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Probabilistic Learning of Multivariate Time Series
with Temporal Irregularity

Yijun LI, Cheuk Hang LEUNG, Qi WU

Abstract—Probabilistic forecasting of multivariate time series
is essential for various downstream tasks. Most existing ap-
proaches rely on the sequences being uniformly spaced and
aligned across all variables. However, real-world multivariate
time series often suffer from temporal irregularities, including
nonuniform intervals and misaligned variables, which pose sig-
nificant challenges for accurate forecasting. To address these
challenges, we propose an end-to-end framework that models
temporal irregularities while capturing the joint distribution of
variables at arbitrary continuous-time points. Specifically, we
introduce a dynamic conditional continuous normalizing flow to
model data distributions in a non-parametric manner, accom-
modating the complex, non-Gaussian characteristics commonly
found in real-world datasets. Then, by leveraging a carefully
factorized log-likelihood objective, our approach captures both
temporal and cross-sectional dependencies efficiently. Extensive
experiments on a range of real-world datasets demonstrate the
superiority and adaptability of our method compared to existing
approaches. The data and code supporting this work are available
at https://github.com/lyjsilence/RFN.

Index Terms—probabilistic forecasting, multivariate time se-
ries, irregular sampling, recurrent neural networks, normalizing
flow models, neural ODEs

I. INTRODUCTION

MULTIVARIATE time series (MTS) data, where multi-
ple variables are recorded and evolve over time, are

essential across fields such as healthcare, finance, and climate
science. For instance, in healthcare, MTS data can track a
patient’s vital signs, enabling early detection of potential health
issues. In finance, it supports forecasting market behaviors
and asset correlations, which is essential for risk management
and investment strategies. Probabilistic forecasting of MTS is
indispensable, as it supports downstream tasks like anomaly
detection, risk assessment, and decision-making. This involves
predicting not only central measures like the mean or median
but also quantiles and confidence intervals that are essential
in high-stakes decision-making scenarios [1].

At the variable level, MTS data exhibit serial dependence,
meaning the marginal distributions of individual variables at
different time points are not independent [2]. At the group
level, the dependence structure encompasses relationships like
the copula function of the joint distribution, where components
may be strongly interdependent. Both variable-level serial
dependencies and group-level interdependencies can vary over
time. Probabilistic forecasting entails specifying the joint
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distribution of variables in MTS, learning its representation
from data, and predicting its evolution over time [3].

However, real-world MTS data rarely follow regular sam-
pling intervals. Instead, these datasets often exhibit temporal
irregularities, creating multivariate irregular time series where
observations are separated by uneven time intervals. Temporal
irregularities occur frequently in various applications. For ex-
ample, climate data might have gaps if monitoring equipment
fails to record at scheduled times. Patient measurements may
be taken at inconsistent times, resulting in irregular sampling.

These irregularities, which may be random or due to spe-
cific factors, present significant challenges for probabilistic
forecasting in MTS [4, 5]. Irregular sampling disrupts the
modeling of serial dependencies, as traditional methods rely
on evenly spaced data points to capture temporal patterns
accurately. Additionally, it complicates the modeling of in-
terdependencies among variables, as unaligned time points
make it harder to reveal important relationships within the
data. This irregularity increases the difficulty of accurately
characterizing the joint distribution, adding uncertainty to the
forecasting process [6]. Before presenting our approach, we
review existing methods for handling temporal irregularity and
modeling joint distributions.

A. On Handling Temporal Irregularity

There are three primary approaches to handling irregular
sampling. The first approach involves converting an irregularly
sampled time series into one with evenly spaced time intervals
before making predictions. The discretization method selects
a larger uniformly spaced time interval, with each interval
containing several observations, and computes the mean of
these observations to represent the interval’s value. However,
this method loses local information due to averaging. In
contrast, the imputation method interpolates the missing values
of the lower-frequency variables instead of averaging the
higher-frequency variables. It keeps the local information of
the higher-frequency variables intact and uses models such
as the Gaussian Process regression model [7], the Recurrent
Neural Networks (RNNs) [8], and the Generative Adversarial
Networks (GANs) [9] to impute the missing values of the
lower-frequency components.

The next approach proposes using end-to-end models to
avoid the “interpolate first and predict later” idea. This ap-
proach modifies classical recurrent architectures to encode
the information embedded in irregular temporal patterns. For
example, Che et al. [10] added an exponential decay mecha-
nism in the hidden state. Neil et al. [11] extended the Long
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short-term memory (LSTM) unit by adding a new time gate
controlled by a parametrized oscillation with a frequency
range. Additionally, Mozer et al. [12] incorporated multiple
time scales of the hidden state and made a context-dependent
selection of time scales for information storage and retrieval.

At last, Chen et al. [13] introduced the Neural ODE frame-
work by extending discrete neural networks into continuous-
time networks, which makes it a natural candidate for han-
dling data with arbitrarily small time intervals. For instance,
Rubanova et al. [14] proposed the Latent ODE and were the
first to embed Neural ODEs in a Variational Autoencoder [15]
to address the problem of irregularly sampled time series.
De Brouwer et al. [16] integrated the Neural ODEs in the
classical Gated Recurrent Unit (GRU) cell and derived the
dynamics of the hidden state. Unlike the classical GRU cell,
which keeps the hidden state constant in the absence of
observations, the continuous-time GRU cell learns to evolve
the hidden state using Neural ODEs. Building upon similar
ideas, Lechner et al. [17] transformed the standard LSTM
into a continuous version to address the issues of gradient
vanishing and exploding. In section II-A, we will provide more
background on Neural ODEs and how to utilize them to model
irregularly sampled data.

B. On Modeling Joint Data Distribution

For point estimation tasks, vanilla recurrent architectures,
including RNN, GRU, and LSTM, can capture different as-
pects of the aforementioned properties of the MTS data. How-
ever, they are not directly applicable to distribution prediction
due to the deterministic nature of the transition functions
of their hidden states, which do not account for modeling
uncertainties [18].

One class of models modifies the output function of neural
networks to model the joint distribution or quantile function.
For example, the models in [16, 19, 20] assume the data-
generating process follows parametric distribution, such as the
multivariate Gaussian (for continuous variables) and multivari-
ate Negative Binomial (for discrete variables). Alternatively,
researchers use quantile regression to fit the quantile function
of the joint distribution. They use the quantile loss [21, 22] or
the continuous ranked probability score [23] as the objective
function to train the model and predict multiple quantile points
simultaneously conditional on the hidden states.

Recently, unsupervised deep learning models have been
utilized to learn the joint distribution of data, including
integrating variational autoencoders [18], normalizing flows
[24, 25], or diffusion models [26] into RNNs. Among these,
the flow models are flexible in capturing intricate and evolving
dependence structures and impose no assumptions about the
functional form of the joint data distribution. These charac-
teristics make them attractive for dealing with complex data,
although they do not specifically address the structural aspects
of irregular sampling. In section II-B, we shall further detail
the background of representing data distribution using the
normalizing flow approach.

C. Our Approach and Contributions

Discussions in I-A and I-B unveil dislocations and dispari-
ties among ideas of handling temporal irregularities in the data
and ideas to model its joint distribution. This paper bridges
this gap by introducing a deep learning solution called the
Recurrent Flow Network (RFN). It can seamlessly integrate
the treatment of temporal irregularities with the learning of
joint data distribution. Its novelties are as follows.

(i) The proposed RFN framework formulates a two-layer
representation that distinguishes marginal learning of variable
dynamics from multivariate learning of joint data distribution.
It is a versatile methodology that can be trained end-to-end and
accommodates synchronous and asynchronous data structures.
It also broadly applies to underlying recurrent architectures.
Once the joint data distribution is learned, it is ready for
sampling despite the distribution being non-parametrically
represented via neural networks.

