

0.6

0.7

0.8

Quality

Models

Linear Interpolation

Routing

Cascade (Baseline)

Cascade (Ours)

Cascade Routing

(a) RouterBench, medium noise, 5 models

200 400 600
Cost

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Quality

Models

Linear Interpolation

Routing

Cascade (Baseline)

Cascade (Ours)

Cascade Routing

(b) SWE-Bench with 5 models

0.0000 0.0005 0.0010
Cost

0.60

0.65

0.70

0.75

Quality

Models

Linear Interpolation

Routing

Cascade (Baseline)

Cascade (Ours)

Cascade Routing

(c) Classification task for the LLAMA models

Figure 4: Quality-cost tradeoff curves for several benchmarks.

Table 10: AUC scores in % for different strategies on RouterBench across model and noise levels for five-shot evaluation.
Highest numbers are bolded, underlined numbers are within the 95% confidence intervals of the highest number. For a
discussion on confidence intervals, we refer to App. E.

Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Linear Interp. 74.21 74.21 74.21 73.82 73.82 73.82 75.16 75.16 75.16
Routing 81.50 77.22 76.01 82.43 76.84 75.54 85.34 77.77 76.44
Cascade (Baseline) 83.16 78.58 76.89 84.27 76.59 73.92 87.14 78.60 74.94

Cascade (Ours) 82.78 78.77 77.01 84.26 77.19 74.30 86.72 78.67 75.08
Cascade Routing (Ours) 83.80 78.86 77.11 85.50 78.78 76.75 88.78 80.90 78.04

Table 11: AUC scores on several benchmarks for the MISTRAL model family. Highest numbers are bolded, underlined
numbers are within the 95% confidence intervals of the highest number. For confidence intervals, see App. E.

Classification Open-Form

Linear Interp. 63.39 53.86
Routing 64.89 58.71
Cascade (Baseline) 61.20 48.29

Cascade (Ours) 63.31 55.51
Cascade Routing (Ours) 64.97 58.73

24

	Introduction
	Routing as Linear Optimization
	Cascading as Sequential Routing
	Cascade Routing as Cascade Generalization
	Experimental Evaluation
	RouterBench
	Real-World Benchmarks

	Related Work
	Conclusion
	Routing
	Cascading
	Prior Approximations

	Cascade Routing
	Experimental Details
	Routerbench
	Accurate Quality Estimation
	Poor Quality Estimation

	Confidence Intervals
	Additional Experiments
	Ablation Study
	Runtime Analysis

	Detailed Results
	Additional Results