(ii) The joint learning layer resolves the struggle faced by
existing models [16, 19, 20] in achieving a non-parametric rep-
resentation of non-Gaussian data distribution, simultaneously
with a flexible choice of information to generate time variation.
The conditional CNF (Continuous Normalizing Flow) repre-
sentation we developed enables one to choose what informa-
tion to use to drive the time variation of the base distribution
and the flow map without compromising any non-parametric
capacity to represent the non-Gaussian data distribution.

(iii) Building upon (ii), we strategically condition the log-
likelihood objective on the observation times. This condi-
tioning structure enables the optimizer to fully acknowledge
and account for both the uneven spacing aspect and the
asynchrony aspect of temporal irregularity in the MTS data.
By conditioning on the observation times, the RFN ensures
that the model incorporates the specific time points at which
the data is observed.

We validate the novelties mentioned above through synthetic
experiments and demonstrate the overall performance of the
RFNs on three real-world datasets. The synthetic studies
simulate sample paths of a multivariate correlated Geometric
Brownian Motion process to verify the ability of our approach
to capture the conditional joint distribution. Meanwhile, the
experimental datasets include the physical activities of the hu-
man body from the MuJoCo module [14], the climate records
of weather from the USHCN dataset [27], and the minute-
level transaction records of eight stocks in the biotechnology
sector of NASDAQ market [28]. We compare four baseline
models in terms of their performance in vanilla forms and
the performances utilizing the RFN specification. The results
show that the RFN framework has broad applicability and
significantly improves existing approaches.

II. BACKGROUNDS

Understanding the working mechanism of the proposed
RFN model requires the knowledge of Neural ODEs, their
applications to model irregularly sampled data, and the flow
representation of distributions. This section summarizes these
subjects to make the paper self-contained. Throughout the
paper, we denote random variables as follows: X for scalar,
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X for vector, and X for matrix. Their corresponding sample
values are denoted as x, x, and x accordingly.

A. Neural Ordinary Differential Equations

Neural ODEs were developed as the continuous limit of
the ResNet model. The ResNet model solves the degradation
problem of neural networks where researchers noticed that,
as the network layers go deeper, the training loss begins to
increase steadily once the network depth crosses a certain
threshold [29]. Consider a L-layer network, with x0 being
the input, xl being the output of each layer l ∈ {1, · · · , L},
and fθl(·) being the learning functions of layer l. Instead of
learning the mapping from x0 to xL directly, ResNet learns
the difference between the input and output of each layer:

xl = xl−1 + fθl(xl−1). (1)

Chen et al. [13] proposed that taking the limit of the number
of layers to infinity shall turn discrete layers into continuous
layers. The resulting continuous limit of the recursive equation
(1) is an ODE:

dx(l)

dl
= fθ(x(l), l). (2)

Solving (2) with initial condition x(0) is equivalent to the
forward pass of ResNet. One can use numerical methods such
as the Euler and the Runge–Kutta methods to solve (2).

B. Unconditional Normalizing Flow

For tasks related to probabilistic forecasts, one needs a
representation of the data distribution. Let p(x), x ∈ RD

be the probability density of the data-generating distribution
and p(z), z ∈ RD be the probability density of the base
distribution which is typically set as the standard normal, i.e.,
Z ∼ N (0, ID). The idea of the normalizing flow model is
to find a differentiable bijective function f = [f1, · · · , fD]⊤

which can map samples from Z to X [30, 31]:

f : RD → RD; f(z) = x.

In the discrete formulation, f is typically specified as a
sequence of neural networks, f = f1 ◦ · · · ◦ fM−1 ◦ fM .
However, designing the architectures of f1, · · · , fM is chal-
lenging because they need to satisfy three conditions: being
bijective, differentiable, and facilitating the computation of the
determinant of the Jacobian of the function f .

The continuous normalizing flow model (CNF) [32] offers
a solution to this challenge by extending the composition of
discrete maps into a continuous map, whose differential form
reads as follows:

∂z(s)

∂s
= f(z(s), s; θ), s ∈ [s0, s1],

where z(s)|s=s0 = z, z(s)|s=s1 = x.
(3a)

Unlike the physical time t, s is called the flow time of the
dynamics (3a). At the initial flow time s0, the value of the
flow z(s0) is set as z, which samples from the base distribution
p(z) of the base random variable Z. At the terminal flow time
s1, the value of the flow z(s1) is set to equal x, which is

(a) Syn-MTS (b) Asyn-MTS

Fig. 1. (a) and (b) are examples of Syn-MTS and Asyn-MTS where observed
data points are marked as solid circle dots. While the time intervals between
consecutive observation times are unevenly spaced in both cases, component
observations of the Syn-MTS sample path are always aligned. In contrast, in
the Asyn-MTS case, no observation time has complete observations. This
demonstrates that uneven spacing originates at the univariate level, while
asynchrony arises exclusively in the multivariate context.

the observed sample from the distribution of the true data-
generating distribution p(x).

The discrete formulation requires careful design of the
weight matrices of fj , 1 ≤ j ≤M , to be triangular to facilitate
computing the Jacobian’s determinant easily. However, the
computation of the Jacobian determinant is replaced with
relatively cheap trace operations thanks to the Instantaneous
Change of Variables theorem [13] in the continuous formu-
lation. Consequently, the log-density of the continuous flow
follows the following equation:

∂ log p(z(s))

∂s
= −Tr

[
∂z(s)f

]
, s ∈ [s0, s1],

where p(z(s))|s=s0 = p(z), p(z(s))|s=s1 = p(x).
(3b)

Solving equations (3a) and (3b) together, we have[
x

log p(x)

]
=

[
z

log p(z)

]
+

∫ s1

s0

[
f(z(s), s; θ)

−Tr
[
∂z(s)f

]] ds. (3)

III. DATA STRUCTURE & PROBLEM STATEMENT

MTS are sequences of data where multiple variables are
observed over time. Each variable may exhibit dependencies
on both its own past values and the past values of other
variables. Consider a MTS dataset containing N instances.
Each instance is a D-dimensional sample path. All instances
span the same [0, T ] period. For example, this dataset could
represent climate recordings, consisting of N daily records,
each spanning 24 (T ) hours. During each day, multiple indices
(D), such as temperature and precipitation, are observed.
However, some recorded values may be missing due to various
factors, such as equipment failure.

To account for the presence of temporal irregularity in a
given instance i ∈ {1, · · · , N}, we first collect all time points
at which at least one variable has an observation and define
this collection as the time vector of observations:

ti := [ti1, · · · , tiKi
], 0 ≤ ti1 ≤ · · · ≤ tiKi

≤ T.

At a particular observation time t ∈ ti, we use xi,t ∈ RD×1

to denote the time-t sample values of the random vector Xt of
the ith instance, within which we use xdi,t ∈ R to denote the
dth component, which is the sample value of the dth random
scalar Xd

t , We also set xdi,t = 0 if no observation for the dth

at time t. Thus, we have

xi,t := [x1i,t, · · · , xdi,t, · · · , xDi,t]⊤, where t ∈ ti.
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Fig. 2. The data structure and notations for one instance.

We then aggregate xi,t from all observation times t =
ti1, t

i
2, · · · , tiKi

of the instance i to form the instance-level data
matrix xi ∈ RD×Ki , where

xi := [xi,ti1 ; xi,ti2 ; · · · ; xi,tiKi

]⊤, i ∈ [1, · · · , N ].

Finally, the entire MTS dataset is the collection of all N
instances {{x1}; {x2}; · · · ; {xN}}.

An instance xi can be synchronous or asynchronous de-
pending on whether xdi,t is observed or not for any combination
of the variable dimension d ∈ {1, · · · , D} and the observation
time t ∈ ti.

Definition 1. Synchronous multivariate time series (Syn-
MTS): An instance xi where all of its D component series
have observations at each and every time points t ∈ ti (see
Fig. 1(a)).

Definition 2. Asynchronous multivariate time series (Asyn-
MTS): An instance xi where at least one of its D component
series does not have all observations at all time point t ∈ ti

(see Fig. 1(b)).

To precisely distinguish between Asyn-MTS and Syn-MTS,
we can use the mask matrix. For each instance i with corre-
sponding data matrix xi, its mask matrix is mi such that

mi := [mi,ti1
; mi,ti2

; · · · ; mi,tiKi

]⊤.

Here, mi,t is a vector that denotes whether the constituent
component variables are observed at time t ∈ ti, i.e.,

mi,t : = [m1
i,t, · · · ,md

i,t, · · · ,mD
i,t]

⊤, where

md
i,t =

{
1, if xdi,t is observed;
0, if xdi,t is unobserved.

In the sequel, we shall drop the instance script i to lighten
notations, e.g., tik, xi,t and mi,t shall become tk, xt and
mt, whenever the context is clear. In Fig. 2, we give a plot
explanation of an instance with two variables.

Problem Statement. Given the historical value of Syn-
MTS or Asyn-MTS observations xt1 , · · · , xtk , the objective
of our work is to learn a non-linear mapping function to
estimate the joint distribution p(xtk+l

) at arbitrary future time

tk+l in a continuous-time manner. In particular, the joint
distribution can be decomposed into marginal distributions
p(x1tk+l

), · · · , p(xDtk+l
), which allows for interval estimation

of each individual variable. In Fig. 2, we provide a graphical
representation of the goal we aim to achieve, which demon-
strates the probabilistic forecasting of two irregularly sampled
and non-Gaussian variables over time.

IV. MODEL FRAMEWORK

In this section, we introduce our RFN model framework,
designed for probabilistic forecasting of multivariate irregular
time series in both synchronous and asynchronous cases. A
visual representation is provided in Figure 3.

The RFN comprises two main layers: the marginal learning
layer and the joint learning layer. In the marginal learning
layer, the multivariate irregular time series is processed using
any advanced sequential model suitable for such data. The
resulting representation, the hidden state of sequential models,
is then passed to the joint learning layer.

The joint learning layer aims to learn the unknown data
distribution using the conditional CNF model, leveraging the
change of variable theorem. Specifically, conditioned on the
hidden state, we learn a differentiable bijective function that
maps the unknown distribution to a simple base distribu-
tion—such as a multivariate normal distribution—for which
the likelihood is easy to compute. The likelihood of a real data
point in the unknown distribution can then be calculated by
combining the likelihood of the transformed data point under
the base distribution with the transformation loss.

Furthermore, the joint learning layer is tailored to handle
both Syn-MTS and Asyn-MTS scenarios. The key difference
between these cases is that in Asyn-MTS, some variables may
be missing at certain time points, making it impossible to
compute the likelihood. To address this issue, we force each
variable in the base distribution to be independent and compute
the likelihood of the observed variables only.

Below, we first describe the marginal learning layer, fol-
lowed by a detailed explanation of the joint learning layer for
both synchronous and asynchronous cases.

A. Marginal Learning Layer

The marginal learning layer aims to acknowledge temporal
irregularities in the MTS data. Various existing recurrent
architectures targeting handling irregularly sampled time series
can be employed, such as those discussed in Section I-A. In
this section, we dedicate to providing one example, GRU-
ODE-Bayes [16], to elucidate the functionality of the marginal
learning layer and its interactions with the joint learning layer.

The vanilla GRU has the following updating formulas:

ht = (1− zt)⊙ h̃t + zt ⊙ ht−1, (4)

where zt, h̃t, ht ∈ RH are vectors denoting the update gates,
the candidate update gates, and the hidden states; the operator
⊙ denotes the element-wise multiplication.

Subtracting ht−1 on both sides of (4) leads to

ht − ht−1 = (1− zt)⊙ (h̃t − ht−1).
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(a) Synchronous case (b) Asynchronous case

Fig. 3. The framework of RFNs for (a) Syn-MTS and (b) Asyn-MTS. In both cases, there are two component variables X1
t , X

2
t . The solid points in different

colors indicate they are observations of different variables. In the marginal learning layer, the hidden states will be updated only when at least one variable
has an observation, e.g., from h(t1−) to h(t1+). In the joint learning layer, the base distribution parameters at each time are µt and Σt (for the Syn-MTS
case) or µdt and Σdt (for the Asyn-MTS case), which is learned from hidden state h(t1−). The conditional CNF transforms the data points following the
unknown distribution to the base distribution, for which likelihoods are easy to compute.

Then, by taking the limit as the time difference between
t − 1 and t tends to zero, one arrives at the continuous-time
dynamics of the hidden states:

dh(t)

dt
= (1− z(t))⊙ (h̃(t)− h(t)). (5)

We thus specify equations governing the evolution of the hid-
den states in two regimes, continuous-updating and discrete-
updating.

The continuous-updating regime corresponds to continuous
time intervals from t0+ to t1−, t1+ to t2−, t2+ to t3−, t3+
to t4−, and t4+ to t5− in Fig. 3 when no variables have
observations. Here, t− denotes the time point right before t and
t+ means the time point immediately after t. In this regime, we
assume that the hidden states for all variables evolve according
to equation (5) between observation intervals. To be concrete,
the details of evolution are given in equation (6).

The discrete-updating regime corresponds to the set of
discrete time points t = t1, t2, t3, t4 at which at least one
variable is observed. In this case, the hidden state will be
updated according to the observations xtk via vanilla GRU
cell, i.e., equation (7).

Continuous-updating:

∀t ∈ [0, T ]\[t1, · · · , tK ],

dh(t)

dt
= (1− zc(t))⊙ (h̃c(t)− h(t)), s.t. (6)

rc(t) = σ(wc
rx(t) + uc

rh(t) + bcr),

zc(t) = σ(wc
zx(t) + uc

zh(t) + bcz),

h̃c(t) = tanh(wc
hx(t) + uc

h(r
c(t)⊙ h(t)) + bch).

Discrete-updating:

∀t ∈ [t1, · · · , tK ],

h(t+) = (1− zu(t−))⊙ h̃u(t−) + zu(t−)⊙ h(t−) s.t. (7)
ru(t−) = σ (wu

r xt + uu
rh(t−) + bur ) ,

zu(t−) = σ (wu
zxt + uu

zh(t−) + buz ) ,

h̃u(t−) = tanh (wu
hxt + uu

h(r
u(t−)⊙ h(t−)) + buh) .

The architecture of the marginal learning layer can be
widely adaptable and can be substituted with other sequential
models. These alternative formulations are detailed in Ap-
pendix B.

B. Joint Synchronous Learning Layer
Once the marginal learning layer is set up, we seek to

maximize the log-likelihood of all observations,

max
Φ

log p(xt1 , · · · , xtK ; Φ),

where p is the joint density to be estimated from the ob-
served data at all observation times [t1, · · · , tK ] and Φ =
{ϕ1, · · · , ϕK} is the parameter set.

1) Factorizing Log-likelihood Objective: If the multivariate
sequence is synchronous, observing one variable implies the
observation of all other variables, despite potentially unevenly-
spaced time intervals. The synchronous property ensures align-
ments, enabling the use of the chain rule of probability. Thus,
we can decompose p(xt1 , · · · , xtK ; Φ) as

p(xt1 , · · · , xtK ; Φ)

=p(xt1 ;ϕ1)p(xt2 |xt1 ;ϕ2) · · · p(xtK |xt1 , · · · , xtK−1
;ϕK)

=p(xt1 ;ϕ1)
∏

K
k=2p(xtk |xt1 , · · · , xtk−1

;ϕk). (8)
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Such decomposition can be used to factorize the maximiza-
tion of the joint log-likelihood at all observation times into
optimizing conditional log-likelihoods individually:

max
Φ

log p(xt1 , · · · , xtK ; Φ)

=max
ϕ1

log p(xt1 ;ϕ1) +

K∑
k=2

max
ϕk

log p(xtk |xt1:k−1
;ϕk).

Note that the amount of exogenous information in the hid-
den state up to tk−1 will not increase until the next observation
arrives at tk. Therefore, conditioning on the sample path
xt1 , · · · , xtk−1

is equivalent to conditioning on the hidden state
at time tk− under mild assumptions. As a result, we have

max
Φ

log p(xt1 , · · · , xtK ; Φ) =

K∑
k=1

max
ϕk

log p(xtk |htk− ;ϕk).

(9)
2) Conditional Flow Representation: Optimizing (9) re-

quires a conditional representation of the data distribution,
wherein the log-densities can be tailored to suit one’s specific
conditional choices. For this purpose, we develop the fol-
lowing conditional formulation of the continuous normalizing
flow. Fig. 4 displays the framework of conditional CNF.

Given three random variables X, Y, and Z, our objective
is constructing conditional CNF, i.e., expressing conditional
log-density log p(x|y) in terms of log p(z|y) when there is a
non-parametric map f that maps z to x under the control of y.
Lemma IV.1 is useful to achieve our goal.

Lemma IV.1. Let z̃(s) = [z(s), y(s)]⊤ be a finite continuous
random variable, and the probability density function of z̃(s) is
p(z̃(s)) = p(z(s), y(s)) which depends on flow time s, where
s0 ≤ s ≤ s1. Given the governing dynamics of z̃(s) as

∂z̃(s)

∂s
=

[
∂z(s)
∂s

∂y(s)
∂s

]
=

[
f(z(s), s, y(s); θ)

0

]
,

where s0 ≤ s ≤ s1, z(s1) = x, y(s1) = y, and f is Lipschitz
continuous in z and continuous in s for any y. We have

log p(x, y)

= log p(z(s0), y) +

∫ s0

s1

Tr[∂z(s)f(z(s), s, y; θ)]ds.
(10)

Proof. See the Appendix D.

Subtracting log p(y) on both sides of equation (10) in
Lemma IV.1 and using the fact that log p(x, y) − log p(y) =

log p(x,y)
p(y) = log p(x|y), we obtain a result of conditional CNF

that is summarized in Proposition IV.1.

Proposition IV.1. Let the assumptions in Lemma IV.1 hold.
The conditional log-density p(x|y) is given by:

log p(x|y)

= log p(z(s0)|y) +
∫ s0

s1

Tr[∂z(s)f(z(s), s, y; θ)]ds.
(11)

By extending the unconditional CNF formulation (see Sec-
tion II-B) to the conditional formulation, equation (11) allows
the data distribution to be both non-parametric via the flow
map f and time-varying, e.g., by choosing the conditional
information y properly.

Fig. 4. The framework of conditional CNF.

3) Time-varying Specification: We now discuss how to
obtain p(xtk |htk− ;ϕk) in equation (9) via conditional CNF.
First, the conditional information y in equation (11) is the
hidden states htk− . We assume that there is a bijective map
between xtk and ztk such that ztk |htk− is Gaussian distributed.
Further, we shall let the hidden states determine the parameter
values of the Gaussian base distribution. Because hidden states
contain information on historical data and vary at different
observation times, this choice of conditioning leads to path-
dependent parameters of the base distribution.

Specifically, we assume that the mean vector µtk and
covariance matrix Σtk of the Gaussian base are functions
(learned by standard MLP, denoted by g) of the hidden states
htk− at time-tk− learned from the marginal learning layer, i.e.,

Ztk |htk− ∼ N (µtk ,Σtk), where
{µtk ,Σtk} = g(htk− ;ψ).

(12)

This is in contrast with the unconditional flow models where
the base distribution parameters are constants as it is a standard
Normal N (0, ID).

It is worth noting that previous studies [16, 19, 20] also use
hidden states to learn Gaussian parameters. However, those
Gaussian parameters are associated with the data distribution.
Our representation shifts the Gaussian assumption from the
data distribution to the base distribution, and it is the base
distribution parameters that depend on hidden states. This
distinction is crucial because our representation enables the
data distribution to be non-parametric, non-Gaussian, and
time-varying simultaneously.

Meanwhile, we use the following gated mechanism to
incorporate the hidden state dependence into the flow map.
Mathematically, we have

f(z(s), s,htk− ; θ)

=(wzz(s) +whhtk− + bz)σ(wss+ bs).
(13)

Here, σ is the sigmoid activation function. θ is the set of
trainable parameters which includes wh ∈ RD×H , bz ∈ RD,
and {ws, bs} ∈ R. The resulting flow dynamics is
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∂z(s)

∂s
= f(z(s), s,htk− ; θ), s ∈ [s0, s1],

where z(s)|s=s0 = ztk , z(s)|s=s1 = xtk .

The initial value of the flow z(s)|s=s0 is set as the Gaussian
base sample ztk , sampled from Ztk |htk− per (12), and the ter-
minal flow value z(s)|s=s1 is set to equal the time-tk observed
data xtk . Its solution maps samples from base distribution to
data distribution concurrently, given as

xtk = ztk +

∫ s1

s0

f(z(s), s,htk− ; θ)ds. (14)

We summarize the time-varying specification of the condi-
tional CNF representation for Syn-MTS data as follows. For
tk ∈ [t1, · · · , tK ], we have[

xtk
log p(xtk |htk− ;ϕtk )

]

=

[
ztk

log p(ztk |htk− ;µtk ,Σtk )

]
+

∫ s1

s0

[
f
(
z(s), s, htk− ; θ

)
−Tr[∂z(s)f]

]
ds.

(15)
It has two essential components, the time-varying base distri-
bution driven by hidden states where ψ in (12) is the parameter
to be trained, and the time-varying flow map indexed by
observation arrival times with θ in (13) being the set of
trainable parameters.

4) Training and Sampling: To train the NFR model, we
maximize the conditional log-likelihoods (9) across all sample
instances at all observation times. We set the dataset level log-
likelihood LSyn-MTS as the sample average of (Li

Syn-MTS)
N
i=1,

where each Li
Syn-MTS is weighted by the number of observation

times Ki. To be concrete, we have

LSyn-MTS

=
1

N

N∑
i=1

LiSyn-MTS =
1

N

N∑
i=1

1

Ki

Ki∑
k=1

log p(xi,ti
k
|hi,ti

k−
;ϕi,ti

k
)

=
1

N

N∑
i=1

1

Ki

Ki∑
k=1

(
log p(zi,ti

k
|hi,ti

k−
;µi,ti

k
,Σi,ti

k
)+∫ s0

s1
Tr
[
∂z(s)f(z(s), s, hi,ti

k−
; θ)
]
ds

)
. (16)

Once the model is trained, we can forecast the joint
data distribution at time point tk given the observations
{xt1 , · · · , xtk−1

} of the ith instance. The confidence interval
of predictions can be obtained by sampling from the learned
joint distribution.

For sampling, we first obtain the hidden states htk− for the
ith instance based on the observations {xt1 , · · · , xtk−1

} per
(6) and (7), and use htk− to predict the base distribution pa-
rameters {µtk ,Σtk} per (12). We then sample a given number
of points ztk from the base distribution with the predicted
parameters. Finally, we transform these base sample points
using the conditional CNF map (14) to obtain concurrent
samples that follow the data distribution.

C. Joint Asynchronous Learning Layer

If the multivariate sequence is asynchronous, it implies the
possibility that not all entries of the vector xtk are observable
at any given time tk ∈ t (as defined in Definition 2).

1) Masked Independent Log-likelihoods Objective: In the
scenario of Syn-MTS, it is observed that all variables si-
multaneously record observations xtk ∈ RD at a specific
observational time point tk. Under these circumstances, one
can convert it into a sample ztk ∈ RD following multivariate
Gaussian distribution conditioned on the hidden state htk−

via a conditional CNF. The mean and covariance of this
multivariate Gaussian distribution are represented as µtk and
Σtk , respectively. Consequently, the log-likelihood of xtk can
be computed as

log p(xtk |htk− ;ϕtk)

= log p(x1tk , · · · , x
D
tk
|htk− ;ϕtk)

= log p(z1tk , · · · , z
D
tk
|htk− ;µtk ,Σtk) +

∫ s1

s0

−Tr[∂z(s)f]ds.

In the Asyn-MTS cases, where some variables do not
have values at given times, the approach used in the syn-
chronous case cannot be applied directly. To resolve this
additional complication, we restrict each dimension of con-
ditional multivariate Gaussian distribution to be independent.
This allows for the decomposition of the joint log-likelihood
log p(z1tk , · · · , z

D
tk
|htk− ;µtk ,Σtk) into individual components,

as follows

p(z1tk , · · · , z
D
tk
|htk− ;µtk ,Σtk) =

D∏
d=1

p(zdtk |htk− ;µ
d
tk
,Σd

tk
).

Thus, we have

log p(x1tk , · · · , x
D
tk
|htk− ;ϕtk)

= log

D∏
d=1

p(zdtk |htk− ;µ
d
tk
,Σd

tk
) +

∫ s1

s0

−Tr[∂z(s)f]ds

=

D∑
d=1

log p(zdtk |htk− ;µ
d
tk
,Σd

tk
) +

∫ s1

s0

−Tr[∂z(s)f]ds. (17)

Note that (µd
tk
,Σd

tk
) ∈ R × R are learned from MLPs. For

each d, µd
tk

and Σd
tk

represent the mean and variance of the
variable Zd

tk
conditioned on the hidden state htk− , which is

assumed to follow a Gaussian distribution.
Nevertheless, it is noteworthy that at a specific observation

time tk, not all variables xdtk are necessarily observed. For any
unobserved variable xdtk , its corresponding log-density should
be omitted from (17). To address this scenario in practice, we
employ a masking mechanism denoted as md

tk
to mitigate the

impact of the unobserved quantity log p(zdtk |htk− ;µ
d
tk
,Σd

tk
).

As a result, equation (17) is transformed into the form:

log p(zdtk |htk− ; mtk , ϕtk)

=

D∑
d=1

md
tk
log p(zdtk |htk− ;µ

d
tk
,Σd

tk
) +

∫ s1

s0

−Tr[∂z(s)f]ds.

(18)

This decomposition along the component dimension facilitates
the optimization process by focusing solely on the conditional
distribution of variables with observations at time tk, rather
than optimizing across all D variables. Essentially, any com-
ponent lacking an observation at tk is effectively masked out,
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thereby ensuring its exclusion from influencing the overall loss
function.

In addition to the decomposition of the base Gaussian
distribution, it is equally crucial to address how unobserved
components are handled during the transformation process
xtk = f(ztk). Allowing transformations of missing values in
parallel with observed data can significantly skew the learning
outcomes. This is attributed to the fact that the transformation
applied to these unobserved values inadvertently influences the
cumulative transformation loss, specifically

∫ s1
s0
−Tr[∂z(s)f]ds.

To mitigate the problem, we allow the transformation pro-
cess for those observed components, and keep the process
unchanged for those unobserved components at each tk ∈ t.
Thus, the evolution equation of zd(s) for each d along the
flow time can be described by the following ODE:

∂zd(s)

∂s
= f(zd(s), s,htk− ;m

d
tk
, θ) , s ∈ [s0, s1], (19)

where

f(zd(s), s, htk− ;md
tk , θ) =

{
f(zd(s),s, htk− ; θ) if md

tk = 1,
0 if md

tk = 0.

We summarize the conditional CNF representation for
Asyn-MTS data as[

xtk
log p(xtk |htk− ;mtk , ϕtk )

]

=

[
ztk∑D

d=1m
d
tk log p

(
zdtk |htk− ; Σdtk , µ

d
tk

)]+ ∫ s1

s0

[
f(z(s), s, htk− ,mtk ; θ)

−Tr
[
∂zd(s)f

] ]
ds.

(20)
2) Training and Sampling: The target in the asynchronous

case also maximizes the log-likelihood of observations. How-
ever, different from the objective function (15) of the Syn-MTS
model, the unobserved components are masked. Mathemati-
cally, we have

LAsyn-MTS =
1

N

N∑
i=1

LiAsyn-MTS, where

LiAsyn-MTS

=
∑

1≤k≤Ki
1≤d≤D

1

KiD

(
md
i,ti

k
log p(zd

i,ti
k
|hi,ti

k−
;µd
i,ti

k
,Σd

i,ti
k
)+∫ s0

s1
Tr[∂zd(s)f(z

d(s), s, htk− ;md
tk , θ)]ds

)
.

(21)

The sampling process at time tk of the Asyn-MTS model is
similar to the Syn-MTS model. We first predict the parameters
of base distribution of variables X1

tk
, · · · , XD

tk
conditional

on the hidden state htk− from marginal learning layer, i.e.,
{µ1

tk ,Σ
1
tk}, · · · , {µ

D
tk ,Σ

D
tk}. Then, we sample a given number

of points z1tk , · · · , z
D
tk

from the base distributions with the
predicted parameters, and we transform these points using the
conditional CNF model.

The algorithms for the training and sampling procedures of
the Syn-MTS model and the Asyn-MTS model are provided
in Appendix G.

V. EXPERIMENTS

We conduct one simulation experiment to verify the effi-
cacy of the model specification, followed by three real-world

datasets to evaluate the overall performance of the RFNs. In all
studies and experiments, we use 70%/15%/15% of the sample
instances for training/validation/testing.

A. Baseline Models
We establish four baseline models specifically to facili-

tate the construction of the marginal learning layer, namely
GRUODE [16], GRU-D [10], ODERNN [14], and ODELSTM
[17]. These baselines are all designed to model multivariate
irregularly sampled time series. Following [16], We adapt them
by assuming that each variable follows a multivariate normal
distribution, and thus their joint learning layer is designed to
learn the parameters of these normal distributions. Specifically,
the parameters of the normal distribution, µtk and σtk are
predicted based on the hidden state h(tk) via a feed-forward
neural network directly.

To compare the vanilla form of a baseline model, e.g., GRU-
D, with its RFN counterpart, e.g., termed as RFN-GRU-D, we
use the corresponding RFN specifications laid out in Section
IV-B and IV-C for the multivariate learning. For a fair and
robust comparison, we employ the same marginal learning
layer across all baseline models in RFN models. The only
difference between the baselines and our RFN model is the
replacement of the joint learning layer—from the multivariate
normal distribution assumption in the baseline models to the
conditional CNF in RFN. By doing so, we can isolate and
demonstrate the specific performance improvement brought by
our proposed joint learning layer.

The alternative construction of the marginal learning layer
except GRUODE is listed in Appendix B. Hyperparameters,
such as learning rate and batch size, are tuned using a random
search for all experiments. The ‘dopri5’ method is employed
as the numerical solver for the ODE-based models.

B. Evaluation Metric
We use the Continuous Ranked Probability Score (CRPS)

[33] as the evaluation metric to measure the proximity between
the learned distribution and the empirical distribution of data.
The CRPS metric is the suitable scoring function for the
evaluation since it attains the minimum when the learned
distribution of data aligns with its empirical distribution. The
CRPS is defined as

CRPS(F̂ , x) =

∫
R
(F̂ (z)− I{x ≤ z})2 dz,

where F̂ is the estimated CDF of random variable X and x is
the realized observations of X . In our dataset, the observations
are irregularly sampled, and some values are missing, and thus
we only compute CRPS when the variables can be observed.

Since CRPS targets to evaluate the estimated distribution of
the univariate random variable, [20] suggests using CRPSsum
as a new proper multivariate-scoring rule to evaluate the
estimated distribution of multivariate random variables. Specif-
ically, we have

CRPSsum = Et

[
CRPS

(
F̂sum (t),

D∑
d=1

xdt

)]
,
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where F̂sum is computed by adding the estimated CDF of
all variables together. In practice, the empirical CDF is always
used to represent F̂ and F̂sum . In our experiments, we take 100
samples from trained models to estimate the empirical CDF.
For Asyn-MTS datasets, some variables are not observable at
an observation time; we thus only add the estimated CDF of
observed variables as F̂sum .

Apart from CRPS and CRPSsum , Kuleshov et al. [34]
propose a more interpretive metric, termed confidence score
(CS), to evaluate the calibration performance of the predicted
distribution in the time series forecasting. The key idea be-
hind this metric is to measure how the true frequency of
observations across all time points matches the quantiles of
the predicted distribution. For each variable d at each time
point t, the model predicts a distribution F d

t (·). From this, we
can compute the q-th quantile of the distribution, denoted by
Qd

t (q) = inf{xdt ∈ R | F d
t (q) ≥ xdt }. For a well-calibrated

model, the proportion of actual observations xdt smaller than
the predicted Qd

t (q) should closely approximate q.
Specifically, it first choose m quantile levels 0 < p1 <

· · · < pm < 1, then for each threshold pj , they compute the
empirical frequency

p̂dj =
|{xdt : F d

t (x
d
t ) ≤ pj , t = 1, · · · , T |}|

T
.

Then, the confidence score is defined to describe the quality
of forecast calibration CS = 1

mD

∑m
j=1

∑D
d=1(pj − p̂dj )

2.

C. Simulation Experiment

(a) Data Generating Process. We set the Data Gener-
ation Process (DGP) Xt = [X1

t , · · · , X5
t ] as the follow-

ing continuous-time correlated Geometric Brownian Motion
(GBM) [35]

dXt = µ⊙Xtdt+ diag(σ ⊙Xt)dWt, t ≥ 0, (22)

where µ = [µ1, · · · , µ5]⊤ and σ = [σ1, · · · , σ5]⊤ are
the drift term and volatility term of variables, and Wt =
[W 1

t , · · · ,W 5
t ]

⊤ is the multivariate Brownian Motion process
such that ⟨dW i

t , dW
j
t ⟩ = ρij(t)dt where

[ρij(t)]1≤i,j≤5 := sin
(π
2
t
)

1 ρ1 0 0 0

ρ1 1 0 0 0

0 0 1 ρ2 ρ2

0 0 ρ2 1 ρ2

0 0 ρ2 ρ2 1

 .

We devise such a correlated GBM as the DGP for several
reasons. Firstly, the GBM is a fundamental model in physics
and asset prices in financial markets [36]. Secondly, the cor-
related GBM admits log-normal distribution for each variable,
distinguishing it from the normal distribution. Thirdly, the
correlation among the five variables is not set to static but
time-varying, gradually increasing as time progresses from 0
to 1 due to the sinusoidal function sin(π2 t). This guarantees
that the joint distribution of the five variables is constantly
changing. Fig. 5(a) showcases three representative sample
paths from the dataset. Additionally, Fig. 5(b) illustrates the

sample correlation matrix at observed time points 0.3, 0.6, and
0.9, validating the dynamic and gradual increase in correlation.

(b) Simulation Settings. We first simulate 1,000 sample
paths using (22) with uniform time intervals. The Brownian
parameters, i.e., the drift terms and the diffusion terms, of
the 1,000 sample paths are set as follows: µ1 = µ2 ∼
Unif(−0.2,−0.05), µ3 = µ4 = µ5 ∼ Unif(0.05, 0.2), σ1 =
σ2 ∼ Unif(0.15, 0.3), σ3 = σ4 = σ5 ∼ Unif(0.15, 0.3), where
Unif(·, ·) stands for a uniform distribution.

We create the Syn-MTS and Asyn-MTS datasets through
random sampling from the simulated dataset with complete
observation. In the Syn-MTS dataset, we randomly choose half
of the time points and sample the corresponding observations
Xt at the chosen time points. To generate the Asyn-MTS
dataset, we randomly eliminate half of the observations for
each variable. The elimination is independent between any
two variables. Therefore, some variables have observations at
an observed time point, and some variables do not.

(c) Data and Model Validation. The experiment results in
Table I demonstrate that RFNs outperform the corresponding
baselines with smaller CRPS, CRPSsum, and CS. This indicates
the superior ability of the RFNs to capture the joint distribution
of multivariate irregular time series at each observed time
point and recover its dynamics. Fig. 6(a) and 6(b) illustrate
the correlation matrices sampled from the estimated Syn-
MTS and Asyn-MTS models at time points 0.3, 0.6, and
0.9, closely resembling the ground truth in Fig. 5(b). The
correlation coefficients from the recovered matrices gradually
transition from weak to strong as time progresses, aligning
with the ground truth in Fig. 5(b). This dynamic capture
of the joint distribution validates the effectiveness of the
RFN specification. Lastly, we employ the RFNs for interval
estimation of correlated GBM processes. Fig. 7(a) and Fig.
7(b) display prediction intervals for Syn-MTS and Asyn-MTS.

D. Dataset of Physical Activities (MuJoCo)
In applications such as robotics, multivariate time series are

commonly used to capture the position, speed, and trajectory
of objects, exhibiting a high degree of correlation among
variables. However, irregular and asynchronous frequency of
measurements frequently arises due to limitations in mea-
surement devices. This experiment tests the performance of
using the RFN specification to predict object positions against
baseline models in their vanilla forms.

The MuJoCo physics dataset is introduced in [14] to verify
that the ODE-based models can learn an approximation of
Newtonian physics. The dataset is created by the “Hopper”
model from the Deepmind Control Suite [37]. It contains 14
variables in total, where the first 7 variables and the last 7
variables control the position and the velocities.

By following the generation and preprocessing of [14],
we randomly sample the initial position and velocities of
“Hopper” such that the hopper rotates in the air and falls on the
ground. We generate 5,000 instances with 150 observed time
points for each instance, and randomly sample 50% values to
generate the Syn-MTS and Asyn-MTS datasets.

Table II shows that the RFNs perform robustly better than
the baselines in their vanilla form. As a validation, we use
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Fig. 5. (a) Three representative sample paths. (b) The sample correlation matrix at observed time points 0.3, 0.6, 0.9.

(a) (b)

Fig. 6. The sample correlation matrix recovered from the learned Syn-MTS model (a) and the learned Asyn-MTS model (b) at 0.3, 0.6, and 0.9.

TABLE I
GEOMETRIC BROWNIAN MOTIONS: BASELINE MODELS IN VANILLA FORM (2,3,4 COLUMNS) VS. USING RFN SPECIFICATION (5,6,7 COLUMNS).

NUMBERS UNDERNEATH CRPS,CRPSSUM ,CS ARE DISPLAYED IN THE FORM OF MEAN ± STD, AVERAGED OVER FIVE EXPERIMENTS.

model CRPS CRPSsum CS model CRPS CRPSsum CS

Syn-MTS

GRUODE 0.2051 ± 0.0182 0.6785 ± 0.0120 0.0010 ± 0.0003 RFN-GRUODE 0.1870 ± 0.0020 0.5869 ± 0.0088 0.0007 ± 0.0002
ODELSTM 0.2049 ± 0.0190 0.6697 ± 0.0120 0.0003 ± 0.0001 RFN-ODELSTM 0.1826 ± 0.0007 0.5795 ± 0.0025 0.0002 ± 0.0001
ODERNN 0.2070 ± 0.0045 0.6777 ± 0.0157 0.0002 ± 0.0001 RFN-ODERNN 0.1808 ± 0.0017 0.5744 ± 0.0078 0.0001 ± 0.0001

GRU-D 0.1921 ± 0.0130 0.6372 ± 0.0077 0.0015 ± 0.0006 RFN-GRU-D 0.1838 ± 0.0007 0.5815 ± 0.0071 0.0015 ± 0.0003

Asyn-MTS

GRUODE 0.2308 ± 0.0046 0.4565 ± 0.0125 0.0006 ± 0.0001 RFN-GRUODE 0.2045 ± 0.0042 0.3827 ± 0.0117 0.0003 ± 0.0002
ODELSTM 0.2261 ± 0.0061 0.4677 ± 0.0326 0.0002 ± 0.0001 RFN-ODELSTM 0.1962 ± 0.0015 0.3650 ± 0.0033 0.0001 ± 0.0001
ODERNN 0.2160 ± 0.0051 0.4283 ± 0.0144 0.0004 ± 0.0001 RFN-ODERNN 0.1918 ± 0.0048 0.3597 ± 0.0130 0.0001 ± 0.0001

GRU-D 0.2220 ± 0.0057 0.4420 ± 0.0162 0.0010 ± 0.0002 RFN-GRU-D 0.1858 ± 0.0019 0.3405 ± 0.0041 0.0007 ± 0.0001
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Fig. 7. Predicted quantile intervals (shaded area) from 20% to 80% of Syn-
MTS data (a) and Asyn-MTS data (b) using the RFN-GRUODE specification.
Solid dots represent observations. Broader quantile ranges are available in
Appendix F.

the trained model to forecast the future joint distribution at
t = 1.40 based on a given instance’s past ten observations
(ranging from t = 0.09 to t = 1.17). Subsequently, we gen-

erate 10 samples from the estimated distribution at t = 1.40
and compare them with the ground truth at t = 1.40. Fig. 9
displays the 10 samples at t = 1.40 from both the Asyn-MTS
model and the Syn-MTS model. They all resemble the ground
truth closely, affirming the RFN’s proficiency in predicting the
joint distribution.

In Fig. 8(a) and 8(b), we present a comparison based on
the CS metric to understand the model’s reliability. The x-axis
represents the observed quantile level, while the y-axis shows
the predicted quantile level. The solid black line represents
the theoretical best performance, where the predicted quantile
exactly matches the observed quantile, i.e., the x-axis equals
the y-axis. The closer a model’s performance is to this black
line, the better it is calibrated. We plot the results for our model
(solid lines) alongside the baseline models (dashed lines). We
observe that almost all the dashed lines fall upper and to the
left of the solid lines, indicating that our models outperform
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TABLE II
PHYSICAL ACTIVITIES OF HUMAN BODY (MUJOCO). (SAME REPORT FORMATS AS IN TABLE 1)

model CRPS CRPSsum CS model CRPS CRPSsum CS

Syn-MTS

GRUODE 0.2198 ± 0.0035 1.0763 ± 0.0352 0.0117 ± 0.0022 RFN-GRUODE 0.1858 ± 0.0037 0.6790 ± 0.0300 0.0097 ± 0.0033
ODELSTM 0.2256 ± 0.0015 1.1402 ± 0.0298 0.0117 ± 0.0026 RFN-ODELSTM 0.1736 ± 0.0017 0.7103 ± 0.0504 0.0060 ± 0.0010
ODERNN 0.2156 ± 0.0042 1.0450 ± 0.0393 0.0143 ± 0.0016 RFN-ODERNN 0.1747 ± 0.0019 0.6467 ± 0.0340 0.0087 ± 0.0025

GRU-D 0.2224 ± 0.0032 1.1118 ± 0.0177 0.0119 ± 0.0014 RFN-GRU-D 0.1905 ± 0.0010 0.6748 ± 0.0093 0.0084 ± 0.0007

Asyn-MTS

GRUODE 0.2695 ± 0.0054 1.0661 ± 0.0249 0.0024 ± 0.0001 RFN-GRUODE 0.1970 ± 0.0052 0.7306 ± 0.0185 0.0007 ± 0.0002
ODELSTM 0.2728 ± 0.0057 1.0834 ± 0.0292 0.0013 ± 0.0002 RFN-ODELSTM 0.1733 ± 0.0048 0.6318 ± 0.0155 0.0007 ± 0.0002
ODERNN 0.2696 ± 0.0036 1.0748 ± 0.0194 0.0020 ± 0.0005 RFN-ODERNN 0.1667 ± 0.0020 0.6277 ± 0.0086 0.0012 ± 0.0004

GRU-D 0.2261 ± 0.0035 0.9078 ± 0.0255 0.0116 ± 0.0008 RFN-GRU-D 0.1709 ± 0.0035 0.6409 ± 0.0151 0.0058 ± 0.0009

TABLE III
CLIMATE RECORDS OF WEATHER (USHCN). (SAME REPORT FORMATS AS IN TABLE 1)

model CRPS CRPSsum CS model CRPS CRPSsum CS

GRUODE 0.3012 ± 0.0082 0.5797 ± 0.0112 0.0269 ± 0.0043 RFN-GRUODE 0.2463 ± 0.0039 0.5183 ± 0.0072 0.0075 ± 0.0052
ODELSTM 0.3113 ± 0.0049 0.5909 ± 0.0075 0.0256 ± 0.0029 RFN-ODELSTM 0.2629 ± 0.0043 0.5510 ± 0.0090 0.0071 ± 0.0037
ODERNN 0.3112 ± 0.0088 0.5923 ± 0.0157 0.0285 ± 0.0011 RFN-ODERNN 0.2626 ± 0.0073 0.5499 ± 0.0146 0.0051 ± 0.0046

GRU-D 0.3016 ± 0.0143 0.5798 ± 0.0186 0.0243 ± 0.0038 RFN-GRU-D 0.2415 ± 0.0016 0.5093 ± 0.0025 0.0094 ± 0.0051

TABLE IV
TRANSACTION RECORDS OF EIGHT BIOTECHNOLOGY STOCKS (NASDAQ). (SAME REPORT FORMATS AS IN TABLE 1)

model CRPS CRPSsum CS model CRPS CRPSsum CS

GRUODE 0.0163 ± 0.0028 0.0578 ± 0.0219 0.0021 ± 0.0009 RFN-GRUODE 0.0149 ± 0.0008 0.0514 ± 0.0039 0.0007 ± 0.0006
ODELSTM 0.0163 ± 0.0021 0.0529 ± 0.0085 0.0013 ± 0.0010 RFN-ODELSTM 0.0150 ± 0.0009 0.0506 ± 0.0056 0.0004 ± 0.0002
ODERNN 0.0166 ± 0.0009 0.0564 ± 0.0047 0.0031 ± 0.0020 RFN-ODERNN 0.0150 ± 0.0008 0.0521 ± 0.0036 0.0021 ± 0.0009

GRU-D 0.0068 ± 0.0007 0.0270 ± 0.0016 0.0102 ± 0.0042 RFN-GRU-D 0.0064 ± 0.0003 0.0244 ± 0.0005 0.0049 ± 0.0054
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Fig. 8. The observed quantile level v.s. predicted quantile level of three real-world datasets. The dash lines are the baseline models, and the corresponding
solid lines are the RFN counterparts. The theoretical best result is the solid black line, and the closer the model is to it, the better the performance is.

the baseline models.

E. Dataset of Climate Records (USHCN)
Variables in natural phenomena, such as climate data, also

display strong serial and cross-correlations [38]. For instance,
temperature values from one season provide valuable infor-
mation about temperature patterns in the following season.
Additionally, precipitation, such as rain and snow, can cause
temperature drops and affect humidity levels. Missing obser-
vations are also common in climate data due to inclement
weather or equipment malfunctions. In this experiment, we

evaluate the performance of the RFN specification on the
USHCN dataset.

The United States Historical Climatology Network
(USHCN) dataset [27] consists of daily measurements from
1,218 centers across the country. It includes 5 variables:
precipitation, snowfall, snow depth, maximum temperature,
and minimum temperature. Following the preprocessing
approach of [16], we select the training data from the first
quarter of the last four years (1996-2000). This yields 4,494
instances, with each instance’s time period normalized from 0
to 12.5 at intervals of 0.1. The observations for each variable
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(a) t=0.09 (b) t=0.21 (c) t=0.36 (d) t=0.47 (e) t=0.67 (f) t=0.70 (g) t=0.87 (h) t=0.88 (i) t=1.03 (j) t=1.17 (k) t=1.40

Fig. 9. (a)-(j) represent data observed at historical times with unevenly spaced intervals. The objective is to estimate the data distribution at t=1.40. Fig. (k)
displays the observed ground truth at t=1.40. We train the Syn-MTS and Asyn-MTS models to forecast the desired distribution at t=1.40. The first and last
five figures in the second row display five samples generated from the trained Syn-MTS model (Asyn-MTS model) at t=1.40.

have uneven spacing, making the dataset asynchronous.
Consequently, we exclusively employ the Asyn-MTS model
to train this dataset.

The results presented in Table III demonstrate the superior
performance of the RFN specification over its vanilla counter-
part for all baselines when applied to the climate dataset. These
findings reinforce that climate data does not conform to a
multivariate Gaussian distribution and highlight the importance
of capturing the dependence structure among variables for
accurate weather forecasting.

F. Dataset of Stock Transactions (NASDAQ)

The capability to forecast stock prices holds importance
for investors, offering a strategic advantage in the financial
markets [39]. A transaction in the stock market is a match
between a buy order and a sell order. Since traders send their
buy and sell orders to exchange at random times, the time
intervals between transactions are inherently random.

In this section, we utilize the minute-by-minute transaction
records of eight biotech stocks from the NASDAQ exchange
from July 26, 2016, to April 28, 2017, across 191 trading
days [28]. Their ticker symbols are ‘BIIB’, ‘BMRN’, ‘CELG’,
‘REGN’, ‘VRTX’, ‘GILD’, ‘INCY’, and ‘MYL’. As they are
companies from the same sector, their stock prices tend to
move together, and these movements are strongly correlated.

We partition the 191 trading days into 993 instances, each of
which is a 75-minute-long multivariate instance. The dataset
contains instances of missing values, making it a multivariate
asynchronous time series. Utilizing the Asyn-MTS model,
we simultaneously forecast the joint distribution of the stock
prices of these eight stocks. Table IV shows that the RFN
specification consistently outperforms its non-RFN counterpart
in every one of the models.

G. Sensitivity Analysis

In this section, we present additional experiments to analyze
our model’s performance under various scenarios. In the main
paper, we randomly sampled 50% of the values to generate
the Syn-MTS and Asyn-MTS datasets. To further test the
robustness of our model, we vary the missing rate of the
MuJoCo dataset from 25% to 75% to create new Syn-MTS
and Asyn-MTS datasets.

The CRPS performance is illustrated in Fig. 10(a) and
10(b), where dashed lines represent the baseline and solid lines
represent the RFN specifications. The results indicate that RFN

outperforms all baseline models across all missing rates. In ad-
dition, we observe that, for the Syn-MTS dataset, performance
decreases slightly as the missing rate increases from 25% to
50%, but declines significantly when the missing rate rises
from 50% to 75%. This suggests substantial information loss
when more than half of the time points are unobserved. In
contrast, the Asyn-MTS dataset shows a steady decrease in
performance as the missing rate increases, possibly because
missing information in one variable can be compensated by
observations of other variables.

Furthermore, we explore the impact of varying the hidden
size of the conditional CNF from 32 to 256, with perfor-
mance results shown in Fig. 10(c). The performance remains
relatively stable across different hidden sizes, indicating that
the hidden size of the flow model has minimal influence on
the overall performance, demonstrating the robustness of the
proposed model. Similarly, we analyze the effect of various
memory sizes of the hidden state in the sequential models, as
shown in Fig. 10(d). We observe that increasing the hidden
state size results in performance improvements due to the
model’s enhanced ability to capture long-term dependencies.
However, as the hidden size increases further, the rate of
improvement diminishes.

VI. DISCUSSIONS & CONCLUSION

In this paper, we propose an end-to-end learning framework,
termed RFN, to address the challenges posed by multivariate
irregular time series. The RFN is structured into two core com-
ponents: a marginal learning layer and a joint learning layer.
The marginal learning layer processes the multivariate time
series—whether synchronous or asynchronous—by leveraging
state-of-the-art sequential models to capture the temporal
dynamics at each observed time point. The joint learning layer
then models the joint distribution of the variables at each time
step using the proposed conditional CNF model.

One of the key innovations of our framework is its ability to
overcome the restrictive Gaussian assumption commonly made
in time series modeling. By incorporating the dynamic con-
ditional CNF model, our approach facilitates non-parametric
learning of the joint distribution at arbitrary continuous-
time points, thereby accommodating both temporal and cross-
sectional dependencies in complex, irregular time series data.

We extensively evaluate the performance of the RFN frame-
work across several real-world datasets from diverse domains.
Our experimental results demonstrate that RFNs consistently
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(a) Missing Rate (Syn-MTS) (b) Missing Rate (Asyn-MTS) (c) Hidden Size of Conditional CNF (d) Memory Size of Sequential Model

Fig. 10. The sensitivity analysis across the missing rate, hidden size of conditional CNF (RFN-GRUODE), the memory size of the sequential model (RFN-
GRUODE), on Physical Activities (MuJoCo) dataset.

outperform state-of-the-art models that assume Gaussian dis-
tributions for modeling dependencies in irregularly sampled
time series. These results underscore the robustness and effec-
tiveness of the RFN framework, making it a powerful tool for
handling the challenges of irregular time series data in various
application domains.

However, we acknowledge several challenges in applying
RFN to certain types of datasets. Fisrt, if cross-sectional de-
pendencies are weak, the model’s advantage in learning inter-
variable relationships diminishes. Second. when applied to
datasets with a large proportion of missing values (e.g., greater
than 85%), the model’s ability to learn reliable dependencies is
significantly hindered since extremely sparse data may disrupt
temporal and cross-sectional relationships.

Our RFN framework also has some limitations. First, the
computational cost of training a CNF-based model is higher
than that of simpler Gaussian-based alternatives due to the
need for solving continuous-time flow dynamics, see Table
VIII. Second, the increased flexibility of normalizing flows
introduces additional complexity in optimizing the transfor-
mation dynamics, which can lead to unstable gradients and
longer training times. To mitigate this issue, we incorporate
regularization techniques, such as those proposed in [40], to
accelerate convergence and improve stability.
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